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Abstract

This paper proposes a new problem, calledsuperseding nearest neighbor search, on uncertain spatial
databases, where each object is described by a multidimensional probability density function. Given a
query pointq, an object is anearest neighbor(NN) candidateif it has a non-zero probability to be the
NN of q. Given two NN candidateso1 ando2, o1 supersedeso2 if o1 is more likely to be closer toq.
An object is asuperseding nearest neighbor(SNN) of q, if it supersedes all the other NN-candidates.
Sometimes no object is able to supersede every other NN candidate. In this case, we return theSNN-
core— theminimumset of NN-candidateseach of whichsupersedesall the NN-candidates outside the
SNN-core. Intuitively, the SNN-core contains the best objects, because any object outside the SNN-core
is worse thanall the objects in the SNN-core. We show that the SNN-core can be efficiently computed
by utilizing a conventional multidimensional index, as confirmed by extensive experiments.

Keywords: Nearest neighbor, uncertain, spatial database.
To appear in IEEE TKDE.
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1 Introduction

Uncertain databaseshave received a large amount of attention from the database community in recent years
[5, 7, 9, 12, 14, 17]. In such a database, an object is described by a probability density function (pdf).
For example, Figure 1a shows the possible locations of four objectsA, B, C, D. Specifically, objectA
has probabilities 0.4 and 0.6 of being at pointsA[1] andA[2], respectively. We refer toA[1] andA[2] as
the instancesof A. Similarly, objectB also has two instancesB[1] andB[2], at whichB is located with
likelihood 0.6 and 0.4, respectively. ObjectC (D) has only one instanceC[1] (D[1]), i.e., its location has no
uncertainty. It is worth mentioning that modeling of an uncertain object as a set of instances is a common
approach in the literature [9, 12, 14, 17].

We considernearest neighbor(NN) queries on uncertain objects. In general, there may notexist any object
that is guaranteed to be the NN. For instance, assume that thequery pointq is at the cross in Figure 1a.
ObjectA must be the NN ofq if it is at A[1]. However,A cannot be the NN ofq if it is at A[2], in which
caseC is definitely closer toq. Combining both facts, it is clear that no object can be claimed as the NN
with absolute certainty.

We say that an object is anNN-candidateif it may bethe NN. The explanation earlier shows thatA is an
NN-candidate. Similarly,B is also an NN-candidate since it is the NN provided that it is at B[1] andA
is at A[2]. C is another NN-candidate, because it is the NN as long asA andB are atA[2] andB[2],
respectively. However,D is not an NN-candidate, as its distance toq is larger than that ofC. Apparently,
when the number of NN-candidates is large, returning all of them to the user is a poor choice. Hence, it
is important to select thebest fewNN-candidates. Many existing methods fulfill this purpose by analyzing
objects’NN-probabilities[5], namely, the probability that an object is the NN. In thispaper, we provide a
new perspective to look at the issue: by analyzing objects’ mutual superiority.

Before going into the details, let us first consider a relevant question: given two objectso ando′, which is
better? Thispairwise competitionhas a clear answer wheno ando′ are precise points — the one closer to
the query pointq wins the competition, i.e., itsupersedesthe loser. How abouto ando′ being uncertain?
The answer is still clear: the onemore likelyto be closer toq is better. Formally,o supersedeso′ if the
probability thatq is nearer too than too′ exceeds 0.5.

For example, consider objectsA andB in Figure 1a, whose distances toq follow the pdfs in Figures 1b and
1c, respectively. For example, the distance pdf ofA is 0.4 (0.6) at distance 1 (5), becauseA has probability
0.4 (0.6) to be located at pointA[1] (A[2]). As q is closer toA than toB only if A has distance 1, the
probability thatq is closer toA (than toB) equals 0.4. This implies thatq has probability1 − 0.4 = 0.6 to
be closer toB, namely,B supersedesA. By the same reasoning, it is easy to verify thatC supersedesA,
andB supersedesC.

Figure 2 shows the resultingsuperseding graph. In this graph, there is a vertex for every NN-candidate
(hence,D is absent in the graph). The edge fromC to A indicates thatC supersedesA. The other edges
follow the same semantics. Clearly,B is the best object, as it supersedes bothA andC. We say thatB is a
superseding nearest neighbor(SNN) of q, and return it to the user.

In Figure 2, an object (i.e.,B) supersedes all other NN-candidates. Such an “all-game winner”, however,
does not always exist, namely, every object may lose in at least one pairwise competition. Figure 3a presents
another example with six uncertain objectsA, B, ...,F . Every object has three instances, each with proba-
bility 1/3 (e.g.,A may be located atA[1], A[2], orA[3] with equal chance). Figure 3b presents the resulting
superseding graph. Clearly, no object supersedes the otherNN-candidates. Furthermore, unlike its coun-
terpart on precise points, the superseding relationship does not obey transitivity on uncertain objects, as is
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obvious in the cycleA → B → C → D → A.

To remedy this problem, we propose to return theSNN-core, i.e., the smallest set of NN-candidateseach
of whichsupersedesall the NN-candidates outside the core. In Figure 3b, the SNN-core has four objects:
A,B,C,D (it is not worth consideringE andF , as they are worse thanall the objects in the SNN-core).
We present a systematic study on the problem of SNN-core computation. First, we formalize this new
concept, and identify its interesting properties. In particular, we show that the SNN-core isalways unique,
thus eliminating the question of “which SNN-core would be better if there were several”. Our second
contribution is a set of algorithms for finding SNN-cores. These algorithms utilize a conventional R-tree
(commonly available in commercial DBMS) to drastically prune the search space to achieve I/O efficiency.

SNN search can be applied in any application where it makes sense to issue NN queries on uncertain objects.
NN retrieval on uncertain objects does not have a unique, clear, answer, which has motivated the develop-
ment of several definitions of “nearest neighbor” in this context (see Section 2.2). All of these definitions are
complement to each other because (i) each of them is reasonable under a certain interpretation of what is a
“good” NN, and (ii) no definition subsumes the others, i.e., the “NN” found by one definition can be a poor
one by another. SNN can be regarded as another way to define good NNs, but with several nice features of
its own. In particular, this is the first definition that is based onmutual superiority. Note that disregarding
mutual superiority may cause disputes on fairness in practice. For example, consider each object to be a
cab, and the goal of NN search is to recommend a cab to a customer. Say cabA is returned; then, the driver
of cabB may complain about loss of business ifB actually has higher probability (thanA) to be closer to
the customer.

The rest of the paper is organized as follows. Section 2 reviews the previous work that is directly related to
ours. Section 3 formally defines the problem of SNN retrievaland illustrates its characteristics. Section 4
develops an algorithm that computes the SNN-core based on a complete superseding graph. Section 5
proposes a faster algorithm that is able to produce the SNN-core without deriving the whole superseding
graph. Section 6 settles some extensional issues. Section 7experimentally evaluates our solutions. Finally,
Section 8 concludes the paper with directions for future work.

2 Related Work

In Section 2.1, we discuss the existing research about NN retrieval on precise data (i.e., no uncertainty).
Then, Section 2.2 surveys the NN solutions on uncertain objects.

2.1 Nearest Neighbor Search on Precise Data

NN retrieval has been extensively studied in databases, computational geometry, machine learning, etc. In
the sequel, we focus on the most important results in the database literature, paying particular attention to
thebest-first(BF) algorithm, since it is employed in our technique.

Best-first. BF, developed by Hjaltason and Samet [8], assumes an R-tree [1] on the underlying dataset. We
will explain the algorithm using the dataset of 8 pointsA, B, ...,H in Figure 4a, and the R-tree in Figure 4b.
The rectangles in Figure 4a demonstrate the minimum bounding rectangles (MBR) of the nodes in the R-tree
(e.g., rectangleN1 denotes the MBR of the leaf node enclosingA andB). A concept crucial in BF is the
minimum distance(mindist) from an MBR to the query pointq. For example, in Figure 4a (where the query
is the cross), the mindist ofN5 is the length 2 of the segment betweenq andC, while the mindist ofN6 is
the length

√
5 of the segment betweenq and the upper-left corner ofN6. For convenience, in Figure 4b, we

associate each entry in the tree with its mindist toq. Specially, for a leaf entry, the mindist is simply the
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distance from the corresponding data point toq.

BF uses a min-heapH to manage the (intermediate/leaf) entries that have been seen so far but not yet
processed. The sorting keys of the entries are their mindists. Initially, H includes only the root entries:
H = {N5, N6}. As N5 tops the heap, it is de-heaped; accordingly, nodeN5 is accessed, and its entries
N1 andN2 are added to the heap:H = {N2, N6, N1}. Similarly, next BF visits nodeN2, andH becomes
{C,N6, N1,D}. Now, the top ofH is a data pointC, which is guaranteed to be the NN.

BF is incremental, meaning that, if allowed to run continuously, it will output the data points in ascending
order of their distances toq. For example, after reportingC, BF can be used to find the 2nd NN by continuing
on the currentH = {N6, N1,D} in the same way. Specifically, the next node accessed isN6, changingH to
{N3, N1,D,N4}, and still the next isN3, leading toH = {E,N1,D,N4, F}. Now a data pointE topsH,
and it is the 2nd NN. It can be shown that BF isoptimal in the sense that it requires the fewest I/O accesses
to find any number of NNs, among all the algorithms using the same R-tree.

Other Works. Roussopoulos et al. [15] propose another NN algorithm that performs depth-first search on
an R-tree. This algorithm requires less memory than BF, but may need to access more nodes. Solutions
based on R-trees, however, have poor performance in high-dimensional spaces [19], because the structure
of the R-tree deteriorates significantly as the dimensionality increases. This observation leads to several
algorithms specifically designed for high-dimensional NN search (see [10] and the references therein). The
above solutions assume that the distance between two objects can be calculated quickly, whereas Seidl and
Kriegel [16] consider the case where distance evaluation isexpensive. Finally, it is worth mentioning that
NN retrieval has numerous variations such asreverse NN search[11], aggregate NN search[13], continuous
NN search[18], etc.

2.2 NN Search on Uncertain Data

Let us represent the pdf of an uncertain objecto aso.pdf(.), such thato.pdf(x) gives the possibility thato
is located at locationx. Specially,o.pdf(x) = 0, if o cannot appear atx.

Expected-distance Principle.Given an NN query pointq, a naive approach is to return the object with the
smallestexpected distanceto q. However, the expected distance is not a reliable indicatorof the quality of
an object. To understand this, consider Figure 5, which shows the possible instances of objectsA, B, and
C. Intuitively, A is the best object, because it is almost sure (i.e., with 99% probability) to be the NN of
q. However,A has a large expected distance, because its instanceA[2] is faraway fromq. In fact, without
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affecting the NN-probability ofA, we canarbitrarily increase the expected distance ofA, by pushingA[2]
sufficiently away fromq.

PR-principle. A better approach is to report the object with the largest NN-probability [2]. Formally, the
NN-probabilityPNN (o) of an objecto is given by [5]:

PNN (o) =

∫

x

o.pdf(x) · PNN (o|x) dx (1)

wherePNN (o|x) is the probability ofo being the NN on condition that it is located atx. Alternatively,
PNN (o|x) is the likelihood that all other objects (i.e., excepto) fall outside the circle centering atq with
radiusdist(x, q) (i.e., the distance betweenx andq). For example, leto be objectB in Figure 5 andx
be its instanceB[2]. Then,PNN (B|B[2]) is the probability 0.8% that bothA andC lie outside the dotted
circle, i.e.,A andC atA[2] andC[2], respectively. In general, NN-probabilities can be costlyto calculate;
this problem is recently relieved by Kriegel et al. [12] witha clustering approach. The work of [12] also
addresses the case where the query location is uncertain. Reynold et al. [5] consider the related problem of
retrieving all points whose NN-probabilities are at least acertain threshold (as opposed to reporting only the
few objects with the greatest NN-probabilities). An approximate version of the problem, calledprobabilistic
verifier, has recently been studied in [4].

The PR-principle is a reasonable way to define the results of NN queries on uncertain data. A common
criticism is that sometimes even the highest NN probabilitycan be quite low, and multiple objects may
have almost the same NN probabilities. In any case, the PR-principle is orthogonal to our SNN approach.
As will be shown in the experiments, for most queries, the SNN-core contains only a single object that
is not the object with the greatest NN-probability. In practice, the PR-principle and our SNN method are
nice complements to each other. First, they provide two interesting options to a user, each with its unique
features. Second, they can even be combined to provide more reliable results. For example, a user may want
to find objects that (i) are in the SNN-core, and (ii) their NN-probabilities are among the top-t in the dataset,
wheret is a user parameter.

Other Works. Dai et al. [7] address a different version of uncertain NN search. Specifically, they assume
existentiallyuncertain objects. Namely, an object may not belong to the database, but in case it does, its
location is precise. In our context, an object definitely exists, but its location is uncertain. The solution of
[7] is specific to its settings, and cannot be adapted to our problem.

An NN query can be regarded as an instance of top-1 search. If we define thescoreof an objecto as its
distance to the query pointq, then the goal is to find the top-1 object with the lowest score. This creates
the opportunity of applying top-k methods to NN queries. Several top-k algorithms [9, 17, 20] have been
proposed for uncertain data. Atk = 1, they extract the object that has the smallest score with thelargest
probability. In other words, they advocate the same result as the PR-principle.
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3 Problem Definitions and Basic Characteristics

Let D be a set of uncertain objects. Following the previous work [9, 12, 17, 20], we consider thediscrete
pdf model. To simplify analysis, we first consider that (i) each objecto is associated withs pointso[1], o[2],
..., o[s], called theinstances, and (ii)o may appear at any of its instances with an identical probability 1/s.
Equivalently, the pdf ofo is given by:

o.pdf(x) =

{

1/s if x = any ofo[1], ...,o[s]
0 otherwise

(2)

In Section 6, we will discuss the general discrete pdf model,where each object can have different numbers
of instances, and each instance can be associated with a different probability. Furthermore, the discussion
will also be extended to continuous pdfs.

Use q to denote a precise query point. Letmaxdist(o, q) be the largest distance betweenq and all the
instances ofo, or formally:

maxdist(o, q) =
s

max
i=1

{dist(o[i], q)}. (3)

Letminmax be the smallestmaxdist(o, q) of all objectso ∈ D:

minmax = min
∀o∈D

{maxdist(o, q)}. (4)

The value ofminmax allows us to easily identify those objects with NN-probabilities (calculated by Equa-
tion 1) that are larger than 0:

Lemma 1 (NN-candidate). An objecto is an NN-candidateof q if at least one of its instances is within
distanceminmax to q, that is,minsi=1{dist(o[i], q)} < minmax.

Proof. Obvious and omitted.

We give the nameminmax-circleto the circle centering atq with radiusminmax. By Lemma 1, an object
is an NN-candidate if and only if it has at least one instance in the minmax-circle. We useN to represent
the set of all NN-candidates, and impose an ordering onN :

Definition 1 (RI-list). Theranked instance list(RI-list) sorts the instances of all objects inN in ascending
order of their distances toq (breaking ties randomly).

For example, the datasetD in Figure 3a has six objectsA, ...,F , each of which hass = 3 instances. Con-
sider, for instance, objectB; its maxdist(B, q) equals the distance betweenq and instanceB[3]. Figure 3a
also shows the circle centering atq with radiusmaxdist(B, q). Clearly, exceptB, no object has all the
instances inside the circle, indicatingminmax = maxdist(B, q). Hence, the circle is the minmax-circle.
Furthermore, every object has at least one instance in the circle, and hence, is an NN-candidate. In other
words,N = {A,B,C,D,E, F}. The RI-list ranks the instances of all NN-candidates in ascending order
of their distances toq, namely:

{D[1], A[1], B[1], C[1], E[1], C[2], A[2], D[2], E[2],
B[2], F [1], B[3], C[3].D[3], A[3], F [2], F [3], E[3]}.
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Given two objectso ando′, we useo ≺ o′ to denote the event thato is closer toq thano′. The probability
P{o ≺ o′} that this event occurs depends on the distribution of the instances ofo ando′. Formally,

P{o ≺ o′} =

s
∑

i=1

o.pdf(o[i]) · P{o ≺ o′|o = o[i]}. (5)

whereP{o ≺ o′|o = o[i]} is the probability ofo being closer toq thano′ provided thato is located at
instanceo[i]. In fact,P{o ≺ o′|o = o[i]} is essentially the percentage of the instances ofo′ that rank after
o[i] in the RI-list. To illustrate, assume thato ando′ are objectsB andD in Figure 3a respectively, ando[i]
is B[3]. In the RI-list,D has only one instanceD[3] afterB[3]. Hence,P{B ≺ D|B = B[3]} equals 1/3
(recall thatD has 3 instances in total).

Obviously,P{o ≺ o′} + P{o′ ≺ o} = 1. Therefore, whethero or o′ is preferred byq is determined by the
relationship ofP{o ≺ o′} and 0.5:

Definition 2 (Superseding Relationship). Given two objectso and o′, o is said tosupersedeo′ if P{o ≺
o′} > 0.5. In caseP{o ≺ o′} = 0.5, the superseding relationship betweeno ando′ is randomly decided.

This leads to the superseding graph:

Definition 3 (Superseding Graph). LetG = (V, E) be thesuperseding graph, whereV is the set of vertices
andE the set of edges.G is a directed graph that has a vertex for each NN-candidate, i.e.,V = N . For any
two objectso ando′ in N , if o supersedeso′, E has an edge fromo to o′; otherwise,E has an edge fromo′

to o.

Figure 3b gives the superseding graph for the example of Figure 3a, summarizing the superseding relation-
ships between all pairs of NN-candidates. Since each vertexin a superseding graph represents an object, in
the sequel the terms “vertex” and “object” will be used interchangeably. Now we are ready to introduce the
SNN-core.

Definition 4 (SNN-core). Given a superseding graphG, theSNN-coreis a setS of vertices inG satisfying
two conditions:

• (superseding requirement) every object inS supersedes all objects inV − S;

• (minimality requirement) no proper subset ofS fulfills the previous condition.

Each object inS is called asuperseding nearest neighbor(SNN) ofq.

Consider again Figure 3b. The SNN-core isS = {A,B,C,D}. Indeed, each object inS supersedes all the
NN-candidates (E andF ) outsideS. Moreover,S is minimal, because if any object is deleted fromS, the
remainingS no longer satisfies the superseding requirement.

Properties. The following lemma shows the uniqueness of SNN-core.

Lemma 2. A superseding graph has exactly one SNN-core.
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Proof. Let V be the vertex set of the superseding graphG. Assume, on the contrary, that there are two
SNN-coresS1 andS2. Obviously, neither can be a subset of the other, due to the minimality requirement of
SNN-core. Hence, there exists an objecto such thato ∈ S1 yet o /∈ S2, and an objecto′ such thato′ /∈ S1

yet o′ ∈ S2. SinceS1 is an SNN-core,o should supersede any object inV − S1. Thus,o supersedeso′.
Similarly, asS2 is an SNN-core,o′ needs to supersedeo. This is impossible because two objects cannot
supersede each other.

In practice, the size of the SNN-core is much smaller than thenumber of NN-candidates. To understand
why, first note that intuitively an NN-candidate is preferred by the customer if most of its instances are
close to the query pointq. However, even a good NN-candidate may have an instance relatively far from
q. Conversely, even a bad NN-candidate may have an instance close toq. To illustrate, Figure 6 shows
three uncertain objects whose instances are colored in black, grey, and white respectively. Note that the
instance distribution of each object simulates a popular Gaussian modeling [3]. The black object is a good
NN-candidate, and the only one in the SNN-core. Notice that the other two objects become NN-candidates
by having very few instances (here, only one) inside the minmax-circle. For a query on a real dataset,
there are often many such bad NN-candidates, explaining whyusually a majority of the NN-candidates have
extremely small NN-probabilities. It is rather unlikely for these NN-candidates to enter the SNN-core.

Problem. Our objective is to compute the SNN-core with the minimum computational cost. In the subse-
quent sections, we present two algorithms to solve this problem.

4 The Full-Graph Approach

Our first algorithm,full-graph, finds the SNN-core in two steps: (i) first compute the entire superseding
graphG, and then (ii) derive the SNN-core fromG. Next, we elaborate the details of these steps.

First Step. The goal is to obtain all thes instances of every NN-candidate.G is easily determined once
these instances are ready (the superseding relationship between any NN-candidateso, o′ can be resolved by
evaluatingP{o ≺ o′} according to Equation 5). To facilitate instance retrieval, we deploy an R-tree to index
the instances of all objects. Given a query pointq, we invoke the best-first (BF) algorithm [8] reviewed in
Section 2.1 to extract instances in ascending order of theirdistances toq. We terminate BF as soon ass
instances of each NN-candidate have been fetched.

9



The only question is how to determine which objects are NN-candidates. For this purpose, it suffices to
count the number of instances of each object seen so far. The setN of NN-candidates is determined when
the count of any object reachess (i.e., the number of instances per object) for the first time —N includes all
the objects, of which at least one instance has been encountered before this moment. We refer to this moment
as theminmax-moment, because this is the time when the value ofminmax (Equation 4) is finalized.

Note that after the minmax-moment, BF still needs to continue (until it has acquired all the instances of the
objects inN ), but the instances of any object outsideN can be ignored. It is worth mentioning that this
phase essentially extracts the entire RI-list (Definition 1) in its sorted order.

Second Step. We proceed to explain how to discover the SNN-core from a superseding graphG. The
starting point is to identify a vertex ofG that definitely belongs to SNN-core. Referring to the numberof
incoming edges at a vertex as itsin-degree, we have:

Lemma 3. The vertex with the lowest in-degree must be in the SNN-core.

Proof. Assume thato is a vertex with the lowest in-degreex in G but o is not in the SNN-core. Consider
any vertexo′ in the SNN-core, which by definition must supersedeo. As the in-degree ofo′ is at leastx,
o′ is superseded by at leastx vertices, all of which must be in the SNN-core (see Lemma 4), and hence,
supersedeo. Thus, we have foundx+ 1 objects supersedingo, contradicting the definition ofx.

In general, it is possible to have multiple vertices inG having the lowest in-degree. In this case, all of them
are in the SNN-core. Once we have identified a vertex that belongs to the SNN-core, we immediately know
some others that must also be in the SNN-core, as indicated inthe next lemma:

Lemma 4. If a vertexo is in the SNN-core, then all the vertices supersedingo must also belong to the
SNN-core.

Proof. This is obvious, because otherwise it contradicts the fact that every object in the SNN-core super-
sedes any object outside the SNN-core.

The two lemmas motivate the following strategy to retrieve the SNN-core from a superseding graphG. First,
we add to the core the vertices that have the minimum in-degree in G. Then, given a new vertexo in the
SNN-core, we also include all the objectso′ supersedingo, if o′ is not already there. This is repeated until
no more vertex can be inserted in the SNN-core.

Example 1. We illustrate the strategy using the superseding graph in Figure 3b. ObjectsC andD have the
lowest in-degree 1, and hence, are added to the SNN-coreS. SinceC is in the core andB supersedesC,
by Lemma 4,B also belongs to the core, and is thus added toS (which is now{B,C,D}). Similarly, the
incorporation ofB in the core further leads to the inclusion ofA (becauseA supersedesB). This results in
the final SNN-coreS = {A,B,C,D}.

Full-graph does not retrieve any object with no instance in the minmax-circle. This is a property of the BF
algorithm [8].
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5 The Pipeline Approach

Thefull-graph algorithm can be inefficient. Consider the extreme case where every NN candidate has a tiny
probability (e.g. 0.001%) of being very faraway from the query q. Sincefull-graph needs to acquire all
instances of every NN candidate, it may end up examining the whole database. Intuitively, if most instances
of an object are close toq, we should be able to determine that the object is in the SNN-core without
retrieving its farway instances. Similarly, it may also be possible to decide the SNN-core without generating
the whole superseding graphG.

Motivated by this, next we present thepipelinealgorithm that entails lower I/O cost.Pipelineincrementally
retrieves object instances in ascending order of their distances toq, calculates the superseding edges and
prunes objectsduring the retrieval, and terminates without fetching all the instances of NN candidates or the
completeG. Implementation of this idea has several challenges. First, when to stop retrieving instances of
objects? Second, how to determine the SNN-core from a partial G? We will answer these questions in this
section.

5.1 The Algorithm

As with full-graph, pipelinealso utilizes the best-first (BF) algorithm to retrieve the RI-list (Definition 1) in
its sorted order. While unfolding the RI-list gradually,pipelinemaintains aconservative coreG∗. Intuitively,
G∗ captures the portion of the final superseding graphG that has been revealed so far, and is relevant to the
SNN-core.

At the beginning ofpipeline, G∗ has only a single vertex, calledunseen. This is a special vertex, whose
presence means that the SNN-core may contain an object that has not been encountered yet. As soon as
we can assert that no such object can exist,unseenis removed. Exceptunseen, every other vertex inG∗

represents a seen object thatmaybe in the SNN-core. Once we can disqualify an object, we mark it as
pruned, and delete its vertex fromG∗.

Specifically,pipelineexecutes in iterations, where each iteration includes fourphases:

1. (Vertex phase) Get the next instance in the RI-list (using the BF algorithm). Let o be the object that
owns the instance. Add a vertexo to G∗ if (i) o is not already inG∗, (ii) o is not marked aspruned,
and (iii) and vertexunseenis still in G∗.

If this is the minmax-moment (having seen all thes instances of an object for the first time, as defined
in Section 4), remove vertexunseenfrom G∗ (at least one instance of every NN-candidate has been
encountered).

It is worth mentioning thatpipelinemay finish before reaching the minmax-moment. Vertexunseen
may also be deleted fromG∗ before this moment, as explained shortly.

2. (Edge phase) Decide as many edges inG∗ as possible from the instances examined so far.

3. (Pruning phase) If an object is disqualified from the SNN-core, discard its vertex inG∗ and mark
the object aspruned. If we can assert that no unseen object can be in the SNN-core,discard vertex
unseen.

4. (Validating phase) If we can conclude that the vertices in the currentG∗ constitute the SNN-core,
terminate the algorithm.

Figure 7 presents the pesudocode ofpipeline. In the sequel, we demonstratepipelineby using it to compute
the SNN-core for the example of Figure 3a, where each object hass = 3 instances.
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Algorithm pipeline
/* the code assumes that the elements of the RI-list can be retrieved in ascending order of their
distances to the query point */

1. G∗ is a graph with only a single vertex, namedunseen, with no edge
2. while the RI-list has not been exhausted

/* vertex phase */

3. get the next instance of the RI-list, which, say, belongs to objecto
4. if (G∗ does not have a vertex foro) and (o is not marked aspruned) and

(vertexunseenis still in G∗)
5. add a vertexo to G∗

6. if all the instances ofo have been seen /* namely, the minmax-moment */
7. remove vertexunseenfrom G∗

/* edge phase */

8. add as many edges toG∗ as possible

/* pruning phase */

9. for each vertexo in G∗

10. if o can be pruned
11. removeo from G∗ and all of its incident edges
12. if o corresponds to an object then marko aspruned

/* otherwise,o is vertexunseen*/

/* validating phase */

13. if all the vertices ofG∗ must be in the SNN-core
14. return the set of vertices

Figure 7: Thepipelinealgorithm

Example 2. As mentioned earlier,pipelineinvokes the BF algorithm to retrieve object instances in ascend-
ing order of their distances to the query pointq. Consider the moment after seeingC[2]. Figure 8a shows
all the instances already accessed, and Figure 8b presents the current conservative coreG∗. G∗ has five
“regular” verticesA, B, ...,E, created by the vertex phase when the first instances of thoseobjects were
fetched.G∗ also has the vertexunseen, implying that (based on the instances obtained so far) the SNN-core
may involve other objects that have not been encountered.

The edge phase of this iteration adds two edges toG∗ as shown in Figure 8b, corresponding to two super-
seding relationships that can be determined. For example,C must supersedeE, even though we have only
obtained their instancesC[1], E[1], C[2] (in this order). This is because the eventC ≺ E (i.e.,C is closer
to the query pointq thanE) definitely occurs when (i)C is atC[1] (happening with probability 1/3), or (ii)
C is atC[2] (probability 1/3) andE is not atE[1] (probability 2/3). Hence, the probabilityP{C ≺ E} of
eventC ≺ E is at least1

3
+ 1

3
· 2
3
= 5

9
. As thislower boundis already greater than 50%, it is safe to conclude

thatC supersedesE. Similarly,C also supersedes any unseen NN-candidateo. Specifically, as all instances
of o are farther toq than bothC[1] andC[2], the eventC ≺ o occurs with probability at least2

3
> 50%.

Pipeline continues to examine object instances, and meanwhile, generates more edges ofG∗ in the way
explained earlier. Its pruning phase has no effect until after obtainingB[2]. Figure 8c presents the instances
fetched up toB[2], and Figure 8d gives the currentG∗. At this point,pipelineclaims that no unseen object
can possibly appear in the SNN-core. To understand this, notice that in Figure 8d,A, B, ...,E all supersede
the vertexunseen(representing any object not encountered so far). Thus, theSNN-core must necessarily be

12
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Figure 8: Rationale ofpipeline

a subset of{A,B,C,D,E} due to the minimality requirement of SNN-core (see Definition 4). Accordingly,
we discard vertexunseenfrom G∗, resulting in the newG∗ in Figure 8e. From now on, we can ignore the
instances of any object other thanA, B, ...,E.

The next pruning happens after retrievingB[3]. Figure 8f shows the instances fetched so far and Figure 8g
gives the currentG∗. Clearly,A, B, C, D all supersedeE, which, therefore, cannot be in the SNN-core
(again, due to the minimality requirement). Hence, the pruning phase further simplifiesG∗ into Figure 8h,
and marksE aspruned.

Pipelinefinishes after retrieving one more instanceC[3]. Figure 8i presents the instances (of the objects still
in G∗) visited so far, and Figure 8j illustrates the corresponding conservative coreG∗. It is easy to verify
that the SNN-core cannot be any smaller than{A,B,C,D} due to the loopsA → B → C → A and
B → C → D → B in G∗. Therefore, the validation phase terminates the algorithm, and the remaining
instances of the RI-list are not visited. Notice that, the validation does not require the edge betweenA and
D.
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The above discussion explains the high-level framework ofpipeline. In the sequel, we will elaborate the
details of the edge, pruning, and validation phases (the vertex phase is simple and has been clarified earlier).

5.2 Edge Phase

The goal of this phase is to determine as many edges in the conservative coreG∗ as possible, based on the
instances already examined. LetV∗ be the set of vertices inG∗. Denotem = |V∗|, and the vertices inV∗ as
o1, o2, ...,om.

Recall that each vertex inG∗ corresponds to an object. The only exception is the special vertexunseen,
which may not exist inG∗, but in case it does, it represents any object that has not been encountered. Due
to the special nature ofunseen, we give double semantics too1. Specifically, in caseunseenappears inG∗,
it is denoted aso1. Otherwise,o1 is a regular vertex representing an object. The other verticeso2, ...,om, on
the other hand, are always regular.

The edge phase maintains a two-dimensionallower bound matrixlow with m rows andm columns. The
entry low[i, j] (1 ≤ i, j ≤ m) at thei-th row andj-th column stores a lower bound of the probability
P{oi ≺ oj} that objectoi is closer to the query pointq than objectoj . There are some special cases:

• For i = j, low[i, j] is always 0.

• In caseo1 is vertexunseen, (i) low[1, i] = 0 for 2 ≤ i ≤ m, and (ii) low[i, 1] (2 ≤ i ≤ m) is a lower
bound of the probability thatoi is closer toq than any object that has not been encountered.

At the beginning ofpipeline, V∗ has a single vertexunseen. Hence,m = 1 and low has only one cell
low[1, 1] = 0. As pipelineexecutes, the size oflow varies withV∗. Wheneverlow[i, j] (1 ≤ i, j ≤ m)
exceeds 0.5, we add toG∗ an edge fromoi to oj.

The edge phase also maintains a one-dimensional arraycnt with sizem. Thei-th elementcnt[i] (1 ≤ i ≤
m) records how many instances of objectoi have been retrieved so far. In caseo1 is the vertexunseen,
cnt[1] = 0.

In each iteration, the edge phase updates arraylow based oncnt and the instance acquired from the vertex
phase. Letoi (for somei ∈ [1,m]) be the object that owns the instance. The edge phase increasescnt[i] by
1, and updatesm− 1 entries inlow, i.e.:

low[i, 1], ..., low[i, i − 1], low[i, i + 1], ..., low[i,m].

Specifically,low[i, j] (j = 1, ..., i − 1, i + 1, ...,m) is updated as:

low[i, j] = low[i, j] +
1

s

(

1− cnt[j]

s

)

. (6)

It remains to explain what happens when a vertex is inserted or deleted inG∗. Insertion may happen in the
vertex phase, if an instance of a new object is obtained and vertexunseenis still in G∗. Let om+1 be the new
object. We expandcnt with a new elementcnt[m+ 1] = 0. As for low, we first add an(m+ 1)-st column
to low, and copy the value oflow[i, 1] to low[i,m+1] for eachi ∈ [1,m]. Then, we add an(m+1)-st row
to low with all zeros. Deletion, on the other hand, may occur in the vertex phase (i.e., removing theunseen
vertex at the minmax-moment) or pruning phase (after asserting that a vertex cannot be in the SNN-core).
Deleting a vertex involves only discarding its entry incnt, and the corresponding row and column inlow.
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Figure 9: Illustration of the edge phase

Example 3. We demonstrate the maintenance of matrixlow using the instances in Figure 8a. Figure 9a
shows the contents of arrayslow andcnt right before the iteration ofpipeline that retrieves instanceE[1].
SinceE[1] is the first instance ofE, the vertex phase adds a new vertex ofE to G∗. Accordingly, low
receives a new column and a new row, as shown in Figure 9b. Notethat everything already in the oldlow of
Figure 9a is directly retained in Figure 9b. Furthermore, the grey cells in Figure 9b are copied from the first
column of the oldlow, and the last row of the newlow contains only zeros.

Then, the edge phase processesE[1] by modifying the row inlow corresponding toE, according to Equa-
tion 6. For example, since the oldlow[E,unseen] = 0 in Figure 9b,s = 3, andcnt[unseen] = 0, the
new low[E,unseen] is computed by0 + 1

3
(1 − 0/3) = 1

3
. Similarly, given the oldlow[E,D] = 0 and

cnt[D] = 1, low[E,D] is derived as0 + 1

3
(1− 1/3) = 2

9
.

In the next iteration,pipelinefetchesC[2]. No new vertex is spawned inG∗ as this is the second instance of
C seen. The edge phase updateslow to the one in Figure 9d. Now that bothlow[C,unseen] andlow[C,E]
are over 0.5, the edge phase creates the two edges in Figure 8b.

5.3 Pruning Phase

Again, letV∗ be the set of vertices in the conservative coreG∗. The pruning phase eliminates the vertices in
G∗ that cannot appear in the SNN-core. This is to solve the following graph problem: identify the smallest
setSret of vertices such that, for any vertexo ∈ Sret ando′ ∈ V∗ −Sret, G∗ has an edge fromo to o′. We call
Sret theretention-set; all the vertices inV∗ − Sret can be discarded.
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For example, given theG∗ in Figure 9d,Sret = {A,B,C,D,E}, and thus, vertexunseenis discarded.
Similarly, if G∗ is the graph in Figure 9g,Sret = {A,B,C,D}, leading to the elimination ofE.

The retention setSret can be computed in a way analogous to finding the SNN-core froma full superseding
graph (see Section 4). Initially,Sret is empty. First, we place inSret the vertices inG∗ with the smallest
in-degrees (recall that the in-degree of a vertex is the number of edges pointing at it). Whenever a vertexo
appears inG∗, we also insert all the vertices that either supersedeo, or are not connected too in G∗. This
process is repeated until no other vertex can be added.

To illustrate, letG∗ be the graph in Figure 8g. AsA has the minimum in-degree 0, it is the first vertex inSret.
SinceC andD do not have edges withA, they also enterSret, which becomes{A,C,D}. AsB supersedes
C, the inclusion ofC requires addingB to Sret as well. At this point, theSret is finalized as{A,B,C,D}
because no other vertex can be inserted.

5.4 Validating Phase

The validating phase determines whether the current conservative coreG∗ is shrinkable, namely, if there is
any chance that some vertices can be pruned fromG∗ in the future, after more edges become available inG∗.
In case the answer is no, we can immediately claim that the current vertices ofG∗ constitute the SNN-core;
otherwise, another iteration ofpipelineis necessary.

WhetherG∗ is shrinkable depends on the following question: is there any non-empty subsetSwit of V∗ such
that all theexistingedges ofG∗ betweenSwit andV∗ − Swit follow the same direction? (V∗ is the set of
vertices inG∗.) Refer to theSwit as thewitness-set. G∗ is shrinkable if and only if a witness-set exists.

Consider theG∗ in Figure 8e. It is shrinkable due to the witness set{A}, noticing that all theknownedges
betweenSwit = {A} andV∗−Swit = {B,C,D,E} are fromSwit toV∗−Swit. In other words, it is possible
for the SNN-core to be{A} (which would be true if all the missing edges atA turned out to be pointing
away fromA; as shown in Figure 8j, this does not actually happen, which,however, cannot be predicted at
the stage of Figure 8e). In general, there can be multiple witness sets, e.g.,{D} is another in Figure 8e. On
the other hand, theG∗ in Figure 8j has no witness set, causing the termination ofpipeline.

To find a witness set, we borrow the concept ofstrongly connected. Specifically, a directed graph is strongly
connected if, for any two verticeso ando′ in the graph, there is a path fromo to o′, and another fromo′ to o.
Then:

Lemma 5. A conservative coreG∗ is not shrinkable if and only if it is strongly connected.

Proof. The if direction: Assume, to the contrary, that a strongly connectedG∗ is shrinkable. LetV ∗ be the
vertex set ofG∗. SinceG∗ is shrinkable,V∗ can be devided into two groupsV1 andV2 = V∗ − V1 such that
all the edges between the groups are fromV1 to V2. Thus, it is not possible to travel from a vertex inV2 to a
vertex inV1, contradicting the fact thatG∗ is strongly connected.

The only-if direction: Assume, on the contrary, thatG∗ is un-shrinkable but it is not strongly connected.G∗

must have a pair of verticeso ando′ such that there is a path fromo to o′ but not fromo′ to o. Put all the
vertices which can be reached fromo′ in V2 and the other vertices inV1 = V∗ − V2. Obviously,V1 is not
empty because it includes at leasto. All the edges betweenV1 andV2 must be fromV1 to V2 (otherwise,V2

has not incorporated all the vertices reachable fromo′). This implies thatG is shrinkable (V1 is the retention
set), causing a contradiction.
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For instance, theG∗ in Figure 8j is strongly connected. For example, let us inspect verticesA andB. Indeed,
there is a path fromA to B (just the edgeA → B), and another fromB to A (i.e.,B → C → A). This is
true for each pair of vertices inG∗. Checking whetherG∗ is strongly connected can be done using a standard
depth-first algorithm [6].

5.5 Discussion

The I/O performance ofpipeline is never worse than thefull-graph algorithm in Section 4. To understand
this, note that (i) the conservative coreG∗ is necessarily complete (i.e., no missing edges) after the entire
RI-list has been fetched, and (ii)pipelinedefinitely terminates given a completeG∗. As full-graph always
extracts the whole RI-list, it incurs at least the I/O cost ofpipeline.

On the other hand,pipelinemay finish by examining much fewer instances thanfull-graph. As explained
in Figure 6, for a practical query, many bad NN-candidates have few instances in the minmax-circle. In
this case, before exploring the instances of bad candidates. pipelinehas read most instances of the good
NN-candidates, and thus, already collected enough information to determine the superseding relationships
between good and bad candidates. Hence, the algorithm may prune the bad NN-candidates without reading
their instances at all.

Finally, in terms of asymptotical performance,full-graph has smaller time complexity. In the worst case,
it scans everything of the database inO(n) time (treatings as a constant), produces the full superseding
graph inO(n2) time, and finds the SNN-core also inO(n2) time as well, leading to an overall complexity of
O(n2). Pipeline, on the other hand, may need to invoke a pruning phase, which is the most expensive step of
an iteration, once for every single instance. This phase mayrequireO(n2) time in the worst case, rendering
an overall complexity ofO(n3). Nevertheless, it is worth noting that the above complexityanalysis holds
only under the very pessimistic assumption that nothing canbe pruned.

6 Extension

So far our analysis assumes that each object is represented by the same numbers of instances, and each
instance has an identical pdf-value1/s. This section removes this assumption. Specifically, we will modify
the proposed algorithms to the scenario where each object can have any number of instances, each of which
may have a different pdf-value.

Modeling and Concepts. Let o.s be the number of instances needed to represent an uncertain object o,
and denote those instances aso[1], o[2], ..., o[o.s]. The pdf ofo may take any positive valueo.pdf(o[i]) at
each instanceo[i] (1 ≤ i ≤ o.s), as long as

∑o.s
i=1

o.pdf(o[i]) = 1. Given a query pointq, without loss of
generality, we retain our notation convention that an instance with a smaller index is closer toq, namely,
dist(o[i], q) ≤ dist(o[j], q) for any1 ≤ i < j ≤ o.s.

All the definitions in Section 3 remain the same under the above modeling. The only difference lies in
computing the probabilityP{o ≺ o′} that an objecto is closer toq than anothero′. Equation 5 still correctly
quantifiesP{o ≺ o′}, but the upper limits of the summation must be replaced byo.s. The calculation of
P{o ≺ o′|o = o[i]} deserves detailed clarification. Consider the RI-list as formulated in Definition 1, and
let x be the smallest integer such thato′[x] ranks aftero[i] in the RI-list (in other words,o′[x] is the first
instance ofo′ behindo[i]). Then,

P{o ≺ o′|o = o[i]} = o.pdf(o[i]) ·
o′.s
∑

j=x

o′.pdf(o′[j]). (7)
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Indexing. We still use an R-tree to index the instances of all objects. The only difference is that, each leaf
entry, in addition to keeping the coordinates of an instance, also stores the pdf-value of the instance.

Algorithms. Our first solutionfull-graph does not require any change. Inpipelinethe only modification is
in the edge phase. The first change is the interpretation of the arraycnt. Recall that each elementcnt[i]
(1 ≤ i ≤ m, with m being the array size) is maintained for a vertexoi in the current conservative coreG∗.
If oi is a regular vertex denoting an object,cnt[i] equals the sum of the pdf-values of all the instances of
o[i] already retrieved (instead of simply the number of those instances as in Section 5.2). Specially, in case
i = 1 ando1 is the vertexunseen, cnt[1] is still fixed to 0 (same as in Section 5.2).

The second change is the waycnt andlow are updated based on an instance acquired from the vertex step.
To facilitate explanation, assume that the instance belongs to objectoi (for somei ∈ [1,m]), and specifically,
is the object’si′-th instance (for somei′ ∈ [1, oi.s]). Then,cnt[i] should be increased byoi.pdf(oi[i′]) (as
opposed to only 1 in Section 5.2). Furthermore, arraylow is not updated based on Equation 6; instead, the
update is according to:

low[i, j] = low[i, j] + oi.pdf(oi[i
′]) · (1− cnt[j]). (8)

Supporting continuous pdfs. In this paper we focus on objects with discrete pdfs. The problem of SNN-
core retrieval can also be defined on continuous pdfs (such asGaussian) in the same manner. An obvious
solution in that context is to first convert a continuous pdf to a discrete one by sampling, and then apply our
techniques directly. Alternatively, we may also index the uncertainty regions of the continuous pdfs1 with a
spatial access method such as an R-tree, and then, use the method of [5] to retrieve all the NN-candidates.
After deciding the superseding relationships of all pairs of objects, we can use thefull-graph algorithm to
compute the SNN-core. Thepipelinealgorithm, on the other hand, does not appear to be easily adaptable
to the continuous pdfs. Finding the SNN-core without retrieving all NN-candidates remains an interesting
open problem.

7 Experiments

This section experimentally evaluates the proposed techniques. There are two primary objectives. First, we
aim at demonstrating that SNN-cores have a small size under alarge number of settings with different data
distributions, numbers of instances per object, sizes of uncertainty regions, etc. Second, we will examine the
efficiency of the two algorithmsfull-graph andpipeline. All the experiments are performed on a machine
running a 2.13Ghz CPU and 1 giga byte memory.

7.1 Properties of the SNN-core

We choose four real spatial datasets:CA, LB, GM, GR, with cardinalities 10113, 10131, 10017, and 10063,
respectively (downloadable atwww.census.gov/geo/www/tiger). Figure 10 shows their data distributions,
which correspond to locations in California, Long Beach County, Germany, and Greece, respectively. The
data space is normalized to have range [0, 10000] on every dimension.

Given a values, we transformCA into an uncertain databaseCA-s. Specifically, for every pointp from
CA, we generate an uncertain objecto with s instances inCA-s as follows. First, we create a squareU(p)
centering atp with side length 600.U(p) is theuncertainty regionof o, i.e., the area where the instances
of o can appear. The instances are created based on the data distribution of CA insideU(p). To implement
this idea, we impose a grid with resolution100 × 100 over the data space. Each cell stores a counter, equal

1The uncertainty region of a pdf is the area where the pdf has a positive value.

18



(a) CA (b) LB (c) GM (d) GR

Figure 10: Dataset visualization

dataset (I) avg. (II) avg (III) % of (IV) num. (V) max. (VI) num. (VII) num.
SNN-core num. of NN-cand. of queries SNN-core of PR- of ED-

size NN cand- in SNN- with > 1 size correct correct
idates core SNNs

CA-15 1.23 162 0.6% 1 24 38 (of 100) 74 (of 100)
CA-25 1.13 194 0.7% 1 14 35 78
CA-35 1.06 208 0.5% 2 5 42 81
CA-45 1.03 220 0.5% 1 4 39 89
CA-55 1.02 228 0.4% 1 3 50 86

LB-15 1.54 199 0.7% 5 13 20 79
LB-25 1.14 229 0.5% 3 13 28 77
LB-35 1.00 249 0.4% 0 1 20 78
LB-45 1.00 261 0.4% 0 1 31 82
LB-55 1.00 271 0.4% 0 1 23 80

GM-15 1.49 314 0.4% 6 15 17 60
GM-25 1.16 400 0.3% 3 8 13 69
GM-35 1.07 433 0.2% 2 5 13 76
GM-45 1.05 455 0.2% 2 4 17 81
GM-55 1.13 471 0.2% 3 8 17 81

GR-15 1.15 332 0.3% 4 4 20 71
GR-25 1.07 390 0.3% 3 3 35 78
GR-35 1.20 444 0.3% 3 3 26 72
GR-45 1.14 464 0.2% 4 4 23 67
GR-55 1.10 476 0.2% 2 4 41 80

Table 1: Properties of SNN-core (identical uncertainty regions)

to the number of points ofCA in the cell’s extent. Letcell(p) be the set of cells covered byU(p). Then,
the probability that an instance ofo appears in a cellc of cell(p), equals the ratio between the counter ofc
over the sum of the counters of all cells incell(p). After identifying the cell to appear in, the position of the
instance is randomly decided in the cell. In this way, the pdfof o depends on the location ofp.

In CA-s, the uncertainty regions of all objects have the same size. We also synthesize another uncertain
datasetCA-s-var, where the uncertainty regions are not equally large. Specifically, CA-s-var is generated in
the same way asCA-s except that the side length ofU(p) can be 600 and 1000 with an equal probability.

In the same fashion, given every other real datasetX (= LB, GM, GR) and a value ofs, we create two
uncertain datasets namedX-s andX-s-var, respectively. We will experiment with 5 values ofs: 15, 25, 35,
45, and 55, resulting in totally 40 different datasets. We index each dataset using an R*-tree with page size
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dataset (I) avg. (II) avg (III) % of (IV) num. (V) max. (VI) num. (VII) num.
SNN-core num. of NN-cand. of queries SNN-core of PR- of ED-

size NN cand- in SNN- with > 1 size correct correct
idates core SNNs

CA-15-var 1.12 243 0.4% 3 5 42 (of 100) 77 (of 100)
CA-25-var 1.15 286 0.4% 2 10 49 82
CA-35-var 1.02 311 0.3% 1 3 35 90
CA-45-var 1.02 325 0.3% 1 3 44 91
CA-55-var 1.00 346 0.3% 0 1 50 91

LB-15-var 1.13 256 0.4% 3 6 23 81
LB-25-var 1.04 299 0.3% 3 3 26 90
LB-35-var 1.09 318 0.3% 3 4 31 80
LB-45-var 1.04 344 0.3% 3 3 28 92
LB-55-var 1.02 347 0.3% 1 3 23 85

GM-15-var 1.14 427 0.3% 3 7 17 60
GM-25-var 1.18 499 0.2% 4 7 13 69
GM-35-var 1.06 556 0.2% 3 3 13 76
GM-45-var 1.14 593 0.2% 2 8 17 81
GM-55-var 1.00 602 0.2% 0 1 17 81

GR-15-var 1.10 516 0.2% 3 5 35 63
GR-25-var 1.08 428 0.3% 2 6 42 56
GR-35-var 1.00 531 0.2% 0 1 39 75
GR-45-var 1.06 577 0.2% 1 7 30 66
GR-55-var 1.04 645 0.2% 1 5 29 77

Table 2: Properties of SNN-core (variable uncertainty regions)

4096 bytes. Aquery workloadcontains 100 query points randomly distributed in the data space.

Results on Objects with Identical Uncertainty Regions. Table 1 demonstrates various statistics about
the SNN-cores retrieved by a query workload, on different datasets. We will explain the columns in turn.
Column I shows the average number of points in an SNN-core, Column II gives the average number of NN-
candidates per query, and Column III presents the percentage of NN-candidates that belong to the SNN-core.
Clearly, the average size of an SNN-core is close to 1, and is significantly smaller than the average number
of NN-candidates.

Column IV further demonstrates how many queries in a workload have more than one object in their SNN-
cores. Column V indicates the size of the largest SNN-core ina workload. We notice that A majority of
queries have only one object in their SNN-cores. When the numbers of instances is small, occasionally an
SNN-core has a large size. Fors ≥ 35, the SNN-core size is consistently low. We point out that, inmany
applications, an object is usually represented with a largenumber of instances (e.g., over 100 in [14]) to
provide a good approximation of its pdf. The above observation suggests that the SNN-core is expected to
be very small in those applications. It is worth mentioning that we do not observe any obvious correlation
between the SNN-core size and the number of NN-candidates.

Recall that, as discussed in Section 2.2, there exist two other principles for selecting the best objects for
an NN query on uncertain data. Specifically, thePR-principleadvocates the object with the largest NN
probability. Theexpected-distance(ED) principle, on the other hand, recommends the object with the
lowest expected distance to the query point. Next, we study how often these principles happen to return the
same result as our SNN approach. We say that a query isPR- (ED-) correct, if its SNN-core has exactly
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Figure 11: Efficiency comparison (identical uncertainty regions)

one object, which turns out to be the same as the result under the PR- (ED-) principle. Column VI (VII)
demonstrates the number of PR- (ED-) correct queries in a workload which, as mentioned earlier, has 100
queries in total. Apparently, neither the PR- nor the ED-principle guarantees the same result as our SNN
approach.

Results on Objects with Variable Uncertainty Regions.Next, we repeat the above experiments using
the datasets where the uncertainty regions of various objects can have different sizes. Table 2 presents the
results, confirming the earlier observations.

Summary. It is clear that our SNN approach is able to recommend a very small number of best objects
under a large variety of circumstances. This number tends tobe lower when each object is represented by
a larger number of instances. Furthermore, for a majority ofqueries (over 95%), their SNN-cores actually
include only a single object.

7.2 Efficiency of Our Algorithms

Now we proceed to evaluate the cost of SNN-core retrieval, bycomparing the efficiency of the proposed
full-graph andpipelinealgorithms.

Results on Objects with Identical Uncertainty Regions.The first set of experiments adopts datasetsCA-
15, CA-25, ...,CA-55 where each object is represented withs = 15, ..., 55 instances, respectively. On every
dataset, we deploy each algorithm to answer a workload of queries, and measure the average cost per query.
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Figure 12: Efficiency comparison (variable uncertainty regions)

Figure 11a plots the cost as a function ofs. For comparison, ats = 15, we also include the time of a naive
sequential-scan solution that simply scans the entire database. The performance offull-graph andpipeline
is further broken down into two parts, corresponding to the CPU and I/O overhead, respectively.

Both proposed algorithms are faster than sequential scan byan order of magnitude. Therefore, we omit
sequential scan in the other experiments. As expected,pipelinesignificantly outperformsfull-graph. Ob-
serve thatpipelineentails slightly higher CPU time, because it involves a sophisticated incremental pruning
mechanism. The extra CPU overhead pays off, because the mechanism leads to substantial reduction in the
number of R-tree nodes that must be accessed. The benefits areeven more obvious when the number of per-
object instances grows. Figures 11b-11d present the results of the same experiment on the other datasets.
Similar phenomena can be observed.

Results on Objects with Variable Uncertainty Regions.Figure 12 shows the results of the same experi-
ments on the datasets where various objects have uncertainty regions with different sizes. Again,pipelineis
consistently faster than its competitor. SNN-retrieval incurs higher cost compared to Figure 11. This is due
to the increase in the number of NN-candidates, as is clear bycomparing the Column III of Tables 1 and 2.

Summary. Both full-graph andpipelineneed to access only a fraction of the database, as indicated by their
much smaller cost than sequential scan.Pipelineentails considerably lower overall cost thanfull-graph. In
particular, the former requires higher CPU time but incurs considerably lower I/O overhead. The advantage
of full-graph, however, is its simple implementation. Furthermore, thisalgorithm is expected to be faster
thanpipelinein scenarios where nodes of R-trees can be accessed efficiently (i.e., main-memory databases).
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8 Conclusions

Nearest neighbor search on uncertain objects does not have an obvious answer, because typically no object is
the NN with absolutely certainty. In this paper, we propose to return theSNN-coreas the query result. The
SNN-core is the minimum set of NN-candidates each of which supersedes all the NN-candidates outside
the SNN-core. Our experiments reveal that, for a majority ofqueries, the SNN-core contains a only single
object. This makes SNN-core a highly useful type of results for NN search, where it is important to minimize
the number of reported objects. We develop two algorithms for fast computation of the SNN-core. Utilizing
a multidimensional index, both algorithms are able to find the SNN-core by accessing only a fraction of the
database.

Our work also indicates several directions for future work.First, it would be interesting to analyze the
overhead of SNN retrieval, in order to derive a cost model that accurately predicts the query time. Such a
model is important for query optimization in practice. Second, the concept of SNN-core can be integrated
with any variation of NN search. It remains unclear how to adapt the proposed solutions to those variations.
Third, our discussion focuses on spatial data with low dimensionality. It is a challenging topic to study the
retrieval of SNN-cores in high-dimensional spaces.
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