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In online tracking, an observer S receives a sequence of
values, one per time instance, from a data source that is de-
scribed by a function f . A tracker T wants to continuously
maintain an approximation that is within an error threshold
of the value f(t) at any time instance t, with small commu-
nication overhead. This problem was recently formalized
and studied in [32, 34], and a principled approach with op-
timal competitive ratio was proposed. This work extends
the study of online tracking to a distributed setting, where
a tracker T wants to track a function f that is computed
from a set of functions {f1, . . . , fm} from m distributed ob-
servers and respective data sources. This formulation finds
numerous important and natural applications, e.g., sensor
networks, distributed systems, measurement networks, and
pub-sub systems. We formalize this problem and present
effective online algorithms for various topologies of a dis-
tributed system/network for different aggregate functions.
Experiments on large real data sets demonstrate the excel-
lent performance of our methods in practice.

Categories and Subject Descriptors
H.2.m [Information Systems]: Database Management –
Miscellaneous
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1. INTRODUCTION
The increasing popularity of smart mobile devices and the

fast growth in the deployment of large measurement net-
works generate massive distributed data continuously. For
example, such data include, but are not limited to, values
collected from smart phones and tablets [3], measurements
from large sensor-based measurement networks [12, 22, 31],
application data from location based services (LBS) [28],
and network data from a large infrastructure network.

Tracking a user function over such distributed data contin-
uously in an online fashion is a fundamental challenge. This
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is a useful task in many applications. A concrete example
is the MesoWest project [18]. It collects many aspects of
weather data from distributed measurement stations. Users
and scientists in MesoWest would like to continuously track
the aggregate values (e.g., maximum or minimum) of at-
mospheric readings, e.g. temperature, from a number of
stations in vicinity. Another example is the SAMOS project
(Shipboard Automated Meteorological Oceanography Sys-
tem) [27], which collects marine meteorological and near-
surface oceanographic observations from distributed research
vessels and voluntary ships at sea.

Similar examples can be easily found in location based
services and other distributed systems. This problem is
also useful in the so called publish/subscribe systems [4,13],
where a subscriber (tracker) may register a function (also
known as a query) with a publisher (observer). Data contin-
uously arrive at the publisher. The publisher needs to keep
the subscriber informed about the value of her function f ,
when f is continuously applied over the current data value.
When a subscriber’s function of interest depends on data
values from multiple publishers, it becomes a distributed
tracking problem.

It is always desirable, sometimes even critical, to reduce
the amount of communication in distributed systems and ap-
plications, for a number of reasons [1, 5–7, 12, 22, 23, 25, 31].
Many devices rely on on-board battery and incur high power
consumption when they communicate, e.g., in sensors and
smart phones. Hence, reducing the number of messages they
need to send helps extend their battery time. Another rea-
son is to save the network bandwidth. From the user’s point
of view, less communication often leads to economic gains,
e.g., most smart phones have a monthly budget for their
data plan, or for nodes in remote areas in a large mea-
surement network, communication via satellites come with
a high price tag. From the network infrastructure’s point of
view (e.g., ISP such as Comcast), too much communications
from any application could significantly congest their net-
work and slow down the performance of the network (keep in
mind that there could be many user applications running at
the same time that share the available network bandwidth).

To achieve exact continuous online tracking of arbitrary
functions, the solution is to ask all stations to always send
readings back to a central coordinator (the tracker), from
which various functions can be easily computed and then
tracked. This baseline approach, unfortunately, generates
excessive communications: every new reading from any sta-
tion must be forwarded to the tracker to ensure the correct-
ness of the output values of the function being tracked.



But the good news is, in many application scenarios, exact
tracking is often unnecessary. Users are willing to trade-off
accuracy with savings in communication. In some applica-
tions, approximation is often necessary not just for reducing
communication, but also for policy constraints, e.g, due to
privacy concerns in location based services [2] and law re-
quirements.

To formalize this accuracy and communication trade-offs,
we refer to a distributed site that continuously receives data
from a data source as an observer, and the centralized site
that wants to track a function (or multiple functions) com-
puted over data from multiple, distributed data sources as
the tracker. Without loss of generality, we assume that the
tracker is tracking only one function, which if f . Clearly, f ’s
output is a function of time, and denoted as f(t) for a time
instance t. More precisely, it is a function of multiple data
values at time instance t, one from each observer. Based
on the above discussion, producing the exact values of f(t)
continuously for all time instances is expensive. Thus, the
tracker’s goal is to maintain an approximation g(t), which
is his best knowledge of f(t) at any time instance t using
small amount of communication (accumulated so far). Fo-
cusing on functions that produce a one-dimensional output,
we require that g(t) ∈ [f(t)−∆, f(t)+∆] for any t ∈ [0, tnow],
for some user-defined error threshold ∆.

Under this set up, when ∆ = 0, g(t) always equals f(t) and
the baseline exact solution is needed, which is communication-
expensive. On the other hand, in the extreme case when
∆ = +∞, g(t) can be a random value, and effectively there
will be no communication needed at all. These two extremes
illustrate the possible accuracy-communication trade-off en-
abled by this framework.

Key challenge. It is important to note that our problem
is a continuous online problem that requires a good approx-
imation for every time instance. This is different from many
distributed tracking problems in the literature that use the
popular distributed streaming model, where the goal is to
produce an approximation of certain functions/properties
computed over the union of data stream elements seen so
far for all observers, from the beginning of the time till now.
It is also different from many existing work on monitoring
a function over distributed streams, where the tracker only
needs to decide if f(t)’s value has exceeded a given (con-
stant) threshold or not at any time instance t.

When there is only one observer, our problem degenerates
to a centralized, two-party setting (observer and tracker).
This problem has only been recently studied in [32, 34].
where they have studied both one-dimensional and multi-
dimensional online tracking in this centralized setting. They
have given an online algorithm with O(log ∆) competitive-
ratio, and shown that this is optimal. In other words, any
online algorithm for solving this problem must use at least a
factor of O(log ∆) more communication than the offline op-
timal algorithm. Note that, however, this problem is differ-
ent from the classic problem of two-party computation [30]
in communication complexity. For the latter problem, two
parties Alice and Bob have a value x and y respectively, and
the goal is to compute some function f(x, y) by communi-
cating the minimum number of bits between them. Note
that in online tracking, only Alice (the observer) sees the
input, Bob (the tracker) just wants to keep track of it. Fur-
thermore, in communication complexity both inputs x and y
are given in advance, and the goal is to study the worst-case

communication; while in online tracking, the inputs arrive
in an online fashion and it is easy to see that the worst-case
(total) communication bound for online tracking is mean-
ingless, since the function f could change drastically at each
time step. For same reasons, our problem, distributed on-
line tracking, is also different from distributed multi-party
computation.

Our contributions. In this paper, we extend the online
tracking problem that was only recently studied in [32,34] to
the distributed setting with common aggregation functions
(e.g., MAX), and investigate principled methods with for-
mal theoretical guarantees on their performance (in terms
of communication) when possible. We design novel meth-
ods that achieve good communication costs in practice, and
formally show that they have good approximation ratios.

Our contributions are summarized below.

• We formalize the distributed online tracking problem
in Section 2 and review the optimal online tracking
method from [32,34] in the centralized setting.

• We examine a special extension of the centralized set-
ting with one observer but many relaying nodes, known
as the chain case. We study the chain model in Sec-
tion 3 and design a method with O(log ∆) competitive
ratio. We also show that our method has achieved the
optimal competitive-ratio in this setting.

• We investigate the“broom”model in Section 4 by lever-
aging our results from the chain model, where there are
m distributed observers at the leaf-level and a single
chain connecting them to the tracker. We design novel
method for MAX function and show that our method
has very good approximation ratio among the class of
online algorithms for the broom model.

• We extend our results to the general tree model in
Section 5, which is an extension of the broom model.
We again show that our method has good approxima-
tion ratio among the class of online algorithms for the
general-tree model.

• We discuss other functions and topologies in Section
6.

• We conduct an extensive experiments to evaluate the
effectiveness of our methods in practice in Section 7.
We used several real data sets and the results have con-
firmed that our methods are indeed superior compared
to other alternatives and baseline methods.

Furthermore, we review the related work in Section 8, and
conclude the paper in Section 9. Unless otherwise specified,
proofs are provided in Appendix A.

2. PROBLEM FORMULATION AND BACK-
GROUND

Formally, there are m observers {s1, . . . , sm} at m dis-
tributed sites, and a tracker T . These m observers are con-
nected to T using a network topology. We consider two
common topologies in this work, the broom topology and
the general-tree topology as shown in Figure 1. Observers
always locate at the leaves, and the tracker always locates at
the root of the tree. Both topologies are constructed based
on a chain topology as shown in Figure 2(a), and the cen-
tralized setting studied in [32, 34] is a special case of the
chain topology as shown in Figure 2(b). A relay node does
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Figure 1: Track f(t) = f(f1(t), f2(t), · · · , fm(t)).

not directly observe a function (or equivalently data values)
that contributes to the computation of f , but it can receive
messages from its child (or preceding) node(s), and send
messages to its parent (or succeeding) node.

It is important to note that our general-tree topology has
already covered the case in which an intermediate replay
node u may be an observer at the same time, who also ob-
serves values (modeled by a function) that contributes to
the computation of function f . This is because we can al-
ways conceptually add an observer node s directly below
(and connected to) such an intermediate node u. Let s re-
port the data values that is observed by u, we can then only
view u as a relay node (while making no changes to all other
connections to u that already exist). More details on this
issue will be presented in Section 6.

That said, in practice, a relay node can model a router, a
switch, a sensor node, a computer or computation node in
a complex system (e.g., Internet, peer-to-peer network), a
measurement station in a monitoring network, etc.
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Figure 2: Special cases: g(t) ∈ [f(t)−∆, f(t) + ∆].

Each observer’s data value changes (arbitrarily) over time,
and can be described by a function. We dub the function
at the ith observer fi, and its value at time instance t fi(t).
The tracker’s objective is to continuously track a function
f that is computed based on the values of functions from
all observers at time instance t, i.e., it’s goal is to track
f(t) = f(f1(t), f2(t), . . . , fm(t)) continuously over all time
instances. Since tracking f(t) exactly is expensive, an ap-
proximation g(t) is allowed at the tracker T , subject to the
constraint that g(t) ∈ [f(t) −∆, f(t) + ∆] for any time in-
stance t ∈ [0, tnow]. ∆ ∈ Z+ is a user-defined error threshold,
that defines the maximum allowed error in approximating
f(t) with g(t).

The goal is to find an online algorithm that satisfies this
constraint while minimizing the communication cost.

Note that depending on the dimensionality for the outputs
of f(t), as well as f1(t), f2(t), . . ., and fm(t), we need to
track either a one-dimensional value or a multi-dimensional
value that changes over time. This work focuses on the one-
dimensional case. In other words, we assume that f(t), and
f1(t), . . . , fm(t) are all in a one-dimensional space.

2.1 Performance metric of an online algorithm
There are different ways to formally analyze the perfor-

mance of an online algorithm.
For an online problem P (e.g., caching), let I be the set of

all possible valid input instances, andA be the set of all valid
online algorithms for solving the problem P . Suppose the
optimal offline algorithm for P is offline. Given an input
instance I ∈ I, and an algorithm A ∈ A (or offline), we
denote the cost of running algorithm A on I as cost(A, I).
In our setting, the cost is the total number of messages sent
in a topology.

A widely used metric is the concept of competitive ratio.
Formally, for an algorithm A ∈ A, the competitive ratio of
A [24], denoted as cratio(A), is defined as:

cratio(A) = max
I∈I

cost(A, I)

cost(offline, I)
.

Another popular metric is to analyze the performance of
an algorithm A compared to other algorithms in a class of
online algorithms. Formally, we can define the ratio of A on
an input instance I as follows:

ratio(A, I) =
cost(A, I)

cost(A∗I , I)
,

where A∗I is the online algorithm from the class A that has
the lowest cost on input I, i.e., A∗I = argminA′∈A cost(A′, I).

Lastly, we can quantify an algorithm A’s performance by
considering its worst case ratio, i.e.,

ratio(A) = max
I∈I

ratio(A, I).

Note that the definitions of ratio(A, I) and ratio(A) are
inspired by the classic work that has motivated and defined
the concept of “instance optimality” [14]. In fact, if ratio(A)
is a constant, then indeed A is an instance optimal online
algorithm.

Clearly, we always have, for any online problem P and its
online algorithm A, cratio(A) ≤ ratio(A).

2.2 State-of-the-art method
Prior work has studied the online tracking problem in

the centralized, two party setting [32, 34], as shown in Fig-
ure 2(b). They studied both one-dimensional tracking and
multi-dimensional tracking, defined by the dimensionality of
the output value for the function f(t) at the observer. Since
we focus on the one dimension case, here we only review
the one-dimension tracking method from [32,34]. Finding a
good online algorithm for this seemingly very simple set up
turns out to be a very challenging problem.

Consider the simple case where the function takes integer
values at each time step, i.e., f : Z→ Z, and the tracker re-
quires an absolute error of at most ∆. The natural solution is
to let the observer first communicate f(t0) to the tracker at
the initial time instance t0; then every time f(t) has changed
by more than ∆ since the last communication, the observer
updates the tracker with the current value of f(t). How-
ever, this natural solution has an unbounded competitive
ratio compared with the offline optimal method. Consider
the case where f(t) starts at f(0) = 0 and then oscillates be-
tween 0 and 2∆. The above algorithm will communicate for
an infinite number of times while the offline optimal solution
only needs to send one message: g(0) = ∆.



This example demonstrates the hardness of the online
tracking problem. For functions in the form of f : Z → Z,
Yi and Zhang proposed the method in Algorithm 1, and
showed the following results.

Algorithm 1: OptTrack (∆) (from [32,34])

1 let S = [f(tnow)−∆, f(tnow) + ∆] ∩ Z
2 while S 6= ∅ do
3 let g(tnow) be the median of S;
4 send g(tnow) to tracker T ; set tlast = tnow;
5 wait until |f(t)− g(tlast)| > ∆;
6 S ← S ∩ [f(t)−∆, f(t) + ∆]

Theorem 1 (from [32, 34]) To track a function f : Z → Z
within error ∆, any online algorithm has to send Ω(log ∆ ·
OPT) messages in the worst case, where OPT is the number
of messages needed by the optimal offline algorithm. And,
OptTrack is an O(log ∆)-competitive online algorithm to
track any function f : Z → Z within ∆. Furthermore, if f
takes values from the domain of reals (or any dense set), the
competitive ratio of any online algorithm is unbounded.

Theorem 1 establishes the optimality of the OptTrack
method, since it shows that any online algorithms for cen-
tralized online tracking (between two nodes) has a compet-
itive ratio that is at least log ∆, and OptTrack’s competi-
tive ratio O(log ∆) has met this lower bound.

Note that the negative results on real domains and other
dense domains do not rule out the application of OptTrack
in practice on those cases. In practice, most functions (or
data values for a sequence of inputs) have a fixed precision,
e.g., any real number in a 64-bit machine can be described
by an integer from an integer domain with size 264.

To the best of our knowledge, and as pointed out in [32,
34], no prior work has studied the distributed online tracking
problem as we have formalized earlier in this section.

3. THE CHAIN CASE
We first examine a special case that bridges centralized

and distributed online tracking. Considering the tree topol-
ogy in Figure 1, it is easy to observe that each observer is
connected to the tracker via a single path with a number of
relay nodes (if multiple paths exist, we simply consider the
shortest path). Hence, online tracking in the chain topology
as shown in Figure 2(a) is a basic building block for the gen-
eral distributed online tracking problem. We refer to this
problem as the chain online tracking.

The centralized online tracking as reviewed in Section 2.2
and shown in Figure 2(b) is a special case of chain online
tracking, with 0 relay node.

Baseline methods. For a chain topology with h relay
nodes, a tempting solution is to distribute the error thresh-
old ∆ equally to all relay nodes and apply (h + 1) inde-
pendent instances of the OptTrack algorithm. Suppose
we have h relay nodes {n1, . . . , nh}, an observer s, and a
tracker T . Let n0 = s and nh+1 = T , for every pair of nodes
{ni−1, ni} for i ∈ [1, h+ 1], we can view ni as a tracker and
its preceding node ni−1 as an observer, and require that ni

tracks ni−1’s function within an error threshold of ∆
h+1

.

Let yi(t) be the function at ni for i ∈ [1, h+ 1], then yi(t)
is the output of running OptTrack with an error threshold

∆
h+1

, where ni−1 is the observer, yi−1(t) is the function to be

tracked, and ni is the tracker. Since n0 = s and y0(t) = f(t),
we have two facts:

(1) y1(t) ∈ [f(t)− ∆
h+1

, f(t) + ∆
h+1

] for any time instance t.

(2) yi(t) ∈ [yi−1(t)− ∆
h+1

, yi−1(t)+ ∆
h+1

] for any i ∈ [2, h+1]
and any time instance t.

Since the tracker T is simply node nh+1, thus, g(t) =
yh+1(t). Using the facts above, it is easy to verify that g(t)
will be always within f(t)±∆ as required. We denote this
method as ChainTrackA (chain-track-average).

We can generalize ChainTrackA to derive other similar
methods. Instead of distributing the error threshold uni-
formly along the chain, one can distribute a random error
threshold ∆i to node ni for i = 1, . . . , h + 1, subject to the
constraint that

∑h+1
i=1 ∆i = ∆. We denote this method as

ChainTrackR (chain-track-random). Using a similar argu-
ment, ChainTrackR also ensures that g(t) at T is always
within f(t)±∆.

Unfortunately, these seemingly natural solutions do not
perform well, even though they are intuitive extensions of
the optimal online tracking method between two nodes to
multiple nodes.

Given any valid algorithm A for chain online tracking, let
yi(t) be the best knowledge of f(t) at node ni at any time
instance t, for i = 1, . . . , h + 1. The first observation on a
chain topology is given by the following lemma.

Lemma 1 For an algorithm A (either online or offline)
that solves the chain online tracking problem, we must have
yi(t) ∈ [f(t) − ∆, f(t) + ∆] for any i ∈ [1, h + 1] in order
to reduce communication while ensuring correctness. This
holds for any t ∈ [0, tnow].

Lemma 1 formalizes a very intuitive observation on a chain
topology. This result helps us arrive at the following.

Lemma 2 Both ChainTrackA and ChainTrackR’s com-
petitive ratios are +∞ for the chain online tracking problem.

Proof. We prove the case for ChainTrackA. The proof
for ChainTrackR is similar and omitted for brevity.

Consider a function f at the observer s (which is node
n0) whose values always change no more than ∆ around a
constant a. In other words, f(t) ∈ [a − ∆, a + ∆] for any
time instance t.

By the construction of ChainTrackA, we must have:

(1) yi(t) ∈ [f(t)− i
h+1

∆, f(t) + i
h+1

∆] for any i ∈ [1, h];

(2) g(t) = yh+1(t) ∈ [f(t)−∆, f(t) + ∆].

Consider an adversary Alice that tries to explore the worst
case for ChainTrackA. Suppose that t0 is the initial time
instance. Alice first sets f(t0) = a − ∆. It takes h + 1
messages to let nh+1 learn a valid value for g(t0) at time t0.
By the facts above, it must be yi(t0) ∈ [a−∆− i

h+1
∆, a−

∆ + i
h+1

∆] for any i ∈ [1, h].

Alice then sets f(t1) = a + ∆. Now yi(t0) is more than
∆ away from f(t1) for any i ∈ [1, h]. By Lemma 1, such
yi(t0)’s are not allowed, hence, any node ni cannot simply
set yi(t1) = yi(t0). Instead, every node ni needs to receive
an update message to produce a valid tracking value yi(t1).
This leads to h messages. Again, based on the design of
ChainTrackA, yi(t1) ∈ [a+ ∆− i

h+1
∆, a+ ∆ + i

h+1
∆].



Alice sets f(t2) = a − ∆, by a similar argument, this
will again trigger h messages. She repeatedly alternates the
subsequent values for f between a+ ∆ and a−∆. Chain-
TrackA pays at least h messages for any t ∈ [t0, tnow],
which leads to O(htnow) messages in total. However, the of-
fline optimal algorithm on this problem instance only needs
to set g(t0) = yh+1(t0) = a at t0, which takes h+1 messages,
and keeps all subsequent g(ti) same as g(t0).

Hence, cratio(ChainTrackA ) = htnow/(h+ 1) = tnow =
+∞.

Optimal chain online tracking. Recall that the cen-
tralized, two-party online tracking (simply known as online
tracking) is a special case of chain online tracking with no
relay nodes, i.e., h = 0. The OptTrack method in Algo-
rithm 1 achieves an O(log ∆)-competitive ratio for the on-
line tracking problem. Furthermore, it is also shown that
O(log ∆) is the lower bound for the competitive ratio of
any online algorithms for online tracking [32,34]. Yet, when
generalizing it to chain online tracking with either Chain-
TrackA or ChainTrackR, the competitive ratio suddenly
becomes unbounded. The huge gap motivates us to explore
other alternatives, which leads to the optimal chain online
tracking method, ChainTrackO (chain-tracking-optimal).

This algorithm is shown in Algorithm 2, and its construc-
tion is surprisingly simple: allocate all error threshold to the
very first relay node!

Algorithm 2: ChainTrackO (∆, h)

1 Let the tracking output at a node ni be yi(t).
2 Run OptTrack (∆) between observer s and the first

relay node n1, by running n1 as a tracker.
3 for any node ni where i ∈ [1, h] do
4 Whenever yi(t) has changed, send yi(t) to node

ni+1 and set yi+1(t) = yi(t).

Basically, ChainTrackO ensures that y1(t) is always within
f(t)±∆ using the OptTrack method. For any other relay
node ni for i ∈ [2, h + 1], it maintains yi(t) = yi−1(t) at all
time instances t. The tracker T maintains g(t) = yh+1(t)
(recall node nh+1 is the tracker node). In other words,
g(t) = yh+1(t) = yh(t) = · · · = y2(t) = y1(t) for any t.

Lemma 3 ChainTrackO’s competitive ratio is O(log ∆)
for chain online tracking with h relay nodes.

Proof. While running algorithm OptTrack between the
observer s and node n1, we define a round as a time pe-
riod [ts, te], such that S = [f(ts) −∆, f(ts) + ∆] at ts and
S = ∅ at te from line 1 and line 2 in Algorithm 1. By the
proof of Theorem 1 in [32,34], we know that OptTrack will
communicate O(log ∆) messages in a round. Thus, by the
construction of Algorithm 2, ChainTrackO has to commu-
nicate O(h log ∆) messages in this round.

For a round [ts, te], consider any time instance t ∈ [ts, te].
Lemma 1 means that yi(t) ∈ [f(t) − ∆, f(t) + ∆] for any
i ∈ [1, h+ 1] in the offline optimal algorithm. Suppose node
ni receives no message in this round, then it must be the
case that:

yi(x) ∈ ∩x
t=ts [f(t)−∆, f(t) + ∆] for any x ∈ [ts, te]. (1)

Consider the set S(x) at node n1 at time x, where S(x)
is the set S at time x in Algorithm 1. By the construction
of Algorithm 1, S(x) = ∩t[f(t) − ∆, f(t) + ∆] for a subset

of time instances t from [ts, x] (only when |f(t) − g(t)| >
∆, S ← S ∩ [f(t)−∆, f(t) + ∆]). Clearly, we must have:

∩x
t=ts [f(t)−∆, f(t) + ∆] ⊆ S(x) for any x ∈ [ts, te]. (2)

By the end of this round, S(te) becomes ∅ by the definition
of a round, which means that ∩x

t=ts [f(t)−∆, f(t) + ∆] has
become ∅ at some time x ≤ te by (2). But this means
that (1) cannot be true. Hence, our assumption that node
ni receives no message in this round must be wrong. This
argument obviously applies to any node ni for i ∈ [1, h+ 1],
which implies that an offline optimal algorithm must have
sent at least h+ 1 messages in this round.

Thus, cratio(ChainTrackO ) = ((h+ 1) log ∆)/(h+ 1) =
log ∆.

ChainTrackO is optimal among the class of online algo-
rithms that solve the chain online tracking problem, in terms
of its competitive ratio. Specifically, O(log ∆) is the lower
bound for the competitive ratio of any online algorithms for
chain online tracking. Let C-OPT(h) be the number of mes-
sages sent by the offline optimal algorithm for a chain online
tracking problem with h relay nodes.

Lemma 4 Any online algorithms for chain online tracking
of h relay nodes must send Ω(log ∆ · C-OPT(h)) messages.

4. THE BROOM CASE
A base case for distributed online tracking is the “broom”

topology as shown in Figure 1(a). A broom topology is an
extension of the chain topology where there are m observers
(instead of only one) connected to the first relay node. Sim-
ilarly as before, we denote the ith relay node as ni, and n1

is the first relay node that connects directly to m observers.
In fact, a broom topology reduces to a chain topology when
m = 1.

Since there are m functions, one from each observer, an
important distinction is that the function to be tracked is
computed based on these m functions. Specifically, the goal
is to track f(t) where f(t) = f(f1(t), . . . , fm(t)) for some
function f at T subject to an error threshold ∆. Clearly,
the design of online tracking algorithms in this case will
have to depend on the function f . We focus on the max
aggregate function in this work, and discuss other aggregate
functions in Section 6. Hence, in subsequent discussions,
f(t) = max(f1(t), . . . , fm(t)) and g(t) must be in the range
[f(t)−∆, f(t) + ∆] at T , for any time instance t.

A baseline. A baseline method is to ask T to track each
function fi(t) within fi(t)±∆ for i ∈ [1,m] using a function
gi(t). The tracker computes g(t) = max(g1(t), . . . , gm(t))
for any time instance t. For the ith function, this can be
done by using the ChainTrackO method for a chain online
tracking instance, where the chain is the path from observer
si to tracker T . Given that gi(t) ∈ [fi(t)−∆, fi(t)+∆] for all
i ∈ [1,m], it is trivial to show that g(t) ∈ [f(t)−∆, f(t)+∆].
We denote this approach as the m-Chain method.

Improvement. Recall that ChainTrackO allocates all
error threshold to the first relay node n1 in its chain; all
other relay nodes simply forward every update arrived at
n1 (from observer s) to T . Hence, in the m-Chain method,
it is n1 that actually tracks g1(t), . . . , gm(t) and n1 simply
passes every update received for gi(t) through the chain to
T . This clearly generates excessive communication. In light



of this, we consider a class Abroom of online algorithms for
broom online tracking as follows:

1. Every node u in a broom topology keeps a value yu(t)
which represents the knowledge of u about f(t) in the
subtree rooted at u at time t. For a leaf node u (an
observer), yu(t) is simply its function value fu(t).

2. Each leaf node u’s function is tracked by its parent v
within error ∆ using gu(t), i.e., |gu(t)− fu(t)| ≤ ∆ for
every time instance t. Note that gu(t) does not need
to be fu(t). Specifically, a leaf u sends a new value
gu(t) to its parent v only when |gu(last)− fu(t)| > ∆,
where gu(last) is the previous update u sent to v.

Note that in both broom and tree models, we do not ana-
lyze the competitive ratio (cratio) of their online algorithms.
The reason is that in a broom or a tree topology, since the
offline optimal algorithm offline can see the entire input in-
stance in advance, offline can “communicate” between leaf
nodes for free. These are observers that are distributed in
the online case. As a result of this, there always exists an
input instance where the performance gap between an online
algorithm and offline is infinitely large.

Hence, in the following discussion, we will analyze the
performance of an online algorithm using the concept of ratio
as defined in Section 2.1 with respect to the class Abroom.

In a broom topology, we use yi(t) to denote yu(t) for a
node u that is the ith relay node ni.

Lemma 5 Any algorithm A ∈ Abroom must track functions
f1(t), . . . , fm(t) with an error threshold that is exactly ∆ at
the first relay node n1 in order to minimize ratio(A).

Lemma 5 implies that yu(t) at every relay node u must be
tracked by its parent node exactly, since all error thresholds
have to be allocated to the first relay node n1.

That said, whenever yi(t) changes, the message will be
popped up along the chain to the tracker T . Formally,

Lemma 6 Whenever yi(t) 6= yi(t − 1) at node ni for any
i ∈ [1, h], any A ∈ Abroom must send an update from ni to
ni+1, and this update message must be yi(t).

Proof. This lemma is an immediate result of the above
discussion.

Lemmas 5 and 6 do not imply that Abroom does not have
many choices, because there are still many possible tracking
strategies between n1 and the m leaf nodes (observers). But
these two lemmas do help us reach the following theorem.

Theorem 2 For any algorithm A in Abroom, there exists an
input instance I and another algorithm A′ ∈ Abroom, such
that cost(A, I) is at least h times worse than cost(A′, I), i.e.,
for any A ∈ Abroom, ratio(A)= Ω(h).

Theorem 2 implies that there does not exist an “overall opti-
mal” algorithm A in Abroom that always achieves the small-
est cost on all input instances from I. Such an algorithm A
would imply ratio(A) = 1, which contradicts the above.

Next, we present an online algorithm whose performance
is close to the lower bound established by Theorem 2.

The BroomTrack method. We design the BroomTrack
algorithm in Algorithm 3. Similarly as before, nh+1 refers
to the tracker T and g(t) = yh+1(t).

Algorithm 3: BroomTrack (∆, m, h)

1 run m instances of OptTrack (∆), one instance per
pair (si, n1). note that si is the observer at the ith leaf
node and n1, the first relay node, behaves as a tracker
in OptTrack, for i ∈ [1,m];

2 let gj(t) be the tracking result at n1 at time t for fj(t);
3 for any time instance t do
4 if no update in any OptTrack instances at n1

then set y1(t) = y1(t− 1);
5 else
6 set y1(t) = max(g1(t), g2(t), . . . , gm(t));

7 for i = 1, . . . , h do
8 if t = 0 or yi(t) 6= yi(t− 1) then
9 send yi(t) to ni+1 and set yi+1(t) = yi(t);

10 else set yi(t) = yi(t− 1);

The idea of Algorithm 3 is inspired by the same principle
we explored in the design of ChainTrackO for chain online
tracking, which is to ask the first relay node to do all the
tracking, and the remaining relay nodes simply “relay” the
updates sent out by n1. Specifically, n1 tracks each function
fi from observer si with error threshold ∆, and monitors the
maximum value among these tracking results; n1 takes this
value as y1(t), his tracking result for f(t). Other than the
first time instance t = 0, only a change in this value, when
y1(t) 6= y1(t − 1), will cause a communication through the
entire chain, to send y1(t) to the tracker T and set g(t) =
y1(t). Otherwise, every node in the chain, including the
tracker, simply sets yu(t) = yu(t− 1) without incurring any
communication in the chain (from n1 to T ).

The correctness of BroomTrack is obvious: |gi(t)−fi(t)|
≤ ∆ for any i and t. And, at the tracker T , for any time in-
stance t, g(t) = y1(t) and y1(t) = max(g1(t), . . . , gm(t)) im-
mediately lead to |g(t)−f(t)| ≤ ∆, for f(t) = max(f1(t), . . . ,
fm(t)).

Theorem 3 With respect to online algorithms in Abroom,
ratio(BroomTrack) < h log ∆.

Proof. Given an input instance I ∈ I, we denote Mi

as the number of messages between si and n1 for tracking
function fi up to tnow by algorithm BroomTrack. Thus,
n1 will receive

∑m
i=1 Mi messages from s1, . . . , sm. In the

worst case, all of them get propagated up from n1 to the
root. So cost(BroomTrack, I) ≤ h

∑m
i=1 Mi.

On the other hand, for any algorithm A (A 6= Broom-
Track) in Abroom, it takes at least Mi

log ∆
messages between

si and n1 to track fi(t) on the input I by Theorem 1. Fur-
ther, A needs to propagate at least one message through
the chain at the first time instance. Thus, cost(A, I) ≥
h+

∑m
i=1 Mi

log ∆
. Hence, for any I ∈ I, the following holds:

ratio(BroomTrack, I) ≤
h
∑m

i=1 Mi

h+
∑m

i=1 Mi

log ∆

< h log ∆.

Hence, ratio(BroomTrack) < h log ∆.

Similarly, we can show that m-Chain’s ratio is O(h log ∆)
with respect to online algorithms in Abroom.

Corollary 1 ratio(m-Chain) = O(h log ∆).



5. THE GENERAL TREE CASE
In a general tree topology, every leaf node is still an ob-

server, but it is no longer necessary for all leaf nodes to
appear in the same level in the tree. Furthermore, they do
not need to share a single chain to the tracker T . We still
assume that there are m observers and the tracker T locates
at the root. Similarly as before, every non-leaf node (except
the root node) is considered a relay node. Using a simililar
definition as that for the class Abroom in the broom model,
we can define Atree as the class of online algorithms for the
tree online tracking problem.

f2(t)
s1

s2

tracker T

f1(t)
f3(t)

s3

(a) simple tree.

si

tracker T

sj

pi − pi,j

pj − pi,j

pi,j

merging node u

(b) general tree.

Figure 3: Tree online tracking.
A trivial case is shown in Figure 3(a). Any leaf node (an

observer) is connected through a path to the tracker at the
root, and no two paths share a common node except the
root node. Every such path is a chain, hence, we can run
the m-Chain method in this case. It is easy to show that
m-Chain method is an instance optimal online method for
this simple case, with respect to the class Atree. In other
words, its ratio is O(1) with respect to Atree.

So in the general case, an observer at a leaf node is still
connected to the tracker through a single path. But a path
may join another path at a non-root node u. We call such
node u a “merging node”. Let pi be the ith path connecting
observer si to T . A path pi may join another path pj at a
merging node u, as illustrated in Figure 3(b). The common
part of pi and pj is a chain from u to T , and is denoted as pi,j
for any such i, j. Note that a path pi may join with multiple,
different paths at either one or more merging node(s), as
shown in Figure 3(b). We use (p− p′) to denote the subpath
in a path p that is not a part of another path p′.

When two paths pi and pj shares a merging node u, they
form a generalized broom model in the sense that u connects
to si and sj through two separate chains, (pi − pi,j) and
(pj − pi,j) respectively, and u itself connects to T through a
single chain (that is pi,j). When both si and sj are directly
connected under the merging node u, paths pi and pj become
exactly a broom model (with two observers).

Given this observation, inspired by Theorem 2, we first
have the following negative result.

Corollary 2 There is no instance optimal algorithm for Atree.

Also inspired by the above observation, we can extend
the idea behind BroomTrack to derive the TreeTrack
method for tree online tracking. It basically runs a similar
version of BroomTrack on all generalized broom models
found in a tree topology. This algorithm is shown in Algo-
rithm 4 and its correctness is established by Lemma 7.

Lemma 7 Consider a node u. suppose y1, . . . , y` are the
most recent updates of its ` child nodes. let z be the most
recent update sent from u to its parent node. Define y =

Algorithm 4: TreeTrack (∆, a general tree R)

1 for any non-leaf node u in R with an observer si as a
leaf node directly connected under u do

2 run an instances of OptTrack (∆) between u and
si, where u is the tracker and si is the observer;

3 for any non-leaf node u in R at any time instance do
4 let y1, . . . , y` be the most recent updates of its `

child nodes;
5 let z be the most recent update of u to its parent;
6 set y = max{y1, . . . , y`};
7 if y 6= z then
8 send y as an update to u’s parent node in R

9 g(t) at tracker T is the maximum value among the most
recent updates T has received from all its child nodes.

max{y1, . . . , y`}. If y 6= z, then u must send an update to
its parent node, and this update message must be y.

Lastly, if we denote hmax as the max length (the number
of relay nodes in a path) of any path in a general tree, we
can show the following results for TreeTrack.

Corollary 3 ratio(TreeTrack) = O(hmax log ∆) with re-
spect to Atree.

6. OTHER FUNCTIONS AND TOPOLOGIES

6.1 Other functions for f

It is trivial to see that all of our results hold for min as well.
That said, for any distributive aggregates on any topology,
our methods can be extended to work for these aggregates.
A distributive aggregate can be computed in a divide-and-
conquer strategy, i.e., f(f1(t), . . . , fm(t)) = f(f(fa1(t), . . . ,
fai(t)), f(fai+1(t), . . . , fam(t))), where {(a1, . . . , ai), (ai+1,
. . . , am)} represents a (random) permutation and partition
of {1, . . . ,m}. Other than max and min, another examples is
sum. In online tracking, since we assume that the number of
observers is a constant, hence, tracking average is equivalent
to tracking sum (because the count is a constant).

So consider sum as an example, we can extend m-Chain
to both broom and tree models, by allocating ∆/m error
for each chain. BroomTrack and TreeTrack can be ex-
tended as well, by: (1) allocating error thresholds only to
a chain connecting to a merging node; (2) and making sure
that the sum of error thresholds from all chains to all merg-
ing nodes equals ∆. The rest of the algorithm is designed in
a similar fashion as that in BroomTrack and TreeTrack,
respectively. It is easy to see that, no matter there are how
many merging nodes, there are exactly m such chains. So
a simple scheme is to simply allocate the error threshold
∆ equally to any chain connecting to a merging node. Of
course, the ratio of these algorithms needs to be analyzed
with respect to the class of online algorithms for sum, which
will be different from that in the max case. Such analyses
are beyond the scope of this paper, and will be studied in
the full version of this work.

More interestingly, our methods can be extended to work
with holistic aggregate (aggregates that cannot be computed
distributively) in certain case, such as any quantiles in a
broom topology. Specifically, we can modify both m-Chain
and BroomTrack for max to derive similar m-Chain and



BroomTrack methods for distributed online tracking with
any quantile function in a broom topology. Suppose f(t) =
φ(f1(t), . . . , fm(t)), where φ(S) represents an φ-quantile from
a set S of one dimension values for any φ ∈ (0, 1). When
φ = 0.5, we get the median function.

The only change needed for m-Chain is to change f =
max to f = φ-quantile at the tracker, when applying f over
g1(t), . . . , gm(t).

For BroomTrack, the only change we need to make is in
line 6 in Algorithm 3, by replacing max with φ-quantile, i.e.,
y1(t) = φ(g1(t), . . . , gm(t)). The following lemma ensures
the correctness of these adaptions.

Lemma 8 Let y1(t) = φ(g1(t), . . . , gm(t)) and f(t) = φ(f1(t),
. . . , fm(t)). If |gi(t) − fi(t)| ≤ ∆ for all i ∈ [1,m], then it
must be |y1(t)− f(t)| ≤ ∆.

The proof is provided in Appendix A. Furthermore, using
similar arguments, we can show a similar lower bound and
upper bound, as that for the max case, on the ratio of these
algorithms with respect to the class of online algorithms for
tracking a quantile function in the broom model.

For the general-tree model, the m-Chain method still
works for tracking any quantile function (since the tracker T
tracks f1(t), . . . , fm(t) within error ∆ with g1(t), . . . , gm(t)).
However, the TreeTrack method no longer works. The
fundamental reason is that one cannot combine quantiles
from two subtrees to obtain the quantile value of the union
of the two subtrees. A similar argument holds against com-
bining the tracking results from two subtrees in the case of
quantile online tracking.

6.2 Other topologies
As we already mentioned in Section 2, the general tree

topology can be used to cover the cases when a relay node
also serves as an observer at the same time. The idea is
illustrated in Figure 4(a). A conceptual observer s′ can be
added as a leaf-level child node to such a relay node u. Our
algorithms and results are carried over to this case. The
only difference is that there is no need to run OptTrack
between s′ and u. Instead, u gets g′(t) = f ′(t) for free,
where f ′(t) is the function at s′ (the function at u when he
acts as an observer). This is useful when intermediate nodes
in a network or a distributed system also observe data values
of interest to the computation of f being tracked.

f ′(t) f ′(t)

replace

s′
u

u

(a) observer at relay node.

u1

u2

u3

u4

u5

u5

u3u2u1

u4

(b) graph topology.

Figure 4: Other topologies.
Lastly, our results from the general tree topology also ex-

tend to a graph. On a graph topology G, a distributed online
tracking instance has a tracker T at a node from the graph,
and m observers on m other nodes on the graph. We can
find the shortest path from an observer si to T on the graph
G, for each i ∈ [1,m], where the length of a path is de-
termined by the number of graph nodes it contains. Then,
a general tree topology can be constructed (conceptually)
from these m shortest paths by merging any common graph

node from these paths into a single parent node with proper
child nodes. T is the root node, and each observer is a leaf
node. An example is shown in Figure 4(b).

6.3 Asynchronous updates
So far in our discussion, we assumed that observers receive

synchronous updates at all time instances, i.e., each observer
receives an update on the value of its function at each time
instance. In some applications, this may not be the case
and observers may receive asynchronous updates, in which
not only the data arrival rates for different observers may be
different, but also the data arrival rate for a single observer
may also change over time. Asynchronous updates seem to
present new challenges, nevertheless, all our methods can
handle asynchronous updates gracefully, in the same way as
they do for synchronous updates.

Consider any time instance t for an observer s and its
function f , and assume that there are x values, {v1, . . . , vx}
arriving at s at t. Recall that in our solution framework, u
and s simply runs the centralized tracking algorithm Opt-
Track with error parameter ∆ [32,34] (say we consider max
as an example).

If we treat these values arriving at t as x updates in x
time instances t.1, . . . , t.x, and simply continue to run our
tracking method between s and u, then u always has an ap-
proximation g that is within f ±∆ continuously. This holds
for any observer even if they have different arrival rates.
The key observation is that when u receives an update from
one observer si, but not from another observer sj , either
because sj didn’t receive an update for its function or it did
receive an update but OptTrack didn’t trigger an update
message to u, u still holds a valid approximation for each ob-
server’s function, guaranteed by the independent centralized
tracking (OptTrack) instance between u and any observer
attached to u!

7. EXPERIMENT
All algorithms were implemented in C++. We tested var-

ious distributed topologies, and executed all experiments in
a Linux machine with an Intel Core I7-2600 3.4GHz CPU
and 8GB memory. Every single communication between two
directly connected nodes u and v contributes one message.

Data sets. We used two real data sets. The first data
set is a temperature data set (temp) from the MesoW-
est project [18], a national environmental measurement net-
work. It contains temperature measurements from Jan 1997
to Oct 2011 from 26,383 distinct stations across the United
States. We randomly select a subset of stations as the ob-
servers and treat readings from a station as the values of the
function for that observer.

The second data set is wind direction measurements (wd)
from the SAMOS project [27], a weather observation net-
work based on research vessels and voluntary ships at sea.
Raw readings from the research vessel Wecoma were ob-
tained which consist of approximately 11.8 million records
observed during a 9 month interval in 2010. Wecoma re-
ports a measurement as frequent as 1 second, but may report
no readings for a number of seconds between two measure-
ments. We partition these records by a week interval, which
leads to 36 chunks. Then we randomly select a subset of
data chunks and treat the readings from each chunk as the
values of an observer’s function.
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Figure 5: Performance of chain tracking methods on temp.
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Figure 6: Performance of broom tracking methods on temp.

In all data sets, values at each observer are sorted by
their timestamps (from MesoWest or SAMOS). By default,
at each time instance, we feed each observer one reading
as its observed function value at that time instance, which
leads to synchronous updates across observers, i.e., each ob-
server receives a single update at each time instance. These
two data sets provide quite different distributions: we plot
the function values of the function from an observer using a
small sample (1000 time instances) in Figure 7.
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Figure 7: f1(t) for temp and wd, for t ∈ [1, 1000].

Setup. We use temp as the default data set. The de-
fault values of key parameters are: the number of time in-
stances N = 5000; the number of relay nodes in a chain or
a broom topology by default is h = 2. The default aggre-
gate function f is max. For any function fi, we compute
its standard deviation (std) with respect to t ∈ [1, N ]. We
set τ = avg(std(f1), . . . , std(fm)) for f = max. We then set
the default ∆ value to 0.6τ . For the broom model, we set
the default number of observers m = 15, i.e., number of leaf
nodes connecting to the first relay node.

Note that leaf nodes can sit on different levels in a general
tree topology. To produce a tree topology, each child node
of an internal node with fanout F becomes a leaf node with
probability p. We stop expanding nodes when they reach
the tree level that equals the tree height H. We set F = 3,
p = 0.5 and H = 4 as default values when generating a
general tree topology.

For each experiment, we vary the values for one parameter
while setting the other parameters at their default values.
We report the average total number of messages per time
instance in a topology for different methods. This is denoted
as “msgs per time instance” in our experimental results.

7.1 Chain model
Figure 5(a) shows the communication cost when we vary

∆ from 0.2τ to τ . Clearly, the communication cost re-
duces for all methods as ∆ increases, since larger ∆ values
make a tracking algorithm less sensitive to the change of
function values. ChainTrackO outperforms both Chain-
TrackA and ChainTrackR for all ∆ values by an order
of magnitude. Compared with the cost of the offline op-
timal method, denoted as offline, ChainTrackO performs
well consistently. Averaging over the whole tracking period,
offline needs 0.015 message per time instance and Chain-
TrackO takes only 0.056 message per time instance when
∆ = 0.6τ .

Figure 5(b) shows the communication cost as h increases
from 0 to 4. Note that when h = 0 the chain model becomes
the centralized setting (one observer connects to the tracker
directly). Not surprisingly, all methods need more messages
on average as the chain contains more relay nodes while h in-
creases. Among the three online algorithms, ChainTrackO
gives the best performance for all h values. Meanwhile, we
verified that its competitive ratio is indeed independent of
h, by calculating the ratio between the number of messages
sent by ChainTrackO and offline.

We then vary the number of time instancesN from 1000 to
10,000 in Figure 5(c). We observe that the communication
cost of all methods first decreases and then increases around
N = 5000. This is explained by the dynamic nature of
functions values over time, due to the real data sets we have
used in our experiments.

Figure 5(d) shows the ratio between the cost of a method
and the cost of offline, on both temp and wd data sets.
Clearly, on both data sets, ChainTrackO has significantly
outperformed both ChainTrackA and ChainTrackR. The
cost of ChainTrackO is very close to the cost of offline.

7.2 Broom model
Figure 6(a) shows the communication cost as we vary m

the number of observers in a broom topology from 5 to 25.
We see that BroomTrack outperforms m-Chain for all m
values and the gap enlarges for larger m values. In partic-
ular, when m = 15 m-Chain takes on average 2.64 mes-
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Figure 8: General tree: vary p.
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Figure 9: General tree: vary ∆.

sages per time instance while BroomTrack takes only 1.04
messages per time instance, in a broom topology with 15
observers and 2 relay nodes. Note that if we were to track
function values exactly, this means that we will need 45 mes-
sages per time instance! In the following, we use m = 15 as
the default value in a broom topology.

Figure 6(b) shows the communication cost when we change
∆ from 0.2τ to τ . For all ∆ values, BroomTrack has
outperformed m-Chain by more than 3 times consistently.
Again, for similar reasons, a larger ∆ value always leads to
less communication.

We change h, the number of relay nodes in a broom topol-
ogy, from 0 to 4 in Figure 6(c). When h = 0, there is no
relay node and all observers are directly connected to the
tracker itself. Therefore, BroomTrack and m-Chain give
the same communication cost when h = 0. We see that m-
Chain suffers from the increase of h much more significantly
compared to BroomTrack, and BroomTrack scales very
well against more relay nodes. In particular, its number of
messages per time instance only increases slightly from 0.88
to 1.20 when h goes from 0 to 4. Again, if we were to track
all functions exactly, when the broom has 4 relay nodes and
15 observers, we will need 75 messages per time instance!

We vary N from 1000 to 10,000 in Figure 6(d). It shows
that the average number of messages per time instance is
quite stable and only decreases slightly when N goes beyond
5000 for both BroomTrack and m-Chain methods. This
is caused by the change in the distribution of function values
with respect to the time dimension.

7.3 General tree topology
We first vary p, when generating a tree topology, from 0.1

to 0.9 in Figure 8. The corresponding number of observers in
the trees that were generated ranges from 27 to 7. Note that
larger p values tend to produce less number of observers,
since more nodes become leaf nodes (observers) early and
they stop generating subtrees even though the height of the
tree has not been reached yet in the tree generation process.
Not surprisingly, the communication cost of both method
reduces as p increases on both data sets. Averaging over the
whole tracking period, when p = 0.5 TreeTrack takes 1.28
messages per time instance while m-Chain takes 2.21 mes-

sages per time instance on temp data set. This particular
tree has 15 leaf nodes (observers) and 22 nodes in total. In
the same tree topology, if we were to track function values
exactly, we will need 41 messages per time instance! On wd
data set, both methods need even less number of messages
per time instance as shown in Figure 8(b). We set p = 0.5
as the default value in general-tree topologies.

Figure 9 shows the communication cost when we vary ∆
from 0.2τ to τ . Again, TreeTrack outperforms m-Chain
for all ∆ values on both temp and wd data sets. In particu-
lar, these results show that TreeTrack is very effective in
tracking changes of function values in a tree. For example,
Figure 9(b) shows that TreeTrack takes on average 0.07
message per time instance when ∆ = 0.6τ on wd data set.
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Figure 10: General tree: vary H.
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Figure 11: General tree: vary F .

Next, we grow the size of a tree by increasing H, the
height of a tree, from 2 to 6 in Figure 10. Note that the
number of nodes in a general tree increases exponentially in
terms of H. Therefore, both methods show an increase in
communication cost as H increases on both data sets. Nev-
ertheless, we still see a significant performance improvement
of TreeTrack over m-Chain as H increases on both wd
and temp data sets. Also note that even though the commu-
nication cost increases as a tree grows higher, TreeTrack
is still very effective. For example, when H = 6, we have
a general tree of 91 nodes and 61 of them are leaf nodes
(observers). Tracking these functions exactly would require
more than 300 messages per time instance. But in this case,
TreeTrack has sent on average only 3.6 messages and 4
messages on wd and temp data sets respectively.

We vary the fan-out F from 2 to 4 in Figure 11. Not
surprisingly, both m-Chain and TreeTrack show an in-
creasing communication cost as F increases on both data
sets since larger F values lead to more nodes in a tree. But
the cost of TreeTrack increases much slowly. And in all
cases, TreeTrack performs much better than m-Chain,
and is still orders of magnitude more effective if we compare
its cost against the cost of tracking all functions exactly.

7.4 Other functions
Next, we investigate our online algorithms for tracking

sum and median aggregate functions respectively. We eval-



uate their performance using the default parameter values
on both data sets, over both broom and tree models. Note
that under the default setting, if we were to tracking function
values exactly, we will need 45 messages per time instance
in the broom instance and 41 messages per time instance in
the tree instance.
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Figure 12: Track sum on broom and general tree.
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Figure 13: Track median on broom and general tree.

We first explore the performance of our methods for track-
ing sum function in Figure 12, for both broom and tree
models. In this case, we define τ = std(f(t)) for t ∈ [1, N ],
where we calculate the values of f(t) offline based on func-
tions f1(t), . . . , fm(t), i.e., f(t) =

∑m
i=1 fi(t). Our improved

methods (BroomTrack and TreeTrack) still outperforms
m-Chain in communication cost on both data sets.

Figure 13 compares the performance of different methods
for tracking median function on both broom and tree mod-
els. Figure 13(a) shows that BroomTrack outperforms m-
Chain in communication cost on both data sets. We evalu-
ate the performance of m-Chain and m-ChainA in Figure
13(b) for general-tree topology since TreeTrack does not
work in this case. Here, m-ChainA is a m-chain tracking
method that calls ChainTrackA for each chain. It con-
firms our analysis that allocating tracking error to the first
relay node indeed is better than allocating error threshold
over different relay nodes in a chain, and m-Chain performs
much better than m-ChainA on both data sets.

7.5 Asynchronous updates
By default, we experimented with synchronous updates

at all observers, i.e., each observer receives an update per
time unit. As discussed in Section 6.3, our methods handle
asynchronous updates as well. Next, we show experiments
to track the max over observers with different data arrival
rates using the wd dataset. We use m = 15 observers and
default values for other parameters.

In particular, in this experiment, we take one minute as
a time instance for the SAMOS data set [27]. Each ship in
SAMOS collects measurement as frequent as 1 second, but it
is also possible that a ship didn’t report any measurements
for a number of seconds. This leads to different arrival rates
for different observers when they measure updates in minute
interval. Figure 14(a) shows the data arrival rate over time

for an observer over the first 3,500 minutes. Clearly, its data
arrival rate fluctuates over time.

Figure 14(b) shows the communication cost over time of
BroomTrack and m-Chain under dynamic data arrival
rates at 15 observers. We also show msgs per minute for the
exact tracking method (m = 15 and h = 2), which is denoted
by the blue line in Figure 14(b). Clearly, both Broom-
Track and m-Chain outperform exact tracking, and Broom-
Track performs the best over all time instances.
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Figure 14: Broom: max, asynchronous updates.

8. RELATED WORK
Online tracking is a problem that has only been recently

studied in [32,34], which we have reviewed in details in Sec-
tion 2. Only the centralized setting was studied in [32,34].

In the popular distributed streaming model, the goal is to
produce an approximation of certain functions/properties
computed over the union of data stream elements seen so
far for all observers, from the beginning of the time till now,
for example, [5–7, 19, 33]). There are studies in distributed
streaming model on a time-based sliding window of size W
[10,11,17,23,26]. Their objective is to compute an aggregate
of interest over the union of all elements (from a single or
multiple streams) between 0 and tnow or a sliding window of
size W (with respect to tnow) [5–7,19,33].

When a time-based sliding window is used, e.g., [10,11,17],
by setting the window size W = 1, their problems resemble
some similarity to our problem. However, there are two
important distinctions. Firstly, prior works for computing
aggregates over distributed streams using time-based slid-
ing window focus on computing aggregates defined over item
frequencies (in fact, this is the case for most streaming algo-
rithms), while our problem is to track an aggregate over item
values. Secondly, for aggregation over time-based sliding
window [10,11,17] and streaming algorithms in general, the
approximation error is typically quantified by an error pa-
rameter ε ∈ (0, 1) over the total frequency of all item counts
in the current window, while an error parameter ∆ ∈ Z+ is
used in our problem to bound the error in the output value
of an aggregation over current item values from all sites.

In distributed settings with multiple observers, to the best
of our knowledge and as pointed out by the prior studies
that have proposed the state-of-the-art centralized method
[32, 34], a comprehensive study of the distributed online
tracking problem with theoretical guarantees is still an open
problem. Cormode et al. studied a special instance of
this problem, but focused on only monotone functions [8,9].
When f is the top-k function, a heuristic method has been
proposed in [1] which provides no theoretical analysis. In
contrast, our work focuses on common aggregation functions
and principled methods with theoretical guarantees on their
communication costs.



Several existing studies explored the problem of thresh-
old monitoring over distributed data [20, 21, 29], where the
goal is to monitor continuously if f(t) (a function value com-
puted over the data values of all observers at time instance
t) is above a user-defined threshold or not. Note that, in
threshold monitoring the tracker only needs to verify if the
function value has exceeded a threshold or not, instead of
keeping an approximation that is always within f(t) ± ∆.
The geometric-based methods have been further explored to
provide better solutions to the threshold monitoring prob-
lem [16], and the function approximation problem in the
distributed streaming model [15] (which as analyzed above
is different from the online tracking problem).

9. CONCLUSION
This paper studies the problem of distributed online track-

ing. We first extend the recent results for online tracking in
the centralized, two party model to the chain model, by in-
troducing relay nodes between observer and tracker. We
then investigate both the broom model and the tree model,
as well as other different tracking functions. Extensive ex-
periments on real data sets demonstrate that our methods
perform much better than baseline methods. Many inter-
esting directions are open for future work, including but not
limited to formally analyzing the ratios of our methods when
extending them to different aggregates, investigating online
tracking with an error threshold that may change over time.
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APPENDIX
A. PROOFS
Lemma 1 For an algorithm A (either online or offline)
that solves the chain online tracking problem, we must have
yi(t) ∈ [f(t) − ∆, f(t) + ∆] for any i ∈ [1, h + 1] in order
to reduce communication while ensuring correctness. This
holds for any t ∈ [0, tnow].

Proof. We prove a general fact that holds for any relay
node and the tracker. Consider any node ni for i ∈ [1, h],
and its successor ni+1. We prove that the error (defined as
|yi+1(t)− f(t)|) at ni+1 cannot be lower than that at ni for
any time instance t. This is true because no matter what ni

tells ni+1, ni can also tell that to itself. In other words, ni

has at least the same amount of information that ni+1 does
in order to reduce the tracking error.

That said, since we must have |yh+1(t)−f(t)| ≤ ∆ at any
time instance t at the tracker node nh+1, combined with the
fact above, it implies that |yi(t) − f(t)| ≤ ∆ for any t and
i ∈ [1, h].

Lemma 4 Any online algorithms for chain online tracking
of h relay nodes must send Ω(log ∆ · C-OPT(h)) messages.

Proof. Suppose A is an online algorithm for chain on-
line tracking with h relay nodes. The approximations of f(t)
at different nodes are y1(t), y2(t), . . . , yh(t), yh+1(t) respec-
tively (note that nh+1 is the tracker T , and g(t) = yh+1(t)).

Consider an adversary Alice, who maintains an integer
set R such that any y ∈ R at time instance t is a valid
representative for the value of f(t), for t ∈ [ts, te]. Note that
a round is defined as a period [ts, te], such that R = [f(ts)−
∆, f(ts) + ∆] at ts and R = ∅ at te. Let di be the number of
integers in R after the i-th update sent out by algorithm A
from the observer. Initially, R = [f(ts)−∆, f(ts) + ∆] and
d0 = 2∆ + 1.

In each round [ts, te], we will show that there exists a
sequence of f(t) values such that A has to send Ω(log ∆ ·
C-OPT(h)) messages, but the optimal offline method has to
send only C-OPT(h) messages.

Consider a time instance t ∈ [ts, te] after the i-th update
sent by algorithm A. Let x be the median of R. With-
out loss of generality, suppose more than h+1

2
values among

{y1(t), y2(t), . . . , yh+1(t)} are in the range [min(R), x], let
Y≤(t) be the set of such values and z = max(Y≤(t)).

Alice sets f(t + 1) = z + ∆ + 1. It is easy to verify that
f(t + 1) − yi(t) > ∆ for any yi(t) ∈ Y≤(t). Hence, any
node ni, such that yi(t) ∈ Y≤(t), must receive an update at
(t+ 1) to ensure that yi(t+ 1) ∈ [f(t+ 1)−∆, f(t+ 1) + ∆]
by Lemma 1. This means that A has to send at least h+1

2
messages (the size of Y≤(t)) from t to t+ 1.

After the (i+1)-th update sent out by A from the observer,
R has to be updated as R← R∩ [f(t+1)−∆, f(t+1)+∆],
i.e., R = [z + 1, x + (di − 1)/2] and its size reduces by at
most half at each iteration when A sends out an update
from the observer. It’s easy to see that di+1 ≥ (di − 1)/2.
Using the same argument, we will get a similar result if
more than h+1

2
values of {y1(t), . . . , yh+1(t)} are in the range

[x,max(R)]. In that case, we set f(t+ 1) = z−∆− 1 where
z = min(Y≥(t)).

That said, it takes at least Ω(log ∆) iterations for R to
be a constant, since R’s initial size is O(∆) and its size re-
duces by at most half in each iteration. When R becomes

empty, Alice starts a new round. By then, an offline optimal
algorithm must have to send at least one update from the
observer to the tracker (as g(t) must hold a value from R to
represent f(t) for t ∈ [ts, te]), which takes at least O(h) mes-
sages. Hence, in any such round [ts, te], when R = ∅ at te,
C-OPT(h) = O(h), but A has to send at least Ω(h+1

2
log ∆)

messages, which completes the proof.

Lemma 5 Any algorithm A ∈ Abroom must track functions
f1(t), . . . , fm(t) with an error threshold that is exactly ∆ at
the first relay node n1 in order to minimize ratio(A).

Proof. Assume that the claim does not hold. This means
there exists an algorithm A ∈ Abroom that allows node n1

to track at least one function fi(t) using an error threshold
δ that is less than ∆. Without loss of generality, consider
i = 1. In this case, we can show that ratio(A) = +∞ by
constructing an input instance I as follows.

In this instance I, fj(t) = −2∆ for j = 2, . . . ,m and
any time instance t; f1(t) = (−1)t mod 2∆. In other words,
f1(t) alternates between −∆ and ∆ and all other functions
are set to a constant −2∆. In this case, clearly, f(t) =
max(f1(t), . . . , fm(t)) = f1(t) for all time instances t. But
since the error threshold allocated to n1 for f1 is δ < ∆, A
needs to send +∞ number of messages when t goes +∞, no
matter how it designs its online tracking algorithm between
n1 and s1.

But the optimal online algorithm for this particular in-
stance only needs to send (m + h + 1) number of mes-
sages in the first time instance. This algorithm A∗I sets
g1(t1) = f1(t1) + ∆, and gi(t1) = fi(t1) for all i > 1 at
the first time instance t1. It then asks each observer si
to only send an update to n1 if and only if at a time in-
stance t, fi(t) has changed more than ∆ from its last com-
municated value to n1. At any time instance, n1 sends
y1(t) = max(g1(t), . . . , gm(t)) to T , through the chain de-
fined by n2, . . . , nh, if y1(t) is different from the last com-
municated value from n1 to T . It is easy to verify that this
algorithm belongs to Abroom and it works correctly on all
possible instances. On the above input instance, at the first
time instance t1, it will send g1(t1) = 0, and g2(t1) = · · · =
gm(tm) = −2∆ to n1 from observers s1, . . . , sm (n1 also
forwards only y1(t) = 0 to T ). But it will incur no more
communication in all subsequent time instances. Hence, its
communication cost is (m+ h+ 1).

Thus, on this input instance I, ratio(A, I)/ratio(A∗I , I) =
+∞. As a result, ratio(A) = +∞.

Note that the optimal algorithm for a particular input in-
stance may perform badly on other input instances. The def-
inition of ratio is to quantify the difference in the worst case
between the performance of an online algorithm A against
the best possible performance for a valid input instance.

Theorem 2 For any algorithm A in Abroom, there exists an
input instance I and another algorithm A′ ∈ Abroom, such
that cost(A, I) is at least h times worse than cost(A′, I), i.e.,
for any A ∈ Abroom, ratio(A)= Ω(h).

Proof. For simplicity and without loss of generality, it
suffices to prove the theorem for m = 2, i.e., a broom topol-
ogy that has only 2 observers at the leaf level. We denote
the two observers as s1 and s2 respectively. For an algorithm
A ∈ Abroom, we will play as an adversary to construct two
bad input instances I1 and I2 with respect to A.



Initially, we set f1(t1) = ∆. Suppose in algorithm A s1

sends a value x1 to n1. Note that x1 must be an integer
in [0, 2∆]. When x1 > 0 we’ll construct input instance I1;
otherwise we’ll construct instance I2 for x1 = 0.

Time instance f1(t) g1(t) f2(t) g2(t) y1(t)

Initialization

t1 ∆ x1 x1 + 3
2
∆ x2 x2

t2 x1 + ∆ x1 � 0 � 0 x1

Round

t2i+1 x1 + ∆ x1 x1 + 3
2
∆ x2 x2

t2i+2 x1 + ∆ x1 � 0 � 0 x1

Table 1: Input instance I1 and behavior of A.

Table 1 shows the construction of I1 and the behavior
of A on I1. At time t1, we set f2(t1) = x1 + 3

2
∆ and s2

sends a value x2 to n1. Clearly, x2 is strictly larger than
x1 since x2 ≥ x1 + ∆

2
. Hence, at node n1, g1(t1) = x1 and

g2(t1) = x2. We have y1(t1) = max(g1(t1), g2(t1)) = x2 and
it will be propagated all the way up to the tracker at the
root node by Lemma 6.

At time t2, we update f1(t2) = x1 + ∆ and f2(t2) to a
value that is� 0. Note that s1 sends no message to n1 since
|x1 − f1(t2)| ≤ ∆; meanwhile, s2 needs to send an update
message that is� 0 to n1 because |g2(t1)− f2(t2)| > ∆ and
f2(t2)� 0. Now, y1(t2) will be set back to x1 which will be
propagated up to the tracker T .

The rest of I1 is constructed in rounds. Right before each
round, we always ensure that y1(t) = x1 and g2(last) � 0.
Each round i contains two time instances t2i+1 and t2i+2.
In a round i, we keep f1’s value at x1 + ∆ and alternate the
values of f2 between x1 + 3

2
∆ and some value that is � 0.

Specifically, at time t2i+1, s2 will send a value x2 to n1 and
g2(t2i+1) will be set to x2. But s1 will not send any message
and g1(t2i+1) will still be x1. Because |x2− (x1 + 3

2
∆)| ≤ ∆,

clearly, x2 > x1. Hence, y1(t2i+1) = x2, and by Lemma 6,
y1(t2i+1) = x2 will be propagated up to the tracker. At the
following time t2i+2, s2 sends another update message to n1

that sets g2(t2i+2) to be � 0, and s1 again sends no update
message and g1(t2i+2) is still x1. Hence, y1(t2i+2) goes back
to x1. Again, this update on y1(t) will be propagated up to
the tracker according to Lemma 6.

In summary, for every time instance in a round, A will
incur h messages. Hence, cost(A, I1) equals O(htnow).

Next, we show the existence of another algorithm A′ in
Abroom which only sends O(h+ tnow) messages on the same
input I1.

Time instance f1(t) g1(t) f2(t) g2(t) y1(t)

Initialization

t1 ∆ 0 x1 + 3
2
∆ x1 + ∆ x1 + ∆

t2 x1 + ∆ x1 + ∆ � 0 � 0 x1 + ∆

Round

t2i+1 x1 + ∆ x1 + ∆ x1 + 3
2
∆ x1 + ∆ x1 + ∆

t2i+2 x1 + ∆ x1 + ∆ � 0 � 0 x1 + ∆

Table 2: A′ on input instance I1.

At time t1, A′ sends g1(t1) = 0 from s1 and g2(t1) =
x1 + ∆ from s2 to n1, for f1(t1) = ∆ and f2(t1) = x1 +
3
2
∆ respectively. Hence, y1(t1) = x1 + ∆ and it will be

propagated up to the tracker at the root.
At time t2, f1(t2) = x1 + ∆. This forces s1 to send a new

update message to n1 because |f1(t2)− g1(t1)| = |x1 + ∆−
0| > ∆ (note that while constructing I1, we assumed that

x1 > 0). At this time, A′ sends g1(t2) = x1 + ∆ for tracking
f1(t2) = x1 + ∆. On s2, f2(t2) � 0 which also forces an
update message g2(t2) � 0 to be sent to n1. But y1(t2) =
max(g1(t2), g2(t2)), which still equals y1(t1) = x1+∆! Thus,
y1(t2) = x1+∆ does not need to sent up to the tracker along
the chain.

In subsequent rounds, A′ is able to maintain y1 = x1 + ∆
with respect to I1 in each round as shown in Table 2. That
said, it only takes two messages for updating g2(t) at n1 in
each round. Therefore, cost(A′, I1) = h + 4 + 2 × r for r
rounds, which is O(h+ tnow) since each round has two time
instances. This means that cost(A′, I1) = O(h+ tnow).

Similarly, we can construct a bad input instance I2 for
algorithm A when x1 = 0 as shown by Table 3. And for this

input instance, there exists another algorithm A
′′

in Abroom

that only takes (h + 3 + 2 × r) = O(h + tnow) messages on
input I2 as shown by Table 4.

Time instance f1(t) gs1(t) f2(t) gs2(t) y1(t)

Initialization

t1 ∆ 0 ∆ + 1 x2 x2

t2 ∆ � 0 � 0 0

Round

t2i+1 ∆ ∆ + 1 x2 x2

t2i+2 ∆ � 0 � 0 0

Table 3: A on input instance I2.

Time instance f1(t) gs1(t) f2(t) gs2(t) y1(t)

Initialization

t1 ∆ 1 ∆ + 1 1 1

t2 ∆ � 0 � 0 1

Round

t2i+1 ∆ ∆ + 1 1 1

t2i+2 ∆ � 0 � 0 1

Table 4: A′′ on input instance I2.

That said, for any algorithm A ∈ Abroom, there always
exists an input instance I and an algorithm A′ ∈ Abroom,
such that cost(A, I) = O(htnow) and cost(A′, I) = O(h +
tnow). In other words, ratio(A) = Ω(h).

Corollary 2 There is no instance optimal algorithm for Atree.

Proof. Since we have excluded the trivial case in the tree
model, a tree topology must have at least two paths pi and
pj that shares a merging node u. The paths pi and pj form a
generalized broom model as discussed above. Suppose path
pi,j consists of h relay nodes.

By Theorem 2, for any algorithm A ∈ Atree, there always
exists an input instance I and another algorithm A′ ∈ Atree,
such that the cost of A on I on path pi,j is at least h times
worse than the cost of A′ on I on path pi,j . The cost of A
on I on path (pi − pi,j) and path (pj − pi,j) is at best the
same as the cost of A′ on I on these two paths.

Lemma 7 Consider a node u. suppose y1, . . . , y` are the
most recent updates of its ` child nodes. let z be the most
recent update sent from u to its parent node. Define y =
max{y1, . . . , y`}. If y 6= z, then u must send an update to
its parent node, and this update message must be y.

Proof. Without loss of generality, assume that y = yi.
The jth child node of u is referred to as the node j, and its
function is denoted as fj .



We prove the theorem by induction. First, consider the
base case when u only has leaf nodes as its child nodes (i.e.,
u only has observers as its child nodes). We first show that
u must send an update to its parent.

case 1: y > z: For node i, set fi to y+ ∆. For node j 6= i,
if yj ≥ y − 2∆, then set fj to y −∆.

case 2: y < z: For node i, set fi to y−∆. For node j 6= i,
if yj ≥ y − 2∆, then set fj to y −∆.

With some technicality, we can show that in both cases:
(1) y ∈ [f(t)−∆, f(t)+∆] where f(t) = max(f1(t), . . . , f`(t)));
and (2) z /∈ [f(t) −∆, f(t) + ∆]. Hence, node u must send
an update to its parent. Now suppose that node u sends an
update y′, but y′ 6= y.

case 1: y > y′: For node i, set fi to y+∆. For node j 6= i,
if yj ≥ y − 2∆, then set fj to y −∆.

case 2: y < y′: For node i, set fi to y−∆. For node j 6= i,
if yj ≥ y − 2∆, then set fj to y −∆.

It is easy to show that y′ is not in [fi(t) −∆, fi(t) + ∆],
but by construction f(t) = fi(t). So the update cannot be
such an y′.

Now consider the case where u is a node such that the
statement holds for all its descendants. We will show that
the statement also holds for u. First, we show that u must
send an update.

The fact that the statement holds for all the descendants
of u implies that each yj must be the most recent update
of some leaf node in the jth subtree of u (rooted at u’s jth
child node). Let v be the leaf node corresponding to yi.

case 1: y > z. For v, set fv to y + ∆. For any leaf node
w 6= v, if yw ≥ y − 2∆, then set fw to y −∆.

case 2: y < z. For v, set fv to y −∆. For any leaf node
w 6= v, if yw ≥ y − 2∆, then set fw to y −∆.

Using a similar argument as that in the base case, we can
show that u must send an update to its parent. Now suppose
that node u sends an update y′, but y′ 6= y.

case 1: y > y′. For v, set fv to y + ∆. For any leaf node
w 6= v, if yw ≥ y − 2∆, then set fw to y −∆.

case 2: y < y′. For v, set fv to y −∆. For any leaf node
w 6= v, if yw ≥ y − 2∆, then set fw to y −∆.

Again by a similar argument as that in the base case, we
can show that such an y′ cannot be the update message.

Corollary 3 ratio(TreeTrack) = O(hmax log ∆) with re-
spect to Atree.

Proof. Given an input instance I and any algorithm A ∈
Atree, suppose the number of messages between a leaf node
(an observer) si and its parent node as Mi. It’s easy to
see that cost(TreeTrack, I) ≤ hmax

∑m
i=1 Mi. Meanwhile,

any algorithm A′ in Atree satisfies cost(A′, I) ≥ hmax +∑m
i=1 Mi

log ∆
as a direct application of Theorem 1. Thus,

ratio(TreeTrack, I) ≤
hmax

∑m
i=1 Mi

hmax +
∑m

i=1 Mi/ log ∆
< hmax log ∆.

Therefore, ratio(TreeTrack) = O(hmax log ∆).

Lemma 8 Let y1(t) = φ(g1(t), . . . , gm(t)) and f(t) = φ(f1(t),
. . . , fm(t)). If |gi(t) − fi(t)| ≤ ∆ for all i ∈ [1,m], then it
must be |y1(t)− f(t)| ≤ ∆.

Proof. We prove this with contradiction, and we illus-
trate the proof using median (φ = 0.5). Other quantile
functions can be similarly proved. To ease the discussion for
quantiles, we assume no duplicates. Cases with duplicates
can be easily handled with a proper tie-breaker. Let’s say
f(t) = fi(t) for some i.

Suppose this is not true, then it must be |y1(t)− fi(t)| >
∆. Without loss of generality, let’s say y1(t) − fi(t) > ∆.
This means that y1(t) > gi(t), since |gi(t)− fi(t)| ≤ ∆.

There are two cases. First, consider m is an odd num-
ber. Since fi(t) is the median of f1(t), . . . , fm(t), there must
be m−1

2
functions f`1 , . . . , f`(m−1)/2

in f1(t), . . . , fm(t), such

that f`i(t) < fi(t).
Consider f`i(t) for any i ∈ [1, (m − 1)/2], the facts that
|g`i(t) − f`i(t)| ≤ ∆, f`i(t) < fi(t) and y1(t) − fi(t) > ∆
imply that g`i(t) < y1(t).

But now there are (m+ 1)/2 functions (g`1 , . . . , g`(m−1)/2
,

and gi(t)), from g1(t), . . . , gm(t), that are less than y1(t),
which contracts that y1(t) is the median of g1(t), . . . , gm(t).

The other case when m is an even number can be argued
in the same fashion, as long as median is properly defined
(as either the (m− 1)/2th value or the (m+ 1)/2th value in
the sorted sequence).


