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An Index for Set Intersection with Post-Filtering
Ru Wang, Shangqi Lu, and Yufei Tao

Abstract—This paper studies how to design an index structure on a collection of sets S1, S2, ..., Sn to answer the following queries:
given distinct set ids a, b ∈ [1, n], report F (Sa ∩ Sb) where F (.) is a filtering function. We present a solution that can support a great
variety of filtering functions — range research, skyline, convex hull, nearest neighbor search, quantile (to name just a few) — with
attractive performance guarantees. The guarantees are sensitive to the set collection’s pseudoarboricity, a new notion for quantifying the
density of {S1, S2, ..., Sn}. Our index structures are simple to understand and implement.

✦

1 INTRODUCTION

IN the traditional set intersection problem, we want to build
an index structure on a collection of sets S1, S2, ..., Sn to

answer the following query efficiently: given distinct set ids
a, b ∈ [1, n], report Sa ∩ Sb. In practice, however, this “raw”
intersection is rarely the final result demanded by a user,
who instead often needs to apply certain post-processing on
Sa ∩ Sb. Next, we will illustrate this with some examples.

1.1 Motivation

Consider a web search scenario: find the webpages containing
keywords database and algorithm. The query returns —
in the information retrieval terminology — the intersection
of database’s and algorithm’s inverted lists. Typically,
the intersection encompasses thousands of pages, but only
a limited few can be displayed in a user’s browser. Hence,
a query in reality also contains predicates like page_rank
≥ p (for some constant p) to select only the best pages.
For a similar example in relational databases, consider the
conjunctive query: select * from people where job = ‘prof’
and state = ‘CA’ and x ≤ salary ≤ y (for some constants
x and y). Conceptually, the query applies a range condition
on the salary values of the people that carry both of the
labels prof and CA.

The previous examples apply post-filtering with a predi-
cate supplied by the user at run time, but filtering may also be
performed using a fixed function. An interesting example is
the skyline function. Consider a classical scenario [11] where
P is a set of hotels each having two attributes: price and
(beach) distance. A hotel p1 “dominates” another p2 if
p1.price ≤ p2.price and p1.distance ≤ p2.distance,
with at least one inequality being strict. The “skyline” of P
includes all the hotels in P not dominated by others. For
example, if P consists of the 8 points in Figure 1, its skyline is
{p1, p3, p5}. The skyline is important because it captures the
top-1 hotel under any scoring function monotone in price
and distance [11].

In reality, hotel facilities are also an important factor
in hotel selection. Define P (bar) as the set of hotels with
bars, P (pet) as the set of pet-friendly hotels, and P (wifi)
as the set of hotels offering free wifi. The query “find the
skyline of the hotels that have bars and free WiFi” returns
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Fig. 1. Set intersection with skyline composition

the skyline of P (bar) ∩ P (wifi). In general, the skyline
may vary significantly depending on the facilities requested.
Figure 1 uses B, P, and W to denote bar, pet, and wifi,
respectively (e.g., hotel p1 has a bar and is pet-friendly).
The skyline of P (bar) ∩ P (wifi) is {p5, p6}, the skyline of
P (pet)∩P (wifi) is {p4, p6}, while that of P (bar)∩P (pet)
is {p1, p8}. Note that these skylines may contain hotels
outside the skyline of the complete hotel set P .

1.2 Our Contributions
Inspired by the above applications, we study how to index
a set collection S1, S2, ..., Sn to answer queries of the form:
given distinct set ids a, b ∈ [1, n], report F (Sa ∩ Sb) where
F (.) is a filtering function. We refer to the problem as set
intersection with post-filtering (SIPF), which will be more
formally defined in Section 2.

Our main contribution is an indexing scheme for tackling
SIPF under a great variety of filtering functions. The scheme
is simple to understand and implement but offers non-
trivial performance guarantees. By resorting to a commonly-
accepted conjecture on set intersection, we can even show
that the proposed scheme no longer admits significant
theoretical improvements.

To analyze our scheme’s performance, we introduce a
new concept called set pseudoarboricity. Traditionally, pseu-
doarboricity is a graph-theoretic notion used to quantify the
density of a graph, but we adapt it to measure the density
of a set collection S1, S2, ..., Sn. To gain intuition about how
“set density” can be measured, observe a sense of symmetry
between sets and elements: if a set Si (i ∈ [1, n]) contains an
element e, imagine assigning this relationship to either e or
Si. Assign all the set-element relationships in a manner as
balanced as possible, i.e., each set/element gets roughly the
same number of relationships. What is the largest number of
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relationships assigned to a set or an element? This number is
precisely the set collection’s pseudoarboricity.

To further illustrate the above, consider a set collection
where S1 = S2 = ... = S5 = {e}, as pictorially shown
in the graph of Figure 2(a). We can assign every edge
(a.k.a. relationship) to its set vertex such that each set
vertex gets assigned one edge (the element e is assigned
none). Figure 2(b) illustrates another set collection where
S1 = S2 = ... = S5 = {e1, e2, ..., e5}. As can be verified, any
assignment must allocate at least 3 edges to a set or element
vertex. The difference between the values 1 and 3 reflects the
fact that the latter set collection is denser than the former.

If α is the pseudoarboricity of the input set collection,
the indexes produced by our scheme use O(αN polylogN)
space (where N =

∑n
i=1 |Si|) and answer a query in

O(α polylogN + OUT) time, where OUT is the number
of elements returned, namely, OUT = |F (Sa ∩ Sb)| (where
a and b are the queried set IDs). Note that OUT can be far
less than the size of Sa ∩ Sb.

The value of α ranges between 1 and O(
√
N). For

practical use, our structures are suitable mainly for sparse set
collections with small pseudoarboricity values. We can show,
however, that this is likely inevitable for the filtering func-
tions considered. Specifically, unless the strong set-intersection
conjecture [29] (see Section 3.1 for details) is wrong, both
statements below are true.

• No structures of O(αN polylogN) space can ensure
O(α0.99 polylogN +OUT) query time.

• No structures of O(α polylogN +OUT) query time
can use only O(α0.99N polylogN) space.

We also conducted an experimental evaluation to validate
our theoretical findings on real-world data. Our results
indicate that in practice, our structures perform better than
what was predicted in theory, which is not surprising given
the conservative nature of theoretical analysis. Additionally,
we discovered useful heuristics from the experiments that
can further optimize the performance of our structures in
practical applications.

The paper is structured as follows: Section 2 formally
defines the problems to be studied. Section 3 provides an
overview of the existing research that is closely related to
our work. In Section 4, we introduce the concept of ”set
pseudoarboricity” and prove its basic properties. Section 5
describes the core of our structure in the foundational
scenario where no post-filtering is required on an intersection
result. We then explain in Section 6 how to extend the core
index to SIPF problems. Our experimental evaluation is
presented in Section 7, and the paper concludes in Section 8
with a summary of our findings.

2 PROBLEM DEFINITIONS

Let us first define the set intersection with post-filtering (SIPF)
problem. S1, S2, ..., Sn are n non-empty sets, where the
elements are drawn from a common domain D. A query
reports F (Sa ∩ Sb) where

• a and b are distinct set ids from 1 to n;
• F (.) is a filtering function that takes a set D ⊆ D as the

parameter and returns a subset of D.

Our goal is to create an index structure that can answer
all queries efficiently. Define N =

∑n
i=1 |Si|, the problem’s

input size. We denote by F the set of all functions F that can
be given at query time.

This paper will discuss several representative SIPF prob-
lems defined below.
Identity. We say that F (.) is an identity function if F (D) = D
for any D ⊆ D. When F includes only the identity function,
SIPF degenerates into traditional set intersection.
Predicate-Based Filtering. In this case, F (S) filters S with a
predicate π, which maps each element e ∈ D to either true or
false. Specifically:

F (D) = {e ∈ D | π(e) = true}.

Besides set IDs i and j, each query can select an arbitrary π
from a class of predicates, thereby defining its own filtering
function F .

Various predicate classes create different SIPF instances.
Consider that each element e ∈ D is associated with a d-
dimensional point pe ∈ Rd. To formulate π, a user selects an
arbitrary axis-parallel rectangle q in Rd and decides π(e) =
true if and only if pe falls in q. The set F includes all the
filtering functions obtained this way. We refer to this SIPF
instance as SIPF-range.

Alternatively, a user may formulate π by selecting a
halfspace q in Rd. Specifically, a halfspace includes all the
points p ∈ Rd satisfying

∑d
i=1 ci · p[i] ≥ cd+1, where p[i] is

the i-th coordinate of p. The user decides π(e) = true if and
only if pe falls in q. All the filtering functions thus constructed
constitute F . We call this SIPF instance SIPF-halfspace.
Reducible Filtering. In the second class of SIPF problems we
consider, F consists of only a single filtering function F (.),
which is reducible. Specifically, F (.) is reducible when it has
the following property

∀D′ ⊆ D ⊆ D, if F (D) ⊆ D′, then F (D′) = F (D). (1)

Many filtering functions in database applications are
reducible. To see this, consider, again, that every element
e ∈ D is associated with a d-dimensional point pe ∈ Rd. The
function

F (D) = the skyline of {pe | e ∈ D} (2)

is reducible.1 Similarly, the function

F (D) = the vertex set of the convex hull of {pe | e ∈ D} (3)

1. Formally, the skyline of a set P of points in Rd contains every point
p ∈ P that is not dominated by any other point in P , namely, no point
p′ ∈ P satisfies p′[i] ≤ p[i] for all i ∈ [1, d] with the inequality being
strict for at least one i.
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is also reducible2 We use the name SIPF-skyline for the
instance where F contains a single function as given in
(2), and SIPF-CH for the instance where F contains a single
function as given in (3).
Filtering Functions Friendly to Deflation. Section 6.3 will
present a technique we name deflation filtering, which enables
us to devise efficient indexes for many SIPF problems. Next,
we define two problems, SIPF-NN and SIPF-quantile, that
will be used to illustrate the technique.

In SIPF-NN, each element e ∈ D is associated with a 2D
point pe. The set F contains a single filtering function:

F (D) = the k nearest neighbors of q in {pe | e ∈ D} (4)

namely, the k points in {pe | e ∈ D} closest to q. A user can
freely select the integer k ≥ 1 and the query point q ∈ R2.

In SIPF-quantile, each element e ∈ D carries a distinct real
value pe. The set F contains only one filtering function:

F (D) = the k-quantiles of {pe | e ∈ D} (5)

namely, the ⌊i · |D|/k⌋-th smallest value in {pe | e ∈ D}
for i = 1, 2, ..., k; in the special case where k > |D|, F (D)
returns the entire D. The value of k is fixed in advance.
Remark. We aim to design a generic indexing scheme
that works for all the above SIPF problems. As a baseline
approach, one can resort to conventional set intersection:
first retrieve Sa ∩ Sb and then compute F (Sa ∩ Sb). The
primary concern with this approach is its failure to leverage
the fact that the output size OUT can be significantly less
than |Sa ∩ Sb| (recall that OUT counts how many elements
in Sa ∩ Sb survive filtering). The worst query time is Ω(N).

Our indexing scheme is purposed for static data, i.e., no
updates to the set collection {S1, ..., Sn} are permitted.
Math Conventions. Given an integer x ≥ 1, we use [x] to
represent the set {1, 2, ..., x}. Denote by Z+ the set of positive
integers. A function f(.) from Z+ to Z+ is said to grow at
least linearly if f(x1) + f(x2) ≤ f(x1 + x2) + O(1) for all
x1, x2 ∈ Z+, where the constant factor in O(1) does not
depend on the selection of x1 and x2.

3 RELATED WORK

Section 3.1 discusses the previous research most relevant to
SIPF. Then, Section 3.2 reviews the notion of pseudoarboricity
in graph theory.

3.1 Existing SIPF-Related Results
We will first survey the existing results on set intersection
(where a query returns Sa ∩Sb), which, as mentioned, serves
as a generic solution to SIPF indexing. Then, we will discuss
the existing non-generic indexes for special SIPF instances.
Set Intersection. This fundamental problem has drawn
considerable attention from the theory community. With
perfect hashing, it is rudimentary to obtain an index of
O(N) space that returns Sa ∩ Sb (for any set IDs a and
b) in O(min{|Sa|, |Sb|}) time. Bille et al. [8] reduced the
query time to O(OUT+min{|Sa|, |Sb|}·(log logN)2/ logN),
where OUT = |Sa∩Sb|. Eppstein et al. [27] further improved
the query time to O(OUT+min{|Sa|, |Sb|}·log logN/ logN).

2. Formally, the convex hull of a set P of points in Rd is the smallest
convex polytope covering P .

In the worst case where both |Sa| and |Sb| are Ω(N), the
query time of [27] becomes O(N log logN/ logN +OUT).

In [21], Cohen and Porat described a structure of O(N)
space that answers any (set-intersection) query in O(

√
N +√

N ·OUT) time. Kopelowitz et al. [38] generalized the
result by showing that, if spc(N) ≥ N space is allowed, there
is a structure with query time Õ(N/

√
spc(N) ·(1+

√
OUT)),

where Õ(.) hides a factor polylogarithmic to N .
Several commonly-accepted conjectures exist on the

hardness of set intersection [29], [30], [39], [40], [48]. Most
relevant to our work is the strong set-intersection conjecture
[29], which states that any structure answering a query in
qry(N) + O(OUT) time must use Ω̃(N2/qry(N)) space,
where the notation Ω̃(.) hides a factor polylogarithmic to
N . In fact, this conjecture has already been proved [2] on the
class of pointer-machine structures3

The reader may refer to [5]–[7], [17], [24], [34] and the
references therein for additional results that are relevant but
dominated by those mentioned earlier.

The system community has studied extensively how to
maximize the practical efficiency of set intersection. The
past research has pursued two orthogonal directions: soft-
ware vs. hardware. The software direction aims to discover
effective implementation-level heuristics; see, for example,
[12], [25], [32], [36], [42], [45], [49], [50], [53], [54], [57], [58],
[61] for techniques related to compression, cacheline-aware
programming, source code fine-tuning, etc. The hardware
direction, on the other hand, aims to benefit from specialized
computing devices, such as multi-core CPUs [12], [45], GPUs
[4], [52], and SIMD processors [9], [33], [35], [37], [44], [60].
Special SIPF Problems. We are aware of no generic in-
dexing solutions to SIPF (other than the approach that
resorts to set intersection by ignoring filtering). Even for
the special instances defined in Section 2, the only theoretical
result we are aware of is a structure by Goodrich [31] for
1D SIPF-range. His structure uses O(N) space and has
O(N(log logN)/ logN + OUT) expected query time; note
that OUT here can be much smaller than the size of Sa ∩ Sb.

In the system community, the SIPF-range and SIPF-NN
problems (Section 2) have been studied in the keyword search
area; see representative works [3], [14]–[16], [18], [19], [28],
[43], [46], [51], [55], [56], [59] and the references therein.
The indexes in those works have robust performance on
the problems they are designed for, but require substantial
non-trivial modifications to work for other SIPF instances.
Designing a generic indexing scheme to minimize such
modifications is a primary goal of this paper.

3.2 Graph Pseudoarboricity
Let G = (V,E) be an undirected simple graph. By giving
a direction to each edge in E, we obtain a directed graph
G+, called an orientation of G. The pseudoarboricity of G is the
smallest number α such that we can find an orientation of
G where the maximum out-degree4 is α. For example, the

3. In simple words, a pointer-machine structure is an index where
navigation must be performed based on pointers. Most indexes in
database systems, e.g., binary search trees, B-trees, R-trees, and so on,
are pointer-based.

4. In a directed graph, an edge pointing from vertex u to vertex v
is denoted as (u, v). Accordingly, v is an out-neighbor of u, and u is
an in-neighbor of v. The out-degree of a vertex is the number of its out-
neighbors.
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graph G in Figure 3(a) has pseudoarboricity 2, and Figure 3(b)
shows an orientation of G with maximum out-degree 2.

Identifying an orientation of G whose maximum out-
degree matches the pseudoarboricity α is computationally
intensive: the fastest algorithm to our knowledge takes
O(|E|1.5

√
log log |V |) time [10]. However, for our theoretical

results to hold, we can accommodate any orientation of G
with maximum out-degree O(α), i.e., allowing a constant-
factor approximation. Such relaxed orientations are much
easier to find. One approach, for instance, is to apply the
following algorithm developed by Matula and Beck [47]:

orient (G = (V,E))
1. E+ = ∅
2. while G not empty do
3. u← a vertex currently with the smallest degree
4. for each edge {u, v} in E do

add a directed edge (u, v) into E+

5. remove u and its edges from G
6. return G+ = (V,E+)

Let us illustrate the algorithm on the graph G in Figure 3(a).
In the first round, both vertices B and D have the smallest
degree 2; either can be chosen as the vertex u at Line 2.
Suppose that u is set to B, after which both edges of B
are directed away from B (Line 4), as shown in Figure 3(b).
Then, B and its edges are removed from G (Line 5), which
now has only three edges {A,D}, {A,C} and {C,D}. In the
second round, all remaining vertices have the same degree 2.
Suppose that u is set to A this time. Accordingly, the edges
{A,D} and {A,C} are directed away from A; see Figure 3(b).
The round ends by deleting A and its two edges. This leaves
G with only one edge. Assuming that the third round sets u
to C , we obtain the orientation G+ in Figure 3(b).

The next lemma summarizes the algorithm’s guarantees.

Lemma 1. The orient algorithm can be implemented in O(|V |+
|E|) time and returns an orientation G+ with maximum out-
degree at most 2α, where α is the pseudoarboricity of G.

Proof. The efficiency claim is due to Matula and Beck [47].
They also proved that the maximum out-degree of G+ equals
the so-called degeneracy of G. Eppstein [26] showed that, in
general, the degeneracy of any undirected simple graph is at
most twice the graph’s pseudoarboricity.

4 PSEUDOARBORICITY OF A SET COLLECTION

We will extend the notion of pseudoarboricity to a collection
of non-empty sets S1, S2, ..., Sn. Define U =

⋃n
i=1 Si and, as

before, N =
∑n

i=1 |Si|. Note that N ≥ n because we do not
allow empty sets.

Build a graph G = (V,E) — the companion graph of the
set collection — as follows. First, for every set Si (i ∈ [n]),

add a vertex to V , which we call a set vertex or the vertex of Si.
Second, for every element e ∈ U , add a vertex to V , which
we call an element vertex or the vertex of e. To construct E,
create an edge between an element vertex e and a set vertex
Si if and only if e ∈ Si. This finishes the creation of G, which
is a bipartite graph. Note that |V | = n+ |U | and |E| = N .

Definition 2. The pseudoarboricity of a set collection is defined
as the pseudoarboricity of its companion graph.

Example 1. Figure 4(a) shows the companion graph G
of the set collection S1, S2, S3 in Example 1. The graph
has pseudoarboricity 2. To see why, first note that the
pseudoarboricity of G must be greater than 1 (there are
16 edges but only 11 vertices). Then, let us witness an
orientation G+ of G that has maximum out-degree 2. For
clarity, we present the edges of G+ in two parts: Figure 4(b)
shows the edges oriented from left to right, while 4(c) shows
the edges oriented from right to left.

Let α be the pseudoarboricity of S1, S2, ..., Sn. Next, we
give several properties of α.

Property 3. α = O(
√
N).

Proof. In general, the pseudoarboricity of any undirected
graph with m edges is bounded by O(

√
m) [20]. The property

follows because the companion graph has N edges.

Property 4. The value α is at most the smaller value between

• the largest size of S1, ..., Sn, and
• the largest number of sets having a non-empty intersection.

Proof. We prove the property by considering only the sce-
nario where the quantity of the first bullet is at most that of
the second bullet (the opposite case is symmetric). Construct
an orientation of the companion graph G by directing every
edge from a set vertex to an element vertex. This orientation
has a maximum out-degree equal to maxni=1 |Si| which, by
definition of pseudoarboricity, must be at least α.

To explain the next property, let G+ be the orientation of
G obtained from the orient algorithm in Section 3.2. For each
set Si (i ∈ [n]), define

S−
i = {e ∈ Si | the vertex of e is an in-neighbor of

the vertex of Si in G+}. (6)

Property 5. ∑
i,j:1≤i<j≤n

|S−
i ∩ S−

j | ≤ 2αN.

Proof. For each element e ∈ U , define deg+(e) to be the out-
degree of the vertex of e in G+. By Lemma 1, deg+(e) ≤ 2α.
Observe: ∑

i,j:1≤i<j≤n

|S−
i ∩ S−

j | =
∑
e

(
deg+(e)

2

)
. (7)

As
(deg+(e)

2

)
< (deg+(e))2 ≤ 2deg+(e) · α, the right hand

side of (7) is bounded by
∑

e 2deg
+(e) · α ≤ 2αN .

Example 2. Continuing on the previous example, S−
1 = {e1,

e2, e5}, S−
2 = {e1, e3, e4, e6, e7}, and S−

3 = {e4, e5, e7}. The
left hand side of (7) equals 4. Note that this is (much) less
than 2αN = 2 · 2 · 16 = 64.
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5 A SET INTERSECTION INDEX

This section will describe a data structure to solve the (clas-
sical) set intersection problem, or equivalently, SIPF where
F has only the identity filtering function (see Section 2). The
structure will serve as the core of our other SIPF indexes
presented in the next section.

5.1 Structure
As before, let S1, S2, ..., Sn be the input set collection, G be
its companion graph, and G+ the orientation of G output by
the orient algorithm (Section 3.2). In a manner similar to S−

i

in (6), we define for each i ∈ [n]

S+
i = {e ∈ Si | the vertex of e is an out-neighbor of

the vertex of Si in G+}.
For any i ∈ [n], S−

i ∩ S+
i = ∅ and S−

i ∪ S+
i = Si.

Our structure has the following components.
C1 for each i ∈ [n], store Si in a hash table that, given an

element e, can decide if e ∈ Si in O(1) time;
C2 for each i ∈ [n], store S+

i in an array;
C3 for every 2-tuple (i, j) where 1 ≤ i < j ≤ n, store

S−
i ∩ S−

j in an array if S−
i ∩ S−

j is non-empty.

Example 3. Continuing on Example 2, S+
1 = {e6, e8}, S+

2 =
{e8}, and S+

3 = {e2, e6} (see Figure 2(c)). Component C3
stores S−

1 ∩ S−
2 = {e1}, S−

1 ∩ S−
3 = {e5}, and S−

2 ∩ S−
3 =

{e4, e7}.

5.2 Query
Consider a query that returns Sa ∩ Sb where 1 ≤ a < b ≤ n.
Each element e ∈ Sa ∩ Sb belongs to exactly one of the
following categories:

• (Cat. 1) e ∈ S−
a ∩ S−

b ;
• (Cat. 2) e ∈ S+

a or S+
b .

Elements of Cat. 1 have been explicitly stored in component
C3 and are output directly. To report Cat. 2, we perform the
following steps:

report-Cat-2 (a, b)
1. for each e ∈ S+

a do
2. if e ∈ Sb then report e
3. for each e ∈ S+

b do
4. if e ∈ Sa then report e

Example 4. Let us apply the algorithm to compute S2 ∩ S3

on our running example. First, output S−
2 ∩ S−

3 = {e4, e7}
directly from component C3. Then, run report-Cat-2. As S+

2

has only one element e8, the algorithm probes the hash table
on S3 to find out e8 /∈ S3. Next, report-Cat-2 examines the
elements of S+

3 and realizes e6 ∈ S2 but e2 /∈ S2. The final
answer is {e4, e6, e7}.

5.3 Analysis

It is easy to verify that components C1 and C2 use O(N)
space. By Property 5, component C3 occupies O(αN) space,
where α is the pseudoarboricity of the input set collection. We
thus conclude that the overall space consumption is O(αN).
Given that orient finishes in O(|V |+ |E|) time (Lemma 1), it
is rudimentary to build our structure in O(αN) time.

Let us now turn to query time. All the elements in Cat.
1 can be reported in linear time because they are explicitly
stored. Algorithm report-Cat-2 takes time O(|S+

a | + |S+
b |),

observing that Line 2 (resp., 4) requires only constant time by
resorting to the hash table on Sb (resp., Sa). Lemma 1 assures
us that |S+

a |+|S+
b | = O(α). We thus conclude that the overall

time complexity is O(α+OUT), where OUT = |Sa ∩ Sb|.

Theorem 6. For the set intersection problem, there is a structure of
O(αN) space that answers a query in O(α+OUT) time, where
N is the total size of all the input sets, α is the pseudoarboricity
of the input set collection, and OUT is the number of elements
reported. The structure can be built in O(αN) time.

5.4 Measuring Hardness with Pseudoarboricity

Next, we explain why the space-query tradeoff in Theorem 6
is unlikely to admit significant improvement.

Theorem 7. Unless the strong set intersection conjecture is wrong,
the following statements are true about the set intersection problem.

• No structure of O(αN polylogN) space can answer a
query in O(α1−δ +OUT) time.

• No structure that answers a query in O(α+OUT) time
can use O(α1−δN polylogN) space.

In the above statements, δ > 0 is an arbitrarily small constant,
and the meanings of N,α, and OUT follow those in Theorem 6.

Proof. Consider an arbitrary set-intersection structure that
uses spc(N) space and answers a query in qry(N)+O(OUT)
time. The strong set intersection conjecture, as reviewed in
Section 3.1, states that spc(N) · qry(N) needs to be Ω̃(N2).

By Property 3, the pseudoarboricity of the input set
collection must be O(

√
N). Suppose that there exists a

structure with spc(N) = O(αN polylogN) and qry(N) =
O(α1−δ). Then, spc(N) · qry(N) = O(α2−δN polylogN) =
O(N2−δ/2 polylogN), which defies the strong set intersec-
tion conjecture. This proves the first bullet of the theorem. A
similar argument proves the second bullet.
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6 SIPF INDEXES

We will proceed to explain how to adapt the index in the
previous section to tackle SIPF in general. Section 6.1 (resp.,
6.2) will focus on predicate-based (resp., reducible) filtering.
Section 6.3 will deal with other types of filtering functions.

6.1 Predicate-Based Filtering

Denote by F the set of possible filtering functions. Each
function is defined by a predicate π that maps an element
e ∈ D to either true or false. Given distinct set ids i, j and
a predicate π, a query reports all the elements e ∈ Si ∩ Sj

with π(e) = true.
Let us temporarily depart from the SIPF context to talk

about what we call the foundation problem. Let D be a set
of elements from D. Given a predicate π, a foundation query
returns all the elements e ∈ D satisfying π(e) = true. We
assume the availability of a foundation structure that stores
D in spc(|D|) space and can answer a foundation query
in qry(|D|) + O(OUT) time where OUT is the number of
elements reported. We also assume that spc(.) grows at least
linearly (see Section 2 for what this means).

Example 5. SIPF-range (defined in Section 2) has the fol-
lowing foundation problem. Let D be a set of points in Rd.
Given an axis-parallel rectangle q in Rd, a foundation query
returns all the elements e ∈ D such that e ∈ q. If d = 1,
a foundation structure can be a BST (binary search tree),
which uses spc(|D|) = O(|D|) space and answers a query in
O(log |D|+OUT) time, i.e., qry(|D|) = O(log |D|).

Returning to the SIPF problem defined by F , we modify
component C3 of the index in Section 5 as follows:

C3 For every 2-tuple (i, j) where 1 ≤ i < j ≤ n, create a
foundation structure on S−

i ∩ S−
j if S−

i ∩ S−
j ̸= ∅.

To answer a query with set IDs parameters a, b (with a <
b) and predicate π, we apply two changes to the algorithm
in Section 5. First, to retrieve the elements of Cat. 1, we use
the foundation structure on S−

a ∩ S−
b to find all the elements

e ∈ S−
a ∩ S−

b with π(e) = true. Second, in report-Cat-2, Line
1 now becomes “for each e ∈ S+

a with π(e) = true do”, and
Line 3 becomes “for each e ∈ S+

b with π(e) = true do”.
By adapting the analysis of Section 5 in a straightforward

manner, we can show:

Theorem 8. Consider SIPF with predicate-based filtering. Suppose
that the foundation problem admits a foundation index that, given
a set D ⊆ D, uses spc(|D|) space and answers a query in
O(qry(|D|) + OUT) time. Then, for SIPF with predicate-based
filtering, there is a structure of O(N) + spc(O(αN)) space that
can answer a query in O(α+ qry(N) +OUT) time, where N is
the total size of all the input sets, α is the arboricity of the input
set collection, and OUT is the number of elements reported.

Applications. Let us apply the theorem to tackle SIPF-range.
In the foundation problem, we have a set D of points in Rd.
Given an axis-parallel rectangle q in Rd, a foundation query
reports all the points of D that are covered by q.

• For d = 1, as mentioned, the BST serves as the
foundation structure with spc(|D|) = O(D) and
qry(|D|) = O(log |D|). Theorem 8 yields an SIPF

structure of O(αN) space that answers a query in
O(α+ logN +OUT) time.

• For d ≥ 2, we can apply the range tree [23] as
the foundation structure, which ensures spc(|D|) =
O(|D| logd−1 |D|) and qry(|D|) = O(logd−1 |D|).
Theorem 8 then yields an SIPF structure of
O(αN logd−1 N) space that answers a query in
O(α+ logd−1 N +OUT) time.

Consider now SIPF-halfspace (see Section 2). In the
foundation problem, we have a set D of points in Rd. Given
a halfspace q in Rd, a foundation query reports all the points
of D covered by q. For d ≤ 3, a structure of Afshani and
Chan [1] can serve as the foundation index, which ensures
spc(|D|) = O(|D|) and qry(|D|) = O(log |D|). Theorem 8
yields an SIPF structure of O(αN) space that answers a query
in O(α+ logN +OUT) time.
Hardness Remark. Subject to the strong set intersection con-
jecture, Theorem 8 can no longer be significantly improved.
Suppose, on the contrary, that someone can leverage the
foundation index to obtain an SIPF structure of spc(αN)
space and query time O(α1−δ + qry(N) + OUT) for some
constant δ > 0. For 1D SIPF-range, this promises a structure
of O(αN) space and O(α1−δ + logN + OUT) query time.
But then we can defy the aforementioned conjecture as
follows. Let S1, S2, ..., Sn be the input set collection (for
set intersection). Create an input for 1D SIPF-range by
associating each element e ∈

⋃n
i=1 Si with an arbitrary real

value pe. Given any set IDs a and b, we issue a 1D SIPF-
range query with the range q = (−∞,∞), whose output is
precisely Sa ∩ Sb. By resorting to the SIPF-range structure,
we obtain a set-intersection index of O(αN) space and
O(α1−δ+logN +OUT) query time, breaking the conjecture.

It is less obvious why no one can leverage the foundation
index to obtain an SIPF structure of spc(αN) space and
O(α + OUT) + o(qry(N)) query time. Suppose that such
a guarantee is attainable. Then, whenever spc(N) = Ω(N),
we can obtain an asymptotically better foundation index as
follows. Given an input D to the foundation problem, we
create two identical sets S1 = S2 = D, which make an SIPF
input whose pseudoarboricity α is at most 2 (Property 4).
Given any predicate π, we can answer a foundation query
by issuing an SIPF query with set IDs a = 1, b = 2, and
predicate π. The SIPF query returns exactly the same answer
as the foundation query. By resorting to the SIPF structure,
we have created an index for the foundation problem that
uses O(N) + O(spc(N)) = O(spc(N)) space but promises
o(qry(N)) +O(OUT) query time.

Similarly, one can also argue about the difficulty of
obtaining an SIPF index of O(spc(α1−δN)) space and
O(α+ qry(N) + OUT) query time.

6.2 Reducible Filtering
Let F be a singleton set comprising a single reducible filtering
function F (see (1) for definition). Given distinct set ids a, b,
a query reports F (Sa ∩ Sb). Similar to Section 5.2, we divide
Sa∩Sb into two disjoint sets: D1 = S−

a ∩S−
b and D2 = (S+

a ∪
S+
b )∩(Sa∩Sb). As each element in F (Sa∩Sb) either belongs

to D1 or D2, we can divide F (Sa ∩ Sb) into two disjoint sets:
D′

1 = D1 ∩ F (D1 ∪ D2) and D′
2 = D2 ∩ F (D1 ∪ D2). As

will be clear later, we will precompute D′
1 and store it in
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our index. The non-trivial part is to compute D′
2. For that

purpose, we leverage the following lemma that is enabled
by the reducible property.

Lemma 9. F (D1 ∪D2) = F (D′
1 ∪D2).

Proof. Set D = D1 ∪ D2 and D′ = D′
1 ∪ D2. We will first

prove F (D) ⊆ D′. Consider an arbitrary element e ∈ F (D);
trivially, e ∈ D1 ∪ D2. If e ∈ D1, then e ∈ D1 ∩ F (D) =
D′

1 ⊆ D′. Otherwise, e must belong to D2 and thus also
belong to D′. This indicates F (D) ⊆ D′. Combining this
with the obvious property D′ ⊆ D, we can now conclude
F (D) = F (D′) from the reducible property given in (1).

By Lemma 9, finding D′
2 is equivalent to computing

D2 ∩ F (D′
1 ∪D2). To that end, we need to solve a general

problem, defined below as the shielding problem.
The shielding problem involves two disjoint sets D′

1 ⊆ D
and D2 ⊆ D with the guarantee D′

1 ⊆ F (D′
1∪D2). There are

two phases: preprocessing and shielding. In preprocessing,
we are allowed to create a shielding structure on D′

1. The
goal of the shielding phase is to find D2 ∩ F (D′

1 ∪ D2),
namely, eliminating those elements of D2 that do not
belong to F (D′

1 ∪ D2). We assume the availability of a
shielding structure that uses spc(|D1|) space and enables
us to implement the shielding phase in shield(|D′

1|, |D2|)
time. We also assume that spc(.) grows at least linearly.

Example 6. The SIPF-skyline problem, where F has a single
function given in (2), has the following shielding problem.
Let D′

1 and D2 be two sets of points in Rd (d ≥ 2) such
that D′

1 is a subset of the skyline of D′
1 ∪ D2. The goal of

the shielding phase is to report all the points in D2 that
appear in the skyline of D′

1 ∪D2. In preprocessing, we create
a range tree on D′

1 as the shielding structure, which uses
spc(|D′

1|) = O(|D′
1| log

d−1 |D′
1|) space. Given any point q ∈

Rd, the structure can decide in O(logd−1 |D′
1|) time if any

point in D′
1 dominates q. In the shielding phase, we first

compute the skyline of D2 in O(|D2| logd−2 |D2|) time using
an algorithm in [41]. For each point q in the skyline of D2,
use the range tree to check if any point in D′

1 dominates
q. If not, q appears in the skyline of D′

1 ∪ D2 and is thus
reported. The shielding phase takes shield(|D′

1|, |D2|) =
O(|D2| logd−1(|D′

1|+ |D2|)) time in total.

Now, we return to reducible filtering and introduce our
index structure and the query algorithm formally. For every
pair (i, j) satisfying 1 ≤ i < j ≤ n, define

D−(i, j) = {e | e ∈ S−
i ∩ S−

j ∩ F (Si ∩ Sj)} (8)

It is worth pointing out that D−(i, j) is not equivalent to
F (S−

i ∩ S−
j ). To construct an index, all we need is to modify

component C3 of the set-intersection index in Section 1 to:

C3 for every 2-tuple (i, j) where 1 ≤ i < j ≤ n, if
D−(i, j) ̸= ∅, store D−(i, j) in an array and create a
shielding structure on D−(i, j).

To answer a query with set IDs a, b (with a < b), we

• retrieve D′
1 = D−(a, b);

• retrieve D2, which is the set of elements in Cat. 2
defined in Section 5.2.

Next, use the shielding structure on D′
1 to obtain D2∩F (D′

1∪
D2). By Lemma 9, this is exactly D′

2. Finally, return D′
1 ∪D′

2.
By adapting the analysis in Section 5.3, we can conclude

with the following theorem:

Theorem 10. Consider SIPF with reducible filtering. Suppose
that the shielding problem admits a shielding structure that uses
spc(|D1|) space and allows us to perform the shielding phase
in shield(|D1|, |D2|) time. Then, there is a structure for SIPF
with reducible filtering that uses O(N)+ spc(O(αN)) space and
answers a query in O(shield(OUT, α) + OUT) time, where N
is the total size of all the input sets, α is the pseudoarboricity of the
input set collection, and OUT is the number of elements reported.

Applications. Let us apply the theorem to tackle SIPF-skyline
in Rd. In Example 6, we have described a shielding structure
if spc(|D1|) = O(|D1| logd−1 |D1|) space that can perform
shielding in shield(|D1|, |D2|) = O(|D2| logd−1(|D1|+|D2|))
time. The theorem yields an SIPF-skyline index of space
O(αN logd−1 N) and O(α logd−1 N +OUT) query time.

Consider now the SIPF-CH problem in Rd with d ≤ 3.
The set F contains only one filtering function F , given in (3).
In the corresponding shielding problem, D1 and D2 are two
sets of points in Rd such that all the points in D1 are vertices
of the convex hull of D1∪D2. The goal of the online phase is
to return the points in D2 that are vertices of the convex hull
of D1 ∪ D2. In preprocessing, we store D1 in spc(|D1|) =
O(|D1|) space. In the shielding phase, we first compute the
convex hull of D2 in O(|D2| log |D2|) time, after which the
convex hull of D1 ∪D2 can be obtained by merging D1 with
the convex hull of D2 in O(|D1|+ |D2|) time [13]. The points
in D2 on the convex hull of D1 ∪D2 are obtained as a side
product. Hence, shield(|D1|, |D2|) = O(|D2| log |D2|+ |D1|).
Theorem 10 then yields an SIPF-CH index with space O(αN)
and query time O(α logα+OUT).
Hardness Remark. Our indexes no longer allow significant
improvement unless the strong set-intersection conjecture
is wrong. We will explain this for SIPF-skyline as the
argument is similar for SIPF-CH. Suppose that someone
can design an SIPF-skyline structure with O(αN polylogN)
space and O(α1−δ polylogN + OUT) query time for some
constant δ > 0. We can utilize the structure to defy the
conjecture. Let S1, S2, ..., Sn be the input set collection for
set intersection. Create an SIPF-skyline input by associating
each element e ∈

⋃n
i=1 Si with a 2D point pe = (x,−x)

where x is an integer uniquely assigned to e. Given set IDs
a and b, the skyline of Sa ∩ Sb is exactly Sa ∩ Sb. Thus,
we obtain a set-intersection index of O(α polylogN) space
and O(α1−δ polylogN + OUT) query time, breaking the
conjecture. Likewise, one can also argue about the difficulty
of obtaining an SIPF-skyline index with O(α1−δN polylogN)
space and O(α polylogN +OUT) query time.

6.3 Filtering by Deflation

This subsection will introduce a “deflation strategy”, which,
despite appearing straightforward initially, proves to be a
powerful approach for addressing certain SIPF problems.
To motivate the strategy, suppose that we want to compute
F (Sa ∩ Sb) where a and b are distinct set ids and F ∈ F is
a filtering function. As in Section 5.2, define D1 = S−

a ∩ S−
b

and D2 = (S+
a ∪ S+

b ) ∩ (Sa ∩ Sb). Since D1 ∪D2 = Sa ∩ Sb,
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our goal is essentially to compute F (D1 ∪D2). The deflation
strategy fulfills the goal in two steps:

• First, compute certain information — denoted as D3

— from some pre-computed data structure. Intuitively,
D3 serves as a “deflated version” of D1 for the
purpose of computing F (D1 ∪D2).

• Then, obtain F (D1 ∪D2) from D2 and D3.

To make the above strategy work efficiently, we need to
impose some requirements, which give rise to the following
deflation problem. Let F be an arbitrary set of filtering func-
tions, and let D1 ⊆ D and D2 ⊆ D be two disjoint sets. There
are two phases: preprocessing and online. In preprocessing,
we are allowed to create a certain structure, called the
deflation structure, on D1 of space O(|D1|polylog |D1|). In
the online phase, we are given a filtering function F ∈ F
and need to compute some information, represented as D3,
in O(polylog |D1|+OUT) time, where OUT = |F (D1∪D2)|.
The requirement for D3 is that we must be able to compute
F (D1 ∪ D2) from D2 and D3 — rather than from D1 and
D2 — in O(|D2|polylog |D2|+OUT) time.

Example 7. Consider the SIPF-NN problem. As in (4), every
filtering function F ∈ F has two parameters: an integer k ≥ 1
and a query point q ∈ R2. Next, we will explain how to solve
the underlying deflation problem, assuming k ≤ |D1 ∪D2|
(the reader can then extend our discussion to the opposite
scenario, which is trivial). The deflation problem includes
two disjoint sets of points in R2: D1 and D2. In preprocessing,
we store D1 in a structure of [1] that uses O(|D1|) space and
allows us to find the k nearest neighbors of any query point
in D1 in O(log |D1| + k) time. In the online phase, given
an integer k and a query point q, we compute D3, which
comprises the k nearest neighbors of q in D1. Given D3, we
can compute F (D1∪D2) — that is, k nearest neighbors of q in
D1∪D2 — in O(|D2|+k) = O(|D2|+OUT) time as follows.
First, extract the k nearest neighbors of q in D2 by scanning
D2 entirely in O(|D2|) time. Then, perform k-selection [22]
to find the k nearest neighbors of q in D2 ∪D3. The cost of
the k-selection is O(|D2 ∪D3|) = O(|D2|+OUT).

To solve the original SIPF problem, we modify component
C3 of our set-intersection index in Section 5 as follows:

C3 for every 2-tuple (i, j) where 1 ≤ i < j ≤ n, create
a deflation structure for D1 = S−

i ∩ S−
j and D2 =

(S+
i ∪ S+

j ) ∩ (Si ∩ Sj).

The space consumption of the modified index is
O(αN polylogN).

Suppose that we are now given a query with by set
IDs a, b, and filtering function F ∈ F . Let D1 = S−

a ∩ S−
b

and D2 = (S+
a ∪ S+

b ) ∩ (Sa ∩ Sb). By supplying F to the
deflation structure created on (D1, D2), we obtain D3 in
O(polylogN + |D3|) = O(polylogN + OUT) time. After
that, we compute F (Sa ∩ Sb) = F (D1 ∪D2) from D2 and
D3 in O(|D2|polylogN +OUT) = O(α polylogN +OUT)
time. This establishes the result below.

Theorem 11. Consider any SIPF problem. If we manage to find
a solution to the underlying deflation problem, then we have a
structure for the SIPF problem that uses O(αN polylogN) space
and answers a query in O(α polylogN +OUT) time, where N

is the total size of all the input sets, α is the pseudoarboricity of the
input set collection, and OUT is the number of elements reported.

Applications. In Example 7, we have explained how to solve
the deflation problem underlying SIPF-NN. The theorem
thus yields an SIPF-NN index of space O(αN polylogN)
and O(α polylogN + k) query time (the value of OUT is k).

Next, we will tackle the SIPF-quantile problem defined
in Section 2. The deflation problem includes two disjoint sets
of real values: D1 and D2. Let t = |D1 ∪D2| and Q be the
set of k-quantiles of D1 ∪D2. We want to build a structure
of O(|D1|polylog |D1|) space in preprocessing. In the online
phase, we use the structure to find in O(polylog |D1| + k)
time a set D3 of size O(k) that contains D1 ∩ Q. The set
D3 should allow us to find the k-quantiles of D1 ∪ D2 in
O(|D2|polylog |D2|+k) time. We will consider k ≤ |D1∪D2|
(the opposite case is trivial).

Let x1, x2, ..., xk be the k-quantiles of D1 ∪ D2 in as-
cending order. For each i ∈ [k], define yi to be (i) xi if
xi ∈ D1 or (ii) otherwise, the largest value in D1 less than xi.
Furthermore, associate yi with its rank ri in D1 ∪D2 (i.e., yi
is the ri-th smallest value in D1∪D2). Note that y1, y2, ..., yk
may not be distinct: yi = yi−1 if D1 contains no values in
(xi−1, xi]. The number of distinct values among y1, y2, ..., yk
is at most min{|D1|, k}. In preprocessing, we store these
distinct values, as well as their ranks, as our structure, which
uses O(min{|D1|, k}) space.

In the online phase, D3 is precisely the set of distinct
values among y1, y2, ..., yk, which can trivially be obtained
in O(|D3|) time (D3 is stored directly). The size of D3 is
O(k) = O(OUT). We then sort D2 in O(|D2| log |D2|) time.
For each i ∈ [k], the ⌊i · t/k⌋-th smallest value in D1 ∪D2

can be found as follows. If xi ∈ D1, it is stored explicitly in
D3. Otherwise, xi is the (⌊i · t/k⌋ − ri)-th smallest among
all the values in D2 that are strictly greater than yi. It is
now rudimentary to find the k-quantiles of D1 ∪ D2 in
O(|D2|+ |D3|) = O(|D2|+OUT) time by scanning D2 and
D3 synchronously once.

Theorem 11 then yields an index for the SIPF-
quantile problem that occupies O(αN polylogN) space and
O(α polylogN + k) query time.
Hardness Remark. Our SIPF-NN and SIPF-quantile struc-
tures are difficult to improve substantially subject to the
strong set-intersection conjecture. The arguments are analo-
gous to those in the remarks of Sections 6.1 and 6.2.

7 EXPERIMENTS

This section presents an experimental evaluation of the pro-
posed techniques. We will start in Section 7.1 by examining
our index in Section 5 for “pure” set intersection, i.e., no post
filtering is necessary. Then, Sections 7.2-7.4 will present the
results on predicate-based, reducible, and deflation filtering,
respectively. All the experiments were performed on a
machine equipped with an Intel CPU 3.6GHz and 82 Gbtyes
of memory. The operating system was Ubuntu 20.04.

7.1 Set Intersection without Post Filtering
Our structure in Section 5 is designed for classical set intersec-
tion, where the dataset is a collect of sets S1, S2, ..., Sn, and
a query returns Sa ∩ Sb for distinct a, b ∈ [n]. In this section,
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name number n of sets N max set size max element frequency max. out-degree by orient cut-off set size
IMDB 351,109 4,647,097 10,407 24,107 89 306

Google 178,203 22,685,631 9,998 1,591 60 723
Amazon 2,775,193 47,523,975 58,147 7,303 71 618

TABLE 1
Statistics of the datasets deployed

we will analyze the structure’s behavior on real-world data
and lay the groundwork for understanding the behavior of
the other indexes to be shown in the subsequent sections.
Competing Methods. We will refer to the structure in
Section 5 as Orient (named after the fact that it works
by orienting the edges in the companion graph; see Figure 4).
We compared Orient with two benchmark solutions:

• Precomp-All: This method pre-computes the in-
tersection Si ∩ Sj for all 1 ≤ i < j ≤ n. While
Precomp-All is highly query-efficient, allowing for
direct retrieval of the pre-stored Sa ∩ Sb given the
set IDs a and b, it has the drawbacks of high space
consumption and expensive pre-computation time.

• Hash: This method creates a hash table on each set
Si (i ∈ [n]). To answer a query with set IDs a and
b (w.l.o.g., assume |Sa| ≤ |Sb|), Hash reads Sa once
and for each element e ∈ Sa checks whether e ∈ Sb

by probing the hash table of Sb. Hash requires only
linear space, but it may suffer from high query cost
when |Sa| and |Sb| are both large.

We also developed a new method, called Orient+, which
combines the concepts of Orient and Hash. Our rationale
for this approach is that, when at least one of the input sets
(Sa or Sb) is small, Hash has superior query efficiency, with
a query time of O(min{|Sa|, |Sb|}). Therefore, it is beneficial
to construct our structure in Section 5 only on large sets. Let
s1, s2, ..., st — in descending order — denote the distinct
sizes of the sets in the underlying dataset (note that t may
be smaller than n because some sets may have identical
sizes). We define a cutoff set size s⌊ηt⌋, where η is a parameter
between 0 and 1. We build our structure only on the sets
whose sizes are at least s⌊ηt⌋, which we refer to as colossal
sets. Sets with sizes less than the cutoff value are considered
tail sets and are pre-processed using only a hash table. In
query processing, if either Sa or Sb is a tail set, we apply the
query algorithm of Hash. Otherwise, we use the algorithm
in Section 5.

The parameter η plays a crucial role in achieving a smooth
transition between Hash and Orient, which represent the
two extreme cases of η = 0 and 1, respectively. A higher
value of η consumes more space but entails lower query
cost. In all the experiments presented below, we set η =
0.75, which was empirically chosen to strike a good balance
between the space and query efficiency of Orient+.

As noted in Section 3, the system community has de-
veloped an impressive array of techniques for answering
set intersection queries. However, our experiments focus on
comparing our approach with Hash for four reasons. First,
our goal is to assess the proposed theoretical concepts using
a standardized benchmark, rather than claiming practical
superiority over the existing methods. Second, Hash is an
excellent choice for the benchmark due to its simplicity and
popularity in the literature. Third, many existing techniques,
such as those based on compression like the roaring bitmap
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IMDB, Orient 61.4 271 11.8 344
IMDB, Orient+ 61.4 83.0 6.22 151

IMDB, Hash 61.4 − − 61.4
Google, Orient 275 2610 16.5 2902

Google, Orient+ 275 601 4.28 880
IMDB, Hash 275 − − 275

Amazon, Orient 615 3270 89.7 3975
Amazon, Orient+ 615 284 45.1 944

Amazon, Hash 615 − − 615

(c) Space breakdown (Mbytes)

Fig. 5. Preprocessing and space costs for pure set intersection

[11, 43], can be integrated into our structure to further
enhance its performance. Hence, a comparison with those
techniques would be unfair in the absence of such integration,
but incorporating the integration would complicate the
resulting structure and impede a clear discussion of its
behavior. Fourth, in general, once we have obtained a
thorough understanding of a new indexing paradigm’s
characteristics, it is often relatively easy to engineer heuristics
for performance improvements. In this work, we have paid
little attention to such heuristics.
Data. We utilized three real datasets, as are introduced below:

• IMDB: This dataset was downloaded from ieee-
dataport.org/open-access/imdb-movie-reviews-dataset and
includes n = 351,109 sets. Each set corresponds to
a movie and contains the IDs of the users that have
rated the movie.

• Google: This dataset was downloaded from ji-
achengli1995.github.io/google/index.html and includes
n = 178,203 sets. Each set corresponds to a business
listed on Google Maps and contains the IDs of the
users that have written a review about the business.

• Amazon: This dataset was downloaded from
nijianmo.github.io/amazon/index.html#subsets and in-
cludes n = 2,775,193 sets. Each set corresponds to
a product sold on Amazon and contains the IDs of
the users that have ever commented on the product.

Table 1 summarizes the main statistics of the datasets
introduced above. The third column shows the total size
of all the sets in each dataset, while the fourth column
gives the maximum size of a set within the dataset. For
a given dataset, the frequency of an element e is defined as
the number of sets containing e; the fifth column of Table 1
presents the maximum frequency of all elements across the
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Amazon, Hash 849 − − 56.9 906

(c) Space breakdown
Fig. 7. Preprocessing and space costs for SIPF-range

dataset. For each dataset, we applied the orient algorithm in
Section 3.2 on its companion graph; the sixth column gives
the maximum out-degree of the orientation obtained. The
last column shows the dataset’s cutoff set size for Orient+.
Workloads. We define a workload as a set of 10,000 queries,
where each query is generated independently as follows.
Let s1, s2, ..., st denote the distinct sizes of the sets in the
underlying dataset, sorted in descending order. First, we
randomly choose a size x from {s2, ..., st}. Then, we select (i)
a set Sa uniformly at random from all the sets in the dataset
whose sizes are exactly x, and (ii) another set Sb uniformly
at random from all the sets whose sizes are greater than x.
The query’s parameters are the set IDs a and b. The number
x will be called the query’s small-set size.
Results. Figure 5(a) compares the preprocessing time of
different methods. Figure 5(b) compares their space consump-
tion, followed by a breakdown in Figure 5(c). Specifically,
for Orient and Orient+, the second column in the table
of Figure 5(c) is the total space of the hash tables on all Si

(i ∈ [n]), the third column is the total storage space of all
S−
i ∩ S−

j (1 ≤ i < j ≤ n), and the fourth column is the
total space of all S+

i (i ∈ [n]). The last column sums up the
previous columns. For Hash, the space usage includes only
the hash tables, as shown in the second column.

Among the methods compared, Precomp-All required
by far the longest precomputation time and the highest space
consumption. This underscores the importance of designing

efficient index structures for set intersection queries. As
expected, Hash was the fastest in precomputation and
occupied the least space. The overhead of Orient and
Orient+ fell between that of Precomp-All and Hash. It
is evident from Figure 5(c) that a significant portion of the
space of Orient and Orient+ was used for storing the
intersection S−

i ∩S−
j of 1 ≤ i < j ≤ n. Orient+ significantly

reduced the preprocessing and space costs of Orient.
Figure 6 presents the results on query efficiency. Let us

start with Figures 6(a) and 6(b), which concern the IMDB
dataset. For each method, we ran a workload and measured
the cost of every query. A crucial factor affecting query cost
is the small-set size, which as defined before is the smaller
size of the two sets queried. In Figure 6(a), we plot the
query cost of a method as a function of the small-set size. If
multiple queries in a workload have the same small-set size
x, the query cost plotted at x is the average of those queries.
Figure 6(b) shows the speedup ratio achieved by Orient and
Orient+ over Hash, also as a function of x. The speedup of
Orient, for instance, at x is the query time of Orient at x
divided by that of Hash in Figure 6(a). The other figures for
Google and Amazon follow the same style. We do not include
Precomp-All in these figures because the purpose of that
method was to demonstrate the prohibitive preprocessing
and space overhead of brute-force pre-computation.

Orient+ behaved similarly to Hash for small-set sizes
up to a certain cutoff size. Both Orient+ and Hash outper-
formed Orient when the small-set size was exceedingly
low. To explain this behavior, let Sa and Sb be the two sets
queried, and assume that |Sa| ≤ |Sb|. The query complexity
of Orient+ and Hash is O(|Sa|), while that of Orient
is O(|S+

a | + |S+
b |) because it must scan both S+

a and S+
b .

However, as the small-set size increased, Orient quickly
outperformed the other two methods and converged with
Orient+ after the small-set size reached the cutoff. The
power of Orient and Orient+ is reflected in scenarios
where the small-set size is large (which is also the most
challenging scenario for set intersection). Their speedup
ratios over Hash increased rapidly with the small-set size
and even exceeded two orders of magnitude.

7.2 SIPF-Range
We now proceed to evaluate the index proposed in Section 6.1
for the SIPF-range problem in 1D space. As before, let
{S1, ..., Sn} be the input set collection. Define D =

⋃n
i=1 Si.

Each element e ∈ D is associated with a 1D point pe ∈ R;
a query returns the set of elements e ∈ Sa ∩ Sb, for some
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Fig. 9. Query time vs. small set size (SIPF-range, l = 0.5)

distinct a, b ∈ [n], satisfying the predicate that pe falls in a
specified interval q.
Competing Methods. For consistency, we use the name
Orient to refer to the structure proposed in Section 6.1.
Specifically, Orient stores

• a hash table on each Si (i ∈ [n]);
• an array where the elements e ∈ S+

i (i ∈ [n]) are
sorted by pe;

• for each 1 ≤ i < j ≤ n, an array where the elements
e ∈ S−

i ∩ S−
j are sorted by pe.

We compared the method with Hash, which in this context
builds on each Si (1 ≤ i ≤ n) (i) a hash table and (ii) an array
where the elements e ∈ Si are sorted by pe. To answer a query
with set IDs a and b and an interval q, (assuming |Sa| ≤ |Sb|)
Hash first performs binary search on the sorted array of Sa

to retrieve each element e ∈ Sa with pe ∈ q, and then probes
the hash table of Sb to determine if e ∈ Sb. In addition,
we also examined Orient+, which builds our structure of
Section 6.1 only on the colossal sets and preprocesses the
tail sets in the same way as Hash (see Section 7.1 for the
definitions of colossal set and tail set). For all methods, the
1D points pe are stored only once in an array — called the
map — that, given e, permits fetching pe in constant time.
Data. We used the set collections IMDB, Google, and Amazon
that were introduced earlier. However, we augmented the
datasets so that each element e ∈ D is associated with a 1D
point uniformly generated in the domain [0, 108].
Workloads. Our workload consists of 10,000 queries created
using the method described in Section 7.1. However, we
introduce a new parameter l ∈ [0, 1] that is used to generate
the query range q = [x, y]. Specifically, we randomly gener-
ate the value of x uniformly from the interval [0, (1− l) ·108],
and set y = x + l · 108. This ensures that all queries in the
workload have the same length of q, which is equal to l · 108.
Results. Figure 7(a) compares the preprocessing time of the
different methods for the range query workload. The prepro-
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i map total

IMDB, Orient 61.4 246 11.8 12.0 331
IMDB, Orient+ 61.4 71.0 6.22 12.0 151

IMDB, Hash 61.4 − − 12.0 73.4
Google, Orient 275 2517 16.5 43.0 2852
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Google, Hash 275 − − 43.0 318

Amazon, Orient 615 3212 89.7 113 4031
Amazon, Orient+ 615 262 45.1 113 1035

Amazon, Hash 615 − − 113 728

(c) Space breakdown

Fig. 10. Preprocessing and space costs for SIPF-skyline

cessing time is generally higher than that in Figure 5(a) due to
the additional step of creating sorted arrays. Figure 7(b) gives
the comparison on space consumption, with a breakdown
in Figure 7(c). For Orient, the meaning of each column
should be straightforward as it follows directly from our
earlier description. For Orient+, the meanings are the same
(as Orient) except that the second column includes both
the hash tables on all the sets and the sorted arrays on the
tail sets. For Hash, the second column covers the hash tables
and sorted arrays on all sets.

The next experiment investigated the impact of a query’s
selectivity level on the algorithms’ performance. For that
purpose, we used each method to process workloads of
various l and measured, for each workload, the average
cost of all the queries in the workload. Focusing on IMDB,
Figure 8(a) plots the workload average as a function of l for
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Fig. 11. Query time vs. small set size (SIPF-skyline)
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all methods, and Figure 8(b) plots the corresponding speedup
ratios of Orient and Orient+ over Hash observed in Fig-
ure 8(a). The other figures in Figure 8 for Google and Amazon
follow the same style. As expected, the average query cost
generally increased as l became larger. Orient and Orient+
retained significant speedups over Hash across all values
of l. Between Orient and Orient+, the former had better
query efficiency on average, because Orient+ trades off
some query performance for reduced space consumption
and preprocessing time.

In Figure 9, we fixed l to 0.5 and examined the influence
of a query’s small-set size using the same approach as in
Figure 6. The speedups of Orient and Orient+ represent
how much times faster they were over Hash. The general
behavior was very similar to that observed in Figure 6.

7.3 SIPF-Skyline
Next, we will evaluate the index proposed in Section 6.2 for
the SIPF-skyline problem in 2D space. Let {S1, ..., Sn} be the
input set collection and define D =

⋃n
i=1 Si. Each element

e ∈ D is associated with a 2D point pe ∈ R2; a query returns
the skyline of {pe | e ∈ Sa ∩ Sb} for some distinct a, b ∈ [n].
Competing Methods. Orient, which refers to the structure
proposed in Section 6.2, stores

• a hash table on each Si (i ∈ [n]);
• an array where the elements e ∈ S+

i (i ∈ [n]) are
sorted by the x-coordinate of pe;

• for each 1 ≤ i < j ≤ n, an array storing the elements
of S−

i ∩ S−
j that contribute to the skyline of {pe | e ∈

Si ∩ Sj}. The elements e in the array are sorted by
the x-coordinate of pe.

We compared the method with Hash, which builds only
a hash table on each Si (1 ≤ i ≤ n). To answer a query
with set IDs a and b, Hash first finds Sa ∩ Sb in the way
described in Section 7.1 and then computes the skyline of

{pe | e ∈ Sa ∩ Sb} using an algorithm in [41]. We also
examined Orient+, which builds our structure of Section 6.2
only on the colossal sets in the dataset and preprocesses the
tail sets like Hash. For all methods, the 2D points pe are
stored only once in an array — the map — that, given e,
permits fetching pe in constant time.
Data. We used the same set collections as before, namely
IMDB, Google, and Amazon. However, we augmented these
datasets by associating each element e ∈ D with a 2D point,
which was independently generated according to the anti-
correlated distribution described in [11].
Workloads. The same workloads as those in Section 7.1 were
deployed.
Results. Figure 10(a) shows the preprocessing time for all
methods, while Figure 10(b) compares their space consump-
tion, with a detailed breakdown in Figure 10(c). The meaning
of all columns in the table should be clear to the reader. It is
worth noting that the space usage of Orient and Orient+
was lower than what was reported in Figure 5(c) because
only part of S−

i ∩S−
j needs to be stored (the part contributing

to the skyline of {pe | e ∈Si ∩ Sj}) for 1 ≤ i < j ≤ n.
Regarding query performance, Figure 11 shows the query

time of each method as a function of small set size, using a
style similar to that in Figure 6. The relative performance of
the methods was consistent with that presented in Figure 6.

7.4 SIPF-Quantile

The last set of experiments was designed to evaluate the
index proposed in Section 6.3 for the SIPF-quantile problem.
Let {S1, ..., Sn} be the input set collection and define D =⋃n

i=1 Si. Each element e ∈ D is associated with a 1D point
pe ∈ R; a query returns the k-quantiles of {pe | e ∈ Sa ∩ Sb}
for some specified a, b ∈ [n], where the integer k is fixed for
all queries.
Competing Methods. Orient, the SIPF-quantile structure
in Section 6.3, stores
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Fig. 13. Query time vs. k (SIPF-quantile)

• a hash table on each Si (i ∈ [n]);
• an array where the elements e ∈ S+

i (i ∈ [n]) are
sorted by pe;

• for each 1 ≤ i < j ≤ n, an array storing min{|S−
i ∩

S−
j |, k} elements, plus an additional rank value per

element (see Section 6.3). The elements e in the array
are sorted by pe. As a heuristic, we can reduce the
space when k ≥ |Si ∩ Sj |, observing that in this sce-
nario computing the k-quantiles of {pe | e ∈ Si ∩ Sj}
is reduced to finding {pe | e ∈ Si ∩ Sj}. Specifically,
if k ≥ |Si ∩ Sj |, we stored only S−

i ∩ S−
j , saving the

space of rank values.

We compared our method with Hash, which builds only
a hash table on each Si (1 ≤ i ≤ n). To answer a query
with set IDs a and b, Hash first finds Sa ∩ Sb in the way
described in Section 7.1 and then computes the k-quantiles of
{pe | e ∈ Sa ∩Sb} with sorting. We also examined Orient+,
which builds our structure of Section 6.2 only on the colossal
sets and preprocesses the tail sets like Hash. For all methods,
the 1D points pe are stored only once in an array.
Data and Workloads. We used exactly the same datasets and
workloads as in Section 7.2.
Results. Figure 12(a) shows the preprocessing time for
all methods, while Figures 12(b)-12(d) present their space
consumption as a function of k. The space usage was similar
to what was presented in Figure 7 (and hence, we omit a
detailed breakdown) and changed only slightly with k. It
is worth noting that the space of Orient and Orient+ did
not increase with k due to the heuristic mentioned earlier.

In the next experiment, we examined the effect of varying
k on query performance. For each method, we measured its
average cost for answering all queries in a workload under
different values of k. Figure 13 shows the workload average
as a function of k for all methods. It turned out that the
parameter had little impact on the query cost. Orient was
slightly faster than Orient+, as is consistent with the trends
in Figure 8.

Finally, in Figure 14, we fixed k to 50 and examined the
influence of a query’s small-set size following the approach
of in Figure 6. We observed the same trends as in Figure 6.

8 CONCLUSIONS

A set intersection query allows a user to designate two
arbitrary sets from a set collection and computes their
intersection. While such queries frequently arise in database
applications, in practice users are rarely interested in the
raw intersection result, but instead typically need to apply
certain post-filtering to it. Motivated by this, in the current
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Fig. 14. Query time vs. small set size (SIPF-quantile)

paper we develop an indexing scheme that can efficiently
support a wide variety of filtering functions. The scheme
is easy to understand and implement, yet it has solid
theoretical guarantees sensitive to the “pseudoarboricity”
of the underlying set collection, which is a new concept
developed in this paper to quantify the density of a set
collection. Our theoretical findings are confirmed by an
empirical evaluation using real-world data.
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