
Random Sampling for Continuous Streams
with Arbitrary Updates

Yufei Tao, Xiang Lian, Dimitris Papadias, and Marios Hadjieleftheriou

Abstract—The existing random sampling methods have at least one of the following disadvantages: they 1) are applicable only to

certain update patterns, 2) entail large space overhead, or 3) incur prohibitive maintenance cost. These drawbacks prevent their

effective application in stream environments (where a relation is updated by a large volume of insertions and deletions that may arrive

in any order), despite the considerable success of random sampling in conventional databases. Motivated by this, we develop several

fully dynamic algorithms for obtaining random samples from individual relations, and from the join result of two tables. Our solutions

can handle any update pattern with small space and computational overhead. We also present an in-depth analysis that provides

valuable insight into the characteristics of alternative sampling strategies and leads to precision guarantees. Extensive experiments

validate our theoretical findings and demonstrate the efficiency of our techniques in practice.

Index Terms—Sampling, selectivity estimation.

Ç

1 INTRODUCTION

A general stream relation receives a large number of
updates per time unit, which include tuple insertions

and deletions that may arrive in any order. Specifically,
each I-command has the form fI; id; SAg, where the first field
is a tag indicating “insertion,” the second denotes the id of
the tuple being inserted, and SA corresponds to the set of
the remaining attributes of the tuple. Similarly, a
D-command fD; idg removes the tuple with a specified id.
The content of a relation includes all the tuples that were
inserted, but have not been removed; the cardinality of the
relation is the number of such tuples.

We consider that all tuples currently in a relation have

distinct ids. Specifically, the id in each I-command should

not be identical to the id of any existing tuple in the relation.

However, provided that the previous tuple with an id has

been deleted, a tuple with the same id can be inserted. In

other words, multiple tuples with the same id may be

inserted throughout the history, but at any moment, there

can be only one tuple with this id.
We address two fundamental problems of approximate

processing. Given a single relation T , the first one aims at

providing accurate answers to queries of the form:

Q1 : SELECT COUNTð�Þ FROM T WHERE �any:

Q1 is a counting query with arbitrary conditions �any in the

WHERE clause. We assume no a priori knowledge about �any,

which excludes potential solutions [16], [17] that rely on
special counting “sketches” (including histograms, wave-
lets, etc.) for certain attributes (or their combinations).
Specifically, although these methods can produce accurate
results on the preprocessed columns, they are not useful for
general ad hoc queries involving other predicates. Random-
sampling techniques, on the other hand, constitute a natural
methodology for this problem because, by keeping all
attributes of the sampled tuples, it is possible to support
any predicate �any with good accuracy guarantees.

The second problem tackled in this paper is to accurately
predict the join size of two stream relations Ta and Tb:

Q2 : SELECT COUNTð�Þ FROM Ta; Tb

WHERE �all and �any:

�all includes a set of registered conditions common in all
Q2 queries, which differ in their own formulation of �any (an
arbitrary predicate). As an example, assume that Ta has
attributes ðid; AaÞ, Tb has ðid; AbÞ, and �all is Ta:id ¼ Tb:id.
Then, every possible Q2 query contains this equi-join
condition, but can also include a predicate �any on
individual columns of a single table (e.g., Ta:Aa > 10), or
both tables (e.g., Ta:Aa þ Tb:Ab > 100). Equivalently, the set
of records counted in a Q2 query is a subset of the results of
joining Ta and Tb using only the condition Ta:id ¼ Tb:id. Our
goal is to process Q1 and Q2 accurately using at most
M random samples, where M is (by far) lower than the size
of the database.

Query types Q1 and Q2 are important to a large number
of applications. For example, consider a relation with
schema PRðstock-id; priceÞ, where each tuple records the
current price of a stock. Whenever a stock’s price changes, a
D-command streams in, removing the obsolete tuple of the
stock; then, an I-command immediately follows, inserting a
new tuple carrying the updated price. Obviously, unlike the
sliding-window stream model [5], the order that the tuples
in PR are inserted is most likely not equivalent to the order
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that they are deleted. A Q1 query in this context may
retrieve the number of stocks whose prices qualify a certain
predicate.

To motivate Q2 queries, assume that we have another
stream relation TOðstock-id; turnoverÞ, which captures the
current turnovers of the stocks. As with PR, TO is updated
with continuously arriving I and D-commands, generated
by the buying/selling of any stock. Note that the streams
corresponding to PR and TO are typically separate,
because they are usually generated by different agents. In
this case, to study the statistic relationship between prices
and turnovers, a user needs to join PR and TO together
with an equality condition on stock-id, and then apply other
predicates on price and turnover. Such operations form a
Q2 query, where �all is the equality condition and �any
corresponds to the other predicates.

We are interested in solutions that incur small computa-
tional overhead for processing each incoming command, as
opposed to methods (e.g., the counting sample reviewed in
the next section) that have low amortized cost but poor
worst-case performance for individual updates. For data
streams with a high record arrival rate, spending consider-
able time on any tuple necessarily delays a large number of
subsequent records, which need to be stored in a system
buffer. When the size of this buffer is exceeded, some tuples
must be discarded (i.e., load shedding [25]), in which case
obtaining a truly random sample set is impossible. For
instance, in the stock-trading application mentioned earlier,
shedding an update command causes the price of a stock to
be inaccurate. Furthermore, shedding a D-command may
even lead to duplicate tuples for the same stock.

As elaborated in Section 2, the existing sampling
algorithms have at least one of the following disadvantages:
1) they rely on certain assumptions on data updates (e.g.,
only insertions are allowed, or tuples must be deleted
according to the insertion order), 2) they require consider-
able space (e.g., the underlying relations must be fully
materialized for resampling), or 3) they incur prohibitive
maintenance overhead (e.g., they must periodically scan the
entire sample set). These problems prevent their effective
deployment on data stream applications, despite the
success of random sampling in conventional databases.

In this paper, we develop sampling algorithms that are
fully dynamic (supporting any sequence of insertions and
deletions), efficient (processing each update with very low
space and computational overhead), and accurate (produ-
cing approximate answers for Q1 and Q2 queries with small
errors). Specifically, for single relations, our methods
significantly improve the well-known reservoir sampling

and counting sample approaches in the presence of intensive
updates. For join results, we propose the first sampling
algorithm that enables effective approximate processing on
streams containing arbitrary update requests (the previous
solutions [24] discuss only the special case of sliding
windows). In addition, we present an in-depth analysis
that provides valuable insight into the characteristics of
alternative solutions. Extensive experiments validate our
theoretical findings and confirm the efficiency of the
proposed techniques in practice.

The rest of the paper is organized as follows: Section 2
reviews previous work that is directly related to ours.
Sections 3 and 4 present algorithms for sampling single
relations, and analyze their effectiveness on Q1 queries.
Section 5 focuses on sampling join results for approximate
Q2 processing. Section 6 contains the experimental results,
and Section 7 concludes the paper with directions for
future work.

2 RELATED WORK

Section 2.1 first reviews approaches for sampling a single
relation in the presence of updates, and clarifies their
problems. Then, Section 2.2 discusses algorithms for
sampling the join result of multiple tables.

2.1 Sampling a Single Relation

Sampling from a static table with n tuples is straightfor-
ward. Specifically, a sequence number can be assigned to
each record (i.e., the first tuple has number 1, the second 2,
and so on). To obtain s samples, we only need to randomly
generate s distinct values in the range ½1; n�, and select the
tuples with these sequence numbers. It is more difficult,
however, to maintain the randomness of the sample set
when new records are inserted into the table, or existing
ones are removed. A naive solution would resample the
relation as described above whenever its content changes.
Obviously, this method is impractical since a resampling
process may require accessing a large number of disk pages.
Reservoir sampling and counting sample aim at solving these
problems.

2.1.1 Reservoir Sampling

The first reservoir algorithms [26], [22] in the database
context maintain an array RS with maximum size s (the
target sample size), which is initially empty. The first
s tuples are directly added into RS, after which the array
becomes full. For each subsequent insertion, a random
integer x is generated in the range ½1; n�, where n is the
number of insertions handled so far (n continuously grows
with time). If x is larger than s, the incoming tuple is
ignored; otherwise, ðx � sÞ, it is recorded at the xth position
of RS, replacing the sample that was originally there. It can
be shown [26] that, at any time, the tuples in RS constitute a
random sample set of the current content of the data set T .
Jermaine et al. [21] present an alternative reservoir technique
to manage sample sets whose sizes exceed the capacity of
the available memory. Similar to [26], [22], this approach
supports only insertions.

Gibbons et al. [14] propose an extension, referred to as
delete-at-will in the sequel, for producing a random sample
set in the presence of deletions. Let s be the current size of
the sample set RS and n the cardinality of T . If the tuple t
being deleted does not belong to RS, the sample set remains
unchanged. If t is found in RS, it is removed, after which
the size of RS becomes s� 1. In either case (whether t
appears in RS or not), the cardinality of the relation T
changes to n� 1 to reflect the removal of t. The handling of
insertions is similar to the reservoir technique. Assume, for
instance, that after a sample is deleted (i.e., the sample size
is s� 1 and the data cardinality is n� 1) a new record
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arrives. A random integer x is generated in the range ½1; n�
1� and if x is larger than s� 1, the incoming tuple is ignored;
otherwise, ðx � s� 1Þ, it is recorded at the xth position of
RS, replacing the sample that was originally there. Gibbons
et al. [14] prove that the resulting RS is still random with
respect to the remaining tuples in T .

The problem with delete-at-will is that the sample set
gradually shrinks with time, and eventually ceases to be
useful (e.g., it can no longer provide accurate selectivity
estimation). Therefore, T must be scanned so that a
sufficient number of samples are retrieved again. This
requires retaining all the tuples that have been inserted but
not yet deleted, which is impossible in stream environ-
ments. In Section 3, we propose R�, an improved reservoir
algorithm that supports deletions without decreasing the
sample size.

2.1.2 Counting Sample

Counting sample (CS) [13] can produce a random sample set
for any sequence of insertions and deletions without
resampling the base relation, even in the existence of
duplicate tuples (consequently, it is trivially applicable to
conventional tables where each record is different). Speci-
fically, CS maintains a list RS (with maximum size s) of
elements in the form1 ft; cg, where c is a counter that
summarizes the number of identical records t in the sample
set. Furthermore, a variable � , initially set to 1, is used to
control the probability that a record is sampled.

To handle an incoming tuple t, CS first probes the existing
sample set to see if t has been included before. If yes, the
counter c in the corresponding pair ft; cg is increased by one,
and the insertion terminates. Otherwise, (t is not in RS), CS
tosses a coin c1 with probability 1=� head, and discards t if c1

tails. Alternatively (c1 heads), the algorithm includes a new
entry ft; 1g inRS. IfRS does not overflow (i.e., it contains no
more than s elements), the insertion is completed. In case of
an overflow, a rejecting pass is performed to expunge some
existing samples from RS.

Specifically, at the beginning of the rejecting pass, a
number � 0 larger than the current � (that governs the
sampling probability, as mentioned earlier) is chosen. Then,
for each element ft; cg in RS, a coin c2 is flipped with
probability �=� 0 head. If c2 tails, the rejecting algorithm
moves on to the next element in RS. Otherwise (c2 heads), it
decreases the counter c by 1, and then repeatedly throws a
coin c3 with probability 1=� 0 head, until c3 turns on tail. On
each head occurrence of c3, the counter c is further reduced
by 1, until the element ft; cg is eliminated when c equals 0.
At the end of a rejecting pass (after processing all elements),
the value of � is updated to � 0. If the overflow of RS persists
(i.e., no counter became 0 in the previous pass), another
pass is executed. This process is repeated until the overflow
is remedied.

Deleting a tuple t is much easier. The deletion is ignored if
t is not in RS. Otherwise, the counter c in the corresponding
pair ft; cg is decreased, and the pair is removed from RS if c
reaches 0. Note that, unlike delete-at-will, the removal of ft; cg

does not reduce the size of RS, that is, a future sample may
still be stored at the original position of the removed entry. It
is worth mentioning that the set of tuples in RS is not a
random sample set of the current relation T . However, it can
be converted into one by scanning the entire RS (see [13] for
details).

A disadvantage of CS (that restricts the applicability of
this method in practice) is that the entire RS must be
scanned (sometimes repeatedly) for expunging existing
sample(s) in case of overflows. When the size of RS is large,
scanning RS may delay processing a large number of
subsequently arriving records, some of which may need to
be discarded from the system after the input buffer becomes
full. In this case, it is simply impossible to obtain a truly
random sample set. Furthermore, the selection of � 0 in the
rejecting pass is ad hoc. Gibbons et al. [13] suggest that � 0

should be 10 percent higher than the current � , without,
however, providing justification on this choice. In Section 4,
we present CS�, an enhanced version of CS that avoids
these problems.

Motivated by the shortcomings of reservoir and counting
sample, Babcock et al. [5] propose alternative algorithms2 for
producing random samples in the specific context of
“sliding window streams,” where tuples are deleted
according to the order of their arrival. Since these algo-
rithms are inapplicable to arbitrary sequences of insertions/
deletions, we do not discuss them further.

Finally, there exist numerous papers ([4], [7], [18], [20] to
mention just some recent ones) on applications of sampling
to various estimation tasks (e.g., selectivity estimation,
clustering, etc.). The solutions in those papers do not
compute random samples, and cannot be used to solve Q1
and Q2 queries formulated in Section 1. Recently, some
sketch-based algorithms [9], [10], [11] have been developed
to obtain a “probabilistic” random sample set, i.e., the
samples may be random with a high probability, but there
is no guarantee. We aim at deriving truly random samples
in all cases.

2.2 Sampling the Join Results

Let T1 and T2 be two relations, and � be a join
predicate. Naive stream join (NSJ) is a straightforward
method that maintains random sample sets RSðT1Þ and
RSðT2Þ on T1 and T2, respectively (e.g., by using the
techniques of the previous section). Then, given a Q2
query q, it finds the number nq of tuple pairs ðt1; t2Þ 2
RSðT1Þ �RSðT2Þ that satisfy q, and estimates the query
result as ðnq � jT1j � jT2jÞ = ðjRSðT1Þj � jRSðT2ÞjÞ. This esti-
mation, however, is usually not accurate, because the
join between the sample sets of T1 and T2 typically
leads to a very small subset of the actual join result.
This phenomenon is caused by the fact [8] that the
projection of the join result onto the columns of T1 ðT2Þ
is not a random sample set of T1 ðT2Þ.
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1. CS adopts a slightly more complex element representation to minimize
the space consumption. Since the basic idea is the same, we ignore this
difference here for simplicity.

2. It is worth mentioning that the sliding-window algorithms in [5] have
lower update cost than the proposed approaches. Specifically, those
algorithms require Oð1Þ cost for each incoming tuple, while our approaches
incur OðlogMÞ time, where M is the memory size. This comparison,
however, is not fair because the algorithms in [5] utilize the special
properties of a sliding-window stream to reduce the update cost, and are
not applicable in our problem settings.



To illustrate this, we use an example similar to that in

[8]. Consider that T1 and T2 have a single attribute A

with the following tuples: T1 ¼ f1; 1; . . . ; 1; 2g, and

T2 ¼ f2; 2; . . . ; 2; 1g. Most probably, a random sample

RSðT1Þ (or RSðT2Þ) on T1 (or T2) will include only

records with A ¼ 1 (or 2). Therefore, the size of T1 ffl� T2

(where � is T1:A ¼ T2:A) is estimated as 0, even though

the join actually produces a large number of records.
To solve this problem, Chaudhuri et al. [8] suggest

sampling the join result in a two-step manner. The first step

joins each tuple t 2 T1 with the data in T2, and records t:w

(the weight of t) as the number of records in T2 that qualify �

with t. Then, in the second step, each record t 2 T1 is re-

examined. This time, a coin is thrown with head probability

proportional to t:w. If the coin tails, t is ignored and the

execution proceeds with the next tuple in T1. Otherwise (the

coin heads), a subset of the records in t ffl� T2 (all the join

results produced by t) is randomly extracted and included

into RS� (the sample set over the join results). The expected

size of this subset is also proportional to t:w (see [8] for

details).
The above method is static because subsequent inser-

tions and deletions on T1 or T2 necessarily affect the weights

of individual tuples and, hence, change the probabilities

that they should appear in RS�. Srivastava and Widom [24]

develop a similar sampling strategy that can handle

updates. Their work, however, is restricted to sliding

windows and assumes a priori knowledge about data

distributions (records follow either the “age-based” or

“frequency-based” model). In Section 5.2, we develop

alternative methods without such constraints. Acharya

et al. [2] propose the “join synopsis” for obtaining random

samples in the special case of foreign-key joins, but their

methods are inapplicable to arbitrary join conditions. Other

relevant work [3], [9], [19] focuses on estimating the join

sizes without computing samples.

3 DYNAMIC RESERVOIR SAMPLING

In this section, we present the R� algorithm, an extension of
reservoir sampling that supports an arbitrary sequence of
insertions and deletions. Section 3.1 discusses the algorith-
mic details of R� and Section 3.2 analyzes its characteristics.

3.1 Algorithm

R� maintains an array RS with size M, whose value is
determined by the amount of available memory. At any
time, only a subset of valid records in RS belongs to the
current sample set. Each element RS½i� ð1 � i �MÞ is
associated with a tag RS½i�:valid that equals TRUE if RS½i�
is valid, and FALSE, otherwise. Initially, every RS½i�:valid
equals FALSE, indicating an empty sample set. Insertions
are handled in a way similar to the conventional reservoir
method. Specifically, for each I-command (let t be the
record being inserted), we generate a random integer x in
the range ½1; nI �, where nI is the total number of insertions
processed so far. If x �M, we place t at the xth position
RS½x� of RS, and set RS½x�:valid to TRUE. Otherwise,
ðx > MÞ, no further action is taken and t is ignored.

To handle a D-command fD; idg, on the other hand,
we first check if the tuple with the requested id belongs
to the sample set, namely, whether there exists a number
x ð1 � x �MÞ such that the id of RS½x� equals id, and
RS½x�:valid ¼ TRUE. If x is found, deletion is completed
by simply modifying RS½x�:valid to FALSE, without
affecting the other elements in RS. Fig. 1 presents the
pseudocode of R�.

We emphasize several differences between R� and the
reservoir algorithm coupled with delete-at-will (reviewed in
Section 2.1). First, although both algorithms generate a
random number for each incoming I-command, the upper
bound of the random number generated by R� equals nI
(Line 2 of R�-insert in Fig. 1), as opposed to jT j in reservoir.

Second, whenever a sample is deleted, reservoir wastes an
element in array RS, that is, the element can no longer be
used to hold a sample. Accordingly, the maximum possible
sample-set size also decreases, thus wasting an increasingly
large part of the memory. R�, on the other hand, does not
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reduce the size of RS, i.e., in the future, the sample set size
can still be as large as permitted by the available memory.

Third, after deleting a sample, the positions of the
remaining samples in RS are not important for reservoir

(e.g., the algorithm is still correct, even if two samples
switch their positions). For R�, however, the remaining
samples must be fixed to their original positions. The reason
for this will be clear in the correctness proof of R� in the
next section.

In order to efficiently retrieve records with particular ids
(during deletion), we create an appropriate index IðRSÞ
(e.g., a main-memory B-tree [15]) on the sample ids. IðRSÞ
is updated whenever the content of RS changes. Note that,
since IðRSÞ contains only the ids of the tuples, its size is 1=d

of the space occupied by the relation, where d is the number
of attributes of a tuple.

Given a Q1 query q, we count the number nq of valid

records in RS that satisfy q, and report nq � jT j=s as the
approximate answer, where jT j is the current cardinality of
T , and s is the number of valid samples. Obviously, both jT j
and s can be maintained with trivial overhead—they are
simply increased (decreased) whenever a tuple is inserted
into (deleted from) T and RS, respectively.

3.2 Analysis

We first show that R� indeed produces a random sample
set. Let Useq be the sequence of all the update requests
sorted according to their arrival order, and Ii be the
ith I-command; similarly, Dj is the jth D-command.
Lemma 1 provides a crucial observation:

Lemma 1. Let Dj and Ii be a pair of consecutive commands in

sequence Useq such that Dj arrives before Ii (i.e.,

Useq ¼ f. . .DjIi . . .g). Denote U 0seq as the sequence obtained

from Useq by simply swapping the order of Ii and Dj (i.e.,

U 0seq ¼ f. . . IiDj . . .g). Then, executing R� on Useq and U 0seq
leads to the same RS.

Proof. Since Dj arrives before Ii in the original sequence
Useq, the two updates refer to different records. Let
RSbfr ðRS0bfrÞ be the content of RS when all the
commands before Dj ðIiÞ in sequence Useq ðU 0seqÞ have
been processed. Obviously, RSbfr ¼ RS0bfr since they are
the content of RS after processing the same sequence of
updates. Similarly, let RSaft ðRS0aftÞ be the content of RS
after processing Ii ðDjÞ in Useq ðU 0seqÞ. We will show that
RSaft is also identical to RS0aft, which establishes the
correctness of the lemma, because the remaining parts of
Useq and U 0seq are exactly the same.

To prove RSaft ¼ RS0aft, notice that handling a
D-command does not generate any random number.
Therefore, the value x produced at Line 2 of R�-insert
(Fig. 1) for Ii is the same in both Useq and U 0seq (this is
why, after deleting a sample, the remaining samples
must be kept to their original positions in the array). This
indicates that the tuple inserted by Ii will appear in both
RSaft and RS0aft simultaneously, or will not appear in any
of them. Furthermore, if the tuple requested by Dj exists
in RSbfr ðRS0bfrÞ, it will disappear in RSaft ðRS0aftÞ, which
establishes the correctness of the lemma. tu

Based on the above lemma, we prove the randomness of
the sample set obtained by R�:

Theorem 1. Let T be the relation being sampled by R�. Then, the
valid records in RS always constitute a random sample set for
the current content of T .

Proof. Assume that the original update sequence Useq has nI
insertions and nD deletions. Let us continuously swap
pairs of consecutive D and I-commands, if the
D-command is before the I-command. Eventually, we
obtain a sequence U 0seq ¼ fI1 . . . InID1 . . .DnDg, where
every I-command is positioned before all the D-com-
mands. Let RSI be the content of RS after performing all
the I-commands using the R� algorithm, which in this
case is the same as the conventional reservoir. Hence, RSI
is a random sample set over all tuples that have been
inserted. The subsequent execution of R� on the
remaining D-commands is reduced to the delete-at-will
approach reviewed in Section 2.1, and therefore, the final
RS is still a random sample set of U 0seq. By Lemma 1, RS
thus computed is identical to that obtained by running
R� on the original sequence Useq, completing the proof.tu

Note that the above theorem is correct even if the same
object is repeatedly inserted and removed from the
database. In this case, special care should be taken to
understand semantics of the insertions/deletions in U 0seq in
the above proof. For example, assume that an object is
inserted and removed twice by operation sequence
Ia;Db; Ic;Dd, for some integers a < b < c < d. These four
updates have order Ia; Ic;Db;Dd in U 0seq. Hence, when Db is
processed (according to U 0seq), there are two copies of the
object in the database (inserted by Ia and Ic, respectively).
Then, Db removes the copy created by Ia, and similarly, Dd

removes the one created by Ic.
As a second step, we quantify the number s of valid

elements in RS (i.e., the sample size). In particular, our goal
is to show that, unlike the delete-at-will approach, the sample
size of R� does not decrease with time, but stabilizes at a
certain value depending on the total numbers of insertions
and deletions already seen.

Lemma 2. Let s be the number of valid records in RS produced
by R�. Then, the probability Pfs ¼ vg that s equals a
particular value v (1 � v �M, where M is the maximum size
of RS) is given by:

pfs ¼ vg ¼ nD
M � v

� �
nI � nD

v

� ��
nI
M

� �
; ð1Þ

where nI ðnDÞ is the total number of insertions (deletions)
processed, assuming nI 	M (i.e., at least M I-commands
have been received).

Proof. In the same way as described in the proof for

Theorem 1, we convert the original update sequence Useq

into U 0seq ¼ fI1 . . . InID1 . . .DnDg (the result of R� on Useq

is equivalent to that on U 0seq). Let RSI be the content of

RS after processing all the I-commands. Since RSI is a

simple random sample set (with M samples) of the

relation T 0 containing the nI inserted records, the
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number of possible RSI equals
nI
M

� �
. Furthermore, an

RSI leads to a final RS with v valid elements after

handling the D-commands in Useq if and only if two

conditions are satisfied. First, M � v (out of M) tuples of

RSI are chosen from the set TD of records deleted by the

nD D-commands. Second, the other v tuples of RSI are

selected from T 0 � TD (involving nI � nD records). The

number of RSI qualifying the above conditions is�
nD
M�v

�
�
�
nI�nD
v

�
. Therefore, the probability Pfs ¼ vg

can be computed as
�
nD
M�v

�
�
�
nI�nD
v

�.�
nI
M

�
. tu

As a corollary, the expected sample size EðsÞ of R�

equals:

EðsÞ ¼
XM
v¼0

ðv � Pfs ¼ vgÞ ¼
XM
v¼1

ðv � Pfs ¼ vgÞ; ð2Þ

where Pfs ¼ vg is represented in (1). Solving this formula
results in the following lemma:

Lemma 3. The expected sample size EðsÞ equals:

EðsÞ ¼M � ðnI � nDÞ=nI; ð3Þ

where nI and nD are as defined in Lemma 2.

Proof. We prove the lemma by induction. First, for M ¼ 1,

(2) becomes 1 � Pfs ¼ 1g, which, by Lemma 2, is�
nD
1�1

�
�
�
nI�nD
1

�.�
nI
1

�
¼ ðnI � nDÞ=nI . Hence, the lemma

is correct in this case. Next, assuming that the lemma

holds for M equal to any integer k, we show that it also

holds for M ¼ kþ 1.
Let us write u ¼ v� 1. Hence, (2) can be rewritten as

(setting M to kþ 1):

Xk
u¼0

ðuþ 1Þ � nD
k� u

� �
nI � nD
uþ 1

� ��
nI
kþ 1

� �
:

Since
�
nI�nD
uþ1

�
¼
�
nI�nDþ1
uþ1

�
�
�
nI�nD
u

�
and

�
nI
kþ1

�
¼ kþ 1ð Þ

.h
nI � kð Þ

�
nI
k

�i
;

the above equation can be transformed to:

kþ 1

nI � k
Xk
u¼0

ðuþ 1Þ �
nD

k� u

� �
nI � nD þ 1

uþ 1

� ��
nI

k

� �

� kþ 1

nI � k
Xk
u¼0

ðuþ 1Þ �
nD

k� u

� �
nI � nD

u

� ��
nI

k

� �
:

ð4Þ

It holds that nI�nDþ1
uþ1

� �
¼ nI�nDþ1

uþ1
nI�nD
u

� �
. Furthermore, by

the inductive assumption (Lemma 3 holds for M ¼ k),

we have
Pk

u¼0 u �
nD
k�u
� �

nI�nD
u

� �
= nI

k

� �
¼ k � nI�nDnI

. Combin-

ing these facts, we simplify (4) as:

kþ 1

nI � k
� ðnI � nDÞ �

Xk
u¼0

nD

k� u

� �
�

nI � nD
u

� ��
nI

k

� �

� kþ 1

nI � k
� k � nI � nD

nI

� �
:

Observe that
Pk

u¼0
nD
k�u
� �

nI�nD
u

� �
¼ nI

k

� �
. Hence, the above

equation becomes:

kþ 1

nI � k
� ðnI � nDÞ �

kþ 1

nI � k
� k � nI � nD

nI

� �

¼ ðkþ 1Þ � nI � nD
nI

:

Thus, we complete the proof. tu
The above equation has a clear intuition: The percen-

tage of the valid tuples in RS corresponds to the
percentage of the records currently in T among all those
ever inserted. Indeed, the probability Pfs ¼ vg given in
(1) peaks at v ¼M � ðnI � nDÞ=nI , and quickly diminishes
as v drifts away from this value. This, in turn, indicates a
small variance for s, thus validating the usefulness of (3).
As a corollary of Lemma 3, the actual sample size of R� is
expected to remain constant with time provided that the
ratio nI=nD between the numbers of insertions and
deletions is fixed.

We are now ready to quantify the per-tuple processing
cost of R�.

Theorem 2. For each I-command, R� performs a deletion from
IðRSÞ with probability EðsÞ=nI , and an insertion into IðRSÞ
with probability M=nI , where EðsÞ is the expected sample size
given in (2) or (3), M the memory capacity, and nI the total
number of insertions. For a D-command, R� always executes a
search in IðRSÞ, and then a deletion from IðRSÞ with
probability EðsÞ=ðnI � nDÞ.
Theorem 2 shows that, for each I-command, R� performs

Oð1Þ work with a high probability; when it needs to do
something, it performs a single insertion to IðRSÞ. On the
other hand, for a D-command, R� always performs a search
and, with a small probability, also a deletion on IðRSÞ.
Since IðRSÞ is a main-memory B-tree, the worst-case per-
tuple cost of R� is OðlogjRSjÞ ¼ OðlogMÞ.

4 DISTINCT COUNTING SAMPLE

In this section, we develop an alternative sampling
approach CS�, which is motivated by the counting sample
reviewed in Section 2.1, but improves its update perfor-
mance considerably. The next section first elaborates the
sampling procedures of CS�, and Section 4.2 analyzes its
behavior.

4.1 Algorithm

As with R�, CS� maintains an array RS (containing at most
M elements), and associates each record RS½i� ð1 � i �MÞ
with a tag RS½i�.valid to indicate its validity in the current
sample set. In addition, it uses a stack, denoted as vacant, to
organize the positions of invalid elements. If RS contains
s valid tuples, then vacant contains M � s numbers. Let x be
the value of vacant½i� ð1 � i �M � sÞ; it follows that
RS½x�.valid must be FALSE. Adopting the idea of the
original CS method, CS� deploys a variable � to control
the probability of sampling an incoming tuple. Before
receiving any record, RS½i�:valid ¼ FALSE, vacant½i� is set
to i (for all 1 � i �M), and � is initialized to 1.

Consider that an I-command arrives at the system,
inserting tuple t. CS� throws a coin with probability 1=�
head (i.e., 1=� is the sampling rate), and discards t if the coin
tails. Otherwise, it checks whether vacant is empty (equiva-
lently, if all the elements in RS are valid). If not, the position
x ¼ vacant½M � s� (i.e., the top of the stack) is obtained, and
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t is stored at RS½x�, which completes the insertion. Now,
consider the scenario where vacant is empty (i.e., t is not
ignored, but RS already contains M valid samples). In this
case, a memory overflow occurs, and CS� generates a random
number x in the range ½1;M þ 1�. If x ¼M þ 1, t is
expunged, leaving the content of RS intact; otherwise,
ðx �MÞ, t is placed at the xth element of RS, replacing the
original sample RS½x�. Finally, regardless of the value of x, �
is increased to � � ðM þ 1Þ=M (i.e., the next incoming record
is sampled with lower probability).

Processing a D-command (deleting tuple t) is relatively
easy. Specifically, we first check whether t exists in RS. If
the answer is positive (let RS½x� ¼ t), t is removed from RS

by 1) marking RS½x�:valid ¼ FALSE, and 2) stacking
position x into vacant. Similar to R�, to efficiently retrieve
t by its id, we maintain an index IðRSÞ on the ids in RS,
which is updated with RS.

Fig. 2 summarizes the above procedures. Note that, for
each I (D-) command, updating vacant can be done in
Oð1Þ time. The query processing algorithm for CS� is exactly
the same as that for R�. Specifically, we count the number nq
of valid elements in RS satisfying q, and scale up nq by a
factor of jT j=s. Finally, recall that the stack vacant is not
needed in R� because the position RS½x�, where an
incoming sample should be stored, is randomly generated
even though some records in RS are invalid (i.e., the
inclusion of t does not necessarily result in a larger sample
size). CS�, on the other hand, always uses vacant positions
to accommodate new samples (thus increasing the sample
size), which requires dedicated structures for recording
vacancies.3

4.2 Analysis

In the sequel, we analyze the performance of CS�, and
compare it with the R� algorithm. Similar to R�, CS�

guarantees the randomness of the samples:

Theorem 3. Let T be the stream relation being sampled by CS�.
The probability for any tuple in T to be a valid record in RS

always equals the current sampling rate 1=� . As a result, the
set of valid elements in RS is a random sample set of T .

Proof. We prove the statement by induction. Before the
memory overflows for the first time (i.e., � ¼ 1), every
tuple in T appears in RS, in which case the theorem is
trivially true. As the inductive step, we assume that the
theorem holds after the kth ðk 	 0Þ overflow, and we
show that it is still correct after the next overflow. Let t be
the arriving record that causes the ðkþ 1Þst overflow,
and t0 be any other tuple in T . Then, t ðt0Þ appears in RS
after the overflow if 1) the coin heads at line 2 of
CS�-insert in Fig. 2 (t0 was already in RS before t
arrived), and 2) it is not discarded (lines 9-12 of
CS�-insert) during the overflow resolution. The prob-
ability for both events to occur equals ð1=�Þ �M=ðM þ 1Þ,
which is the adjusted sampling rate after the insertion,
thus completing the proof. tu
At any time, every tuple that has been inserted but not

deleted has a probability 1=� to be a valid sample in CS�.
Therefore:

Lemma 4. The expected sample size of CS� is ðnI � nDÞ=� , where
� is the current sampling rate, and nI ðnDÞ is the total number
of insertions (deletions) that have been processed so far.

A natural question is “which is more accurate: R� or CS�?”
Since both methods return random samples, their accuracy
depends solely on the cardinality of their sample sets.
Furthermore, notice that the sampling rate of R� at any time
is essentially M=nI which, when multiplied with the
current database cardinality nI � nD, gives the expected
sample set size as in (3). Therefore, in order to compare the
sample set sizes of R� and CS�, it suffices to relate M=nI to
the sampling rate 1=� of CS�. The comparison result,
however, is not definite, i.e., it is possible for either
technique to have a larger sample set, depending on the
update pattern of the underlying stream. We illustrate this
with two concrete examples.

Consider a database whose cardinality jT j remains fixed
with time, and assume jT j > M. The update sequence
consists of jT j initial insertions, after which every subse-
quent insertion is preceded by a deletion. In this case, the
R� sampling rate M=nI continuously decreases with time
due to the growth of the denominator. On the other hand,
the sampling rate of CS� remains fixed as soon as the first
jT j insertions have been completed, because there is no
overflow of array RS after that (recall that CS� decreases its
sampling rate by a factor of M=ðM þ 1Þ only when an
overflow occurs). Therefore, eventually, CS� will have a
larger sample size than R�.

Assume, on the other hand, that the update sequence
contains a large volume nI of insertions, followed by a
certain number nD of deletions. Then, the sampling rates of
both techniques stabilize after all the insertions are
processed. At this moment, CS� has incurred nI �M
overflows (in array RS), leading to a final sampling rate
M=ðM þ 1Þ½ �nI�M , which can be considerably smaller than
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Fig. 2. Adapted counting sample algorithm.



the R� sampling rate M=nI (note that the rate of CS� decays
exponentially with nI). Therefore, after handling all the
deletions, R� will end up with a more sizable sample set.

We summarize the update performance of CS� with the
following theorem.

Theorem 4. For each I-command, CS� performs a deletion and an
insertion on IðRSÞ with probability 1=� , where 1=� is the
current sampling rate. For each D-command, a deletion is
required with probability 1=� .

Similarly to R�, by implementing IðRSÞ as a main-
memory B-tree, the per-command processing cost of CS� is
bounded by OðlogMÞ.

5 SAMPLING METHODS ON STREAM JOINS

Based on the techniques developed in the previous sections,
we proceed to discuss Q2 queries, which return aggregate
information about the join of two relations. Section 5.1
presents an algorithm that solves the problem by maintain-
ing random samples on the join results. Then, Section 5.2
proposes an alternative approach with considerably less
space consumption and computation overhead.

5.1 Rigorous Join Sampling

Recall that all Q2 formulations (on stream relations Ta and
Tb) possess a common set �all of predicates. We denote Tffl as
the results of Ta ffl�all Tb. Any concrete Q2 instance can be
regarded as a Q1 query with its own condition �any on a
single relation Tffl. This observation establishes a natural
reduction from problem Q2 to Q1: Given a random sample
set RSðTfflÞ on Tffl, we can answer any Q2 query in the same
way as Q1.

If Ta and Tb are fully preserved in the system, RSðTfflÞ
can be maintained using a method (such as R� or CS�) that
dynamically computes random samples of a relation.
Consider, for example, an arriving I-command that inserts
tuple ta into Ta. This arrival adds a set of tuples to Tffl
corresponding to the results of ta ffl�all Tb (involving ta and
the data in Tb). These tuples are passed to the insertion
module of the deployed sampling method for updating
RSðTfflÞ. A D-command that removes a tuple ta from Ta can
be processed in the reverse manner. Specifically, the
deletion eliminates from Tffl all tuples ta ffl�all Tb, which
are fed to the deletion module of the sampling method.

To answer a Q2 query q, we count the number nq of
samples in RSðTfflÞ that qualify the condition �any of q. The
query result equals nq � jTfflj=jRSðT fflÞj, where jTfflj and
jRSðTfflÞj are the sizes of Tffl and RSðTfflÞ, respectively. We
call this approach the rigorous join sampling (RJS). Unfortu-
nately, RJS cannot be implemented in stream environments
because it requires 1) keeping the entire Ta and Tb in
memory and 2) examining a complete relation for each
update.

Therefore, in the sequel, we focus on approximate
solutions that do not have theoretical guarantees, but
1) are scalable to the available amount M of memory,
2) have low update overhead, and 3) yet are able to provide
accurate answers to Q2 queries.

5.2 Approximate Join Sampling

Approximate join sampling (AJS) aims at “simulating” the
behavior of RJS. For example, whereas RJS maintains Ta and

Tb completely, AJS preserves only two sets RSðTaÞ, RSðTbÞ
of random samples on the two tables (using the R� or CS�

algorithm). Furthermore, as opposed to RJS that outputs a
sample set RSðTfflÞ, AJS approximates RSðTfflÞ with a set
aRSðTfflÞ, whose elements are partial pairs of the form fta;�g
or f�; tbg, where “�” means NULL, and ta, tb are tuples in
RSðTaÞ, RSðTbÞ, respectively. Assume, for instance, that the

RSðTfflÞ of RJS currently contains four joined pairs fa1; b1g,
fa1; b2g, fa2; b2g, and fa3; b3g. Then, AJS would produce an
aRSðTfflÞ with elements fa1;�g, fa1;�g, fa2;�g, and
f�; b3g. The first pair, for example, corresponds to a join
pair (according to �all) involving a1, without indicating the
tuple from Tb that produces the result. An alternative
interpretation of fa1;�g is that: any record (e.g., b1; b2) in Tb
qualifying �all with a1 can appear in the “�” field with an equal

probability. We first explain how to use such incomplete

information to answer Q2 queries.

5.2.1 Query Algorithm

As discussed earlier, given a Q2 query (with predicate �any),
RJS obtains the number nq of samples in RSðTfflÞ that
qualify �any, and then returns nq � jTfflj=jRSðTfflÞj, where
jRSðTfflÞj and jTfflj are the cardinalities of RSðTfflÞ and Tffl,
respectively. A similar approach is taken by AJS. Specifi-
cally, for every partial pair (e.g., fta;�g) in aRSðTfflÞ, AJS
increases nq by 1 with the probability that the pair satisfies

�any. The final result equals nq � w=jaRSðTfflÞj, where
jaRSðTfflÞj is the size of aRSðTfflÞ, and w is an estimate for
jTfflj (its computation will be clarified later).

Assuming tb to be any tuple in Tb, the probability that
fta;�g satisfies �any equals the conditional probability

Pf�anyjta; �allg that fta; tbg satisfies �any, given that fta; tbg
passes �all (the “given” condition is needed for fta;�g to
appear in aRSðTfflÞ). We consider that �any and �all are
independent, so that Pf�anyjta; �allg is identical to the

probability Pf�anyjtag that fta; tbg satisfies �any. Pf�anyjtag
equals the percentage of samples in RSðTbÞ qualifying �any
with ta and, hence, can be easily obtained upon the arrival
of ta. Fig. 3 formally presents the query algorithm based on
the above discussion.

5.2.2 Insertion

We explain how to update aRSðTfflÞ assuming that the
system has received an I-command inserting tuple ta into Ta
(the case of inserting into Tb is symmetric). Recall that in this

case, RJS computes ta ffl�all Tb (the results of joining ta with
all tuples in Tb). AJS, on the other hand, simply creates a set
of fta;�g pairs to represent the join results. The number of
such pairs corresponds to the estimated size of ta ffl�all Tb.
This estimation reduces to a Q1 query: “How many tuples
in Tb qualify �all with ta?” Thus, using the random sample
set RSðTbÞ, the cardinality of ta ffl�all Tb can be predicted as
na jTbj=jRSðTbÞj, where na is the number of samples in
RSðTbÞ satisfying this Q1 query.

Next, RJS will pass the records in ta ffl�all Tb to the
insertion module of a sampling method for updating
RSðTfflÞ. Accordingly, AJS passes all the fta;�g pairs to
the same module for modifying aRSðTfflÞ, i.e., some of
fta;�g are sampled into aRSðTfflÞ, while the rest are
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discarded. Processing the I-command is completed after the

sampling.
Each fta;�g added to aRSðTfflÞ corresponds to a complete

pair fta; tbg incorporated intoRSðTfflÞ by RJS. Every record tb
in Tb, which qualifies �all with ta, has the same probability to

appear in the field “�” of this sampled fta;�g. We refer to

the probability as “the appearance probability of fta;�g.”
Specifically, let nsam be the number of fta;�g taken into

aRSðTfflÞ (during the processing of the I-command); the

appearance probability equals nsam = ½najTbj=jRSðTbÞj�,
where the term surrounded by the block parentheses

describes the expected number of Tb tuples satisfying �all
with ta (recall that na is the number of tuples in RSðTbÞ
satisfying �all with ta, when ta arrives). We associate this

probability with every sampled fta;�g (its use will be

discussed later).

5.2.3 Deletion

AJS handles deletions also by “following” the correspond-

ing actions of RJS. Given a D-command that deletes a record

ta from Ta, RJS will remove from RSðTfflÞ all the elements

involving ta. Motivated by this, AJS eliminates the partial

pairs in aRSðTfflÞ that may include ta. Such pairs may have

the form fta;�g or f�; tbg. Since the first case is trivial, we

focus on the second one.
Let f�; tbg be a member of aRSðTfflÞ. Resorting to the

analogy with RJS, the corresponding “complete” pair in

RSðTfflÞ would include ta only if all the following

conditions hold:

1. Tuples ta and tb satisfy �all.
2. Record ta must have arrived before tb.
3. When tb was inserted, ta was sampled among all the

tuples in Ta that qualify �all with tb.

Hence, AJS decides to retain f�; tbg if ta and tb violate �all.
Otherwise, it removes f�; tbgwith probability Psecond � Pthird,
where PsecondðPthirdÞ is the probability that the second (third)
criterion is satisfied. Next, we explain heuristics for
obtaining Psecond and Pthird, respectively.

Assume that we know the number tb:naft of records in Ta
that arrived after tb, and qualify �all with tb. Then, Psecond can
be approximated as ðNb � tb:naftÞ=Nb, where Nb is the
number of tuples currently in Ta satisfying �all with tb. In
particular, Nb can be obtained by a Q1 query on the random
sample set RSðTbÞ, with the query predicate derived from
�all and tb. Value tb:naft, on the other hand, can be
monitored precisely in a simple way. We only have to set
it to 0 when f�; tbg is first included in aRSðTfflÞ. Then, every

time a record from stream Ta is received, we increase tb:naft
by 1 if the new record qualifies �all with tb.

It remains to clarify the computation of Pthird. In fact, it is
exactly the “appearance probability of f�; tbg,” computed
when tuple tb was inserted. As mentioned earlier, this
appearance probability is associated with f�; tbg and, thus,
does not need to be recalculated. We summarize the
insertion/deletion procedures in Fig. 4, which also includes
the modification of the estimated size w of Tffl (required for
query processing), during updates.

6 EXPERIMENTS

We empirically evaluate the effectiveness and efficiency of
the proposed methods, using a Pentium IV CPU at 3GHz.
The experimental results are presented in two parts,
focusing on Q1 queries in Section 6.1 and Q2 in Section 6.2.

6.1 Performance of Q1 Processing

The experiments of this section involve stream relations that
have two columns ðid; AÞ. Specifically, the tuples of a
stream T are generated according to two parameters dist
and �. The first parameter dist determines the distribution
of A-values in the domain [0, 10,000]. Unless specifically
stated, we use synthetic data, where dist can be Gau or Zipf
(we also include real data towards the end of the
subsection). Gau denotes a Gaussian function with mean
5,000 and variance 2,000, while Zipf corresponds to a Zipf
distribution skewed towards 0 with coefficient 0.8. The
second parameter �, is an integer that controls the ratio of
insertions/deletions in the generated stream. Specifically,
each update is an I-command with probability �=ð�þ 1Þ, or
a D-command with probability 1=ð�þ 1Þ, i.e., the chance of
receiving an I-command is � times higher than a
D-command. An I-command inserts a tuple into T with a
unique id, whose A-value is determined by dist. A
D-command randomly removes a record from the current
T . For both Gau or Zipf, the entire stream contains four
million I-commands, while the number of D-commands is
approximately � times lower than that of I-commands.

A Q1 query selects tuples whose A-values fall in an
interval with length qlen (i.e., its �any is a range condition).
The query interval is uniformly distributed in the
universe [0, 10,000]. A workload consists of 1,000 queries
obtained with the same qlen. The relative error of an
approximate answer est is defined as jact� estj=act,
where act is the actual number of records satisfying
�any. We use two metrics to evaluate accuracy: 1) rel" is
the average (relative) error of all queries in the workload,
and 2) max"80 (called 80%-max error), is the 200th largest
error, that is, the error of the remaining 800 queries
(80 percent of the workload) is bounded by max"80.
While rel" indicates the expected accuracy of a technique,
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max"80 reveals its robustness—small max"80 means that it

is able to capture the results of most queries.

6.1.1 Performance versus Time

The first set of experiments evaluates the randomness of the

samples obtained by R� and CS�. For this purpose, we

assume memory size M ¼ 10; 000 (i.e., the sample set can

accommodate up to 10k tuples) and streams with � ¼ 4.

After every 400k I-commands (10 percent of the insertions

in the stream), we randomly select two sets SR and SCS of

tuples from the current T , using the reservoir and delete-at-

will algorithms, respectively. The cardinality of SR ðSCSÞ is
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equivalent to the sample size of R� ðCS�Þ at this time. The

rationale is that, if the samples obtained by R� ðCS�Þ are

random, they should lead to roughly the same error as

SR ðSCSÞ.
Fig. 5a (or 5b) shows the rel" as a function of the number

of I-commands handled for stream Gau (or Zipf) using

workloads with qlen ¼ 600. Figs. 5c and 5d illustrate similar

results with respect to max"80. In all cases, the accuracy of

R� ðCS�Þ is statistically similar to that of SR ðSCSÞ. Specifi-

cally, the maximum deviation between the rel" ðmax"80Þ of

R� and SR is around 0.3 percent (2 percent), while the
corresponding value for CS� and SCS is 0.4 percent
(1 percent). Hence, R� and CS� indeed produce random
sample sets at the presence of insertions and deletions.

Fig. 6 plots the sample size of R� and CS� in the
experiments of Figs. 5a and 5c (the results for stream Zipf
are omitted due to their similarity). The (sample) sizes
remain (almost) constant at 0:75M ¼ 7:5k tuples for R� and
M ¼ 10k tuples for CS�. The phenomenon is expected
because, as analyzed in Sections 3.2 and 4.2, the sample set
size of R� only occupies a fraction of the available memory
(the fraction depends on the ratio between the numbers of
insertions and deletions, as shown in (3), whereas CS� is
able to utilize all the memory for storing samples. It is
known [1] that the relative error of random sampling is
inversely proportional to the square root of the sample size.
Since the size of CS� is larger than R� by 33 percent, in
theory the relative error of R� is higher by around
15 percent, which is verified by the results in Fig. 5.

6.1.2 Query Accuracy

As explained in Section 2.1, the (repeated) scanning of
the sample set during deletions prevents the application
of counting sample to our targeted application domain.
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Fig. 6. Sample size changes (Gau).

Fig. 7. Query accuracy comparison ðrel"Þ. (a) Error versus qlen (Gau). (b) Error versus qlen (Zipf). (c) Error versus M (Gau). (d) Error versus M
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Therefore, we use reservoir with delete-at-will as a bench-
mark since it is the only existing sampling method that
incurs small per-record update overhead and can support
arbitrary insertions/deletions. The following experiments
compare the accuracy of R�, CS� and reservoir at the end
of streams (recall that the precision of R�=CS� remains
relatively stable with time).

Figs. 7a and 7b illustrate the rel" of all algorithms as a
function of qlen assuming M ¼ 10k and � ¼ 4. Clearly, the
error of R�=CS� is significantly lower than that of reservoir.
The better precision for higher qlen is expected as sampling
is, in general, more accurate for queries with large output
sizes. To study the behavior of alternative techniques under
different memory constraints, Figs. 7c and 7d, measure their
precision as a function of M, setting qlen and � to 600 and 4,
respectively. Since a larger memory accommodates more
samples, the effectiveness of all algorithms increases withM.

Figs. 7e and 7f evaluate rel" for different �, after fixing
qlen and M to their median values 600 and 10k, respectively.
For � ¼ 2, R� and CS� outperform reservoir by more than an
order of magnitude (note the logarithmic scale). The
performance gap decreases with �, because a small number
of deletions leads to sample sets with similar cardinalities
for all algorithms. Fig. 8 repeats the experiments of Fig. 7 for
max"80. In all cases, the results of max"80 are similar to rel"
confirming the robustness of our algorithms.

In order to further verify the generality of our approaches,
we also use the real data sets Stock and Tickwise [27]. The
former contains the values of 197 North American stocks
during the period from 1993 through 1996, and the latter
consists of the exchange rates from Swiss francs to US dollars
recorded from 7 August 1990 to 18 April 1991. The series
Stock (Tickwise) has 512k (279k) values in total. Next, we fix
M and � to their median values 10k and 4, respectively, and
measure the accuracy of all solutions at the end of the Stock
and Tickwise streams. Figs. 9a and 9b compare the rel" of
different algorithms as a function of qlen for the two
distributions, respectively, whereas Figs. 9c and 9d demon-
strate results of max"80. Clearly, R� and CS� again outper-
form reservoir considerably in all cases, and their behavior is
similar to Figs. 7a, 7b, 8a, and 8b.

6.1.3 Update Overhead

Finally, we examine the maintenance overhead of R� and
CS�, which, as explained in Sections 3.2 and 4.2, is
dominated by the cost for maintaining IðRSÞ (i.e., the index
on the sample set). In order to provide results independent
of index implementation, we measure the total number of
times that IðRSÞ is modified throughout the history (in all
cases, the per-tuple cost is so small that it is not even
measurable). For instance, R�-I-ins and R�-I-del denote the
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Fig. 8. Query accuracy comparison ðmax"80Þ. (a) Error versus qlen (Gau). (b) Error versus qlen (Zipf). (c) Error versus M (Gau). (d) Error versus M

(Zipf). (e) Error versus � (Gau). (f) Error versus � (Zipf).



number of index insertions and deletions incurred by R� for
processing I-commands. R�-D-del corresponds to the
number of index deletions for handling D-commands.
Fig. 10 illustrates these numbers for R� and CS� as a
function of the memory size for Zipf (the overhead is the
same for all distributions). In accordance with Theorems 2
and 4, both methods require higher update costs to produce
larger sample sets. R� incurs about 20 percent fewer
modifications than CS� for each type of IðRSÞ updates
due to its smaller sample size.

6.2 Performance of Q2 Processing

Having established the effectiveness of R�=CS� for
Q1 queries, we proceed to evaluate the efficiency of AJS
for Q2 processing. The participating streams T1 and T2

contain columns ðid; A;BÞ and ðid; A;CÞ, respectively. The
domains of attributes A, B, and C are [0, 10,000]. The
tuples of each relation are generated in a way similar to
the previous section. Specifically, the A-values of T1 ðT2Þ

follow the Zipf distribution with skew coefficients 0.8, and
the B ðCÞ values are decided according to a Gaussian
function with mean 5,000 and variance 2,000. The
probability of receiving an I-command is � ¼ 4 times
higher than that of a D-command. Furthermore, streams
T1 and T2 are equally fast, i.e., the next tuple belongs to
either relation with equal likelihood.

We consider two scenarios that differ in the way the
A-values in T1 and T2 are skewed. Specifically, in the
first case skew-skew, the A-values in both T1 and T2 are
skewed towards 0 in the domain of [0, 10,000]. In the
second case antiskew, data of T1 are still skewed toward
0, while those of T2 are towards 10,000—the dense areas
of T1 and T2 are opposite.

Each query involves two conditions. The first one �all,
common to all (1,000) queries in the same workload, has the
form jT1:A� T2:Aj � lenall, where lenall is a workload
parameter. The second condition �any includes two range
predicates on T1:B and T2:C; extracting the tuples of T1 and
T2 falling in these intervals, respectively. Specifically, each
range has length lenany (another parameter), and is
uniformly distributed in the universe [0, 10,000]. Queries
in a workload have different �any. Similar to Section 6.1, we
quantify the precision of alternative methods by their rel"
and max"80 for processing a workload. The size of the
available memory is fixed to 10k samples.

6.2.1 Tuning AJS

Recall that AJS consumes a percentage � of the memory for
keeping two sample sets on T1 and T2, respectively. The
next experiment identifies the value of � that achieves the
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Fig. 9. Query accuracy comparison (real data). (a) rel" versus qlen (Stock). (b) rel" versus qlen (Tickwise). (c) max"80 versus qlen (Stock).

(d) max"80 versus qlen (Tickwise).

Fig. 10. Update cost comparison (Zipf).



best results. Toward this, we measure the error of AJS in
answering a workload with lenall ¼ 10 and lenany ¼ 600,
after all updates of streams T1 and T2 have been processed.
Figs. 11a and 11b demonstrates the rel" and max"80 for the
skew-skew (antiskew) distribution, as a function of �,
including both R� and CS� as the underlying sampling
algorithms (recall that AJS can be integrated with any
sampling technique on individual relations).

The accuracy of AJS initially improves as � increases and
then deteriorates, i.e., the quality of approximation is
compromised when too much or little memory is assigned
to the random samples on individual relations. A very small
� prevents correct estimation of the result size of T1 ffl�all T2

(i.e., variable w in Figs. 4 and 5), leading to biased results.
On the other hand, an excessive � leaves limited space for
the approximate sample set aRSðTfflÞ on the join results. In
the sequel, we set � to 40 percent, which constitutes a good
trade-off. Furthermore, we use CS� as the representative
single-relation algorithm of AJS.

6.2.2 Query Accuracy.

Due to the absence of previous methods for sampling join
results under tight memory footprint, we compare AJS with
the NJS method (see Section 2.2), which maintains random

sample sets (using CS�) on the base relations and produces
approximate answers by joining the two sets. Figs. 12a and
12b compare the error of AJS and NJS as a function of lenall,
setting lenany to 600. Clearly, for both skew-skew and antiskew,
AJS outperforms NJS significantly in terms of accuracy and
robustness. To study the influence of lenany, we set lenall to
its median value 10, and repeat the above experiments by
varying lenany from 200 to 1,000. As shown in Figs. 12c and
12d, AJS again outperforms NJS considerably.

7 CONCLUSIONS

This paper presents the first random sampling algorithms,
R� and CS�, for efficiently computing aggregate data over
streams of arbitrary updates. Going one step further, we
propose AJS, a method for sampling join results. We prove,
both theoretically and empirically, that our techniques
provide accurate answers with small space and computa-
tional overhead. While our current focus is on sample sets
that fit in the main memory, we plan to investigate
situations where part of the sample set is migrated to the
disk [21]. Further, it has been observed [6] that the
performance of sampling (for approximate aggregate
processing) can be improved if query statistics are available
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Fig. 11. AJS memory allocation tuning. (a) Error versus � (skew-skew). (b) Error versus � (antiskew).

Fig. 12. Query accuracy comparison. (a) Error versus qlenall (skew-skew). (b) Error versus qlenall (antiskew). (c) Error versus qlenany (skew-skew).

(d) Error versus qlenany (antiskew).



in advance. The design of such “workload-aware” methods

in stream environments constitutes an interesting topic.

Finally, we would like to explore the applicability of

random sampling for tracking the positions of continuously

moving objects [23].
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