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Abstract. This paper studies the I-error dictionary search problem in external
memory. The input is a set D of strings whose characters are drawn from a
constant-size alphabet. Given a string ¢, a query reports the ids of all strings in
D that are within 1 edit distance from g. We give a structure occupying O(n/B)
blocks that answers a query in O(1 4 5 + %) I/Os, where n is the total length
of all strings in D, m is the length of g, k is the number of ids reported, w is the
size of a machine word, and B is the number of words in a block.

1 Introduction

In this paper, we consider the /-error dictionary search problem defined as follows. The
input D—the dictionary—is a set of strings whose characters are drawn from a constant-
size alphabet 2. Each string is associated with a distinct integer as its id. Given a string ¢
with characters in X, a query reports the ids of those strings s € D with dist(s,q) < 1,
where dist(s, q) is the edit distance between s and q (a.k.a. the Levenshtein distance).!

The problem is fundamental to search engines that aim to tolerate typos in the key-
words entered by users. It is well known [12, 13] that between 80%-95% of the typos in
practice are 1-edit-distance errors, thus providing a strong motivation to support 1-error
dictionary search efficiently.

Computation Model. We study the problem in the standard external memory (EM)
model [1]. Under this model, a machine has a disk that is an infinite sequence of blocks,
each of which contains B words. Computation takes place only in (internal) memory,
whose size M (in number of words) is at least 2B. An I/O exchanges a block of data be-
tween the disk and memory. The time of an algorithm is the number of I/Os performed.
The space of a structure is the number of blocks in the shortest prefix of the disk con-
taining all the bits of the structure. Denote by w the number of bits in a machine word.
We make the standard assumption that w = {2(lg B) (otherwise, the machine cannot
even encode the address space of all the words in memory).
We will also make frequent use of the following notations:

— n: the total length of all the strings in D;

! Specifically, dist(s, q) is the smallest number of the following edit operations needed to con-
vert s to ¢: (i-ii) inserting or deleting a character, and (iii) replacing a character with another
one.



space query update source|remarks

O(n/B) Oo(m + k) O(l) amortized| [5] |assume that data and query
(ins. only) strings are equally long

O(% + 2%)|0(m + k) - (3]

O(%1gn) [O(Z + £ +1gnlglgzn)|- [11] |designed for the more general

“full-text indexing” problem

O(n/B) O(1+ 2+ %) O(1) expected | New

Table 1. Comparison of our and previous results in external memory

— t: the number of strings in D;
— m: the length of a query string;

— k: the number of qualifying strings for a query.

We define lg;, © = max{1, log, } with b = 2 if omitted.

Previous Results. The 1-error dictionary search problem was first studied in internal
memory. Belazzougui [3] presented a static structure of O(t 4+ n/w) space that answers
a query in O(m + k) time. Belazzougui and Venturini [4] showed that the space can
be reduced if the dictionary has small entropy, but their result does not improve that of
[3] in general. Brodal and Gasieniec [5] considered a special instance of the problem,
where all the data and query strings have the same length m (i.e., a query with string ¢
essentially retrieves the strings whose hamming distances are within 1 from q). For this
instance, they gave a structure of space O(n) that answers a query in O(m + k) time;
in addition, their structure is semi-dynamic: it supports the insertion of a length-/ data
string in O(1) amortized time.

The above structures, when applied in external memory, incur O(m + k) I/Os an-
swering a query. This, unfortunately, is at least a factor of B away from what we would
like to achieve. Currently, the most I/O-efficient structure is due to Hon et al. [11]. Their
structure, which is intended for a more general problem called full-text indexing, uses
O(% 1gn) blocks, and answers a query in O(%2 + £ +1gn - 1glg 5 n) /Os. It does not
support updates efficiently.

It is worth mentioning that, while in this paper we focus on queries with 1-edit-
distance errors, progress has also been made in the past decade towards tolerating a
larger number of errors. Interested readers may refer to [6,7, 15] for entry points into
the literature.

Our Results. We give a new structure for 1-error dictionary search that uses O(n/B)
space, answers a query in O(1 + 5 + %) I/Os, and supports the insertion and deletion
of a length-{ string in O(l) expected I/Os (see Table 1 for a comparison). With B set
to 1, our structure also works in the RAM model directly, and provides a new tradeoff
between space and query time there.

Remarks. Henceforth, we will focus on a binary alphabet X' = {0, 1}. Our techniques
can be extended to any constant-size alphabet, without affecting the claimed complexi-
ties. Clarification will be duly made when this is not straightforward.



2 Exact Matching

In this section, we revisit the (precise) dictionary search problem, whose solution will
be useful later. Specifically, the input is the same dictionary D as in 1-error dictionary
search. Given a string ¢, we want to report its id in D if ¢ € D, or declare its absence
otherwise. This problem is also commonly known as exact matching.

Given a string s, we denote by |s| the length of s. Foran i € [1,]s|], let s; be the i-th
character of s. Given 4, j with 1 < i < j < |s], let s;..; be the substring of s starting
and ending at s; and s;, respectively. Specially, if i > j, s;. ; is an empty string.

2.1 Preliminaries

Let us first review a result on perfect hashing. Given an integer « > 0, [z] represents the
set {0,1,...,x — 1}. Consider a set S C [U] for some positive integer U. Set n = |S|.
Let f be a function from [U] to [2n]. We say that f is perfect on S if it is injective
with respect to S, namely, for any two different integers x1, xzo of S, f(x1) # f(22).
Furthermore, f is stable if, for each x € S, f(z) remains the same until x is deleted
from S.

Lemma 1 ([8]). Let U be a positive integer at most 2¥B~1. For any S C [U], we can
store a stable perfect function f of S using O(1 + 5 1glg %) blocks, where n = |S|.
For any x € [U], f(x) can be computed in constant I/Os. If an integer is inserted or
deleted in S, the representation of | can be updated in constant I/Os expected.

We will also need the next fact about the string B-tree:

Lemma 2 ([10]). Let D be a set of t strings (each with an integer id), and n be their
total length. We can store D in a string B-tree of O(1+ % + 755 ) space such that, given
a string q of length m, using O(1ggt + %) I/Os, we can report the id of q in D or
declare the absence of q in D. A string of length | can be inserted and deleted in D with
O(lggt + =) V0s.

2.2 A New Structure

We consider a slightly more general version of exact matching. Suppose that each string
s € D carries an arbitrary information field that occupies O(1) words. We want to
support a probe operation: given a string g, decide whether ¢ € D and if so, return the
information field of ¢. The rest of the subsection serves as a proof for:

Theorem 1. A set D of strings (each with an integer id) can be stored in a structure
of O(1 + % + =) blocks, where t is the number of strings in D and n is their total
length, such that a probe operation can be performed in O(1 + -5) I/Os, where m is
the length of the query string. To insert/delete a string with length l in D, the structure
can be updated in O(1 + #) expected 1/0s.



We say that a string is short if its length is at most wB — 2; otherwise, it is long.
The two types of strings are processed separately.

Short Strings. Suppose that D has only short strings. We maintain a stable perfect
function f on D by interpreting each string in D as an integer in [2*®~2]. By Lemma 1,
this demands O(1 + -5 lg(wB)) space, which is O(1 + %) because w = §2(Ig B).
Let I be an array of size 2t for storing information fields. For each string s € D, its
information field is stored in I[f(s)].

To store the strings of D, we divide [2t] into [2¢/B] disjoint intervals of length
B except possibly the last one. Refer to each interval as a chunk. All the at most B
strings of D mapped to the same chunk by f are managed by a string B-tree, each of
which occupies O(1 4+ %) space where n' is the total length of the strings it manages
(Lemma 2). All the string B-trees use O(1 + & + —5) space in total.

To perform a probe with a short string ¢, we search the string B-tree of chunk f(q)
inO(lgg B+ %) = O(1) I/Os (Lemma 2). If found, we return I[f(g)] with another
O(1) I/Os; otherwise, ¢ is notin D.

To insert a short string s in D, we first calculate f(s) and update I(f(s)) in O(1)
expected I/0s (Lemma 1). Then, insert s in the string B-tree responsible for the chunk
covering I(f(s)). By Lemma 2, the insertion cost is O(lgz B + “2) = O(1) 1/Os.
Using standard rebuilding techniques [14], we can resize I in O(1) worst-case time per
insertion. A deletion can be handled similarly.

Long Strings. Now, consider that D has only long strings. We sometimes regard a long
string s of length [ as a blocked string § of length [I/(wB — 2)], where each character
of 5 comes from an alphabet X of size 2wB2, Specifically, if we chop s into blocks of
size wB — 2 (possibly except the last block), character 5; corresponds to the j-th block,
where 1 < j < [1/(wB — 2)]. Denote by D the set of blocked strings obtained from
D.

Let T be a trie built on D. For an internal node v in T, let child(u) be the set of
its child nodes (note that |child(u)| can be up to 2¢5~2). As each node in child(u) is
a character in X, it can be regarded as a short string. To allow efficient navigation, we
create an aforementioned structure (for short strings) on child(u) such that given any
character 5 € % , we can tell in constant time whether & € child(u) and if so, also the
address of the child o. For each string s € D, its information field is stored at the node
of T" whose root-to-leaf path corresponds to s.

The short-string structure on an internal node u of 7" consumes O(1 + % +
W) = O(|child(u)|) space, i.e., O(1) blocks per child. Hence, the entire

space usage of 1" is asymptotically the number of nodes in 7". Since each s € D neces-
sitates O(|s|/(wB)) nodes, T has O(n/(wB)) nodes. It thus follows that our structure
occupies O(n/(wB)) space overall.

To perform a probe, we simply search 7" with g. The cost is clearly O(|g]) =
O(lg|/(wB)). To insert a long string s of length I, we first obtain its blocked string
sin O(l/(wB)) = O(]8|) I/Os. Then, insert § in T using O(]§|) I/Os. Specifically, at
the node of §; (¢ > 1) in T', we can identify the node of s;;; in constant time (by ex-
ploiting the short-string structure on §;), or create it in constant time if it does not exist.
The deletion algorithm is analogous.



3 One-Error Dictionary Search

This section serves as a proof for our main result:

Theorem 2. A set D of strings (each with an integer id) can be stored in a structure of
O(n/B) blocks, where n is the total length of all the strings in D, such that a 1-error
dictionary search query can be answered in O(1+ 5 + %) 1/Os, where m is the length
of the query string, and k is the number of qualifying strings. To insert/delete a string
with length 1 in D, the structure can be updated in O(l) expected I/Os.

We will focus on finding those strings s € d with 1 edit distance from a query string
q (the string with 0 edit distance, if exists, can be found by exact matching). There are
only 3 possibilities: an insertion, deletion, or a replacement of a character turns s to ¢—
in these cases s is said to be an insertion, deletion and replacement match, respectively.
We will concentrate on insertion matches in Section 3.1-3.3. The other types of matches
can be reported using similar techniques, which are omitted from this extended abstract
due to the space limit.

3.1 Signature Edits

We define an insertion match s to be an appending match if we can add a character
at the end of s to turn it into q. Otherwise, s is a non-appending match. For instance,
given ¢ = 11110, s = 1111 is an appending match, while s = 1110 is a non-appending
match. We will focus on reporting non-appending matches, because there is at most one
appending match, as can be found by exact matching after trimming the last character
of q.

Consider an insertion that turns a non-appending match s to g. Denote the insertion
as (s, 1, ¢) if it adds character ¢ before s; for some ¢ € [1, |s|]. Recall that there can be
multiple such insertions. We define (s, i, ¢) to be a signature insertion if ¢ # s;. It turns
out that only one insertion can be signature:

Lemma 3. Every non-appending match s has a unique signature insertion that turns s
into q.

Proof. We first prove that s can be turned into ¢ by a signature insertion. Since s is
a non-appending match, there exists an ¢ € [1, |s|] such that (s, i, c) turns s into ¢. If
¢ # s;, then this insertion is signature. Otherwise, let j > i be the smallest integer such
that s;_; # s;. Such j definitely exists; otherwise, we can append c to s to turn it into
g, contradicting the fact that s is non-appending. Thus, (s, j, ¢) is a signature insertion.

We now prove that there is only one signature insertion. Assume that s has two:
(s,i1,c1) and (8,42, ca) with i1 < i, both of which convert s to ¢. From (s, i1, ¢1), we
know q;, = c1 # s;,. However, from (s, iz, c2), we know that q;_(j,—1) = S1..(i,—1)>
implying that ¢;, = s;,, giving a contradiction. 0



3.2 Short Strings

In this subsection, we describe a structure for a dictionary D that has only short strings
(i.e., length at most wB — 2). Consider a string s € D. Obviously, s has |s| signature
insertions: for each i € [1, |s|], the i-th signature insertion adds the opposite of s; before
s;. Let N7 (s) be the set of strings obtained by applying those signature insertions on
s, respectively. We have:

Lemma 4. ([Nt (s)| = |s| and N (s) is exactly the set of strings for which s is a
non-appending match.

Proof. [Nt (s)| = |s| is because any two signature insertions turn s into different
strings. It is obvious that s is a non-appending match of every string in N (s). Fi-
nally, by Lemma 3, every string of which s is non-appending match belongs to N/ (s).

O

Structure. Let us first make a disjoint-neighbor assumption: for any two s # s’ in
D, Nt (s) and Nt (s') are disjoint. Let D' be the union of N (s) of all s € D. By
Lemma 4, D" can have at most ) _, |s| = n strings. Clearly, a query string ¢ has
a non-appending match in D if and only if ¢ € DT. Next we utilize this fact to find
the non-appending match of ¢ efficiently (there is only one match under the disjoint-
neighbor assumption).

We maintain a stable perfect function h™ on D™ using Lemma 1 (notice that
all strings of D have length at most wB — 1). The representation of 4™ occupies
O(1 + 55 1g(wB)) = O(n/B) space. Recall that h* maps each string st € D" to a
distinct integer in [2n]. We create an array AT of size 2n to record signature insertions.
Specifically, for each s € DT, AT[hT(sT)] stores a pair (id(s),1) if (s,4,c) is the
signature insertion generating s*, where id(s) gives the id of s. Each cell of AT can
be stored in a word. Overall, A uses O(n/B) blocks. Finally, we build a structure of
Theorem 1 on D so that exact matching in D can be done efficiently. The total space of
our structure is therefore O(n/B).

Given a string g, we search for its non-appending match as follows. First, locate cell
AT[hT(q)] in constant I/Os. If nothing exists in the cell, ¢ ¢ D™ and hence, has no
non-appending match. Instead, suppose that A™[h*(q)] contains a pair (id(s),4). We
obtain a string ¢’ from ¢ by deleting ¢;, and perform exact matching with ¢’ in D using
constant I/Os. If s is found, we return its id; otherwise, ¢ has no non-appending match.?
The total query time is O(1).

Update. We discuss only insertions because a reverse procedure supports deletions. To
insert a (short) string s, we first insert it in the exact matching structure (on D) using
O(1) expected I/Os (Theorem 1). Then, keeping s memory-resident, we can generate
each string sT € A" (s) in memory. For each s™ with signature insertion (s, 7, c), cal-
culate h*(s™) and store (id(s), ) at AT[hT(sT)] in constant expected I/Os (Lemma 1).
Therefore, the total insertion cost is O(|]N T (s)|) = O(1) I/Os expected.

Eliminating the Disjoint-Neighbor Assumption. We first need to solve a related
problem we call find-all-any. Let r be an integer satisfying 0 < r < w, and define

% The exact matching with ¢’ is for detecting the scenario where ¢ # s* but R (¢) = ™ (sT).



¢ = lg(wB) + r. Let g < CwB/¢ for any constant C' > 0, and 51, ..., S, be g sets
of integers in [wB]. Each integer in any S; (1 < i < g) is associated with an arbitrary
information field of r bits. We want to maintain a structure to support the following
operations efficiently:

— givenani € [1, g|, insert/delete an integer in .S;, as well as its information field.

— find-all(i): given an ¢ € [1, g, return the information fields of all the integers in
Si.

— find-any(i): givenan i € [1, g|, return an arbitrary integer in \S; and its information
field.

Lemma 5. Let L = >"7_,|S;|. There is a structure of O(1 + %) space supporting
an insertion/deletion in O(1) expected I/Os, find-any in O(1) I/Os, and find-all in
o1 + 2=y yos.

Proof. We say that S; is small if |S;| < wB/(2¢), and big if |S;| > wB/¢. S; is
neither small nor big when wB/(2¢) < |S;| < wB/¢. We follow the invariant that
all small sets are together managed by a B-tree U. In U, the integers (of the small sets)
are first sorted by the sets they come from, and then by their values. In other words,
each integer corresponds to a composite key (set-id, value), which fits in O(lg(wDB))
bits. The information field of an integer is stored in the same leaf node with the inte-
ger. Each leaf node contains ©(wB/¢) integers. It will be guaranteed that U manages

O((wB/)?) integers, and thus occupies O( (1:’”%/ ;‘22) = O(wB) blocks. Hence, each

block pointer within U can be stored in O(lg(wB)) bits. We therefore can set the fanout
of U to ©O(wB/ lg(wB)) so that U has only constant levels.

Each big set S; is stored in a big structure, which consists of a hash structure (e.g.,
[9]) and a linked list. The hash structure is created on the integers of .S;, whereas the
linked list contains these integers (i.e., each integer has two copies: in the hash structure
and linked list, respectively) as well as their information fields. The ordering in the
linked list is not important, as long as each block accommodates ©(wB/¢) integers
and their information fields. At all times, for each integer, we let its copies in the hash
structure and the linked list keep pointers to each other. This allows us to reach the copy
in the linked list in constant I/Os.

When S; is neither big nor small, it can be stored either in U or a big structure.
Hence, U can index O(g(wB/$)) = O((wB/¢)?) integers.

Next, we explain how to insert/delete an integer x in S;. First, if .S; is currently
stored in U, we insert/delete  in U using O(1) I/Os. Otherwise, update the hash struc-
ture and linked list on .S; in O(1) expected I/Os. In the linked list, we sometimes need
to split a block or merge two blocks to ensure @(wB/¢) integers per block. Each
split/merge incurs O(wB/¢) 1/Os to correct the pointers between the hash structure
and linked list. By standard techniques (e.g., as in updating a B-tree), this happens
only after £2(wB/¢) updates, so that each update is charged only constant I/Os for the
split/merge. S; may become big when it is in U, or conversely, become small when it
is in a big structure. In either case, we perform an overhaul to move the entire S; into
a big structure or U respectively using O(wB/¢) 1/Os. As at least wB/(2¢) updates
must have occurred between two overhauls, each update is charged only constant I/Os




for an overhaul. Therefore, overall an update requires constant expected I/Os amortized.
The amortization can be easily removed using lazy rebuilding techniques of [14] (see
also [2]).

The other two operations can be supported efficiently. To perform find-all(i), we
simply search U or scan the linked list on .S;, depending on where .S; is stored. In either
case, the cost is O(1 + ﬂ%“ ), recalling that U has O(1) levels. Finally, to perform
find-any (i), we simply return the first integer of S; in U or its linked list. The cost is

clearly O(1). 0

Next, we remove the disjoint-neighbor assumption. Define D" again as the union
of N'"(s), i.e., having discarded all duplicates. Divide [2n] into [2n/B] intervals (a.k.a.
chunks) of size B. Consider a string sT € D™, which may now belong to the N (s)
of several s € D. In other words, multiple signature insertions may have generated s™.
Let E+(s™) be the set of those signature insertions.

Recall that every signature insertion has the form (s, 7, ¢). A crucial observation is
that all signature insertions in E7* (sT) differ in their values of i. To prove this, first
notice that no two signature insertions in E*(s) can have come from the same s,
according to Lemma 3. Next, assume that £ (s*) had signature insertions (s1,1, c1)
and (s2,1,co) with s1 # so. Notice that ¢; must be identical to cq, because both of
them were equal to (s+)l It thus follows that s; had to be the same as s, giving a
contradiction.

Because of the previous observation, we will sometimes regard E*(s) as a set of
integers: {i | (s,i,¢) € E*(s™)}. Further, we associate ¢ with an information field
id(s) where s is the unique string such that (s, 4,c) € E*(sT). Clearly, i and id(s) can
be stored in lg(wB) and w bits, respectively.

For each chunk, we store at most B sets of integers, namely, a set £ (s+) for every
st whose h'(s1) is covered by the chunk. We index these sets with a find-all-any
structure of Lemma 5. To see that this is possible, set » = w and hence ¢ = lg(wB)+w,
in which case a find-all-any structure can manage up to g = CwB/¢ = C lg('l;ﬂ%
sets where C' > 0 can be any constant. In other words, it can indeed be used to manage

B sets because B = O(lg@;"%) (applying w = 2(lg B)).

Therefore, by Lemma 5, the find-all-any structure of a chunk uses O(1 + é) space
where L is the total size of those sets. As there are O(n/B) chunks, the structures
of all chunks require O(n/B) space altogether. We also build all the structures as were
necessary when the disjoint-neighbor assumption was made. The only difference is that,
at each cell AT [h*(s)], we store an arbitrary pair (id(s), i) where (s,4,c) € ET(sT).

A query is answered as before, except that after finding the match of ¢’ in D, we re-
portall the string ids in E*+ (h*(q)) using a find-all operation which performs O(1+ %)
I/0s by Lemma 5. This is correct because, by definition, all the signature insertions in
E*(h*(q)) generate exactly ¢. To insert a length-{ string s, we proceed as before, but
also perform an insertion in the find-all-any structure of a relevant chunk for each sig-
nature insertion (s, 4, ¢). The algorithm of deleting a string s is also the same as before,
except that if s happens to be the string whose id is in cell AT[hT(s7)], we perform
a find-any to extract another element from E*(s™) to fill in the cell. By Lemma 5,
the above changes incur only constant expected I/Os per signature insertion, and hence,
O(!) time in total.



Now we have arrived at:

Lemma 6. We can store D in a structure of O(n/B) blocks such that all insertion
matches of a short query string with length at most wB can be performed in O(1 + %)
1/Os, where k is the number of qualifying strings. To insert/delete a short string with
length l in D, the structure can be updated in O(1) expected I/Os.

Remark. When Y is not binary, the space consumption of our structure increases by a
factor linear to | Y], and hence, remains O(n/B) when | X| = O(1). The major change
is that, for each string s and each ¢ € [1,]s|], there are | Y| — 1 signature insertions,
namely, (s, 4, c) for every possible ¢ # s; in X. Accordingly, N'*(s) has size |s|(| 2| —
1) = O(|s|). Furthermore, the length of a short string should be defined instead as
C' - wB for some appropriate 0 < C' < 1, making sure that a short string fits in one
block (each character of X' is now encoded by log, | X| = ©(1) bits). The other changes
are obvious and therefore omitted.

3.3 Long Strings

This section explains the structure for long strings, each of which has length at least
wB. We divide these strings by their lengths, and manage each group of strings with
the same length separately. Our discussion below concentrates on a particular length [.
For convenience, let p = wB — 2, and we will assume that [ = A\p — 1 for some integer
A > 2. If not, we pad enough (at most p — 1) 0’s at the end of each string to make
the property hold. The padding can increase the space, query, and update costs of our
structure by no more than a constant factor, as will be clear shortly.

Searching the Blocked Strings. Following the notation in Section 2.2, given a long
string s, we denote its corresponding blocked string as s. Recall that 5 is obtained by
chopping s into blocks of size p. We may regard each character of 5 as being in an
alphabet X of size 27, or equivalently, as a binary string of length at most p, whichever
is more convenient. When the second interpretation is adopted, s; is a bit in 5; where
i€[1,]s[Jand j = [i/p].

We denote by 5 as the reverse string of s (e.g., if s = 10010 then 5 = 01001). Just
like s, 5 also has its blocked string 5.

Consider a string ¢ of length [ + 1. Let s be a non-appending match of ¢. Note that
both 5 and ¢ have length A (as long as p > 2). According to Lemma 3, there exists a
unique signature insertion (s, ¢,c) that converts s to q. Let j = [i/p]. Depending on
the value of j, we define a binary string ¢*(j):

- If j = A, then ¢*(j) = ¢». In this case, |¢*(j)| = p.
— Otherwise, ¢*(j) is the string obtained by appending the first character of ¢;11 to
g; (viewing both ¢; and ;11 in binary form). In this case, |¢*(j)| = p + 1.

For example, suppose p = 3 and ¢ = 110100; thus, if j = 1, then ¢*(j) = 1101,
whereas if j = 2 then ¢*(j) = 100. The next lemma gives a crucial observation.

Lemma 7. Let s be a non-appending match of q with signature insertion (s, 1, c). De-
fine j = [i/p]. All the following are true:



(i) $1.G-1) = Qu.(j-1)
(il) $1..(x—j) = T1..(0—y)
(iii) §; is a non-appending match of ¢*(j).

Proof. By the definition of ¢, it holds that sy ;1) = q1..(;—1)> and 8i. 1 = q(i11)..(14+1)-
The latter suggests S1._(1—i+1) = q1..(1—i+1)-

(i) Notice that p(j — 1) < i — 1. Thus, 51, (j_1) = G1..(;—1) holds because they (in
binary form) are prefixes of the same length of s ;1) and gy ;1) respectively.

(ii) First observe that p(A — j) <1 — i+ 1: since pA = [ + 1, this is equivalent to
showing 7 < jp, which is true by the definition of j. Hence, §1“(>\_j) = 51“()\_]-) holds
because they are prefixes of the same length of 51 ;1) and q;_ ;_;1), respectively.

(iii) We focus on j < A because the case j = A is obvious. We will abbreviate ¢*(j)
simply as ¢*. Since §; is clearly an insertion match of ¢*, what remains to prove is
that it is not an appending match. The remainder of the proof will regard 5; as a binary
string. Let ¢/ = ¢ — p(j — 1), namely, ($;) is the same character as s;.

Now assume that §; was an appending match of ¢*. Let ¢’ be the last character of ¢*.
It thus follows that 5; : ¢/ = ¢* (where “:” means concatenation), implying (5;); = ¢J.
On the other hand, the fact that (s, 4, ¢) turns s to ¢ implies ¢ = ¢J;. It thus follows that
¢ = (8;)ir = s, violating the definition of (s, 7, ). 0

Structure. Let D(1) be the set of blocked strings § of all s € D with length . Likewise,

let D(1) be the set of blocked strings 5 of all such s. Regarding each blocked string as
consisting of characters from X (of size 2°), we build a trie T’ on f)(l) and another trie
T on D(I).

Consider a blocked string § € D(l), and the corresponding 5 € D(l). Recall that
both 5 and 5 have length ). For each j € [1, ], we do the following. First, identify the
node u in T" corresponding to 5y (;_1), and the node u in T corresponding to §1__(A,j).
Insert §; to a set S(u, @), which is therefore a set of short strings (when viewed in binary
form). We build a structure of Lemma 6 on S(u,@); let us represent this structure as
P (u,n), referred to as a P -structure.

Finally, we need a structure that, given any (u, @), returns the beginning address of
P*(u,w) in constant time. For this purpose, it suffices to maintain a standard dynamic
hash structure (e.g., [9]) on the pair of addresses of u and w; we will refer to it as the
P~ -lookup structure.

Update. The algorithm for inserting a string of length [ follows directly from the above
description. The cost is O(=5 - wB) = O(l) expected by Lemma 6 and our earlier
discussion on maintaining a trie on blocked strings. Deletion is analogous.

Query. Given a string ¢ of length I 4+ 1, we find its non-appending matches as follows.
For each j € [1, \], we identify the node u in T corresponding to q1..(j—1)» and the

node % in T corresponding to 51“( A—j)- Report all the non-appending matches of ¢* ()
in S(u,@). The algorithm’s correctness is established by the next lemma.

Lemma 8. Every non-appending match of q is reported exactly once.

Proof. Lemma 7 shows that every non-appending match of ¢ must be reported at least
once. Next we prove that no non-appending match s can be reported twice. For this

10



purpose, let (s, i, c) be the signature insertion that converts s to ¢, and let j* = [i/p].
We will prove that, for any j' # j*, our algorithm does not report s when j = j'. In
other words, s is reported only when j = j*.

Suppose on the contrary that s was reported at j', i.e., §; is a non-appending match
of ¢*(j7). We can easily rule out the possibility of j* < j*. This is because, by the
definition of ¢ and j*, §;; must be equivalent to ;- for every j' < j*, implying that §;/
is an appending match of ¢*(j').

Consider j > j*. By the definition of (s, 7, ¢), we know ¢; = ¢. Since s is reported
by our algorithm when j = 5/, §;,_; and ¢;—1 must correspond to the same node in
trie T', implying that 51 (,(j—1)) = q1..(p(jr—1))- As i < pj* < p(j' — 1), we have
s; = ¢;, namely, s; = ¢, thus violating the definition of (s, , ¢). 0

Analysis. To bound the space of our structure, let ¢’ be the number of length-{ strings in
D, and n' = 'l be the total length of these strings. The analysis in Section 2.2 shows
that each of T and T uses O(% + %) = O(%) space.

Next we discuss the space of the PT-structures. Consider a pair (u,u) whose
S(u, ) is non-empty. Note that there are at most O(n//(wB)) such (u,%) because
a string s € D of length [ can necessitate O(l/(wB)) such pairs. Let ¢(u, @) be the
number of strings in S(u, %), and n(u, u) be their total length. By Lemma 6, P (u, )
occupies O(n(u, )/ B) blocks. Therefore, the space of all the P -structures is at most

n(u, )
o(1+252)

(u, @) with non empty S(u, @)

-0 (;”‘B T %) =0(n'/B).

Finally, the space of the P -lookup structure is linear to the number of non-empty
sets S(u,u); as there are O(n’/(wB)) non-empty sets, the PT-lookup structure oc-
cupies O(n'/(wB?)) space. A query searches O(I/(wB)) P*-structures. Combining
Lemmas 6 and 8 proves that the query time is O(-l; + %) overall.

We thus have established:

Lemma 9. We can store D in a structure of O(n/B) blocks such that all insertion
matches of a length-m query string can be found in O(1 + 5 + %) 1/Os, where k is
the number of qualifying strings. To insert/delete a long string with length | in D, the
structure can be updated in O(l) expected I/Os.

Remark. The double-trie idea is due to [5], but the challenge in our contexts is to make
the idea work on blocked strings. For this purpose, it is crucial to derive Lemmas 7 and 8,
both of which rely on the notion of signature edits and the separation of non-appending
matches. The two lemmas, notion, and separation are where our contributions lie.
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