
Range Thresholding on Streams

Miao Qiao

Massey University
New Zealand

m.qiao@massey.ac.nz

Junhao Gan

University of Queensland
Australia

j.gan@uq.edu.au

Yufei Tao

University of Queensland
Australia

taoyf@itee.uq.edu.au

ABSTRACT

This paper studies a type of continuous queries called range
thresholding on streams (RTS). Imagine the stream as an
unbounded sequence of elements each of which is a real
value. A query registers an interval, and must be notified
as soon as a certain number of incoming elements fall into
the interval. The system needs to support multiple queries
simultaneously, and aims to minimize the space consumption
and computation time.

Currently, all the solutions to this problem entail quadratic
time O(nm) to process n stream elements and m queries,
which severely limits their applicability to only a small num-
ber of queries. We propose the first algorithm that breaks the
quadratic barrier, by reducing the computation cost dramat-
ically to O(n+m), subject only to a polylogarithmic factor.
The algorithm is general enough to guarantee the same on
weighted versions of the queries even in d-dimensional space
of any constant d. Its vast advantage over the previous meth-
ods in practical environments has been confirmed through
extensive experimentation.

CCS Concepts

•Information systems → Stream management;

Keywords

Range Thresholding; Streams; Algorithms

1. INTRODUCTION
Stream processing is an important topic, especially in to-

day’s big-data environments where applications with gigantic
update volumes abound. Continuous queries [1, 2, 8, 17, 21]
constitute a major analytical tool on stream data. Unlike
queries in a traditional DBMS whose results are determined
by the current state of the database, a continuous query is a
long-running operation that monitors the incoming traffic in
a non-stop manner, and triggers time-critical actions when
certain conditions are fulfilled.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA

c© 2016 ACM. ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2915965

This paper studies a new type of continuous queries that
we call range thresholding on streams (RTS). For a basic one-
dimensional version, consider the stream as an unbounded
sequence of elements e1, e2, e3, ..., where each element ei
(i ≥ 1) carries:

• a value v(ei), which is a real number

• a weight w(ei), which is a positive integer.

A query q specifies an interval Rq = [x, y] and an integer
τq ≥ 1. Let S(q) be the set of stream elements e that

• are received after q is registered in the system, and

• have value v(e) falling in Rq.

The query matures when the total weight of the elements
in S(q) exceeds τq for the first time. The system’s job is to
capture the maturity of q in real time. The challenge is to
scale well to a huge number of simultaneous queries, in terms
of both space and computation cost.
An RTS query, intuitively, detects when the interval Rq

becomes a“hot spot”, by having accumulated a total weight of
τq. It is a crucial building brick in applications that demand
rapid responses to such hot spots. As an example, in stock
trading, a fund manager pays close attention to the trading
volumes in sensitive price ranges. In particular, substantial
selling may be an early sign of a significant price downfall.
The manager must receive timely alerts about this, for which
purpose a typical RTS query q has the form:

“Alert me when τq = 100, 000 shares of AAPL (Apple
Inc.) have been sold in the price range Rq = [100, 105]
from now.”

Relevant to the query is the stream where each element e is
an AAPL trading transaction with v(e) equal to the selling
price, and w(e) equal to the number of shares sold. The
maturity of such a query is a key factor in various financial
models, whose outcome plays a vital role in trading decisions.
The system must support a large number of queries of this
sort, each with its own Rq and τq.
RTS may look deceptively easy at first glance: whenever

a new element e arrives, check whether v(e) is in Rq; if
so, increase the weight of Rq by w(e)—clearly, a constant
time operation overall. This method, unfortunately, scales
poorly to the number m of queries running at the same
time: now it costs O(m) time to process e. The total cost
of processing n stream elements thus becomes a prohibitive
quadratic term O(nm). This implies that the method is
computationally intractable when m is large. Surprisingly,

in spite of the fundamental nature of RTS and the obvious
defects of “conventional solutions” like the above, currently
no progress has been made to break the quadratic barrier.

Even less is understood when the dimensionality d departs
from 1, in which case v(e) and Rq become respectively a point
and a rectangle in d-dimensional space, as in the following
query q:

“Alert me when τq = 100, 000 shares of AAPL have been
sold by transactions e satisfying

• the selling price of e is in [100, 105], and

• when e takes place, the NASDAQ index is at
4,600 or lower.”

Here, v(e) is a point (price, NASDAQ), whereas Rq is the
rectangle [100, 105]×(−∞, 4600] in the same two-dimensional
space. It is straightforward to design an O(nm) time algo-
rithm, but how to escape the quadratic trap is even more
elusive.

Our Contributions. We present the first algorithm that
circumvents the quadratic barrier for any constant dimen-
sionality d. Our algorithms process m queries and n stream
elements in a total of Õ(n+m) time—where notation Õ(.)

hides a polylogarithmic factor—namely, Õ(1) time per query
and element amortized. Apparently, Ω(n+m) time is compul-
sory even just to see each query and element once. Therefore,
our algorithm is asymptotically optimal up to only a poly-
logarithmic factor.

Perhaps even more interesting are the techniques we have
devised to bring about the major improvement. The most
crucial discovery is an observation on the connection be-
tween RTS and another surprisingly remote problem called
distributed tracking [9] (a detailed account of which will ap-
pear in Section 3.1). The observation then leads to the
development of a novel algorithmic paradigm which, we be-
lieve, serves as a powerful weapon for implementing real-time
triggers such as RTS.
This paper also features an extensive experimental eval-

uation of the proposed techniques. The results are fully
aligned with our theoretical analysis: our algorithm is faster
than conventional approaches by a factor up to orders of
magnitude.

Paper Organization. Section 2 formally defines the RTS
problem. Section 3 reviews the previous work related to ours.
Sections 4-7 describe our RTS algorithms, and prove their
theoretical guarantees. Section 8 empirically compares the
proposed solutions to alternative methods. Finally, Section 9
concludes the paper with a summary of our findings.

2. PROBLEM FORMULATION
We now encapsulate all the definitions in Section 1 into

a coherent framework. Given a constant integer d ≥ 1, we
consider the data space R

d, i.e., the d-dimensional Euclidean
space where each dimension has a real-valued domain R.
The data stream is an unbounded sequence of elements,

where the i-th (i ≥ 1) element is denoted as ei, and is said
to arrive at time i. Each element e carries two fields:

• A point v(e)—called the value of e—in the data space;

• A weight w(e) which is a positive integer.

An RTS query q specifies a d-dimensional axis-parallel
rectangle Rq and an integer threshold τq ≥ 1. If the query is
issued after receiving ej (for some j ≥ 1) and t is an integer
larger than j, we use S(q, t) to represent the set of elements
among ej+1, ej+2, ..., et that are covered by Rq, i.e.,

S(q, t) = {ei | j < i ≤ t and ei ∈ Rq}.

Define:

W (q, t) =
∑

e∈S(q,t)

w(e) (1)

which sums up the weights of all the elements in S(q, t). Since
every w(e) is positive, W (q, t) monotonically increases with
time. The maturity time of q is the smallest j′ making the
following hold

W (q, j′) ≥ τq

at which moment the query matures.
Let n be total number of stream elements so far, i.e.,

the length of the stream at this point. For convenience, we
abbreviate S(q, n) as S(q), and W (q, n) as W (q).
The system allows two operations:

• Register(q): Accept a query at the current moment
(after the arrival of en).

• Terminate(q): Stop and eliminate a query.

A query, which has been registered but not terminated, is
alive. We denote by Q the set of alive queries. For every
query q ∈ Q, the system must report the maturity of q at its
maturity time. Such a query is then automatically removed
from the system with a Terminate operation.
Denote by m the total number of queries ever registered

in history. The system’s efficiency goal is to entail total
computation cost of Õ(n+m). In addition, we require that it

should consume Õ(malive) space at all times, where malive is
the number of queries alive currently. This essentially implies
that one cannot hope to store too many stream elements (if
any at all).
This completes the definition of the RTS problem. A

special instance—which we refer to as counting RTS—arises
when w(e) = 1 for all the stream elements e. Later, we
will discuss first the counting version, which allows us to
elaborate on our central ideas, before including the extra
details to solve the general RTS problem.

3. RELATED WORK
Section 3.1 discusses how RTS can be tackled using known

techniques. Section 3.2 presents an introduction to the dis-
tributed tracking problem. Finally, Section 3.3 surveys other
research that is relevant, but to a less extent.

3.1 Existing RTS Solutions
Section 1 has already mentioned a baseline approach for

solving the RTS problem, which maintains the precise value
of W (q) for all alive queries q. Given an incoming stream
element e, it simply checks whether v(e) ∈ Rq, and if so,
increases W (q) accordingly. This approach demands the
minimum amount of space O(malive), but incurs O(malive)
time processing e. It is easy to see that in the worst case its
overall computation time can be as high as O(nm).

Query indexing has become a standard method to tackle
continuous queries. The rationale is to create an index struc-
ture on the queries (unlike a conventional database where
indexes are on data). Each arriving stream element trick-
les down the index, and updates the relevant information
therein. This motivates a better RTS approach that main-
tains a structure on the set Q of alive queries to support the
stabbing operation:

Given a point v in the data space R
d, report the set of

queries q ∈ Q such that v ∈ q. These queries are said
to be stabbed by v.

Such operations have been very well studied (see [20] for a
full summary of the past results). In one-dimensional space,
the interval tree [12] consumes O(|Q|) = O(malive) space,

supports an insertion/deletion in Õ(1) time, and performs a

stabbing operation in Õ(1 + k) time, where k is the number
of queries reported. Using standard layering techniques (see
Chapter 5.3 of [12]), the interval tree can be extended to d-
dimensional space, by paying a logarithmic factor in the space,
update, and query overhead. For constant d, the resulting
structure uses Õ(malive) space, supports an update in Õ(1)

time, and allows a stabbing operation in Õ(1 + k) time. For
practical data, the R-tree [5, 16] is a dynamic structure that
may exhibit satisfactory efficiency for the stabbing operation,
although no attractive worst-case guarantees exist on updates
and queries.
Given such an index, the stabbing approach launches, for

each stream element e, a stabbing operation to find the
queries stabbed by v(e). Every such query q then has its
W (q) increased by w(e). The stabbing approach is still
captivated by the quadratic trap because the value of k—the
number of queries stabbed by an incoming element—can be
as large as m in the worst case, and thereby, necessitating
O(nm) time overall. However, better efficiency is expected
in practice because, with a more careful analysis, one can
easily show that the cost of the approach is bounded by
Õ(n) +O(m · τmax), where τmax is the largest threshold of
all queries. When viewed this way, the quadratic trap takes
up a different form, i.e., with respect to m and τmax.

3.2 Distributed Tracking
This problem is defined in a distributed environment with

h + 1 sites: one of them is the coordinator q, while the
rest are participants s1, s2, ..., sh. Communication exists
between only the coordinator and the participants, whereas
the participants do not talk to each other.
Each participant si (1 ≤ i ≤ h) has an integer counter

ci. Initially, all the counters c1, c2, ..., ch are 0. At every
timestamp, at most one of those counters gets increased by 1—
in other words, it is possible that no counter is incremented,
but never more than one. The coordinator’s job is to report
maturity when the following condition holds

h∑

i=1

ci = τ

where τ > 0 is an integer. To achieve the purpose, an
algorithm instructs the sites to send messages strategically.
The goal is to minimize the messaging cost, measured in the
number of words transmitted.
A straightforward solution to this problem is to have a

participant inform the coordinator whenever its counter in-
creases. The total communication cost is apparently τ bits,

which is expensive if τ is large. The problem admits another
algorithm [9] that requires the communication of O(h log τ)
words. Note that this is far less than τ bits when τ is (realis-
tically) much larger than h. Next, we describe the algorithm
in full.

First, if τ ≤ 6h, then solve the problem using the straight-
forward solution by sending O(τ) = O(h) words.
Consider now τ > 6h. The coordinator q sends to every

participant si (1 ≤ i ≤ h) the value which we call the slack:

λ = ⌊τ/(2h)⌋. (2)

This requires h messages. Then, si intermittently sends a
one-bit signal to q according to the following rule:

Let c̄i be the counter value at the time of the last signal
to q (0, if no signal yet). Send a signal, as soon as
ci − c̄i = λ.

The coordinator keeps track of the number of signals received.
When the number reaches h, it collects the precise counters
from all the participants using h messages, and calculates:

τ ′ = τ −
h∑

i=1

ci.

This finishes a round.
Notice that, at this moment, we are facing the same prob-

lem but with a reduced τ = τ ′. The algorithm recursively
solves it as above. Eventually, the value of τ drops to at
most 6h, in which case the problem is settled with a final
round using the straightforward approach.
Each round clearly necessitates O(h) messages. It is not

hard to verify from τ > 6h that τ ′ ≤ 2τ/3, implying that the
total number of rounds is O(log τ). This explains why the
total messaging cost is O(h log τ) words.

3.3 Other Relevant Research
This subsection reviews several topics related to RTS,

paying an effort to provide a chronological view on their
development.
Triggers, a form of which RTS can be though of as, are

one of the oldest concepts in database systems. As taught in
standard textbooks, a conventional trigger typically serves a
“passive” role, which is to ensure certain integrity constraints
on the underlying relations. In the 1990’s, the community
started to introduce novel, more sophisticated, forms of trig-
gers that allow a database to activate itself in response to
a great variety of events. The functionalities of those “ad-
vanced”triggers eventually escalate to a level such that people
decided to call them event-condition-action rules. Efficient
implementation of such rules in DBMS has been extensively
studied in the literature of active databases; see [11, 19] for a
nice introduction.

Early research assumed datasets with low insertion/deletion
frequency. Since the emergence of update-intensive appli-
cations at the beginning of the century, stream processing
has been a major subfield in the database area. Continuous
queries—a concept that, interestingly, had its first appear-
ance in non-stream days [21]—are a main focus in the research
of modern systems for managing stream data (e.g., [1, 2, 8,
17]). Our work also belongs to this line of research.

Triggers were revitalized on streams. This was reflected
not only in the community’s endeavor to implement triggers
to meet the new efficiency requirements [7], but also in the

creative use of triggers to build innovative application plat-
forms, perhaps most notably, publish/subscribe systems; see
some representative works [8, 14, 15, 18, 23] and the refer-
ences therein. Such a system is built on a stream of elements
(e.g., tweets, news articles, product orders, etc), only some
of which may be interesting to a user. Instead of “publishing”
everything, the system allows the user to “subscribe” to par-
ticular information. A subscription is essentially a trigger,
specifying when the system should push information to the
user, and if so, what information to push.
RTS, if not treated entirely as a continuous query, may

also be counted as a stream trigger, or a form of content
subscription. In the sense of the former, the user issuing
an RTS query should get an alert at the query’s maturity
time. In the sense of the latter, on the other hand, the user
implicitly subscribes to a form of information aggregated from
the elements flowing through the system. Regardless of the
perspective, however, RTS is unique in its own, especially
given the fact that there does not exist an efficient algorithm—
not counting the ones in Section 3.1 with the quadratic time
complexity.
Finally, we note that active databases have also be reju-

venated on streams, yielding another line of research under
the theme of complex event processing; see [10, 13, 22] for
entry points of reading into this subfield. Our work comple-
ments that subfield by adding RTS as another “efficiently-
supportable” atomic event type.

4. THE FIRST ALGORITHM
We will incrementally unfold our ultimate RTS algorithm.

Let us start by constraining the problem in two ways:

• Counting RTS with d = 1, that is, the value of each
stream element is one-dimensional, and its weight is 1.

• All the queries are registered at the beginning, namely,
before receiving the first element. No query is accepted
afterwards. Those queries remain alive until maturity.
This is called the one-time registration constraint.

The goal of this section is to settle the above restricted prob-
lem using Õ(malive) space at any moment, and Õ(n+m) time
overall. The imposed constraints permit us to concentrate on
explaining the most crucial ideas. Both constraints will be
eventually removed in later sections; and our final algorithm
still achieves the same space and query complexities.
To simplify our technical exposition, we will treat each

query interval Rq as [x, y), namely, open at the right end.
This assumption does not lose generality because, as a stan-
dard technique, a closed interval [x, y] can be regarded as
[x, y + ǫ) for an infinitesimal ǫ > 0.

The Endpoint Tree. Define Q∗ as the set of registered
queries. We create a binary search tree T on the endpoints
of the queries’ intervals; see Figure 1 for an example with 8
queries. The height of T is O(logm).
Every node u in T is naturally associated with a juris-

diction interval I(u) as follows. Consider first that u is a
leaf. Suppose that u stores an endpoint x, and u′—the leaf
succeeding u—stores x′ (= ∞ if u′ does not exist); then,
I(u) = [x, x′). Consider now u as an internal node with child
nodes u1, u2; then I(u) = I(u1) ∪ I(u2). As an example, in
Figure 1, the jurisdiction interval of leaf 8 is [8, 9), that of
leaf 16 is [16,∞), and that of u1 is [5, 9).

Let e be a stream element such that v(e) is at least the
leftmost endpoint in T (otherwise, e obviously can be safely
ignored). At each level of T , e is covered by precisely one
node u: the one with I(u) containing v(e). These nodes
can be easily found in O(logm) time by descending a single
root-to-leaf path.
Every node u in T stores a counter c(u), which equals

the number of stream elements covered by u. The counters
are initially set to 0, and maintained along with the arrival
of each element e: if I(u) covers v(e), increase c(u) by 1.
We then discard e forever—our structure does not store any
elements. It is thus clear that the maintenance takes O(logm)
time per element.
We refer to T as the endpoint tree. It is rudimentary to

construct it in O(m logm) time.

“Distributed” Tracking. We are ready to unveil how to
leverage the distributed tracking (DT) algorithm in Sec-
tion 3.2 for RTS.
Focus, for the time being, on an arbitrary query q ∈ Q∗.

Its interval Rq = [x, y) can be partitioned by the jurisdiction
intervals of nodes that constitute the canonical node set Uq.
This is the minimum set of nodes with disjoint jurisdiction
intervals whose union equals Rq. Uq contains at most 2 nodes
per level of T , implying that Uq = O(logm). For instance,
consider query q5 in Figure 1: Uq5 = {u1, u2, u3}. Given x, y,
it is a standard exercise1 to identify Uq in O(logm) time.
Next, we define a conceptual DT problem instance for q.

Set hq = |Uq|. There are hq “participants”, each of which is
a node u ∈ Uq. The counter of “participant” u is simply c(u).
The query q itself is the “coordinator”, whose mission is to
capture maturity when the following condition holds:

∑

u∈Uq

c(u) = τq.

Note that, by definition of Uq, the left hand side of the
equation is precisely W (q).
It must be emphasized that there is nothing “distributed”

in this conversion. All the processing happens on a single
machine in the context of RTS. The “distributed” viewpoint
is sheerly to allow the reader to borrow the knowledge from
Section 3.2 to see what is actually happening here.
We then “run” the algorithm in Section 3.2 to solve this

DT instance, by simulating all of its steps. Whenever c(u)
increases by 1, we reflect so by thinking that the counter of
the“participant”u has gone up by 1. Whenever the algorithm
instructs a“participant”u to send a message (of no more than
one word) to the “coordinator” q or the other way around,
we spend O(1) time to do so explicitly, so that both u and
q can maintain the same information as demanded by the
algorithm.
A piece of detail deserves a more careful look. In the

DT algorithm, every node u ∈ Uq keeps—as described in
Section 3.2—the counter value c̄q(u) at the time of the last

1Let z1 and z2 be the leaves storing x and y, respectively.
Identify the lowest common ancestor u of z1, z2. Then, invoke
the following procedure Add(u). In general, the procedure
first checks whether I(u) ⊆ [x, y). If so, it adds u to Uq and
finishes. Otherwise, it checks whether I(u) is disjoint with
[x, y). If so, it adds nothing and finishes. If not, it recursively
invokes Add(u1) and Add(u2), where u1 and u2 are the two
child nodes of u.

9 10 11 12 13 14 15 162 3 4 5 6 7 8

q1

q2

q3

q4

q5

q6

q7

q8

u1 u2

u3

1

Figure 1: One-dimensional endpoint tree

signal to q. The next signal from u takes place when

c(u)− c̄q(u) = λq (3)

where λq is the slack value given in (2). Node u needs
to inspect the above condition only when its counter c(u)
changes. Hence, every incoming element triggers such slack
inspection only at O(logm) nodes.
To analyze the computation cost, recall from earlier dis-

cussion that the time of maintaining the node counters is
O(n logm). The same cost applies to inspecting the slack
condition in (3). The rest of the DT algorithm is simulated
with O(1) time per “message”. We already know from Sec-
tion 3.2 that the algorithm needs O(hq log τq) messages to
solve the DT instance of q. Therefore, in the RTS context,
such messaging cost adds up to

O(hq log τq) = O(logm · log τq) (4)

in total.

Putting Together All Queries with Heaps. Every
query q ∈ Q∗ defines a DT instance as above, which is
solved by an instance of the algorithm of Section 2. In
other words, conceptually, there are m algorithm instances
in progress simultaneously. Our task is to implement such
“concurrent” execution efficiently on our sequential CPU.

Two immediate observations are helpful. First, the main-
tenance of node counters (i.e., c(u) of every node u in T) is
common to all instances. Therefore, such maintenance incurs
only O(n logm) time in total for m queries.

Second, the messaging cost of each query q is specific to q
itself, and is given by (4). Hence, the total messaging cost
of all queries is:

∑

q∈Q∗

O(logm · log τq) = O(m logm · log τmax)

where τmax the largest τq of all q ∈ Q∗.
It remains to discuss the cost of inspecting the slack con-

dition (3). Concentrate on an arbitrary node u. Let Q(u) be
the set of queries that have u in their canonical node sets. For
example, consider u2 in Figure 1: Q(u2) = {q2, q3, q5, q7}.
Carrying out the one-query strategy naively, when c(u)

changes, we would inspect the condition for all the queries
in Q(u). However, this, taking O(|Q(u)|) time, is overly

expensive, and will blow up the overall cost essentially to
quadratic again. We overcome this issue by inspecting only
one slack condition, instead of |Q(u)|, as explained next.

For each query q ∈ Q(u), define

σq(u) = λq + c̄q(u). (5)

Phrased differently, σq(u) indicates the future value of cq(u)
when the next signal from u to q should occur. For two queries
q1, q2 ∈ Q(u) such that σq1(u) < σq2(u), σq1(u) > c(u)
always implies σq2(u) > c(u). Namely, if a signal to q1 is not
necessary yet, neither is it to q2.

Motivated by this, we maintain the σq(u) of all the queries
q ∈ Q(u) in a min-heap H(u). Whenever c(u) changes, we
perform these steps:

1. Find the minimum σq(u) in H(u) in O(1) time.

2. If c(u) < σq(u), then we are done.

3. Otherwise, remove σq(u) from H(u), and instruct u
to send a signal to q (as in the DT algorithm). This
takes O(log |H(u)|) = O(logm) time. Then, repeat
from Line 1.

It is evident that the above steps run in

O(1 + x · logm) (6)

time, where x is the number of signals issued at Line 3.
We now bound the total cost of the 3 steps during the

entire algorithm, including all nodes and queries. The O(1)
term in (6) occurs O(n logm) times, because each stream
element can increase the counters of O(logm) nodes. To
bound the sum of the term x logm, we point out that the
total number of signals throughout the algorithm is

∑

q∈Q∗

O(hq log τq) = O(m logm · log τmax). (7)

Therefore, all the x logm terms add up to O(m log2 m ·
log τmax).
To complete the time analysis, we must note that H(u)

demands additional cost for the insertions and deletions
therein. Specifically, whenever the λq of a query q changes,
so does σq(u) for each u ∈ Uq; see (5). This incurs O(logm)
time to remove the old σq(u) from H(u) and to add back
the new one. The number of λq changes equals the number
of rounds in the DT algorithm for q, which as explained in
Section 3.2 is O(log τq). Hence, the total number of heap
insertions and deletions (over all queries, all nodes) is also
given by (7). Their cost is therefore O(m log2 m · log τmax).
Finally, as each query adds an entry in the heaps of

O(logm) nodes, the total space consumption is bounded
by O(m logm).

Handling Maturity. When a query q matures, we simply
remove its entry from the H(u) of all nodes u ∈ Uq, in
O(hq logm) = O(log2 m) time. This adds O(m log2 m) time
to the overall computation cost.

Recall that we aim to use Õ(malive) space at all times. Our

structure, as mentioned earlier, occupies Õ(m) space, which
can break the promise when malive ≪ m, namely, after many
queries have matured. Next, we explain how to deal with
the issue with global rebuilding.
When malive has decreased to m/2, we destroy the whole

structure, and re-start the entire algorithm from scratch

with respect to the remaining set Q of alive queries which,
importantly, have their thresholds adjusted. Specifically, for
each query q ∈ Q, we obtain W (q) (the actual number of
elements that have already arrived and fallen into Rq, as
defined in Section 2). The value of W (q) equals the sum of
the counters of all the nodes in Uq, and thus can be obtained
in O(logm) time. From now on, q matures after another
τq −W (q) subsequent elements get into Rq. We thus reset
its threshold to τq −W (q). After all the threshold resetting
is complete, we rebuild T in O(malive logmalive) time, after
which the algorithm runs as if the stream had just started.

One global rebuilding takes O(m logm) time in total. This
can be amortized on the m/2 queries that have matured,
so that each of those query bears O(logm) time. As each
query bears such cost only once, the total rebuilding cost is
O(m logm) for the entire algorithm.
If Q∗ is the set of queries alive at the moment of the

most recent reconstruction, the above approach ensures that
malive ≥ |Q∗|/2. Therefore, our space consumption now
becomes O(|Q∗| log |Q∗|) = O(malive logmalive), as desired.

Remark. We now have solved the simplified RTS problem
defined at the beginning of this section. Our algorithm guar-
antees O(malive logmalive) = Õ(malive) space at any moment,

and performs O(n logm+m log2 m · log τmax) = Õ(n+m)
time in total.

5. DYNAMIC QUERIES
This section will remove the “one-time registration” con-

straint, where queries are static in the sense that all of them
need to be registered at the beginning of the stream. Next, we
extend our algorithm of the previous section to the dynamic
scenario, allowing the Register and Terminate operations
defined in Section 2 at any time.

Termination. The data structure behind our algorithm—
namely the endpoint tree—easily supports a Terminate(q)
operation, in the same manner as removing a matured query.
Specifically, it suffices to delete the entry of q from the
H(u) of all nodes u ∈ Uq. This takes O(log2 m) time as
explained before. Note that the underlying binary search
tree T does not change after the termination (because H(u) is
a secondary min-heap associated with u). After m/2 queries
have disappeared (either matured or deleted), apply global
rebuilding as described in Section 4 to maintain the space
consumption Õ(malive).

Registration. Recall that T is built on the endpoints of the
query intervals. To terminate a query, we can afford to retain
the endpoints of the query’s interval in T , because this does
not affect the algorithm’s correctness (some redundancy is left
in the structure, but the extra space is affordable, as proved
earlier). To insert a new query with Register(q), however,
we must add the endpoints of Rq into T ; otherwise, the
node counters in T do not allow us to derive W (q) precisely,
making it impossible to detect its maturity.
Inserting the endpoints of Rq may trigger rebalancing

operations of T (i.e., splits or rotations, depending on the
binary tree implementation). Accordingly, the secondary
min-heaps will need to be reorganized, because rebalancing
may disrupt the canonical node sets of many queries. For
inquisitive readers, we mention that in theory this can be
dealt with using weight balancing techniques (see, e.g., [4]),

but the algorithm becomes too complicated to implement in
practice.

We circumvent this problem by resorting to another, much
more practical, algorithmic technique called the logarithmic
method [3, 6]. It is a generic framework that allows one to
convert a semi-dynamic structure supporting only deletions
to a fully-dynamic structure that is able to support both
deletions and insertions. In what follows, we explain how to
instantiate the framework in our RTS context.
Our indexing scheme now consists of g endpoint trees

T1, T2, ..., Tg satisfying all the properties below:

P1 g = O(logm).

P2 Every alive query is managed by one and exactly one
tree.

P3 Let malive(i) be the number of alive queries in Ti (1 ≤
i ≤ g). It must hold that malive(i) ≤ 2i−1. Note
that Ti is allowed to be an empty tree (i.e., merely a
placeholder) with malive(i) = 0.

At the very beginning, g = 1, and T1 is an empty tree.
Consider, in general, that the system receives a Register(q)
operation. We handle it with these steps:

1. Identify the smallest j ≥ 1 satisfying

j∑

i=1

malive(i) < 2j−1. (8)

If j does not exist, then set j = g + 1 (as we will see,
in this case a new endpoint tree will be created).

2. Collect all the alive queries in T1,T2, ...,Tj , together
with the new query q, into a set Q∗. For each query
q′ ∈ Q∗, obtain W (q′) from the endpoint tree where it
belongs. Reduce the threshold τq′ of q′ by W (q′).

3. Discard all of T1,T2, ...,Tj . Construct Tj on Q∗ from
scratch. From now on, Tj is responsible for the queries
of Q∗ (with thresholds modified), treating them as if
they were new with respect to the subsequent stream.

Note that (8) ensures that Tj obeys Property P3. Fur-
thermore, T1, T2, ..., Tj−1 are now all empty.

Given an incoming element e, we now use it to increase
the node counters of all g trees. As the counter increasing
for each tree takes O(logm) time, in total the processing
time of e is bounded by O(g logm) = O(log2 m). The time
is thus O(n log2 m) for all the n stream elements.

Next, we analyze the cost of rebuilding the endpoint trees.
Our algorithm ensures that if a query moves from Ti to Ti′ ,
it is always due to Line 3, which must have destroyed Ti and
rebuilt Ti′ . This implies that i′ ≥ i always holds, namely, a
query never moves from a higher “ranked” endpoint tree to
a lower one.
Line 3, whose cost dominates the other steps, builds Tj

in O(|Q∗| · log |Q∗|) = O(2j logm) time. On the other hand,
the definition of j (c.f. (8)) implies

j−1∑

i=1

malive(i) ≥ 2j−2 (9)

otherwise, j would have been smaller by at least 1. In other
words, at least 2j−2 queries have moved from a lower ranked

q3

q2

q1

q4

q5

q6

q7

q8

1 4 8 12 162 3 5 6 7 9 10 11 13 14 15
1

4

8

12

16

2

3

5

6

7

9

10

11

13

14

15

9 10 11 12 13 14 15 161 2 3 4 5 6 7 8

Rq5
[x]

Rq5
[y]

u

5

6

8

9

11

14

15

3

ū

Q(u) = {q2, q3, q5, q7}

Figure 2: Two-dimensional endpoint tree

endpoint tree to Tj . We can thus charge the O(2j logm)
construction time of Tj on those queries, each of which bears
only O(logm). Property P1 tells us that a query can be
charged this way only O(logm) times, i.e., O(log2 m) time in
total. Therefore, the overall cost of rebuilding the endpoint
trees is O(m log2 m).

Why can our algorithm ensure P1? Consider the moment
when Tg has just been constructed at Line 3. (9) shows that
Tg must contain more than 2g−2 queries. It thus follows that
m ≥ 2g−2, and hence, g = O(logm).

None of the other parts of the time analysis in Section 5 is
affected. In other words, our algorithm entails O(n log2 m+
m log2 m · log τmax) time to process a stream of length n and
m dynamic queries. As each endpoint tree uses space that
is proportional to the number of alive queries therein (up
to a logarithmic factor), Property P2 ensures that the total

space consumption is Õ(malive) at all times.

6. MULTIDIMENSIONAL QUERIES
We will describe how to solve, still, counting RTS, but in

d-dimensional space R
d with a constant d. This, in fact, has

become fairly easy under the algorithmic framework laid out
in the previous sections. It should have become clear that
there are two central ideas:

• Partition the search region Rq (i.e., an interval for

d = 1) into Õ(1) components, for each of which the
number of elements within is kept precisely at a node.

• Many queries share the same components such that the
total number of distinct components is Õ(malive).

Plugging almost any such partitioning scheme into our frame-
work will yield an efficient algorithm. For d = 1, our scheme—
based on canonical node sets—assumes a binary search tree.
A natural extension to general d is to use ideas from the
range tree (see Chapter 5.3 of [12]).

The subsequent discussion explains this for d = 2 because
the generalization to higher d will then become straight-
forward. We will first work with the one-time registration

constraint, namely, all the m queries are registered at the be-
ginning of the stream. The constraint can be removed by the
same technique in Section 5. Once again, for our technical
exposition, we regard each Rq in the form of [x1, x2)×[y1, y2),
with the “infinitesimal trick” explained in Section 4.

Two-Dimensional Endpoint Tree. Let Q∗ be the set of
all queries. Remember that, for each q ∈ Q∗, Rq is now a
two-dimensional rectangle. Denote by Rq[x] the projection
of Rq onto the x-dimension, and by Rq[y] the projection onto
the y-dimension.

We create a binary search tree T on the endpoints of Rq[x]
of all q ∈ Q∗. As before, each query defines an x-canonical
node set, which is the minimum set of nodes in T with disjoint
jurisdiction intervals whose union is Rq[x].

Focus now on a specific node u in T . Denote by Q(u) the
set of queries that have u in their x-canonical node sets. We
associate u with a secondary binary search tree T(u), which
indexes the endpoints of Rq[y] of all q ∈ Q(u).

Figure 2 illustrates this using an example with 8 queries—
for the reader’s convenience, the x-projections of the rect-
angles are exactly the intervals in our one-dimensional ex-
ample of Figure 1. For the node u as indicated, Q(u) =
{q2, q3, q5, q7}. Therefore, T(u) is created on the endpoints
of the y-projections of the four queries: [5, 9), [6, 14), [3, 11),
and [8, 15).

T and all the the secondary trees T(u) constitute our two-
dimensional endpoint tree. It is rudimentary to construct the
structure in O(m logm) time.

Query Decomposition. It is important to note the ge-
ometric region in R

2 corresponding to every node u in T ,
and to every node ū in a secondary tree T(u). Specifically,
the jurisdiction interval I(u)—which is on the x-dimension—
defines the vertical slab I(u)× (−∞,∞). The jurisdiction
interval I(ū)—which is on the y-dimension—defines the rect-
angle I(u) × I(ū). For instance, consider node u and ū in
Figure 2: u corresponds to the slab [9, 13)× (−∞,∞), and
ū to [9, 13)× [3, 9).
We are ready to explain how the Rq of a query q ∈ Q∗

is partitioned by the above geometric regions. Let u be
a node in the x-canonical node set of q. Then, q and u
together define Uq(u), which is the minimum set of nodes in
T(u) with disjoint jurisdiction intervals whose union is Rq[y].
Consider, for instance, query q5 and node u of T in Figure 2:
Uq5(u) = {ū, leaf 9}. The y-canonical node set of q—denoted
as Uq—unions the Uq(u) of all such nodes u.
The size of Uq is O(log2 m), because |Uq(u)| = O(logm)

while there are O(logm) such u. Every node ū ∈ Uq is in
some secondary tree; and the geometric regions of all the ū
form a disjoint partition of Rq.

Algorithm. Every node ū in a secondary tree keeps a
counter equal to the number of stream elements e such that
v(e) falls into the geometric region of ū. These counters
can be easily maintained in O(log2 m) time per element
(descending one root-to-leaf path Π of T , and then one root-
to-leaf path of T(u) for each node u ∈ Π). The counter
maintenance takes O(n log2 m) time in total for n elements.

The rest of the algorithm directly follows that of Section 4.
In particular, every query still defines a distributed tracking
instance involving the hq nodes in Uq, where hq = |Uq|.
The total number of heap insertions and deletions is still
given by the left hand side of (7). As hq here becomes
O(log2 m), the total cost of all the heap updates is bounded
by O(m log3 m · log τmax).

Eliminating the one-time registration constraint with the
logarithmic method (Section 5) increases the counter main-
tenance overhead by a logarithmic factor. Therefore, our
two-dimensional algorithm entails the overall computation
time of O(n log3 m + m log3 m · log τmax). The space con-
sumption is O(malive log

2 malive): essentially the total size of
Uq of all the alive queries q.

Remark. Extending our algorithm to general d-dimensional
space is at the standard expense of an extra logarithmic
factor in both the running time and space per dimension:
O(n logd+1 m+m logd+1 m·log τmax) andO(malive log

d malive),
respectively.

7. THE WEIGHTED VERSION
We are already very close to solving the most generic form

of RTS. The only constraint left is that the element weights
are still confined to 1. In this section, we will remove this
last constraint.

Weighted Distributed Tracking. Before tackling ele-
ments with arbitrary weights, let us first consider a more
general version of the DT problem in Section 3.2. As be-
fore, the setup involves a coordinator q, and h participants
s1, s2, ..., sh, such that si (1 ≤ i ≤ h) keeps a counter ci ini-
tially set to 0. At every timestamp, still at most one counter
gets increased, but the increment can be any positive integer
(instead of just 1). The coordinator aims to capture maturity
subject to

h∑

i=1

ci ≥ τ. (10)

The efficiency goal now is to achieve two purposes simulta-
neously:

• Communication cost O(h log τ) messages (each one
word in length).

• The coordinator and participants perform in total O(n+
h log τ) CPU time, where n is the total number of
counter increases at all sites.

If communication was the only concern, the problem can
be easily settled with O(h log τ) messages as follows. When-
ever ci needs to increase by say w, si does so by increasing
ci w times, each time by 1. This conversion essentially
transforms the current problem into the unweighted version,
thus permitting the application of the same algorithm in
Section 3.2.

The drawback of the simple reduction lies in the computa-
tion cost: as O(1) time is spent on increasing a counter by 1,
the total amount of work done becomes O(τ + h log τ). This
can be substantially higher than our goal O(n+ h log τ) if
τ ≫ n—this will lead to prohibitively high RTS processing
cost when we plug the algorithm into our framework.

The astute reader may wonder why the issue did not arise
in Section 3.2. In fact, for the old DT problem, there must
be exactly n = τ counter increases at maturity; therefore,
the trivially attainable CPU cost of O(τ + h log τ) is good,
precisely the complexity O(n+ h log τ) that we want. This
is no longer true for weighted DT.

Next, we explain how to modify the DT algorithm to suit
our purposes. Again, if τ ≤ 6h, we solve the problem by
asking each participant to send all counter changes to q. This
requires O(τ) = O(h) messages.
For τ > 6h, q launches a round by informing every si

(1 ≤ i ≤ h) the slack λ = ⌊τ/(2h)⌋. The way si behaves is a
bit different from Section 3.2:

Let c̄i be an integer that equals 0 at the round’s begin-
ning. When ci − c̄i ≥ λ:

1. Send a signal to q, and increase c̄i by λ.

2. If ci − c̄i ≥ λ still holds, repeat Line 1, unless q
has announced the end of this round.

When the number of signals reaches h, q declares to all
sites “the round has finished”, and collects their precise coun-
ters. Maturity is reported if (10) is satisfied. Otherwise, q

decreases τ by
∑h

i=1 ci; and the next round starts.
The algorithm is correct because if a round still has not

finished at the end of a timestamp, it must hold that

h∑

i=1

ci ≤ λ · (h− 1) +
h∑

i=1

(ci − c̄i)

< λ · h+ λ · h ≤ τ.

As in Section 3.2, τ > 6h ensures that a round decreases τ
by at least τ/3. Thus, the number of rounds is O(log τ), mak-
ing the total number of messages O(h log τ). Furthermore,
the computation time is O(n+ h log τ) because O(1) time is
spent (i) at a participant only if its counter is increased or it
needs to send a message, and (ii) at the coordinator to send
a message.

RTS. Our ultimate RTS algorithm—settling the problem
defined in Section 2 entirely—requires only one more sentence
to describe: replace the algorithm of Section 3.2 with the
above one. All the analysis still holds directly. We thus have
established the main result of this paper:

Theorem 1. For the RTS problem in constant dimension-
ality, there is an algorithm that processes n stream elements
and m queries in Õ(n+m) time.

DT Interval Tree Seg-Intv Tree R-Tree Baseline

1

10

100

1k

10k

0 0.5 1 1.5 2.01

timestamp n (million)

amortized running time per operation (microsec)

(a) 1D

10

100

1k

10k

0 0.5 1 1.5 2.01

timestamp n (million)

amortized running time per operation (microsec)

(b) 2D

Figure 3: Efficiency as a function of time (m = 1 million, τ = 20 million, static queries)

8. EXPERIMENTS
This section presents an experimental evaluation of our

techniques for the RTS problem in 1D and 2D spaces, us-
ing the existing solutions for comparison. Specifically, we
examined the following methods:

• [1D, 2D] Distributed tracking (DT): The proposed al-
gorithm in Theorem 1. The name reflects the new
connection we established between RTS and the dis-
tributed tracking problem; see Section 4. As explained
in Section 5, its time complexity for processing the
whole stream is O(n logd+1 m+m logd+1 m · log τmax).

• [1D, 2D] Baseline: The approach described in Sec-
tion 3.1 that probes all alive queries upon receiving a
new element. Its time complexity is O(nm).

• [1D] Interval tree: This is the stabbing approach de-
scribed in Section 3.1 for 1D space, using the interval
tree [12] as the stabbing structure. Its time complexity

is Õ(n) +O(m · τmax), as mentioned in Section 3.1.

• [2D] Seg-Intv tree: Again the stabbing approach in
Section 3.1, but for 2D space, whose stabbing structure
combines the segment tree and the interval tree [12].

Its time complexity is also Õ(n) +O(m · τmax).

• [2D] R-tree: As the R-tree is commonly believed to offer
competitive efficiency on multidimensional queries, we
included another 2D stabbing approach that uses this
access method as the stabbing structure. Its time com-
plexity is O(nm)—the R-tree is a heuristic structure
that does not have attractive efficiency guarantees.

Our machine was equipped with a 3.7GHz multi-core CPU
and 16GBmemory. The operating system was Linux (Ubuntu
14.04).

We separated the evaluation into two parts: inspecting
first the scenario where all queries were registered at the

beginning of the stream (Section 8.1), before moving to the
second where queries were issued throughout the stream
(Section 8.2). The former part studied how the intrinsic
parameters m and τ of the RTS problem influence the be-
havior of alternative algorithms, without the complication
caused by the dynamism of arbitrary query registration, the
exploration of which was the aim of the latter part.

8.1 Scenario 1: Static Query Insertions
Setup. On each dimension, the data space had an integer
domain of [0, 105]. For each stream element e, its value v(e)
was a d-dimensional point (d = 1 or 2) uniformly distributed
in the data space, and its weight w(e) followed the Gaussian
distribution with mean 100 and standard deviation 15 (if
this resulted in w(e) < 1, w(e) was re-generated).
In each experiment, m queries were registered at the be-

ginning of the stream, all given an identical threshold τ . The
values of m and τ are the two primary varying parameters
in this subsection. Each query q also specified a rectangle
Rq, which was a square (for d = 1, an interval) with volume
10% that of the data space. The center of Rq was generated
in such a way that each coordinate followed the Gaussian
distribution with mean 5 · 104 and standard deviation set to
15% of the mean. The whole Rq was required to fall within
the data space; otherwise, it was re-generated.
Notice that the generation simulated the situation where

stream elements e are everywhere but queries tend to focus
on “areas of common interest”—near the center of the data
space. The uniformity of v(e) had the importance of ensuring
that every v(e) should “stab” 10% of the queries currently
alive in expectation, regardless of the locations of the query
rectangles. This means that each query q had a 10% probabil-
ity of having its W (q) increased at every timestamp. Given
that each increase had the expectation of 100, q was expected
to mature after τ/(10% · 100) = τ/10 timestamps.
We allowed a query to be terminated before maturity.

Specifically, at every timestamp, an alive query q was termi-

DT Interval Tree Seg-Intv Tree

R-Tree Baseline

10

100

1k

10k

100k

 0.1 0.5 1 1.5 2

number of queries m (million)

total running time (sec)

10

100

1k

10k

100k

 0.1 0.5 1 1.5 2

number of queries m (million)

total running time (sec)

(a) 1D (b) 2D

Figure 4: Efficiency as a function of m (τ = 20 mil-
lion, static queries)

nated with probability pdel, whose value was such that the
probability for q to be terminated before reaching the (τ/10)-
th timestamp was 90%. In other words, 10% of the m queries
were able to live till their expected maturity time, echoing
the reality where a small fraction of the triggers would get
activated eventually. This, intuitively, favored the algorithms
falling prey to the quadratic trap because, once deleted, a
query can no longer be stabbed by any subsequent elements.
Nevertheless, we will see that our algorithm brought forward
huge efficiency gains even in this case.
A stream kept evolving until all the queries had either

matured or been terminated.

Results. Perhaps the most effective way to illustrate an
algorithm’s behavior is to trace its efficiency for the entire
stream. The first set of experiments was designed for this
purpose. We used each algorithm to process a 1D/2D stream
with m set to 1 million and τ to 20 million, and kept track of
the average per-operation cost (where each operation refers
to the handling of an incoming element, or the insertion,
deletion, or maturity of a query) as the stream evolved.
Figures 3a and 3b present the 1D and 2D results, respectively.
The comparison reveals the significance of breaking the

quadratic trap. The proposed algorithm DT—which took
only a fraction of a millisecond per operation—outperformed
all the competitors considerably: by a factor over two and
one order of magnitude in 1D and 2D spaces, respectively
(note that the y-axis is shown in log scale). Observe that
all the other methods required nearly a millisecond to per-
form an operation. This is unacceptable, recalling that one
millisecond is comparable to the time of a disk I/O, even
thought everything was memory resident! The observation
serves as strong manifestation of our original motivation that
no existing technique can support large-scale RTS on a fast
stream.
The figures also reveal several characteristics of the algo-

rithms. At the beginning, each algorithm focused on con-
structing its underlying data structure, i.e., simply an array
for Baseline, an endpoint tree for DT, and for every other
method, the structure as indicated by its name. In any case,
the construction cost—after amortization over m queries—
was relatively low, compared to the cost of processing an
incoming element. This explains the common pattern of all
the curves: gradually increasing to a stable value. For DT,

DT Interval Tree Seg-Intv Tree

R-Tree Baseline

10

100

1k

10k

100k

 5 10 20 40 80

sample size τ (million)

total running time (sec)

100

1k

10k

100k

 5 10 20 40 80

sample size τ (million)

total running time (sec)

(a) 1D (b) 2D

Figure 5: Efficiency as a function of τ (m = 1 million,
static queries)

the occasional “bumps”on its curve indicate global rebuilding
(see Section 4), caused by query maturity and deletions.

The next two sets of experiments were designed to examine
scalability with respect to m and τ . To do so on m, we fixed
τ to 20 million, and measured the total execution time of
each algorithm in processing a stream, when the value of m
changed from 100k to 2 million. Figures 4a and 4b present
the 1D and 2D results, respectively. We investigated the
scalability on τ in a similar fashion: fixing m to 1 million,
and varying τ from 5 million to 80 million. The results are
presented in Figure 5. As predicted by theory, DT scaled
much better than the other approaches. Its performance
advantage became increasingly significant with the growth
of m and τ .

8.2 Scenario 2: Dynamic Query Insertions
We now proceed to the scenario where queries can be

inserted any time during a stream.

Setup. Stream elements were generated in the same way
as in Section 8.1. The total number of elements in a stream
was fixed to 3 million. One million queries were registered in
the system before the stream started; and then new queries
were added according to a mode of dynamism from below:

• Stochastic mode: At every timestamp from 1 to 2 mil-
lion, a new query was registered with probability pins ,
which is a parameter to vary in specific experiments.

• Fixed-load mode: A new query was registered as soon
as an existing one matured or got terminated. In this
mode, the number of alive queries remained unchanged
during the whole stream.

In any case, a query (regardless of its registration time) was
created in the same way as explained in Section 8.1, with
its threshold τ set to 20 million. In particular, as before, at
every timestamp each alive query had probability pdel to be
terminated, where pdel was set to permit the query to live
to its expected maturity time with 10% probability.

Results. Let us start with the stochastic mode. Focusing on
pins = 0.3, Figure 6 shows the amortized per-operation cost
as a function of the number of received elements. The overall
trends, as well as the relative performance of all methods,
are similar to those already demonstrated in Figure 3. It is
worth pointing out that here the bumps on the curve of DT

DT Interval Tree Seg-Intv Tree R-Tree Baseline

1

10

100

1k

10k

0 0.5 1 1.5 2 2.5 3

timestamp n (million)

amortized running time per operation (microsec)

(a) 1D

10

100

1k

10k

0 0.5 1 1.5 2 2.5 3

timestamp n (million)

amortized running time per operation (microsec)

(b) 2D

Figure 6: Efficiency as a function of time (dynamic queries, stochastic mode with pins = 0.3)

DT Interval Tree Seg-Intv Tree

R-Tree Baseline

10

100

1k

10k

100k

 0.1 0.2 0.3 0.4 0.5

insertion probability pins

total running time (sec)

100

1k

10k

100k

 0.1 0.2 0.3 0.4 0.5

insertion probability pins

total running time (sec)

(a) 1D (b) 2D

Figure 7: Efficiency as a function of pins (dynamic
queries, stochastic mode)

were the effects of the reconstruction that took place either
in global rebuilding or the logarithmic method (Section 5).
Next, we adjusted pins from 0.1 to 0.5, and measured for

each method its total execution time for processing the whole
stream. The results are presented in Figure 7. As expected,
the running time increased as pins became larger (which
implied more queries)—notice that pins = 0.5 corresponds to
a very busy system: one query every two stream elements.
Finally, turning to the fixed-load mode, Figure 8 traces

out the amortized per-operation cost of all the methods, con-
firming once again the significant speedup achieved by our
algorithm over the other approaches. The results reflect what
performance can be expected in an exceedingly busy system
(where the number of alive queries never decreases). Note,
interestingly, from Figure 8 that R-tree actually performed
worse even than Baseline! This was caused by a well-known
drawback of the R-tree’s update algorithms: much less ef-
fective when the indexed objects have large and heavily

overlapping extents. This was exactly the case for RTS
(where queries tend to gather in “hot areas”). The problem
was most exacerbated on fixed-load streams because they
had the highest update volumes—although the astute reader
may have also noticed the same phenomenon from Figure 7b.

9. CONCLUSIONS
Range thresholding on streams (RTS) supports user trig-

gers of the form “alert me when a specific number of stream
elements have shown up in the region of my interest”. Such
kind of triggers are extremely important in numerous sys-
tem involving time-critical actions. Unfortunately, currently
there does not exist an efficient algorithm for processing such
triggers: all the known solutions incur prohibitive processing
time—quadratic to the problem’s input size.

In this paper, we have developed the first algorithm whose
running time successfully escapes the quadratic trap—even
better, the algorithm promises computation cost that is near-
linear to the input size, up to only a polylogarithmic factor.
Extensive experimentation has confirmed that the new al-
gorithm, besides having rigorous theoretical guarantees, has
excellent performance in practical scenarios, outperforming
alternative methods by a factor up to orders of magnitude.
It can therefore be immediately leveraged as a reliable funda-
mental tool for building sophisticated triggering mechanism
in real systems.

10. REFERENCES

[1] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack,
C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and S. B.
Zdonik. Aurora: a new model and architecture for data
stream management. VLDB J., 12(2):120–139, 2003.

[2] A. Arasu and J. Widom. A denotational semantics for
continuous queries over streams and relations.
SIGMOD Record, 33(3):6–12, 2004.

DT Interval Tree Seg-Intv Tree R-Tree Baseline

1

10

100

1k

10k

0 0.5 1 1.5 2 2.5 3

timestamp n (million)

amortized running time per operation (microsec)

(a) 1D

10

100

1k

10k

0 0.5 1 1.5 2 2.5 3

timestamp n (million)

amortized running time per operation (microsec)

(b) 2D

Figure 8: Efficiency as a function of time (dynamic queries, fixed-load mode)

[3] L. Arge and J. Vahrenhold. I/O-efficient dynamic
planar point location. Computational Geometry,
29(2):147–162, 2004.

[4] L. Arge and J. S. Vitter. Optimal external memory
interval management. SIAM J. of Comp.,
32(6):1488–1508, 2003.

[5] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger.
The R*-tree: An efficient and robust access method for
points and rectangles. In SIGMOD, pages 322–331,
1990.

[6] J. L. Bentley and J. B. Saxe. Decomposable searching
problems I: Static-to-dynamic transformation. Journal
of Algorithms, 1(4):301–358, 1980.

[7] D. Carney, U. Çetintemel, M. Cherniack, C. Convey,
S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, and
S. B. Zdonik. Monitoring streams - A new class of data
management applications. In VLDB, pages 215–226,
2002.

[8] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang.
Niagaracq: A scalable continuous query system for
internet databases. In SIGMOD, pages 379–390, 2000.

[9] G. Cormode, S. Muthukrishnan, and K. Yi. Algorithms
for distributed functional monitoring. ACM
Transactions on Algorithms, 7(2):21, 2011.

[10] G. Cugola and A. Margara. Processing flows of
information: From data stream to complex event
processing. ACM Comp. Surv., 44(3):15, 2012.

[11] U. Dayal, E. N. Hanson, and J. Widom. Active
database systems. In Modern Database Systems, pages
434–456. 1995.

[12] M. de Berg, O. Cheong, M. van Kreveld, and
M. Overmars. Computational Geometry: Algorithms
and Applications. Springer-Verlag, 3rd edition, 2008.

[13] A. J. Demers, J. Gehrke, B. Panda, M. Riedewald,
V. Sharma, and W. M. White. Cayuga: A general

purpose event monitoring system. In CIDR, pages
412–422, 2007.

[14] Y. Diao, S. Rizvi, and M. J. Franklin. Towards an
internet-scale XML dissemination service. In VLDB,
pages 612–623, 2004.

[15] F. Fabret, H. Jacobsen, F. Llirbat, J. L. M. Pereira,
K. A. Ross, and D. Shasha. Filtering algorithms and
implementation for very fast publish/subscribe. In
SIGMOD, pages 115–126, 2001.

[16] A. Guttman. R-trees: a dynamic index structure for
spatial searching. In SIGMOD, pages 47–57, 1984.

[17] S. Madden, M. A. Shah, J. M. Hellerstein, and
V. Raman. Continuously adaptive continuous queries
over streams. In SIGMOD, pages 49–60, 2002.

[18] B. Nguyen, S. Abiteboul, G. Cobena, and M. Preda.
Monitoring XML data on the web. In SIGMOD, pages
437–448, 2001.

[19] N. W. Paton and O. Dı́az. Active database systems.
ACM Comp. Surv., 31(1):63–103, 1999.

[20] S. Rahul. Improved bounds for orthogonal point
enclosure query and point location in orthogonal
subdivisions in R

3. In SODA, pages 200–211, 2015.

[21] D. B. Terry, D. Goldberg, D. A. Nichols, and B. M.
Oki. Continuous queries over append-only databases. In
SIGMOD, pages 321–330, 1992.

[22] E. Wu, Y. Diao, and S. Rizvi. High-performance
complex event processing over streams. In SIGMOD,
pages 407–418, 2006.

[23] A. Yu, P. K. Agarwal, and J. Yang. Processing a large
number of continuous preference top-k queries. In
SIGMOD, pages 397–408, 2012.

