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Abstract

This paper proposes a new problem, cafefderseding nearest neighbor segreh uncertain spatial
databases, where each object is described by a multidioreigrobability density function. Given a
query pointg, an object is anearest neighbo(NN) candidateif it has a non-zero probability to be the
NN of ¢. Given two NN candidates; andos, 0, supersedes, if o, is more likely to be closer tq.

An object is asuperseding nearest neighb@@NN) of ¢, if it supersedes all the other NN-candidates.
Sometimes no object is able to supersede every other NN dzatediIn this case, we return tiENN-
core— theminimumset of NN-candidatesach of whichsupersedesll the NN-candidates outside the
SNN-core. Intuitively, the SNN-core contains the best otgiebecause any object outside the SNN-core
is worse tharall the objects in the SNN-core. We show that the SNN-core carffioéeatly computed

by utilizing a conventional multidimensional index, as fioned by extensive experiments.
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1 Introduction

Uncertain databaselave received a large amount of attention from the datalzaeencinity in recent years
[5, 7,9, 12, 14, 17]. In such a database, an object is deschigea probability density function (pdf).
For example, Figure 1a shows the possible locations of fojects A, B, C, D. Specifically, object4
has probabilities 0.4 and 0.6 of being at poirdtd | and A[2], respectively. We refer tel[1] and A[2] as
the instancesof A. Similarly, objectB also has two instanceB[1] and B[2], at which B is located with
likelihood 0.6 and 0.4, respectively. Object(D) has only one instanc€[1] (D[1]), i.e., its location has no
uncertainty. It is worth mentioning that modeling of an utam object as a set of instances is a common
approach in the literature [9, 12, 14, 17].

We considemnearest neighbofNN) queries on uncertain objects. In general, there magrist any object
that is guaranteed to be the NN. For instance, assume thautrg pointq is at the cross in Figure la.
Object A must be the NN of; if it is at A[1]. However,A cannot be the NN of if it is at A[2], in which
caseC is definitely closer ta;. Combining both facts, it is clear that no object can be ctmiras the NN
with absolute certainty.

We say that an object is adN-candidateif it may bethe NN. The explanation earlier shows théis an
NN-candidate. SimilarlyB is also an NN-candidate since it is the NN provided that itti®8l| and A

is at A[2]. C is another NN-candidate, because it is the NN as longl and B are atA[2] and B[2],
respectively. However] is not an NN-candidate, as its distance;tis larger than that of’. Apparently,
when the number of NN-candidates is large, returning alheftt to the user is a poor choice. Hence, it
is important to select theest fewNN-candidates. Many existing methods fulfill this purpogeabalyzing
objects’NN-probabilities[5], namely, the probability that an object is the NN. In thaper, we provide a
new perspective to look at the issue: by analyzing objectgual superiority.

Before going into the details, let us first consider a releepestion: given two objects ando’, which is
better? Thigairwise competitiorhas a clear answer wherando’ are precise points — the one closer to
the query poiny wins the competition, i.e., supersedeshe loser. How about ando’ being uncertain?
The answer is still clear: the omaore likelyto be closer toy is better. Formallyp supersedes’ if the
probability thatg is nearer t@ than too’ exceeds 0.5.

For example, consider objectsand B in Figure 1a, whose distancesddollow the pdfs in Figures 1b and
1c, respectively. For example, the distance pdfia$ 0.4 (0.6) at distance 1 (5), becausdras probability
0.4 (0.6) to be located at point[1] (A[2]). As q is closer toA than toB only if A has distance 1, the
probability thatq is closer toA (than toB) equals 0.4. This implies thathas probabilityl — 0.4 = 0.6 to
be closer toB, namely, B supersedesgl. By the same reasoning, it is easy to verify thasupersedes,
and B supersede€’.

Figure 2 shows the resultinguperseding graphin this graph, there is a vertex for every NN-candidate
(hence,D is absent in the graph). The edge fr@imo A indicates that” supersedesl. The other edges
follow the same semantics. Clearly,is the best object, as it supersedes hétandC'. We say thatB is a
superseding nearest neighb@NN) of ¢, and return it to the user.

In Figure 2, an object (i.e B3) supersedes all other NN-candidates. Such an “all-gamaeninhowever,
does not always exist, namely, every object may lose in at @@ pairwise competition. Figure 3a presents
another example with six uncertain objeetsB, ..., I'. Every object has three instances, each with proba-
bility 1/3 (e.g.,A may be located afi[1], A[2], or A[3] with equal chance). Figure 3b presents the resulting
superseding graph. Clearly, no object supersedes the Nterandidates. Furthermore, unlike its coun-
terpart on precise points, the superseding relationshs dot obey transitivity on uncertain objects, as is
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obviousinthecycld - B - C — D — A.

To remedy this problem, we propose to return 8iéN-corei.e., the smallest set of NN-candidatesch

of whichsupersedeall the NN-candidates outside the core. In Figure 3b, the SN#d-bas four objects:
A, B,C, D (it is not worth consideringZ and F', as they are worse thall the objects in the SNN-core).
We present a systematic study on the problem of SNN-core gtatipn. First, we formalize this new
concept, and identify its interesting properties. In gaifar, we show that the SNN-coreatvays unique
thus eliminating the question of “which SNN-core would bdtéeif there were several”. Our second
contribution is a set of algorithms for finding SNN-cores.e$a algorithms utilize a conventional R-tree
(commonly available in commercial DBMS) to drastically peuthe search space to achieve I/O efficiency.

SNN search can be applied in any application where it makesede issue NN queries on uncertain objects.
NN retrieval on uncertain objects does not have a uniquay,ciswer, which has motivated the develop-
ment of several definitions of “nearest neighbor” in thisteah(see Section 2.2). All of these definitions are
complement to each other because (i) each of them is redsamadier a certain interpretation of what is a
“good” NN, and (ii) no definition subsumes the others, ilee, TINN" found by one definition can be a poor
one by another. SNN can be regarded as another way to defideNjd®, but with several nice features of
its own. In particular, this is the first definition that is bdsonmutual superiority Note that disregarding
mutual superiority may cause disputes on fairness in ectiFor example, consider each object to be a
cab, and the goal of NN search is to recommend a cab to a custBmecabA is returned; then, the driver
of cab B may complain about loss of businesd3factually has higher probability (tha#) to be closer to
the customer.

The rest of the paper is organized as follows. Section 2wevtbe previous work that is directly related to
ours. Section 3 formally defines the problem of SNN retrierad illustrates its characteristics. Section 4
develops an algorithm that computes the SNN-core based amalete superseding graph. Section 5
proposes a faster algorithm that is able to produce the Sdill\without deriving the whole superseding
graph. Section 6 settles some extensional issues. Sectigperimentally evaluates our solutions. Finally,
Section 8 concludes the paper with directions for futurekwor

2 Related Work

In Section 2.1, we discuss the existing research about Ni¢vat on precise data (i.e., no uncertainty).
Then, Section 2.2 surveys the NN solutions on uncertaincthje

2.1 Nearest Neighbor Search on Precise Data

NN retrieval has been extensively studied in databasespatational geometry, machine learning, etc. In
the sequel, we focus on the most important results in thebdagaliterature, paying particular attention to
the best-first(BF) algorithm, since it is employed in our technique.

Best-first. BF, developed by Hjaltason and Samet [8], assumes an Riffea the underlying dataset. We
will explain the algorithm using the dataset of 8 poidtsB, ..., H in Figure 4a, and the R-tree in Figure 4b.
The rectangles in Figure 4a demonstrate the minimum bogrdictangles (MBR) of the nodes in the R-tree
(e.g., rectangleV, denotes the MBR of the leaf node enclosiAgand B). A concept crucial in BF is the
minimum distancémindist) from an MBR to the query poigt For example, in Figure 4a (where the query
is the cross), the mindist df; is the length 2 of the segment betwegandC', while the mindist ofVg is
the lengthy/5 of the segment betweenand the upper-left corner d¥. For convenience, in Figure 4b, we
associate each entry in the tree with its mindist tcSpecially, for a leaf entry, the mindist is simply the
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Figure 4: NN search with an R-tree

distance from the corresponding data poing.to

BF uses a min-heap{ to manage the (intermediate/leaf) entries that have beem se far but not yet
processed. The sorting keys of the entries are their mimdistitially, 7 includes only the root entries:
H = {Ns5,Ng}. As N5 tops the heap, it is de-heaped; accordingly, ndfeis accessed, and its entries
N; and N, are added to the hea{ = {N,, Ng, N1}. Similarly, next BF visits nodeV,, andH becomes
{C, Ng, N1, D}. Now, the top ofH is a data point”, which is guaranteed to be the NN.

BF isincremental meaning that, if allowed to run continuously, it will outgihe data points in ascending
order of their distances tp For example, after reporting, BF can be used to find the 2nd NN by continuing
on the current{ = {Ng, N1, D} in the same way. Specifically, the next node accessag,ishanging# to

{Ns, N1, D, N4}, and still the next isVs, leading toH = {E, Ny, D, N4, F'}. Now a data point topsH,

and it is the 2nd NN. It can be shown that BFojstimalin the sense that it requires the fewest I/O accesses
to find any number of NNs, among all the algorithms using thessR-tree.

Other Works. Roussopoulos et al. [15] propose another NN algorithm tegbopms depth-first search on
an R-tree. This algorithm requires less memory than BF, ki meed to access more nodes. Solutions
based on R-trees, however, have poor performance in higbrdiional spaces [19], because the structure
of the R-tree deteriorates significantly as the dimensitynaicreases. This observation leads to several
algorithms specifically designed for high-dimensional Nfdrgh (see [10] and the references therein). The
above solutions assume that the distance between two slgi@ctbe calculated quickly, whereas Seidl and
Kriegel [16] consider the case where distance evaluati@xpensive. Finally, it is worth mentioning that
NN retrieval has numerous variations suchieagerse NN searcfi1], aggregate NN seardd 3], continuous

NN search{18], etc.

2.2 NN Search on Uncertain Data

Let us represent the pdf of an uncertain objeeso.pdf(.), such thab.pdf (z) gives the possibility thad
is located at locatior. Specially,o.pdf (z) = 0, if o cannot appear at.

Expected-distance Principle.Given an NN query poing, a naive approach is to return the object with the
smallestexpected distance® ¢q. However, the expected distance is not a reliable indicaittine quality of
an object. To understand this, consider Figure 5, which shbwe possible instances of objects B, and
C. Intuitively, A is the best object, because it is almost sure (i.e., with 988tgbility) to be the NN of
q. However, A has a large expected distance, because its instajaies faraway fromg. In fact, without
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Figure 5: NN probability calculation

affecting the NN-probability of4, we canarbitrarily increase the expected distancedfby pushingA|[2]
sufficiently away fromy.

PR-principle. A better approach is to report the object with the largest ptdbability [2]. Formally, the
NN-probability Py (o) of an object is given by [5]:

Pay(0) = [ opdf(a) - Pan(olo) o 1)

where Py (o|x) is the probability ofo being the NN on condition that it is located at Alternatively,
Pn(o|z) is the likelihood that all other objects (i.e., exceptfall outside the circle centering gtwith
radiusdist(z, q) (i.e., the distance betweenandgq). For example, leb be objectB in Figure 5 andz

be its instance3[2]. Then, Pyy(B|B]2]) is the probability 0.8% that botA andC' lie outside the dotted
circle, i.e.,A andC at A[2] andC[2], respectively. In general, NN-probabilities can be cosilgalculate;
this problem is recently relieved by Kriegel et al. [12] watclustering approach. The work of [12] also
addresses the case where the query location is uncertainolect al. [5] consider the related problem of
retrieving all points whose NN-probabilities are at leasegain threshold (as opposed to reporting only the
few objects with the greatest NN-probabilities). An appnuate version of the problem, call@dobabilistic
verifier, has recently been studied in [4].

The PR-principle is a reasonable way to define the resultshogNeries on uncertain data. A common
criticism is that sometimes even the highest NN probabiiy be quite low, and multiple objects may
have almost the same NN probabilities. In any case, the Rieiple is orthogonal to our SNN approach.
As will be shown in the experiments, for most queries, the S contains only a single object that
is not the object with the greatest NN-probability. In practidee PR-principle and our SNN method are
nice complements to each other. First, they provide twaésting options to a user, each with its unique
features. Second, they can even be combined to provide mlaable results. For example, a user may want
to find objects that (i) are in the SNN-core, and (ii) their dhbbabilities are among the tapn the dataset,
wheret is a user parameter.

Other Works. Dai et al. [7] address a different version of uncertain NNreleaSpecifically, they assume
existentiallyuncertain objects. Namely, an object may not belong to thab@se, but in case it does, its
location is precise. In our context, an object definitelysexibut its location is uncertain. The solution of
[7] is specific to its settings, and cannot be adapted to auvlem.

An NN query can be regarded as an instance of top-1 searche tfefine thescoreof an objecto as its
distance to the query point then the goal is to find the top-1 object with the lowest scdrkis creates
the opportunity of applying top-methods to NN queries. Several thglgorithms [9, 17, 20] have been
proposed for uncertain data. At= 1, they extract the object that has the smallest score withatigest
probability. In other words, they advocate the same resuih@ PR-principle.
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3 Problem Definitions and Basic Characteristics

Let D be a set of uncertain objects. Following the previous worKL® 17, 20], we consider thaiscrete
pdf model To simplify analysis, we first consider that (i) each objett associated with pointso[1], o[2],
..., 0[], called theinstancesand (ii) o may appear at any of its instances with an identical prothali) s.
Equivalently, the pdf ob is given by:

[ 1/s if z=any ofo[l], ...,0[s]
o-pdf () = { 0 otherwise @

In Section 6, we will discuss the general discrete pdf moabgre each object can have different numbers
of instances, and each instance can be associated witheeediffprobability. Furthermore, the discussion
will also be extended to continuous pdfs.

Use g to denote a precise query point. Leiuzdist(o,q) be the largest distance betwegrand all the
instances ob, or formally:

mazxdist(o,q) = méf{dist(o[i], q)}- (3)
Let minmax be the smallestiazdist (o, q) of all objectso € D:

minmazx = min{mazxdist(o,q)}. 4)
YoeD
The value ofminmax allows us to easily identify those objects with NN-probdig$ (calculated by Equa-
tion 1) that are larger than 0:

Lemma 1 (NN-candidate) An objecto is an NN-candidateof ¢ if at least one of its instances is within
distanceminmaz to ¢, that is,min;_, {dist(o[i],q)} < minmazx.

Proof. Obvious and omitted. O

We give the nameninmax-circleto the circle centering at with radiusminmaz. By Lemma 1, an object
is an NN-candidate if and only if it has at least one instamcn@ minmax-circle. We us&’ to represent
the set of all NN-candidates, and impose an orderingvon

Definition 1 (RI-list). Theranked instance ligRI-list) sorts the instances of all objects.M in ascending
order of their distances tg (breaking ties randomly). 0

For example, the datas&tin Figure 3a has six objects, ..., F', each of which has = 3 instances. Con-
sider, for instance, objed®; its maxdist(B, q) equals the distance betwegland instance3[3]. Figure 3a
also shows the circle centering @with radiusmaxdist(B, q). Clearly, exceptB, no object has all the
instances inside the circle, indicatinginmax = maxdist(B, q). Hence, the circle is the minmax-circle.
Furthermore, every object has at least one instance in tbke,cand hence, is an NN-candidate. In other
words,N' = {A, B,C, D, E, F'}. The RI-list ranks the instances of all NN-candidates ireading order

of their distances tg, namely:



Given two objects ando’, we useo < o’ to denote the event thatis closer tog thano’. The probability
P{o < o'} that this event occurs depends on the distribution of thiumtes ob ando’. Formally,

P{o=<d} = Zo.pdf(o[i]) - P{o < d'|o = 0oli]}. (5)

i=1

where P{o < o'|o = oli]} is the probability ofo being closer ta; than o’ provided thato is located at
instanceo|i]. In fact, P{o < o'|o = oli]} is essentially the percentage of the instances tiat rank after
o[i] in the RI-list. To illustrate, assume thatndo’ are objectsB and D in Figure 3a respectively, andi|
is B[3]. In the RI-list, D has only one instanc®|3] after B[3]. Hence,P{B < D|B = B3]} equals 1/3
(recall thatD has 3 instances in total).

Obviously, P{o < o'} + P{o’ < o} = 1. Therefore, whethes or o’ is preferred by; is determined by the
relationship ofP{o < ¢’} and 0.5:

Definition 2 (Superseding Relationship¥ziven two object® and ¢/, o is said tosupersede’ if P{o <
o'} > 0.5. In caseP{o < o'} = 0.5, the superseding relationship betweeando’ is randomly decided

This leads to the superseding graph:

Definition 3 (Superseding GraphletG = (V, £) be thesuperseding graphwvhere is the set of vertices
and¢& the set of edgeg’ is a directed graph that has a vertex for each NN-candidage,» = N. For any
two objectso and o’ in V, if o supersedeg’, £ has an edge from to o’; otherwise,£ has an edge from’
too. 0

Figure 3b gives the superseding graph for the example ofr&iga, summarizing the superseding relation-
ships between all pairs of NN-candidates. Since each vartaxsuperseding graph represents an object, in
the sequel the terms “vertex” and “object” will be used ink&ngeably. Now we are ready to introduce the
SNN-core.

Definition 4 (SNN-core) Given a superseding gragh, the SNN-coreis a setS of vertices inG satisfying
two conditions:

e (superseding requiremgrevery object inS supersedes all objects W — S;

e (minimality requirementno proper subset ao§ fulfills the previous condition.

Each object inS is called asuperseding nearest neighlf8NN) ofg. 0

Consider again Figure 3b. The SNN-coreis= {A, B,C, D}. Indeed, each object i supersedes all the
NN-candidates £ and F') outsideS. Moreover,S is minimal, because if any object is deleted fromthe
remainingS no longer satisfies the superseding requirement.

Properties. The following lemma shows the uniqueness of SNN-core.

Lemma 2. A superseding graph has exactly one SNN-core.
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Proof. Let V be the vertex set of the superseding grégphAssume, on the contrary, that there are two
SNN-coresS; andS,. Obviously, neither can be a subset of the other, due to themality requirement of
SNN-core. Hence, there exists an objedich thab € S; yeto ¢ S,, and an object’ such that’ ¢ S;
yeto' € S,. SinceS; is an SNN-corep should supersede any objectlin— S;. Thus,o supersedes’.
Similarly, asSs is an SNN-corep’ needs to supersede This is impossible because two objects cannot
supersede each other. O

In practice, the size of the SNN-core is much smaller thamtmaber of NN-candidates. To understand
why, first note that intuitively an NN-candidate is prefetdey the customer if most of its instances are
close to the query poini. However, even a good NN-candidate may have an instancevediatar from

g. Conversely, even a bad NN-candidate may have an instanse tbq. To illustrate, Figure 6 shows
three uncertain objects whose instances are colored ik,bimey, and white respectively. Note that the
instance distribution of each object simulates a popularsGian modeling [3]. The black object is a good
NN-candidate, and the only one in the SNN-core. Notice thaiother two objects become NN-candidates
by having very few instances (here, only one) inside the maxweircle. For a query on a real dataset,
there are often many such bad NN-candidates, explainingusbglly a majority of the NN-candidates have
extremely small NN-probabilities. It is rather unlikelyrfthese NN-candidates to enter the SNN-core.

Problem. Our objective is to compute the SNN-core with the minimum patational cost. In the subse-
guent sections, we present two algorithms to solve thislenob

4 The Full-Graph Approach

Our first algorithm,full-graph, finds the SNN-core in two steps: (i) first compute the entupesseding
graphg, and then (ii) derive the SNN-core frogh Next, we elaborate the details of these steps.

First Step. The goal is to obtain all the instances of every NN-candidat€. is easily determined once
these instances are ready (the superseding relationsfvedre any NN-candidates o’ can be resolved by
evaluatingP{o < o'} according to Equation 5). To facilitate instance retriewa# deploy an R-tree to index
the instances of all objects. Given a query paintve invoke the best-first (BF) algorithm [8] reviewed in
Section 2.1 to extract instances in ascending order of thisiances t@. We terminate BF as soon as
instances of each NN-candidate have been fetched.



The only question is how to determine which objects are Nhdmates. For this purpose, it suffices to
count the number of instances of each object seen so far. €it’é ef NN-candidates is determined when
the count of any object reachesi.e., the number of instances per object) for the first tima/~ncludes all
the objects, of which at least one instance has been encedriefore this moment. We refer to this moment
as theminmax-momenbecause this is the time when the valuerahmax (Equation 4) is finalized.

Note that after the minmax-moment, BF still needs to comtifuntil it has acquired all the instances of the
objects in\), but the instances of any object outsifliecan be ignored. It is worth mentioning that this
phase essentially extracts the entire RI-list (Definitipimlits sorted order.

Second Step.We proceed to explain how to discover the SNN-core from arseoéng graphy. The
starting point is to identify a vertex @ that definitely belongs to SNN-core. Referring to the nuntdfer
incoming edges at a vertex asiitsdegree we have:

Lemma 3. The vertex with the lowest in-degree must be in the SNN-core.

Proof. Assume thab is a vertex with the lowest in-degreein G but o is not in the SNN-core. Consider
any vertexo’ in the SNN-core, which by definition must supersedeAs the in-degree of’ is at leastr,

o’ is superseded by at leastvertices, all of which must be in the SNN-core (see Lemma Q) lzence,
supersede. Thus, we have found + 1 objects superseding contradicting the definition of. O

In general, it is possible to have multiple verticegjimaving the lowest in-degree. In this case, all of them
are in the SNN-core. Once we have identified a vertex thanlgslto the SNN-core, we immediately know
some others that must also be in the SNN-core, as indicati@ inext lemma:

Lemma 4. If a vertexo is in the SNN-core, then all the vertices supersedingust also belong to the
SNN-core.

Proof. This is obvious, because otherwise it contradicts the featt évery object in the SNN-core super-
sedes any object outside the SNN-core. O

The two lemmas motivate the following strategy to retridwe $NN-core from a superseding graphFirst,
we add to the core the vertices that have the minimum in-éegr§. Then, given a new vertex in the
SNN-core, we also include all the objeetssuperseding, if o' is not already there. This is repeated until
no more vertex can be inserted in the SNN-core.

Example 1. We illustrate the strategy using the superseding graphgarEi3b. Object§’ and D have the
lowest in-degree 1, and hence, are added to the SNN&of&inceC is in the core and3 supersede§’,
by Lemma 4,B also belongs to the core, and is thus adde@ {ahich is now{ B, C, D}). Similarly, the
incorporation ofB in the core further leads to the inclusion 4f(becaused supersede®). This results in
the final SNN-coreS = {A, B,C, D}. 0

Full-graph does not retrieve any object with no instance in the minmeotec This is a property of the BF
algorithm [8].

10



5 The Pipeline Approach

Thefull-graph algorithm can be inefficient. Consider the extreme case evbezry NN candidate has a tiny
probability (e.g. 0.001%) of being very faraway from the ique. Sincefull-graph needs to acquire all
instances of every NN candidate, it may end up examining tih@endatabase. Intuitively, if most instances
of an object are close tg, we should be able to determine that the object is in the Sbid-without
retrieving its farway instances. Similarly, it may also lsgible to decide the SNN-core without generating
the whole superseding graph

Motivated by this, next we present thgelinealgorithm that entails lower 1/0O cogRipelineincrementally
retrieves object instances in ascending order of theiaddss tay, calculates the superseding edges and
prunes objectduring the retrieval, and terminates without fetching all theamsies of NN candidates or the
completeG. Implementation of this idea has several challenges. ,Fitsén to stop retrieving instances of
objects? Second, how to determine the SNN-core from a p&tiaVe will answer these questions in this
section.

5.1 The Algorithm

As with full-graph, pipelinealso utilizes the best-first (BF) algorithm to retrieve thdig (Definition 1) in

its sorted order. While unfolding the RI-list gradualbypelinemaintains aonservative corg*. Intuitively,

G* captures the portion of the final superseding gréphat has been revealed so far, and is relevant to the
SNN-core.

At the beginning ofpipeling G* has only a single vertex, callathseen This is a special vertex, whose
presence means that the SNN-core may contain an objectdbatdi been encountered yet. As soon as
we can assert that no such object can exiegeens removed. Exceptinseenevery other vertex irg*
represents a seen object timaay be in the SNN-core. Once we can disqualify an object, we niaals i
pruned and delete its vertex fromgi*.

Specifically,pipelineexecutes in iterations, where each iteration includes pbases:

1. (Vertex phaseGet the next instance in the RI-list (using the BF algorithivet o be the object that
owns the instance. Add a vertexo G* if (i) o is not already ing*, (ii) o is not marked apruned
and (iii) and vertexunseens still in G*.

If this is the minmax-moment (having seen all thimstances of an object for the first time, as defined
in Section 4), remove vertexnseerfrom G* (at least one instance of every NN-candidate has been
encountered).

It is worth mentioning thapipeline may finish before reaching the minmax-moment. Verazeen
may also be deleted frog* before this moment, as explained shortly.

2. (Edge phaseDecide as many edges i as possible from the instances examined so far.

3. (Pruning phasg If an object is disqualified from the SNN-core, discard iestex inG* and mark
the object agpruned If we can assert that no unseen object can be in the SNN-diziegrd vertex
unseen

4. (Validating phasg If we can conclude that the vertices in the curréritconstitute the SNN-core,
terminate the algorithm.

Figure 7 presents the pesudocod@ipkline In the sequel, we demonstraigelineby using it to compute
the SNN-core for the example of Figure 3a, where each obpet k- 3 instances.
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Algorithm pipeline
/* the code assumes that the elements of the RI-list can bheved in ascending order of their
distances to the query point */

1. G* is a graph with only a single vertex, namgadseenwith no edge
2. while the RI-list has not been exhausted

[* vertex phase */

get the next instance of the RI-list, which, say, belomgshjecto
4, if (G* does not have a vertex fo) and ¢ is not marked apruned and
(vertexunseernis still in G*)
add a vertex to G*

if all the instances of have been seen /* namely, the minmax-moment */
7. remove vertexinseerfrom G*

/* edge phase */
8. add as many edges @ as possible

[* pruning phase */
9.  for each vertex in G*

w

oo

10. if o can be pruned
11. remover from G* and all of its incident edges
12. if o corresponds to an object then markspruned

/* otherwise,o is vertexunseert/
[* validating phase */

13. if all the vertices ofj* must be in the SNN-core
14. return the set of vertices

Figure 7: Thepipelinealgorithm

Example 2. As mentioned earliepipelineinvokes the BF algorithm to retrieve object instances ireade

ing order of their distances to the query pajntConsider the moment after seei@2]. Figure 8a shows
all the instances already accessed, and Figure 8b presentsitrent conservative cofg. G* has five

“regular” verticesA, B, ..., E, created by the vertex phase when the first instances of tityjsets were
fetched.G* also has the vertexnseenimplying that (based on the instances obtained so far) i¢-8ore

may involve other objects that have not been encountered.

The edge phase of this iteration adds two edggs*tas shown in Figure 8b, corresponding to two super-
seding relationships that can be determined. For exarfptaust supersed&, even though we have only
obtained their instanceS|[1], E[1], C[2] (in this order). This is because the evéht< E (i.e., C is closer

to the query poing than E) definitely occurs when (i is atC[1] (happening with probability 1/3), or (i)
C'is atC[2] (probability 1/3) andF is not atE[1] (probability 2/3). Hence, the probabili#{C < E} of
eventC < Fisat Ieast% + % : % = g As thislower bounds already greater than 50%, it is safe to conclude
thatC supersedeg’. Similarly, C also supersedes any unseen NN-candida&pecifically, as all instances
of o are farther ta; than bothC[1] andC'[2], the eventC' < o occurs with probability at least > 50%.

Pipeline continues to examine object instances, and meanwhile raisemore edges &* in the way
explained earlier. Its pruning phase has no effect un#éragbtainingB[2]. Figure 8c presents the instances
fetched up taB][2], and Figure 8d gives the curre@t. At this point, pipelineclaims that no unseen object
can possibly appear in the SNN-core. To understand thiggentitat in Figure 8d4, B, ..., F all supersede
the vertexunseer(representing any object not encountered so far). ThusSiié-core must necessarily be

12
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Figure 8: Rationale gpipeline

asubsetof A, B, C, D, E'} due to the minimality requirement of SNN-core (see Definid). Accordingly,
we discard vertexinseerfrom G*, resulting in the newg* in Figure 8e. From now on, we can ignore the
instances of any object other than B, ..., E.

The next pruning happens after retrieviBgg]. Figure 8f shows the instances fetched so far and Figure 8g
gives the curreng*. Clearly, A, B, C, D all supersedéd”, which, therefore, cannot be in the SNN-core
(again, due to the minimality requirement). Hence, the mmiphase further simplifie§* into Figure 8h,

and marksEy aspruned

Pipelinefinishes after retrieving one more instar©g3]. Figure 8i presents the instances (of the objects still
in G*) visited so far, and Figure 8j illustrates the correspogdinnservative corg*. It is easy to verify
that the SNN-core cannot be any smaller tHah B, C, D} due to the loopsA - B — C — A and

B — C — D — B in G*. Therefore, the validation phase terminates the algoritluma the remaining
instances of the RI-list are not visited. Notice that, thidedion does not require the edge betwetand

D. 0
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The above discussion explains the high-level frameworgipéline In the sequel, we will elaborate the
details of the edge, pruning, and validation phases (thexghase is simple and has been clarified earlier).

5.2 Edge Phase

The goal of this phase is to determine as many edges in them@tise coreG* as possible, based on the
instances already examined. D&t be the set of vertices i6*. Denotem = |V*|, and the vertices iv* as
01,02, ..., 0Om.

Recall that each vertex iG* corresponds to an object. The only exception is the speeldéxunseen
which may not exist irG*, but in case it does, it represents any object that has not éie@ountered. Due
to the special nature ainseenwe give double semantics tq. Specifically, in casenseerappears irG*,

it is denoted as,. Otherwisep, is a regular vertex representing an object. The other we=dis; ...,0,,, On
the other hand, are always regular.

The edge phase maintains a two-dimensidoaler bound matriXow with m rows andm columns. The
entry lowl[i, j| (1 < 4,5 < m) at thei-th row andj-th column stores a lower bound of the probability
P{o; < o;} that object; is closer to the query poirtthan objecb;. There are some special cases:

e Fori = j, low[i,j] is always 0.

e In caseo; is vertexunseen(i) low[l,i] = 0 for 2 < i < m, and (ii) low[i, 1] (2 < i < m) is a lower
bound of the probability thai; is closer tog than any object that has not been encountered.

At the beginning ofpipeling V* has a single vertexnseen Hence,m = 1 andlow has only one cell
low[1,1] = 0. As pipelineexecutes, the size ébw varies withV*. Wheneverowli,j] (1 < i,j5 < m)
exceeds 0.5, we add & an edge fromy; to o;.

The edge phase also maintains a one-dimensional amtayith sizem. Thei-th elementnt[i] (1 <i <
m) records how many instances of objegthave been retrieved so far. In caseis the vertexunseen
ent[1] = 0.

In each iteration, the edge phase updates drraybased orent and the instance acquired from the vertex
phase. Leb; (for somei € [1,m]) be the object that owns the instance. The edge phase ieskedsi| by
1, and updates: — 1 entries inlow, i.e.:

lowli, 1], ..., low(i, i — 1], low]i, i + 1], ..., low[i, m].
Specifically,lowli, j] (j = 1,...,i — 1,i + 1, ...,m) is updated as:

lowli, j] = lowli, j] + é (1 - @) ) (6)

It remains to explain what happens when a vertex is insenteléleted inG*. Insertion may happen in the
vertex phase, if an instance of a new object is obtained ariebmenseeris still in G*. Leto,, 1 be the new
object. We expandnt with a new elementnt[m + 1] = 0. As for low, we first add ar{m + 1)-st column

to low, and copy the value dbw|i, 1] to low[i, m + 1] for eachi € [1,m]. Then, we add afrn + 1)-st row

to low with all zeros. Deletion, on the other hand, may occur in teitex phase (i.e., removing theseen
vertex at the minmax-moment) or pruning phase (after angetttat a vertex cannot be in the SNN-core).
Deleting a vertex involves only discarding its entrycint, and the corresponding row and columrdém.
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Figure 9: lllustration of the edge phase

Example 3. We demonstrate the maintenance of matein using the instances in Figure 8a. Figure 9a
shows the contents of arrajsw andcnt right before the iteration gbipelinethat retrieves instancg|1].
Since E[1] is the first instance of/, the vertex phase adds a new vertexibto G*. Accordingly, low
receives a new column and a new row, as shown in Figure 9b. tNateverything already in the oldw of
Figure 9a is directly retained in Figure 9b. Furthermore,dtey cells in Figure 9b are copied from the first
column of the oldow, and the last row of the nelww contains only zeros.

Then, the edge phase proces#gs] by modifying the row inow corresponding td”, according to Equa-
tion 6. For example, since the oldw[E,unseeh = 0 in Figure 9b,s = 3, andcnt[unseeh = 0, the
new low[E, unseehis computed by + 1(1 — 0/3) = %. Similarly, given the oldow[FE, D] = 0 and
ent[D] =1, low[E, D] is derived a$) + (1 — 1/3) =

1N “

5
In the next iterationpipelinefetchesC[2]. No new vertex is spawned @ as this is the second instance of

C seen. The edge phase upddias to the one in Figure 9d. Now that botbw[C, unseehandlow[C, E]
are over 0.5, the edge phase creates the two edges in Figure 8b 0

5.3 Pruning Phase

Again, letV* be the set of vertices in the conservative cgre The pruning phase eliminates the vertices in
G* that cannot appear in the SNN-core. This is to solve thewatlg graph problem: identify the smallest
setSyet Of vertices such that, for any vertexc Syt ando’ € V* — S, G* has an edge fromto o’. We call
Sret theretention-setall the vertices inV* — Siet can be discarded.
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For example, given th€* in Figure 9d,St = {4, B,C, D, E}, and thus, vertexinseenis discarded.
Similarly, if G* is the graph in Figure 95t = {4, B, C, D}, leading to the elimination of.

The retention se$\e; can be computed in a way analogous to finding the SNN-core &¢€ull superseding
graph (see Section 4). Initiallyse; is empty. First, we place i8¢ the vertices inG* with the smallest
in-degrees (recall that the in-degree of a vertex is the murabedges pointing at it). Whenever a vertex
appears irg*, we also insert all the vertices that either supersed® are not connected win G*. This
process is repeated until no other vertex can be added.

To illustrate, letG* be the graph in Figure 8g. A4 has the minimum in-degree 0, it is the first vertexSig.
SinceC' and D do not have edges witH, they also enteb\e;, which becomeg A, C, D}. As B supersedes
C, the inclusion ofC requires adding3 to Syet as well. At this point, thesye is finalized as{ A, B, C, D}
because no other vertex can be inserted.

5.4 Validating Phase

The validating phase determines whether the current cesiser coreG* is shrinkable namely, if there is
any chance that some vertices can be pruned foin the future, after more edges become availablg*in

In case the answer is no, we can immediately claim that threcuvertices of;* constitute the SNN-core;
otherwise, another iteration pfpelineis necessary.

WhetherG* is shrinkable depends on the following question: is theyeream-empty subset,,i; of V* such
that all theexistingedges ofG* betweenS,;; andV* — Sy follow the same direction? " is the set of
vertices inG*.) Refer to theS,i: as thewitness-setG* is shrinkable if and only if a withess-set exists.

Consider th&;* in Figure 8e. It is shrinkable due to the witness &é#, noticing that all theknownedges
betweenS,it = {A} andV* — Swit = {B, C, D, E'} are fromSy;; to V* — Syit. In other words, it is possible
for the SNN-core to bg A} (which would be true if all the missing edges Atturned out to be pointing
away fromA; as shown in Figure 8}, this does not actually happen, whiokever, cannot be predicted at
the stage of Figure 8e). In general, there can be multiplees sets, e.g{ D} is another in Figure 8e. On
the other hand, thé* in Figure 8j has no witness set, causing the terminatignpsline

To find a witness set, we borrow the concepstwbngly connectedSpecifically, a directed graph is strongly
connected if, for any two verticesando’ in the graph, there is a path fromto o', and another from’ to o.
Then:

Lemma 5. A conservative corg* is not shrinkable if and only if it is strongly connected.

Proof. The if direction: Assume, to the contrary, that a stronglgreectedG* is shrinkable. Let’* be the
vertex set olG*. SinceG* is shrinkable))* can be devided into two groups andV; = V* — V; such that
all the edges between the groups are fignto V5. Thus, it is not possible to travel from a vertexlinto a
vertex inVi, contradicting the fact thai* is strongly connected.

The only-if direction: Assume, on the contrary, tlggtis un-shrinkable but it is not strongly connectéi.
must have a pair of verticesando’ such that there is a path fromto o’ but not fromo’ to o. Put all the
vertices which can be reached frarin 15 and the other vertices i, = V* — V5. Obviously,V; is not
empty because it includes at leastAll the edges betweel; andV; must be froml; to V; (otherwise,V,
has not incorporated all the vertices reachable foOmThis implies that5 is shrinkable ¥; is the retention
set), causing a contradiction. O
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For instance, thg* in Figure 8j is strongly connected. For example, let us insperticesdA andB. Indeed,
there is a path fromd to B (just the edged — B), and another fronB to A (i.e., B — C — A). Thisis

true for each pair of vertices iG*. Checking whetheg* is strongly connected can be done using a standard
depth-first algorithm [6].

5.5 Discussion

The I/0O performance gbipelineis never worse than thiell-graph algorithm in Section 4. To understand
this, note that (i) the conservative capé is necessarily complete (i.e., no missing edges) after iitiece
RI-list has been fetched, and (p)pelinedefinitely terminates given a complef&. As full-graph always
extracts the whole RI-list, it incurs at least the 1/0 cospipieline

On the other handyipeline may finish by examining much fewer instances tlaikgraph. As explained

in Figure 6, for a practical query, many bad NN-candidateshaw instances in the minmax-circle. In
this case, before exploring the instances of bad candidgipeline has read most instances of the good
NN-candidates, and thus, already collected enough infitom#o determine the superseding relationships
between good and bad candidates. Hence, the algorithm raag fiie bad NN-candidates without reading
their instances at all.

Finally, in terms of asymptotical performandel-graph has smaller time complexity. In the worst case,
it scans everything of the database(xin) time (treatings as a constant), produces the full superseding
graph inO(n?) time, and finds the SNN-core alsodn?) time as well, leading to an overall complexity of
O(n?). Pipeling on the other hand, may need to invoke a pruning phase, wible imost expensive step of
an iteration, once for every single instance. This phasenegyireO(n?) time in the worst case, rendering
an overall complexity oD (n?). Nevertheless, it is worth noting that the above compleaitglysis holds
only under the very pessimistic assumption that nothingbeapruned.

6 Extension

So far our analysis assumes that each object is represeptin Isame numbes of instances, and each
instance has an identical pdf-valigs. This section removes this assumption. Specifically, wemaldify

the proposed algorithms to the scenario where each objedtasge any number of instances, each of which
may have a different pdf-value.

Modeling and Concepts. Let 0.s be the number of instances needed to represent an uncebjaict @
and denote those instancesofld, o[2], ..., o[o.s]. The pdf ofo may take any positive valuepdf (o[i]) at
each instanceli] (1 < i < o.s), as long a$»_;-*| 0.pdf (o[i]) = 1. Given a query poing, without loss of
generality, we retain our notation convention that an imstawith a smaller index is closer tg namely,
dist(oli], q) < dist(o[j],q) foranyl <i < j < o.s.

All the definitions in Section 3 remain the same under the abowedeling. The only difference lies in
computing the probability’{o < o’} that an objecb is closer tay than anotheo’. Equation 5 still correctly
quantifiesP{o < o'}, but the upper limits of the summation must be replaced &y. The calculation of
P{o < d'lo = o[i]} deserves detailed clarification. Consider the RI-list amfdated in Definition 1, and
let = be the smallest integer such thafc] ranks aftero[i] in the RI-list (in other wordsy'[z] is the first
instance ob’ behindo[i]). Then,

Plo < dlo = olil} = opdf(oli)) - 3 o pdf (o'[1). @)
Jj=x
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Indexing. We still use an R-tree to index the instances of all objectse dnly difference is that, each leaf
entry, in addition to keeping the coordinates of an instaats® stores the pdf-value of the instance.

Algorithms. Our first solutionfull-graph does not require any change. gipelinethe only modification is

in the edge phase. The first change is the interpretationecéittaycnt. Recall that each elementt|[i]

(1 <4 < m, with m being the array size) is maintained for a vertexn the current conservative cogs'.

If o; is a regular vertex denoting an objectit[i] equals the sum of the pdf-values of all the instances of
o[i] already retrieved (instead of simply the number of thos&ites as in Section 5.2). Specially, in case
i = 1 ando, is the vertexunseencnt|1] is still fixed to 0 (same as in Section 5.2).

The second change is the wayt andlow are updated based on an instance acquired from the vergex ste
To facilitate explanation, assume that the instance belemgbjecb; (for somei € [1,m]), and specifically,

is the object's’-th instance (for somé& € [1,0;.s]). Then,ent[i] should be increased hy.pdf (0;[i']) (as
opposed to only 1 in Section 5.2). Furthermore, afray is not updated based on Equation 6; instead, the
update is according to:

low(i, j] = lowli, j] + o0;.pdf (0;]i']) - (1 — ent[4]). (8)

Supporting continuous pdfs. In this paper we focus on objects with discrete pdfs. The lprotnf SNN-
core retrieval can also be defined on continuous pdfs (suaassian) in the same manner. An obvious
solution in that context is to first convert a continuous pdatdiscrete one by sampling, and then apply our
techniques directly. Alternatively, we may also index tineertainty regions of the continuous ptifgith a
spatial access method such as an R-tree, and then, use tednoé{5] to retrieve all the NN-candidates.
After deciding the superseding relationships of all pafrslgects, we can use tHall-graph algorithm to
compute the SNN-core. Thapelinealgorithm, on the other hand, does not appear to be easijytana

to the continuous pdfs. Finding the SNN-core without retrig all NN-candidates remains an interesting
open problem.

7 Experiments

This section experimentally evaluates the proposed tqaksi There are two primary objectives. First, we
aim at demonstrating that SNN-cores have a small size unidege number of settings with different data
distributions, numbers of instances per object, sizes oédainty regions, etc. Second, we will examine the
efficiency of the two algorithm$ull-graph andpipeline All the experiments are performed on a machine
running a 2.13Ghz CPU and 1 giga byte memory.

7.1 Properties of the SNN-core

We choose four real spatial datase®®, LB, GM, GR, with cardinalities 10113, 10131, 10017, and 10063,
respectively (downloadable atww.census.gov/geo/www/tigerFigure 10 shows their data distributions,
which correspond to locations in California, Long Beach @guGermany, and Greece, respectively. The
data space is normalized to have range [0, 10000] on evergraion.

Given a values, we transformCA into an uncertain databas@A-s. Specifically, for every poinp from

CA, we generate an uncertain objecwith s instances irCA-s as follows. First, we create a squdrép)
centering ap with side length 600U (p) is theuncertainty regiorof o, i.e., the area where the instances
of o can appear. The instances are created based on the datatistrof CAinsideU (p). To implement

this idea, we impose a grid with resolutiaf0 x 100 over the data space. Each cell stores a counter, equal

1The uncertainty region of a pdf is the area where the pdf hasiiye value.
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(a)CA (d)GR
Figure 10: Dataset visualization
dataset|| (I) avg. (Ihavg | (1N % of ||| (IV) num. | (V) max. (VD) num. | (VIl) num.
SNN-core| num. of | NN-cand. ||| of queries| SNN-core of PR- of ED-
size NN cand-| in SNN- with > 1 size correct correct
idates core SNNs
CA-15 1.23 162 0.6% 1 24 38 (of 100) | 74 (of 100)
CA-25 1.13 194 0.7% 1 14 35 78
CA-35 1.06 208 0.5% 2 5 42 81
CA45 1.03 220 0.5% 1 4 39 89
CA-55 1.02 228 0.4% 1 3 50 86
LB-15 1.54 199 0.7% 5 13 20 79
LB-25 1.14 229 0.5% 3 13 28 77
LB-35 1.00 249 0.4% 0 1 20 78
LB-45 1.00 261 0.4% 0 1 31 82
LB-55 1.00 271 0.4% 0 1 23 80
GM-15 1.49 314 0.4% 6 15 17 60
GM-25 1.16 400 0.3% 3 8 13 69
GM-35 1.07 433 0.2% 2 5 13 76
GM-45 1.05 455 0.2% 2 4 17 81
GM-55 1.13 471 0.2% 3 8 17 81
GR-15 1.15 332 0.3% 4 4 20 71
GR-25 1.07 390 0.3% 3 3 35 78
GR-35 1.20 444 0.3% 3 3 26 72
GR45 1.14 464 0.2% 4 4 23 67
GRb5 1.10 476 0.2% 2 4 41 80

to the number of points oA in the cell's extent. Letell(p) be the set of cells covered &y(p). Then,
the probability that an instance ofappears in a celt of cell(p), equals the ratio between the counter of
over the sum of the counters of all cellsdall(p). After identifying the cell to appear in, the position of the

Table 1: Properties of SNN-core (identical uncertaintyiorg)

instance is randomly decided in the cell. In this way, theqidf depends on the location pf

In CA-s, the uncertainty regions of all objects have the same size.aMb synthesize another uncertain
dataseCA-s-var, where the uncertainty regions are not equally large. Spalty, CA-s-var is generated in
the same way aSA-s except that the side length df(p) can be 600 and 1000 with an equal probability.

In the same fashion, given every other real datasgt= LB, GM, GR) and a value ofs, we create two
uncertain datasets namégds and X -s-var, respectively. We will experiment with 5 values©f15, 25, 35,
45, and 55, resulting in totally 40 different datasets. Wieineach dataset using an R*-tree with page size
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dataset () avg. (Ihavg | ()% of ||| (IV) num. | (V) max. (V) num. | (VII) num.
SNN-core| num. of | NN-cand. ||| of queries| SNN-core of PR- of ED-
size NN cand-| in SNN- with > 1 size correct correct
idates core SNNs
CA-15-var 1.12 243 0.4% 3 5 42 (of 100) | 77 (of 100)
CA-25-var 1.15 286 0.4% 2 10 49 82
CA-35-var 1.02 311 0.3% 1 3 35 90
CA-45-var 1.02 325 0.3% 1 3 44 91
CA-55-var 1.00 346 0.3% 0 1 50 91
LB-15-var 1.13 256 0.4% 3 6 23 81
LB-25-var 1.04 299 0.3% 3 3 26 90
LB-35-var 1.09 318 0.3% 3 4 31 80
LB-45-var 1.04 344 0.3% 3 3 28 92
LB-55-var 1.02 347 0.3% 1 3 23 85
GM-15-var 1.14 427 0.3% 3 7 17 60
GM-25-var 1.18 499 0.2% 4 7 13 69
GM-35-var 1.06 556 0.2% 3 3 13 76
GM-45-var 1.14 593 0.2% 2 8 17 81
GM-55-var 1.00 602 0.2% 0 1 17 81
GR-15-var 1.10 516 0.2% 3 5 35 63
GR25-var 1.08 428 0.3% 2 6 42 56
GR-35-var 1.00 531 0.2% 0 1 39 75
GR45-var 1.06 577 0.2% 1 7 30 66
GRb5-var 1.04 645 0.2% 1 5 29 77

Table 2: Properties of SNN-core (variable uncertaintyoes)

4096 bytes. Agquery workloadcontains 100 query points randomly distributed in the dpecs.

Results on Objects with Identical Uncertainty Regions. Table 1 demonstrates various statistics about
the SNN-cores retrieved by a query workload, on differenaskets. We will explain the columns in turn.
Column | shows the average number of points in an SNN-corki@oll gives the average number of NN-
candidates per query, and Column Ill presents the percenfagN-candidates that belong to the SNN-core.
Clearly, the average size of an SNN-core is close to 1, andmgfisantly smaller than the average number
of NN-candidates.

Column IV further demonstrates how many queries in a workloave more than one object in their SNN-
cores. Column V indicates the size of the largest SNN-cor@ workload. We notice that A majority of
queries have only one object in their SNN-cores. When thebmumof instances is small, occasionally an
SNN-core has a large size. For> 35, the SNN-core size is consistently low. We point out thatniany
applications, an object is usually represented with a lawg®aber of instances (e.g., over 100 in [14]) to
provide a good approximation of its pdf. The above obsemmasuggests that the SNN-core is expected to
be very small in those applications. It is worth mentionihgttwe do not observe any obvious correlation
between the SNN-core size and the number of NN-candidates.

Recall that, as discussed in Section 2.2, there exist twer gifinciples for selecting the best objects for
an NN query on uncertain data. Specifically, R-principle advocates the object with the largest NN
probability. Theexpected-distanc€éED) principle, on the other hand, recommends the object with the
lowest expected distance to the query point. Next, we stagly dften these principles happen to return the
same result as our SNN approach. We say that a qudPRigED-) correct, if its SNN-core has exactly
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Figure 11: Efficiency comparison (identical uncertaintgioas)

one object, which turns out to be the same as the result uhddPR- (ED-) principle. Column VI (VII)
demonstrates the number of PR- (ED-) correct queries in &loamt which, as mentioned earlier, has 100
gueries in total. Apparently, neither the PR- nor the EDwiple guarantees the same result as our SNN
approach.

Results on Objects with Variable Uncertainty Regions. Next, we repeat the above experiments using
the datasets where the uncertainty regions of various @byan have different sizes. Table 2 presents the
results, confirming the earlier observations.

Summary. It is clear that our SNN approach is able to recommend a veallsTamber of best objects
under a large variety of circumstances. This number tentde iower when each object is represented by
a larger number of instances. Furthermore, for a majoritguafries (over 95%), their SNN-cores actually
include only a single object.

7.2 Efficiency of Our Algorithms

Now we proceed to evaluate the cost of SNN-core retrievalgdmparing the efficiency of the proposed
full-graph andpipelinealgorithms.

Results on Objects with Identical Uncertainty Regions.The first set of experiments adopts datagts
15, CA-25, ...,CA-55 where each object is represented with 15, ..., 55 instances, respectively. On every
dataset, we deploy each algorithm to answer a workload of@gjeand measure the average cost per query.
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Figure 12: Efficiency comparison (variable uncertaintyioag)

Figure 11a plots the cost as a functionsofFor comparison, at = 15, we also include the time of a naive
sequential-scan solution that simply scans the entirdbdata The performance ffll-graph andpipeline
is further broken down into two parts, corresponding to tiJ@nd I/O overhead, respectively.

Both proposed algorithms are faster than sequential scaanlyrder of magnitude. Therefore, we omit
sequential scan in the other experiments. As expegipe]ine significantly outperformgull-graph. Ob-
serve thapipelineentails slightly higher CPU time, because it involves a sstdated incremental pruning
mechanism. The extra CPU overhead pays off, because thenischleads to substantial reduction in the
number of R-tree nodes that must be accessed. The benefitgearenore obvious when the number of per-
object instances grows. Figures 11b-11d present the sesiuthe same experiment on the other datasets.
Similar phenomena can be observed.

Results on Objects with Variable Uncertainty Regions.Figure 12 shows the results of the same experi-
ments on the datasets where various objects have uncentegibns with different sizes. Agaipjpelineis
consistently faster than its competitor. SNN-retrievalirs higher cost compared to Figure 11. This is due
to the increase in the number of NN-candidates, as is cleaoimparing the Column Il of Tables 1 and 2.

Summary. Bothfull-graph andpipelineneed to access only a fraction of the database, as indicgtiip
much smaller cost than sequential scBipelineentails considerably lower overall cost thiat-graph. In
particular, the former requires higher CPU time but incunssiderably lower I/O overhead. The advantage
of full-graph, however, is its simple implementation. Furthermore, #igorithm is expected to be faster
thanpipelinein scenarios where nodes of R-trees can be accessed eFi¢ient main-memory databases).
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8 Conclusions

Nearest neighbor search on uncertain objects does not hal®/eus answer, because typically no object is
the NN with absolutely certainty. In this paper, we propasesturn theSNN-coreas the query result. The
SNN-core is the minimum set of NN-candidates each of whiglessedes all the NN-candidates outside
the SNN-core. Our experiments reveal that, for a majoritgueries, the SNN-core contains a only single
object. This makes SNN-core a highly useful type of reswoltd\NN search, where it is important to minimize
the number of reported objects. We develop two algorithmé$afst computation of the SNN-core. Utilizing
a multidimensional index, both algorithms are able to firelSNN-core by accessing only a fraction of the
database.

Our work also indicates several directions for future woFkrst, it would be interesting to analyze the
overhead of SNN retrieval, in order to derive a cost moddl dlcaurately predicts the query time. Such a
model is important for query optimization in practice. Ssatpthe concept of SNN-core can be integrated
with any variation of NN search. It remains unclear how topdiae proposed solutions to those variations.
Third, our discussion focuses on spatial data with low disr@mality. It is a challenging topic to study the
retrieval of SNN-cores in high-dimensional spaces.
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