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ABSTRACT

Temporal and multi-version databases are ideal candidates for a dis-
tributed store, which offers large storage space, and parallel and dis-
tributed processing power from a cluster of (commodity) machines.
A key challenge is to achieve a good load balancing algorithm for
storage and processing of these data, which is done by partitioning
the database. We introduce the concept of optimal splitters for tem-
poral and multi-version databases, which induce a partition of the
input data set, and guarantee that the size of the maximum bucket
be minimized among all possible configurations, given a budget for
the desired number of buckets. We design efficient methods for
memory- and disk-resident data respectively, and show that they
significantly outperform competing baseline methods both theoret-
ically and empirically on large real data sets.

Categories and Subject Descriptors

H.2.4 [Information Systems]: Database Management – Systems
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1. INTRODUCTION
Increasingly, user applications request the storage and process-

ing of historical values in a database, to support various auditing,
provenance, mining, and querying operations for better decision
making. Given the fast development in distributed and parallel pro-
cessing frameworks, applications can now afford collecting, stor-
ing, and processing large amounts of multi-versioned or temporal
values from a long-running history. Naturally, it leads to the devel-
opment of multi-version databases and temporal databases. In these
databases, an object o is associated with multiple disjoint temporal
intervals in the form [s, e], each of which is associated with the
valid value(s) of o during the period of [s, e].

Consider two specific examples as shown in Figure 1. Figure
1(a) shows a multi-version database [6, 17], and Figure 1(b) shows
a temporal database, where each object is represented by a piece-
wise linear function. A multi-version database keeps all the histori-
cal values of an object. A new interval with a new value is created
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whenever an update or an insertion to an object has occurred. An
existing interval with a (now) old value terminates when an item
has been deleted or updated.

On the other hand, for large temporal or time-series data, we can
represent the value of a temporal object as an arbitrary function
f : R → R (time to value). In general, for arbitrary temporal
data, f can be expensive to describe and process. In practice, ap-
plications often approximate f using a piecewise linear function
g [3, 7, 13]. The problem of approximating an arbitrary function
f by a piecewise linear function g has been extensively studied
(see [3, 7, 13, 19] and references therein). Other functions can be
used for approximation as well, such as a piece-wise polynomial
function, for better approximation quality. The key observations
are: 1) more intervals lead to better approximation quality, but also
are more expensive to represent; 2) adaptive methods, by allocat-
ing more intervals to regions of high volatility and less to smoother
regions, are better than non-adaptive methods with a fixed segmen-
tation interval.
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Figure 1: Databases with Intervals.

How to approximate f with g is beyond the scope of this paper,
and we assume that the data has already been converted to a set of
intervals, where each interval is associated with a mapping function
(piece-wise linear, or piece-wise polynomial) by any segmentation
method. In particular, we require neither them having the same
number of intervals nor them having the aligned starting/ending
time instances for intervals from different objects. Thus it is pos-
sible that the data is collected from a variety of sources after each
applying different preprocessing modules.

Lastly, large interval data may also be produced by any time-
based or range-based partitioning of an object, such as a log file or
a spatial object, from a big data set.

That said, we observe that in the aforementioned applications
users often have to deal with big interval data. Meanwhile, storing
and processing big data in a cluster of (commodity) machines, to
tap the power of parallel and distributed computation, is becoming
increasingly important. Therefore, storing and processing the large
number of intervals in a distributed store is a paramount concern, in
enabling the above applications to leverage the storage space and
the computation power from a cluster.

Since most analytical tasks and user queries concerning interval
data in a multi-version or temporal database are time-based, e.g.,



find the object ids with valid values in [50, 100] at time-instance t,
the general intuition is to partition the input data set into a set of
buckets based on their time-stamps. Intervals from one bucket are
then stored in one node and processed by one core from a cluster of
(commodity) machines. By doing so, user queries or transactions
concerning a time instance or a time range can be answered in se-
lected node(s) and core(s) independently without incurring exces-
sive communication, which also dramatically improves the spatial
and temporal locality of caching in query processing.

A challenge is to achieve load-balancing in this process, i.e., no
single node and core should be responsible for storing and process-
ing too many intervals. In particular, given the number of buck-

ets to create, the size of the maximum bucket should be minimized.

This is similar to the concept of optimal splitters in databases with
points [21] or array data sets [14, 18]. However, the particular na-
ture of interval data sets introduces significant new challenges.

Specifically, a partitioning boundary (known as a splitter) may
split an interval into two intervals. As a result, buckets on both
sides of a splitter need to contain an interval that intersects with a
splitter; see examples in Figure 1 where the dashed line with a cross
represents a splitter. Furthermore, intervals from different objects
may overlap with each other, which complicates the problem of
finding the optimal splitters. Finally, a good storage scheme should
also be capable to handle ad-hoc updates gracefully. In contrast, in
a point or array data set, any element from the original data set will
only lead to one element in one of the buckets; and elements do not
overlap with each other.

Our contributions. Given n objects with a total of N intervals
from all objects, and a user-defined budget k for the number of
buckets to create, a baseline solution is a dynamic programming for-
mulation with a cost of O(kN2). However, this solution is clearly
not scalable for large data sets. Our goal is to design I/O and com-
putation efficient algorithms that work well regardless if data fits
in main memory or not. A design principle we have followed is
to leverage on existing indexing structures whenever possible (so
these methods can be easily adopted in practice). Specifically, we
make the following contributions:

• We formulate the problem of finding optimal splitters for
large interval data in Section 2.

• We present a baseline method using a dynamic programming
formulation in Section 3.

• We design efficient methods for memory-resident data in Sec-
tion 4. Our best method finds optimal splitters of a data set
for any budget values k in only O(N logN) cost.

• We investigate external memory methods for large disk-
based data in Section 5. Our best method finds opti-
mal splitters of a data set for any budget value k in only
O(N

B
logM/B

N
B
) IOs, where B is the block size and M is

the memory size.

• We extend our methods to work for the queryable version
of the optimal splitters problem in Section 6, where k is the
query parameter. We also discuss how to make our methods
dynamic to handle ad-hoc updates in Section 6.

• We examine the efficiency of the proposed methods with ex-
tensive experiments in Section 7, where large real data sets
with hundreds of millions of intervals were tested.

We survey related work in Section 8, and conclude in Section 9.

2. PROBLEM FORMULATION
Let the database D be a set of objects. Each object has an in-

terval attribute (e.g., time) whose universe U is the real domain

representable in a computer. An object’s interval attribute contains
a sequence of non-overlapping intervals, as demonstrated in Figure
1. Given an interval [s, e], we refer to both s and e as its endpoints,
and s (e) as its starting (ending) value. Although the intervals from
one object are disjoint, the intervals of different objects may over-
lap. Let N be the total number of intervals from all objects in D.
Denote by I the set of these N intervals.

The objective is to partition I into smaller sets so that they can be
stored and processed in a distributed and parallel fashion. A size-k
partition P over I , denoted as P (I, k), is defined as follows:

1. P contains m splitters, where 0 ≤ m ≤ k. Each splitter is
a vertical line that is orthogonal to the interval dimension at
a distinct value ℓ ∈ U . We will use ℓ to denote the splitter
itself when there is no confusion. Let the splitters in P be
ℓ1, . . . , ℓm in ascending order, and for convenience, also de-
fine ℓ0 = −∞, ℓm+1 = ∞. These splitters induce m + 1
buckets {b1, . . . , bm+1} over I , where bi (1 ≤ i ≤ m + 1)
represents the interval [ℓi−1, ℓi].

2. If s 6= e, an interval [s, e] of I is assigned to a bucket bi
(1 ≤ i ≤ m + 1), if [s, e] has an intersection of non-zero

length with the interval of bi. That is, the intersection cannot
be a point (which has a zero length).

If s = e, [s, e] degenerates into a point, in which case we
assign [s, e] to the bucket whose interval contains it. In the
special case where s = ℓi for some i ∈ [1,m] (i.e., the
point lies at a splitter), we follow the convention that [s, e] is
assigned to bi+1.

3. We will regard bi as a set, consisting of the intervals assigned
to it. The size of bucket bi, denoted as |bi|, gives the number
of such intervals.

Define the cost of a partition P with buckets b1, . . . , bm+1 as
the size of its maximum bucket:

c(P ) = max{|b1|, . . . , |bm+1|}. (1)

Since the goal is to partition I for storage and processing in dis-
tributed and parallel frameworks, a paramount concern is to achieve
load-balancing, towards which a common objective is to minimize
the maximum load on any node, so that there is no single bottleneck
in the system. The same principle has been used for finding optimal
splitters in partitioning points [21] and array datasets [14,18]. That
said, an optimal partition for I is formally defined as follows.

Definition 1 An optimal partition of size k for I is a partition
P ∗(I, k) with the smallest cost, i.e.,

P ∗(I, k) = argmin
P∈P(I,k)

c(P ) (2)

where P(I, k) is the set of all the size-k partitions over I .

P ∗(I, k) is thus referred to as an optimal partition. If multiple
partitions have the same optimal cost, P ∗(I, k) may represent any
one of them. In what follows, when the context is clear, we use P ∗

and P to represent P ∗(I, k) and P (I, k), respectively.
Note that it is an equivalent definition if one defines P (I, k) in

step 2 such that, bucket bi gets assigned only the intersection of
[s, e] with bi – namely, only a portion of [s, e] is assigned to bi,
instead of the entire [s, e]. This, however, does not change the num-
ber of intervals stored at bi, which therefore gives rise to the same
partitioning problem. Keeping [s, e] entirely in bi permits concep-
tually cleaner and simpler discussion (because it removes the need
of remembering to take intersection). Hence, we will stick to this
problem definition in presenting our solutions.

Consider the example from Figure 2, where I contains 9 inter-
vals from 3 objects. When k = 2, the optimal splitters are {ℓ1, ℓ2},
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Figure 2: An example.

which yields 3 buckets b1, b2, b3 with 3, 4, and 3 intervals respec-
tively; hence, c(P ∗) = 4. An alternative partition of 2 splitters is
also shown in Figure 2 with dashed lines. It induces 3 buckets with
3, 4, and 5 intervals, so its cost 5 is worse than the aforementioned
optimal partition. Note that we use t∗ to represent c(P ∗).

Depending on whether k is given apriori or not, there are two
versions of the optimal splitters problem. In the first case, k is
fixed and given at the same time with the input set I . This fits
the scenario where the number of nodes/cores in a cluster available
for processing I is already known. In the second case, a user is
not certain yet how many nodes/cores should be deployed. Thus,
he/she wants to explore the cost of the optimal partition for different
budget values of k. In this case, k is unknown, and we are allowed
to pre-process I in order to quickly find the optimal splitters for any
subsequent queries over I with different k values. Formally:

Problem 1 The static interval splitters problem is to find P ∗ and

c(P ∗) for an interval set I and a fixed budget value k.

Problem 2 The queryable interval splitters problem is to find P ∗

and c(P ∗) over an interval set I , for any value k that is supplied

at the query time as a query parameter.

Clearly, any solution to the queryable version can be applied to
settle the static version, and vice versa (by treating I and k as a
new problem instance each time a different k is supplied). How-
ever, such brute-force adaptation is unlikely to be efficient in either
case. To understand why, first note that, in Problem 2, the key
is to pre-process I into a suitable structure so that all subsequent
queries can be answered fast (the pre-processing cost is not a part
of a query’s overhead). In Problem 1, however, such preprocessing
cost must be counted in an algorithm’s overall running time, and
can be unworthy because we only need to concentrate on a single
k, thus potentially avoiding much of the computation in the prepro-
cessing aforementioned (which must target all values of k).

We investigate the static problem in Sections 3, 4, and 5, and
the queryable problem in Section 6. In the queryable problem, han-
dling updates in I becomes an important issue, and presents addi-
tional challenges, which are also tackled in Section 6.

3. A BASELINE METHOD
Let us denote the N intervals in I as [s1, e1], . . . , [sN , eN ].

Suppose, without loss of generality, that s1 ≤ ... ≤ sN . Let
S(I) = {s1, . . . , sN}, i.e., the set of starting values of the inter-
vals in I . When I is clear from the context, we simply write S(I)
as S.

Where to place splitters? For any splitter ℓ, denote by ℓ(1) the
splitter that is placed at the smallest starting value in S that is larger
than or equal to ℓ. If no such starting value exists, ℓ(1) is undefined.
Note that if ℓ itself is a starting value, ℓ(1) = ℓ.

It turns out that, to minimize the cost of a partition over I , it
suffices to place splitters only at the values in S. This is formally
stated in the next two lemmas:

Lemma 1 Consider any partition P with distinct splitters

ℓ1, . . . , ℓm in ascending order, such that ℓm(1) is undefined. Let

P ′ be a partition with splitters ℓ1, . . . , ℓm−1. Then, it always holds

that c(P ′) = c(P ).

PROOF. Let bm and bm+1 be the last two buckets in P (which
are separated by ℓm), and b′m be the last bucket of P ′ (which is
to the right of ℓm). When ℓm(1) is undefined, there are no new
intervals starting to the right of ℓm. Hence, it is not hard to show
that bm+1 ⊆ bm = b′m. This proves the lemma because all the
other buckets in P exist directly in P ′.

If smax is the largest starting value in S, the above lemma sug-
gests that we can drop all those splitters greater than smax without
affecting the cost of the partition. Hence, it does not pay off to have
such splitters.

Lemma 2 Consider any partition P with distinct splitters

ℓ1, . . . , ℓm in ascending order, such that ℓm(1) exists. Let ℓi be

the largest splitter that does not belong to S (i.e., ℓj ∈ S for all

j < i ≤ m). Define P ′ as a partition with splitters

• ℓ1, . . . , ℓi−1, ℓi(1), ℓi+1, . . . ℓm, if ℓi(1) 6= ℓi+1;

• ℓ1, . . . , ℓi−1, ℓi+1, . . . ℓm, otherwise.

Then, it always holds that c(P ′) ≤ c(P ).

PROOF. We consider only the first bullet because the case of the
second bullet is analogous. Let bi (bi+1) be the bucket in P that is
on the left (right) of ℓi. Similarly, let b′i (b′i+1) be the bucket in P ′

that is on the left (right) of ℓi(1). We will show that b′i ⊆ bi and
b′i+1 ⊆ bi+1, whose correctness implies c(P ′) ≤ c(P ), because
all the other buckets in P still exist in P ′, and vice versa.

We prove only b′i ⊆ bi because a similar argument validates
b′i+1 ⊆ bi+1. Given an interval [s, e] assigned to b′i, we will show
that it must have been assigned to bi, too. Note that, by definition
of ℓi(1), no starting value can exist in [ℓi, ℓi(1)). This means that
s < ℓi because s would not be assigned to b′i if s = ℓi(1).

If s = e, then s must fall in [ℓi−1, ℓi), which means that s is also
assigned to bi. On the other hand, if s 6= e, a part of [s, e] needs
to intersect (ℓi−1, ℓi) so that [s, e] can have intersection of non-
zero length with b′i. This means that [s, e] also has non-zero-length
intersection with bi, and therefore, is assigned to bi.

This shows that if a partition has a splitter that is not in S, we
can always “snap” the splitter to a value in S, without increasing
the cost of the partition (may decrease the cost of the partition).

Dynamic programming. Given a splitter ℓ, we define I−(ℓ),
I+(ℓ), and Io(ℓ) as the subset of intervals in I whose starting val-
ues are less than, greater than, and equal to ℓ, respectively:

I−(ℓ) = {[si, ei] ∈ I | si < ℓ}

I+(ℓ) = {[si, ei] ∈ I | si > ℓ}

Io(ℓ) = {[si, ei] ∈ I | si = ℓ}.

An interval [s, e] is said to strongly cover a splitter ℓ if s < ℓ < e
(note that both inequalities are strict). Let I×(ℓ) be the subset of
intervals from I that strongly cover ℓ:

I×(ℓ) = {[si, ei] ∈ I | si < ℓ < ei}.

The following fact paves the way to a dynamic programming algo-
rithm solving Problem 1:

Lemma 3 If k = 0, c(P ∗(I, k)) = |I|. For k ≥ 1, c(P ∗(I, k)) =

min
{

|I|, min
ℓ∈S

{max{c(P ∗(I−(ℓ), k − 1)), λ}}
}

. (3)

where λ = |Io(ℓ)|+ |I+(ℓ)|+ |I×(ℓ)|.



PROOF. The case of k = 0 is obvious, so we concentrate on
k ≥ 1. A partition of size-k over I is allowed to use m splitters,
where m ranges from 0 to k. If m = 0, then apparently the partition
has cost |I|. The rest of the proof considers m ≥ 1.

Lemmas 1 and 2 indicate that it suffices to consider partitions
where all splitters fall in S. Let us fix a starting value x ∈ S.
Consider an arbitrary partition P (I, k) whose last splitter ℓ is at

position x. Let m ∈ [1, k] be the number of splitters in P (I, k).
Let P (I−(x), k − 1) represent the partition over I−(x) with the
first m − 1 splitters of P (I, k). Denote by b′1, ..., b

′
m the buckets

of P (I−(x), k − 1) in ascending order.
Let b1, ..., bm+1 be the buckets of P (I, k) in ascending order.

As P (I, k) shares the first m − 1 splitters with P (I−(x), k − 1),
we know bi = b′i for 1 ≤ i ≤ m− 1. Next, we will prove:

• Fact 1: bm = b′m

• Fact 2: |bm + 1| = |Io(x)|+ |I+(x)|+ |I×(x)|.

These facts indicate:

c(P (I, k)) = max{|b1|, ..., |bm+1|}

= max{|b′1|, ..., |b
′

m|, |bm+1|}

= max{c(P (I−(x), k − 1)), |bm+1|}

≥ max{c(P ∗(I−(x), k − 1)), |bm+1|}

where the equality can be achieved by using an optimal partition
P ∗(I−(x), k − 1) to replace P (I−(x), k − 1). Then, the lemma
follows by minimizing c(P (I, k)) over all possible x.

Proof of Fact 1. We will prove only bm ⊆ b′m because a simi-
lar argument proves b′m ⊆ bm. Let [x′, x] be the interval of bm.
Accordingly, the interval of b′m is [x′,∞). Consider an interval
[s, e] of I that is assigned to bm. If s = e, then it must hold that
x′ ≤ s < x (note that s 6= x; otherwise, [s, e] is assigned to bm+1),
which means that [s, e] ∈ I−(x), and hence, [s, e] is assigned to
b′m. On the other hand, if s 6= e, then [s, e] has a non-zero-length in-
tersection with [x′, x], implying that [s, e] intersects (x′, x). Hence,
s < x, and [s, e] has a non-zero-length intersection with [x′,∞).
This proves that [s, e] is also assigned to b′m.

Proof of Fact 2. By definition, an interval [s, e] in I is assigned
to bm+1 in three disjoint scenarios: 1) s > x, 2) strongly covers x,
and 3) s = x. The numbers of intervals in these scenarios are given
precisely by I+(x), I×(x), and Io(x), respectively.

We are now ready to clarify our dynamic programming algo-
rithm, which aims to fill in an N by k matrix, as shown in Figure 3.
Cell [i, j] (at the i-th row, j-th column) records the optimal cost for
a sub-problem c(P ∗(I(i), j)), where I(i) denotes the set of inter-
vals in I with ids 1, ..., i (we index intervals in I in ascending order
of their starting values, break ties first by ascending order of their
ending values, and then arbitrarily). Thus, Cell [i, j] represents the
optimal cost of partitioning I(i) using up to j splitters.

N

k

[1, 1]

[N, k]

[1, k]

[N, 1]

. . .

. . .

[1, k − 1]

[N, k − 1]

.
.
.

.
.
.

.
.
.

Figure 3: The DP method.

Specifically, we fill the matrix starting from the top-left corner to
the bottom-right corner. To fill the cost in Cell [i, j], according to
Lemma 3, the last splitter in a partition P (I(i), j) may be placed

at any value in {s1, ..., si}. Hence, one needs to check i − 1 cells
from the (j−1)-th column, i.e., from [1, j−1] to [i−1, j−1]. For
instance, in Figure 3, to find the value for the cell [N, k], we need
to check N −1 cells from the previous column (the gray cells). We
refer to this approach as the DP method.

The above algorithm can be slightly extended in the straightfor-
ward manner to remember also the partitions found, so that the DP
method outputs both P ∗ and c(P ∗).

Cost analysis. Sorting I by starting values takes O(N logN) time.
Next, we focus on the cost of DP. Given a splitter ℓj , using ideas to
be explained in Section 4, we can determine λ in O(1) time with
the help of a structure that can be built in O(N logN) time. Hence,
to fill in Cell [i, j], it requires to check i− 1 cells in the preceding
column plus O(1) cost for obtaining λ. Completing an entire col-

umn thus incurs O(
∑N

i=1 i) = O(N2) time. As k columns need
to be filled, the overall running time is O(kN2).

4. INTERNAL MEMORY METHODS
The DP method clearly does not scale well with the database size

N due to its quadratic complexity. In this section, we develop a
more efficient algorithm for Problem 1, assuming that the database
can fit in memory.

The decision version of our problem is what we call the cost-

t splitters problem: determine whether there is a size-k partition
P with c(P ) ≤ t, where t is a positive integer given as an input
parameter. If such P exists, t is feasible, or otherwise, infeasible.
If t is feasible, we define t̄ as an arbitrary value in [1, t] such that
there is a size-k partition P with c(P ) = t̄, i.e,

t̄ = an arbitrary x ∈ [1, t] s.t. ∃P ∈ P(k, I), c(P ) = x. (4)

When t is infeasible, define t̄ = 0. An algorithm solving the cost-
t splitters problem is required to output t̄, and if t̄ > 0 (i.e., t
is feasible), also a P with c(P ) = t̄. The following observation
follows immediately the above definitions:

Lemma 4 If t is infeasible, then any t′ < t is also infeasible.

A trivial upper bound of t is N . Hence, the above lemma sug-
gests that we can solve Problem 1 by carrying out binary search to
determine the smallest feasible t in [1, N ]. This requires solving
O(logN) instances of the cost-t splitters problem. In the sequel,
we will show that each instance can be settled in O(k) time, using
a structure constructable in O(N logN) time. This gives an algo-
rithm for Problem 1 with O(N logN + k logN) = O(N logN)
overall running time.

As before, we denote the intervals in I as [s1, e1], ..., [sN , eN ]
sorted in non-descending order of their starting values; break ties
by non-descending order of their ending values first, and then arbi-
trarily. Interval [si, ei] is said to have id i. We consider that I is
given in an array where the i-th element is [si, ei] for 1 ≤ i ≤ N .

Stabbing-count array. As will be clear shortly, the key to attack-
ing the cost-t splitters problem is to construct a stabbing-count ar-

ray A. For each i ∈ [1,N ], define σ[i] as the number of intervals
in I strongly covering the value si, i.e.,

σ[i] = |I×(si)|. (5)

Furthermore, define δ[i] as the number of intervals in I with starting
values equal to si but with ids less than i. Formally, if Io<(si) =
{[sj , ej ] ∈ I | sj = si ∧ j < i}, then

δ[i] = |Io<(si)|. (6)

A stabbing-count array A is simply an array of size N where
A[i] = (σ[i], δ[i]), 1 ≤ i ≤ N . Figure 4 shows an example
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Figure 4: Stabbing-count array.

where I has N = 9 intervals, and the values of σ[i], δ[i] have been
shown under the interval with id i. For instance, σ[4] = 1 because
there is one interval [s3, e3] strongly covering s4, whereas δ[6] = 1
because one interval [s5, e5] has the same starting value as [s6, e6],
and yet, has a smaller id than [s6, e6].

Lemma 5 The stabbing count array can be built in O(N logN)
time.

PROOF. This is done with a sweeping technique. First, use
O(N logN) time to sort in ascending order the 2N endpoints
(starting and ending values) of the N intervals in I , breaking ties
as follows:

• A starting value is always put before an ending value;

• If both endpoints are starting values, the one belonging to
an interval with a smaller id is put earlier (similarly, if both
endpoints are ending values).

Denote by E the sorted list. For each endpoint x ∈ E, we associate
it with the id i of the interval where x belongs, and if x is an ending
value, also with the starting value si of that interval.

Next, we scan E once by its ordering. In this process, an interval
[s, e] is alive if s has been scanned, but e has not. At any moment,
we keep track of 1) slast: the last starting value scanned, 2) the
number c of alive intervals, and 3) the number cδ of alive intervals
whose starting values equal slast. As we will see, all this informa-
tion can be updated in constant time per endpoint in E, and allows
us to generate an entry of stabbing count array A in constant time
after a starting value is scanned.

Specifically, at the beginning of the scan, c = cδ = 0 and
slast = −∞. Let x be the next endpoint to be scanned, and i
the id of the interval to which x belongs. We proceed as follows:

• Case 1: x is an ending value ei. Decrease c by 1. Further-
more, if si = slast, also decrease cδ by 1.

• Case 2: x is a starting value. Increase c by 1. Furthermore,
if x = slast, increase cδ by 1; otherwise, set slast to x, and
reset cδ to 1. We also generate an entry (σ[i], δ[i]) of A,
where σ[i] = c− cδ , and δ[i] = cδ − 1.

The scan clearly takes O(N) time, thus completing the proof.

Cost-t splitters in memory. Given the stab-counting array A, we
now describe an algorithm, called t-jump, for solving the cost-t
splitters problem in O(k) time. If t is feasible, our algorithm
outputs t̄ and a partition P with splitters ℓ1, ..., ℓm, where m is
some integer between 0 and k, such that c(P ) = t̄ ≤ t. Each ℓj
(1 ≤ j ≤ m) is a starting value of a certain interval in I . We denote
by p(j) the id of that interval, namely, ℓj = sp(j).

Algorithm 1 illustrates the details of t-jump. At a high level, the
main idea is to place the splitters in ascending order, and partic-
ularly, in such a way that the next splitter is pushed as far away
from the preceding one as possible, aiming to let the new bucket
have size exactly t (hence, the name t-jump). However, as we will

see, due to the overlapping among intervals, the aim is not always
achievable. When it is not, we need to settle for a bucket with a
smaller size, by moving the next splitter backwards, but just enough
to make the new bucket’s size drop below t.

Algorithm 1: t-jump (I, k, t)

if t ≥ N then1

return t̄ = N , and an empty splitter set;2

p(1) = t+ 1− δ[t+ 1]; |b1| = t− δ[t+ 1];3

if |b1| = 0 then4

return t̄ = 0;5

t̄ = |b1|;6

for j = 2, . . . , k do7

xj = p(j − 1) + t− σ[p(j − 1)];8

if xj > N then9

|bj | = N − p(j − 1) + 1 + σ[p(j − 1)];10

t̄ = max(t̄, |bj |);
return t̄, and splitters sp(1), ..., sp(j−1);11

p(j) = xj − δ[xj ];12

if p(j) = p(j − 1) then13

return t̄ = 0;14

/* p(j) < p(j − 1) cannot happen */15

|bj | = t− δ[xj ]; t̄ = max(t̄, |bj |);16

|bk+1| = N − p(k) + 1 + σ[p(k)];17

if |bk+1| > t then18

return t̄ = 0;19

t̄ = max(t̄, |bk+1|);20

return t̄, and splitters sp(1), ..., sp(k).21

Now, let us walk through the algorithm. In the outset, Lines 1-2
deal with the trivial case where t ≥ N (such t is always feasible,
even if no splitter is used). Lines 3-6 place the first splitter ℓ1 at
the largest starting value that guarantees |b1| ≤ t. The rationale of
these lines is from the next lemma:

Lemma 6 We have:

• For ℓ1 = sp(1) where p(1) is set as in Line 3, |b1| = t−δ[t+
1] ≤ t. On the other hand, if ℓ1 > sp(1), |b1| > t.

• If |b1| as set in Line 3 equals 0, t is infeasible.

PROOF. To prove the first sentence in the first bullet, note that
b1 does not include the interval with id p(1). The bucket includes
exactly the intervals with ids 1, ..., p(1) − 1, namely, t − δ[t + 1]
of them. To prove the second sentence, if ℓ1 > sp(1), b1 includes
at least the first t+ 1 intervals, and hence, |b1| > t.

Now we show that the second bullet is also true. In fact, since
t = δ[t+1], the intervals with ids 1, ..., t+1 all have the same start-
ing values. These intervals will be assigned to an identical bucket
in any partition. This bucket must have a size at least t+ 1.

Hence, if |b1| = 0, the algorithm terminates at Line 5, indicating
that t is infeasible. Otherwise (i.e., |b1| > 0), we know that the cost
of the current partition is t̄ = |b1| (Line 6).

For every j ∈ [2, k], Lines 8-16 determine splitter ℓj , assum-
ing ℓ1, ..., ℓj−1 are already available. These lines set ℓj to largest

starting value that guarantees |bj | ≤ t, based on the next lemma:

Lemma 7 We have:

• For ℓj = sp(j) where p(j) is set as in Line 12, |bj | = t −
δ[xj ] ≤ t. On the other hand, if ℓj > sp(j), |bj | > t.

• If p(j) = p(j − 1) at Line 13, t is infeasible.



PROOF. Regardless of the position of ℓj , bj must contain
σ[p(j − 1)] intervals, i.e., those in I×(sp(j−1)) because they
strongly cover sp(j−1), and hence, have non-zero-length inter-
section with bj . If ℓj is placed at sp(j), then besides the in-

tervals of I×(sp(j−1)), bj also includes those intervals with ids
p(j − 1), ..., p(j) − 1. By definition of the stabbing count ar-
ray, |I×(sp(j−1))| = σ[p(j − 1)]. Hence, bj contains in total

|I×(sp(j−1))|+p(j)−p(j−1) = t−δ[xj ] intervals. This proves
the first sentence of the first bullet.

If ℓj > sp(j), then besides I×(sp(j−1)), bj also includes at least
the intervals with ids p(j − 1), ..., xj (due to line 12 and the defini-
tion of the stabbing count array for δ[i], sp[j] = sx[j]). In this case,

|bj | is at least xj − p(j − 1) + 1 + |I×(sp(j−1))| = t + 1. This
proves the second sentence of the first bullet.

Next, we show that the second bullet is also true. Notice that
p(j) = p(j − 1) implies δ[xj ] = t− σ[p(j − 1)]. By the way xj

is calculated, there are exactly t− σ[p(j − 1)]− 1 starting values
between sp(j−1) and sxj

. Hence, since δ[xj ] > t−σ[p(j−1)]−1,
we know that the interval with id p(j − 1) is counted by δ[xj ] (i.e.,
the interval belongs to Io<(xj)). This means that sp(j−1) = sxj

.
Now we have found σ[p(j − 1)] intervals of I strongly covering

sp(j−1), in addition to δ(xj)+1 intervals whose starting values are
sp(j−1) (the +1 is due to the interval with id xj). These σ[p(j −
1)] + δ(xj) + 1 = t + 1 intervals will always be assigned to an
identical bucket in any partition. Therefore, no partition can have
cost at most t.

Hence, Lines 13-15 declare t infeasible if p(j) = p(j − 1). Other-
wise, Line 16 correctly sets |bj |, and updates the current partition
cost t̄ if necessary.

Now let us focus on Lines 9-11. They handle the scenario where
less than k splitters are needed to obtain a partition of cost at most
t. Specifically, the final partition has only j − 1 splitters. Line 10
determines the size of the last bucket, and adjusts the partition cost
t̄ accordingly. The algorithm terminates at Line 11 by returning the
results.

At Line 17, we have obtained all the k splitters, and hence, the
last bucket bk+1 has been automatically determined. The line com-
putes its size, while Lines 18-20 check its feasibility (a negative an-
swer leads to termination at Line 19), and update the partition cost
if needed. Finally, Line 21 returns the k splitters already found, as
well as the cost t̄ of the partition.

We illustrate the algorithm with the example in Figure 4, setting
t = k = 3. To find the first splitter ℓ1, we compute p(1) = 4,
and hence, place ℓ1 at s4. To look for the second splitter ℓ2, Line 8
calculates x2 = p(1) + t − σ[p(1)] = 4 + 3 − 1 = 6. However,
as δ[6] = 1 > 0, we move p(2) back to x2 − δ[x2] = 6 − 1 = 5.
For the third splitter ℓ3, we derive p(3) = p(2) + t − σ[p(2)] =
5 + 3 − 0 = 8. Finally, the algorithm checks the size of the last
bucket, which is N − p(3) + 1 + σ[p(3)] = 9 − 8 + 1 + 1 = 3,
namely, still within the target cost t. Hence, t-jump outputs t̄ = 3,
and splitters ℓ1 = s4, ℓ2 = s5, and ℓ3 = s8.

Lemma 8 If t-jump does not return t̄ = 0, then the splitters output

constitute a partition with cost t̄ ≤ t. Otherwise (i.e.,t̄ = 0), then t
must be infeasible.

PROOF. The first sentence is easy to show, given that the sizes
of all buckets have been explicitly given in Algorithm 1. Next, we
focus on the case where t̄ = 0. The algorithm may return t̄ = 0
at three places: Lines 5, 14, and 19. Lemmas 6 and 7 have already
shown that termination at Lines 5 and 14 is correct. It thus remains
to show that Line 19 termination is also correct.

Assume, for the purpose of contradiction, that j-jump reports
t̄ = 0 at Line 19, but there exists a size-k partition P ′ over I

such that c(P ′) ≤ t. Suppose that P ′ has splitters ℓ′1, . . . , ℓ
′
m in

ascending order for some m ≤ k, which define m + 1 buckets
b′1, . . . , b

′
m+1 again in ascending order. By Lemmas 1 and 2, we

can consider that ℓ′1, ..., ℓ
′
m are all starting values in S.

We will establish the following statement: for each j ∈ [1,m],
t-jump always places the jth smallest splitter ℓj in such a way that

ℓj ≥ ℓ′j – referred to as the key statement henceforth. This state-
ment will complete the proof of Lemma 8. To see this, notice that
it indicates ℓk ≥ ℓm ≥ ℓ′m, which in turn means |bk+1| ≤ |b′m+1|.
However, as Line 19 tells us |bk+1| > t, it thus must hold that
|b′m+1| > t, thus contradicting the fact that c(P ′) ≤ t.

We now prove the key statement by induction. As the base step,
ℓ1 = sp(1) ≥ ℓ′j because if not, then by Lemma 6 |b′1| must be
strictly greater than t, violating c(P ′) ≤ t.

Now assuming that the key statement is correct for j = z,
next we show that it is also correct for j = z + 1. In fact, if
ℓz+1 = sp(z+1) < ℓ′z+1, then by Lemma 7 a bucket with in-
terval [ℓz, ℓ

′
z+1] will have a size greater than t. However, since

ℓz ≥ ℓ′z , we know that the interval [l′z, l
′
z+1] of bucket b′z con-

tains [ℓz, ℓ
′
z+1], and therefore, |b′z+1| must also be greater than t,

contradicting c(P ′) ≤ t. This completes the proof of the key state-
ment.

Algorithm t-jump in Algorithm 1 clearly runs in linear time to
the number of splitters, i.e., O(k) time. Putting everything in this
section together, we have arrived at the first main result of the paper.

Theorem 1 The static interval splitters problem can be solved in

O(N logN) time in internal memory.

5. EXTERNAL MEMORY METHODS
This section discusses how to solve the static interval splitters

problem I/O-efficiently when the input set I of intervals does not fit
in memory. Our analysis will be carried out in the standard external

memory model of computation [2]. In this model, a computer has
M words of memory, and a disk has been formatted into blocks

(a.k.a. pages) of size B words. An I/O operation either reads a
block from the disk to memory, or conversely, writes a block in
memory to the disk. The objective of an algorithm is to minimize
the number of I/Os. We assume M ≥ 3B, i.e., the memory is large
enough to store at least 3 blocks of data.

Initially, the input set I is stored in a disk-resident array that
occupies O(N/B) blocks. When the algorithm finishes, we should
have output the m ≤ k splitters of the final partition to a file of
O(k/B) blocks in the disk. Define:

SORT (N) = (N/B) logM/B(N/B).

It is well-known that sorting a file of N elements entails
O(SORT (N)) I/Os by the textbook external sort algorithm. The
rest of the section serves as the proof for the theorem below:

Theorem 2 The static interval splitters problem can be solved us-

ing O(SORT (N)) I/Os in external memory.

As before, denote the intervals in I as [s1, e1], [s2, e2], ...,
[sN , eN ] in ascending order of si (break ties by ascending order of
their ending values first, and then arbitrarily), 1 ≤ i ≤ N , where
[si, ei] is said to have id i. Henceforth, we consider that I is stored
as a disk-resident array where the i-th element is [si, ei]. This can
be fulfilled by simply sorting the original input I , whose cost is
within the budget of Theorem 2.

Adapting the main-memory algorithm. The previous section
has settled the static interval splitters problem in O(N logN) time
when the input I fits in memory. Recall that our algorithm has two
steps: it first creates the stabbing count array A in O(N logN)



time, and then solves O(logN) instances of the cost-t splitters
problem, spending O(k) time on each instance.

In external memory, a straightforward adaptation gives an algo-
rithm that performs O(SORT (N) + min(k, N

B
) logN) I/Os. Re-

call from Section 4 that the computation of the stabbing count ar-
ray A requires only sorting 2N values followed by a single scan of
the sorted list. Hence, the first step can be easily implemented in
O(SORT (N)) I/Os in external memory. The second step, on the
other hand, trivially runs in O(min(k, N

B
) logN) I/Os, by simply

treating the disk as virtual memory.
This algorithm is adequate when k is not very large. The term

min(k, N
B
) logN is asymptotically dominated by O(SORT (N))

when k = O
(

N
B log2(M/B)

)

(note that the base of the logarithm is

2). However, the solution falls short for our purpose of claiming a
clean bound O(SORT (N)) for the entire range of k ∈ [1, N ] (as
is needed for proving Theorem 2).

In practice, this straightforward solution can be expensive when
k is large, which may happen in a cluster. Note that k could be the
total number of cores in a cluster, when each core is responsible for
processing one bucket in a partition. So it is not uncommon to have
k in a few thousand, or even tens of thousands in a cluster.

Next, we provide an alternative algorithm in the external memory
that performs O(SORT (N)) I/Os.

Cost-t splitter in external memory. The cost-t splitters problem

(defined in Section 4) determines whether there is a size-k partition
P with cost c(P ) ≤ t; moreover, if P exists, an algorithm also
needs to output such a partition (any P with c(P ) ≤ t is fine).
Assuming that the stabbing-count array A has been stored as a file
of O(N/B) blocks, next we explain how to solve this problem with
O(N/B) I/Os.

The algorithm implements the idea of our main-memory solution
by scanning the arrays A and I synchronously once. Following the
notations in Section 4, let ℓ1, . . . , ℓm be the splitters of P (where
1 ≤ m ≤ k), and p(i) an interval id such that ℓi = sp(i), 1 ≤ i ≤
m. We start by setting p(1) as in Line 3 of Algorithm 1, fetching
the p(1)-th interval of I , and writing it to an output file. Iteratively,
having obtained p(i), for 1 ≤ i ≤ m − 1, we forward the scan
of A to A[p(i)], and compute p(i + 1) according to Lines 8-16 in
Algorithm 1. Then, we forward the scan of I to retrieve the p(i+1)-
th interval of I , and append it to the output file. Recall that the main-
memory algorithm would declare the absence of a feasible P under
several situations. In external memory, when any such situation
occurs, we also terminate with the absence declaration, and destroy
the output file.

The total cost is O(N/B) I/Os because we never read the same
block of I or A twice. The algorithm only requires keeping O(1)
information in memory. In particular, among p(1), . . . , p(i) (sup-
pose p(i + 1) is not available yet), only p(i) needs to be remem-
bered. We will refer to p(i) as the front-line value of the algorithm.
By definition, once p(i+ 1) is obtained, it becomes the new front-
line value, thus allowing us to discard p(i) from memory.

Cost-t testing. Let us consider an easier variant of the cost-t split-
ters problem called cost-t testing, which is identical to the former
problem except that it does not require an algorithm to output a par-
tition in any case (i.e., even if P exists). An algorithm outputs only
a boolean answer: yes (that is, P exists), or no.

Clearly, the cost-t testing problem can also be solved in O(N/B)
I/Os. For this purpose, we slightly modify our algorithm for cost-t
splitter: (i) eliminate the entire part of the algorithm dealing with
the output file (which is unnecessary for cost-t testing), and (ii) if
the algorithm declares the absence of a feasible P , we return no

for cost-t testing; otherwise, i.e., the algorithm terminates without
such a declaration, we return yes.

What do we gain from such a modification, compared to using
the cost-t splitter algorithm to perform cost-t testing directly? The
answer is the avoidance of writing O(k/B) blocks. Recall that the
cost-t splitter algorithm would produce during its execution an out-
put file whose length can reach k. Doing away with the output file
turns out to be crucial in attacking a concurrent extension of cost-t
testing, as discussed next, which is the key to proving Theorem 2.

Concurrent testing. The goal of this problem is to solve multiple
instances of the cost-t testing problem simultaneously. Specifically,
given h integers satisfying 1 ≤ t1 < t2 < . . . < th ≤ N , the
concurrent testing problem settles h instances of cost-t testing for
t = t1, ..., th, respectively. Following the result in Lemma 4, cost-t
testing obeys the monotonicity that if cost-t testing returns yes (or
no), then cost-t′ with any t′ > t (or t′ < t, respectively) will also
return yes (no). Therefore, the output of concurrent testing can be
a single value τ , equal to the smallest tj (1 ≤ j ≤ h) such that tj-
testing returns yes. Note that τ does not need to always exist: the
algorithm returns nothing if th-testing returns negatively (in which
case, the tj -testings of all j ∈ [1, h− 1] must also return no).

Assuming h ≤ cM where 0 < c < 1 is to be decided later, we
can perform concurrent testing in O(N/B) I/Os. We concurrently
execute h cost-t testings, each of which sets t to a distinct tj , 1 ≤
j ≤ h. The concurrency is made possible by several observations
on the cost-t testing algorithm we developed earlier:

1. Regardless of t, the algorithm scans I and A only forwardly,
i.e., it never reads any block that has already been passed.

2. The next block to be read from I (A) is uniquely determined
by its front-line value p(i). In particular, if p(i) is larger, then
the block lies further down in the array I (A).

3. As one execution of the algorithm requires only c′ = O(1)
words of memory, by setting

c =
1

c′

(

1−
2B

M

)

(7)

we ensure that h concurrent threads of the algorithm demand
at most cM · c′ = M − 2B words of memory. This will
always leave us with two available memory blocks, which we
deploy as the input buffers for reading I and A, respectively.
Note that since M ≥ 3B, we have c ≥ 1/(3c′), indicating
that cM = Ω(M).

In memory, the algorithm uses a min-heap H to manage the
front-line values of the h threads of cost-t testing. At each step,
it de-heaps the smallest value p from H . Suppose without loss
of generality that p comes from the thread of cost-tj testing, for
some j ∈ [1, h]. We execute this thread until having obtained its
new front-line value, which is then en-heaped in H . This contin-
ues until all threads have terminated, at which point we determine
the output τ as explained before. A trivial improvement is to stop
testing tj ’s for tj > ti if the testing on ti returns that ti is feasible.
The fact that it performs only O(N/B) I/Os follows directly from
the preceding observations about each thread of cost-t testing.

Solving the static interval splitters problem. Our I/O efficient
algorithm for the static interval splitters problem has three steps:

1. Construct the stabbing count array A.

2. Obtain the minimum t∗ such that cost-t∗ testing returns yes.



3. Solve the cost-t∗ splitters problem to retrieve the splitters of
an optimal partition P ∗.

We refer to this algorithm as the concurrent t-jump method, or in
short ct-jump. The correctness of the algorithm is obvious, noticing
that Step 2 guarantees t∗ to be the cost of an optimal partition.

We explained previously how to do Step 1 in O(SORT (N))
I/Os and Step 3 in O(N/B) I/Os. Next, we will show that Step
2 requires only O((N/B) logM N) I/Os. This will establish Theo-
rem 2 because, for N ≥ M , it holds that1

logN

logM
≤

logN − logB

logM − logB

Note that the left hand side is logM N whereas the right hand side
is logM/B(N/B).

The rest of the section will concentrate on Step 2. It is easy to
see that t∗ falls in the range [1, N ]. We will gradually shrink this
permissible range until eventually it contains only a single value,
i.e., t∗. We achieve the purpose by launching multiple rounds of
concurrent testing such that, after each round, the permissible range
will be shrunk to O(1/M) of the original length. An example for
performing concurrent testings to shrink the permissible range is
shown in Figure 5.

r r
′

permissible range

tj−1 tj

permissible range
next

τ = tj

Figure 5: Concurrent testing on permissible ranges.

Specifically, suppose that the permissible range is currently
[r, r′] such that r′ − r ≥ cM , where c is the constant given in (7).
We choose h = cM integers t1, ..., th to divide [r, r′] as evenly as
possible, namely: tj = r + ⌈j(r′ − r)/(h + 1)⌉, for j = 1, ..., h.
Then, we carry out concurrent testing with t1, ..., th. Let τ be the
output of the concurrent testing. Then, the permissible range can
be shortened to:

• [th + 1, r′] if τ does not exist (i.e., the concurrent testing
returned nothing).

• [r, t1] if τ = t1.

• [tj−1 + 1, tj ] if τ = tj for some j > 1.

It is easy to verify that the length of the new permissible range is at
most 2/(cM) = O(1/M) that of the old one.

Finally, when the permissible range [r, r′] has length at most cM ,
we acquire the final t∗ by one more concurrent testing with h =
r′ − r+1 values t1, ..., th, each of which is set to a distinct integer
in [r, r′]. The value of t∗ equals the output τ of this concurrent
testing.

It is clear that we perform O(logM N) rounds of concurrent test-
ing in total. As each round takes linear I/Os, we thus have ob-
tained an algorithm that implements Step 2 in O((N/B) logM N)
I/Os. In other words, the algorithm concurrent t-jump has IO cost
O(SORT (N)). This completes the proof of Theorem 2.

6. QUERYABLE INTERVAL SPLITTERS

AND UPDATES
In this section, we tackle the challenges in solving the queryable

interval splitters problem (i.e., Problem 2).

Queryable interval splitters. Our solutions for the static interval

1Let x, y, z be positive values such that x ≥ y > z, then x
y
≤ x−z

y−z
.

splitters problem also lead to efficient solutions to the queryable
interval splitters problem.

In internal memory, we can use the t-jump algorithm for answer-
ing any queries with different k values. In a preprocessing step, we
build the stabbing count array A (which occupies O(N) space) in
O(N logN) time. For subsequent queries, each query with a dif-
ferent k value takes O(k logN) time to answer, by solving logN
cost-t splitters problems and each taking O(k) time.

In external memory, the preprocessing cost of the t-jump method

is O(SORT (N)) I/Os to build and maintain the disk-based stab-
bing count array A. The size of the index (which is just A) is
O(N/B), and the query cost is O(min{k,N/B} logN) I/Os.

The preprocessing step of the concurrent t-jump method is the
same. Hence, it also takes O(SORT (N)) I/Os, and its index also
uses O(N/B) space. Each query takes O((N/B) logM N) I/Os.

Updates. In the queryable problem, another interesting challenge
is to handle dynamic updates in the interval set I . Unfortunately,
in this case, update costs in both the t-jump and concurrent t-jump

methods are expensive. The indexing structure in both methods
is the stabbing-count array A. To handle arbitrary updates, in the
worst case, all elements in A need to be updated. Hence, the up-
date cost is O(N) time in internal memory, and O(N/B) I/Os in
external memory. This is too expensive for large data sets.

This limitation motivates us to explore update-efficient indexing
structures and query methods for the queryable interval splitters
problem. We again leverage the idea of solving O(logN) instances
of the cost-t splitters problems (the decision version of our prob-
lem), in order to answer an optimal splitter query with any k value.
The challenge boils down to designing an update-friendly indexing
structure for answering a cost-t splitters query efficiently.

Observe that the key step in our algorithm for solving a cost-t
splitters query in Section 4 is to figure out which starting value to
use for placing the next splitter, which is given by Lines 8 and 12
in Algorithm 1. The critical part is to find out:

1) the number of intervals in I that strongly cover a starting
value s, which is where a splitter has been placed at, i.e.,
|I×(s)|.

2) the number of intervals in I that share the same starting val-
ues as an interval [si, ei] (1 ≤ i ≤ N ), but with smaller ids
less than i, i.e., |Io<(si)|.

Hence, to solve a cost-t splitters problem instance, we just need
to use an update-friendly index that answers any stabbing count
query efficiently, i.e., an index that finds |I×(s)| and |Io<(s)| for
any point s efficiently. This can be done efficiently using a seg-

ment B-tree [23]. In internal memory, this structure occupies
O(N) space, can be built in O(N logN) time, answers a stabbing
count query in O(logN) time, and supports an insertion/deletion
in O(logN) time. In external memory, the space, construction,
query, and update costs are O(N/B), O((N/B) logM/B(N/B)),
O(logB N) and O(logB N), respectively.

Finally, answering a cost-t splitters query requires answering
k different stabbing count queries; and answering a queryable in-
terval splitters problem then takes O(logN) cost-t splitters prob-
lem instances. Hence, the overall query cost of this approach is
O(k log2 N) time in internal memory, and O(k logB N · logN)
I/Os in external memory. We denote this method as the stabbing-

count-tree method, or just sc-tree.

7. EXPERIMENTS
We implemented all methods in C++. The external memory

methods were implemented using the TPIE-library [4]. All exper-



iments were performed on a Linux machine with an Intel Core i7-
2600 3.4GHz CPU, a 4GB memory and a 1TB hard drive.

Datasets. We used several large real datasets. The first one Temp is
from the MesoWest project. It contains temperature measurements
from Jan 1997 to Oct 2011 from 26,383 distinct stations across the
United States. There are almost 2.6 billion total readings from all
stations with an average of 98,425 readings per station. For our
experiments, we view each year of readings from a distinct station
as a distinct object. Each new reading in an object is viewed as
an update and creates a new version of that object. This leads to a
multi-version database and every version of an object defines an in-
terval in the database. Temp has 145,628 objects with an average of
17,833 versions per object. So Temp has approximately 2.6 billion
intervals in total.

The second real dataset, Meme, was obtained from the Meme-
tracker project. It tracks popular quotes and phrases which appear
from various sources on the Internet. Each record has the URL of
the website containing the memes, the time Memetracker observed
the memes, and a list of the observed memes. We view each web-
site as an object. Each record reports a new list of memes from a
website, and it is treated as an update to the object representing that
website, which creates a new version that is alive until the next up-
date (a record containing the same website). Meme has almost 1.5
million distinct websites and an average of 67 records per website.
Each version of an object in Meme also defines an interval, and we
have approximately 100 million intervals in total.

We have also obtained the popular time series datasets [12] from
the UCR Time Series website. In particular, we used three of the
largest datasets from this collection; but they are all much smaller
than Temp and Meme as described above. All real datasets are sum-
marized in Table 1, with their number of intervals.

Temp Meme CMU Mallat NHL

2.6 × 10
9

1.0 × 10
8

1.57 × 10
5

2.39 × 10
6

1.41 × 10
6

Table 1: Number of intervals in real datasets tested.

Setup. We primarily used Meme in internal memory and Temp in
external memory. In order to test the scalability, we randomly se-
lected subsets from Meme and Temp to produce data with different
number of intervals. Unless otherwise specified, the default values
for important parameters in our experiments are summarized in Ta-
ble 2. The page size is set to 4096 bytes by default. The default fill
factor in the sc-tree is 0.7. In each experiment, we varied the value
of one parameter of interest, while setting other parameters in their
default values. Since the UCR time series datasets are all relatively
small in size compared to Meme and Temp, we only used them for
evaluating the internal memory methods.

Internal External

Dataset a subset of Meme a subset of Temp

Size ∼ 21 MB ∼ 4.1 GB

N ∼ 1 million ∼ 200 million

k 40 5000

h not applicable 5

Table 2: Default datasets and default values of key parameters.

7.1 Results from internal memory methods
In this case, we focus on the results from the static interval split-

ters problem.
Figure 6 studies the effect of k and N . Clearly, the DP method

is linear to k as shown in Figure 6(a) and quadratic to N as shown
in Figure 6(b). DP is 4-5 orders of magnitude more expensive than
our t-jump method. On the other hand, even though the second
step in t-jump is to solve O(logN) instances of cost-t splitters
problem and each instance takes O(k) time, the dominant cost for
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Figure 6: Running time of internal memory methods.

t-jump is the sorting operation in its step, which is to construct the
stabbing count array. Hence, its overall cost is O(N logN). As a
result, its running time is almost not affected by k as seen in 6(a),
but (roughly) linearly affected by N as seen in 6(b). In conclusion,
t-jump is extremely efficient for finding optimal splitters, and it
is highly scalable (as cheap as main memory sorting methods). It
takes only about 1 second to find optimal splitters for size-40 parti-
tions over 2.5 million intervals, when they are not sorted. Note that
t-jump will be even more efficient and scalable if data is already
sorted; in that case, its cost reduces to only O(k logN).
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Figure 7: Results from the

UCR datasets.

In Figure 7, we report the experi-
mental results on the datasets from
the UCR time series collection.
The trend is similar to our observa-
tions from the Meme dataset. Our
best solution t-jump consistently
performs 3-4 orders of magnitudes
faster than the DP approach in all
three datasets. The dominant cost
for t-jump is from sorting the input
data, which is clearly shown in Figure 7.

7.2 Results from external memory methods
We first present the results for the static interval splitters prob-

lem, then analyze the results for the queryable interval splitters

problem. In both problems, we need to study the effect of h from
the second step in our concurrent t-jump method. Hence, we first
evaluate the impact of h as shown in Figure 8.
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Figure 8: Effect of h in the second step of ct-jump.

To isolate the impact of h, we show only running time from
the second step of the ct-jump method, i.e., we assume that the
stabbing count array has already been constructed and do not in-
clude its construction cost in Figure 8. We vary h between 1 to 10,
and repeat the same experiment for k = 2, 000, k = 5, 000 and
k = 10, 000. What is interesting to observe from Figure 8(a) is
that the running time initially deceases sharply and then slightly in-
creases (very slowly), when we increase h. The same trend (albeit
being less obvious and consistent) can also be observed for the num-
ber of IOs in Figure 8(b). This is because that the initial increment
in h helps quickly reduce the permissible range, but subsequent in-
creases in h lead to little gain (in shrinking the permissible range),
but require more unnecessary testings. These results show that a



small h value is sufficient for ct-jump to produce consistently good
performance for a wide-range of k values. Hence, we set h = 5 as
the default value for the rest of the experiments.

Results for static interval splitters. Recall that in this case, the
overall cost includes the cost for building either the stabbing count
array or the stabbing count tree, and the cost for finding the optimal
splitters with the help of such a data structure. Also recall that the
cost in this case, in terms of IOs, for ct-jump, t-jump, and sc-tree
is O(SORT (N)), O(SORT (N)+k logN), and O(SORT (N)+
k logB N logN) respectively.
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Figure 9: Static splitters, vary N .
Figure 9 studies the scalability of different methods by varying

N from 50 million to 400 million. Not surprisingly, all methods
have an almost linear dependence to N in terms of both running
time and IOs. But obviously ct-jump achieves the best overall run-
ning time in Figure 9(a), and both ct-jump and t-jump have clearly
outperformed the sc-tree method. The ct-jump method also has
better IOs than t-jump, but the difference is not clearly visible in
Figure 9(b), because that the dominant IO cost for both methods is
the external sort. Both methods have fewer IOs than sc-tree, espe-
cially for larger data. Overall, ct-jump is the best method that is
almost as efficient and scalable as external sorting. With N = 400
million intervals, ct-jump achieves a 30% speedup over the sc-tree

method and a 10% speedup over the t-jump method.
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Figure 10: Static splitters, vary k.

We also investigated the impact of k by varying k from 2, 000
to 10, 000. As k becomes larger, both the running time and the
number of IOs increase in all methods, especially for the sc-tree
method as shown in Figure 10. A larger k value increases the cost
of solving a cost-t splitters problem, which is the essential step for
all methods. However, the benefit of concurrent testing in ct-jump
is clearly reflected in Figure 10(a) for larger k values. Its cost is
still very much just the sorting cost, which is consistent with our
theoretical analysis. In contrast, the t-jump method displays a clear
increase in running time over larger k values. The ct-jump method
is more than 2 times faster than sc-tree, and about 20-30% faster
than the t-jump method, as we increase k.

In conclusion, ct-jump is the best method for the static interval
splitters problem in external memory.

Results for queryable interval splitters. We first study the prepro-
cessing cost to construct the indices for different external memory
methods, which is to construct either the stabbing count array in
ct-jump and t-jump, or the stabbing count tree in sc-tree. Figure 11
compares the size of the indices in different methods when we
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Figure 11: Index size.

increase N from 50 million to 400
million. Both stabbing count array
and stabbing count tree are linear
to N , however, a stabbing count
tree does require much more space,
almost by a factor 2 when N be-
comes 400 million. The stabbing
count array in both ct-jump and t-
jump is the same in size as the size
of all intervals. This means that it will be much smaller than the
size of the database, which contains other values than just an inter-
val for each record.
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Figure 12: Preprocessing cost.

In terms of the construction cost of indices in these methods, Fig-
ure 12 shows that building a stabbing count array is slightly cheaper
than building a stabbing count tree. But both are dominated by
the external sorting cost, and obviously the ct-jump and the t-jump
methods share the same preprocessing cost. All three methods have
an almost linear construction cost to N .
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Figure 13: Queryable splitters, vary k.

We next study the query cost. Figure 13 investigates the impact
of k when it changes from 2, 000 to 10, 000. The query time for all
three methods increase, as shown in Figure 13(a), but the cost of
ct-jump increases at the slowest rate. Specifically, we observe that
ct-jump answers a query 3-4 times faster than sc-tree, and about
1-2 times faster than t-jump. A similar trend can be observed in
the IO cost, as shown in Figure 13(b). However, in this case, the IO
difference between ct-jump and t-jump appears to be much smaller,
compared to their difference in query time.

So one may wonder why the query time of ct-jump is much bet-
ter than t-jump, when the difference in terms of the number of IOs
is not so significant. This is explained by the (much) better caching
behavior in ct-jump. Recall that ct-jump performs concurrent test-
ing of several cost-t testing instances. As a result, it makes very
small leaps while scanning through the stabbing count array, com-
pared to the big leaps made by t-jump over the stabbing count array.
These small leaps result in much better hit rates in buffer and cache,
leading to much better running time.

Next, we examine the scalability of our query methods when
we increase the size of the data from 50 million to 400 million.
Figure 14(a) reports the query cost in terms of number of IOs. Not
surprisingly, larger N values only increase the query IOs by a small
amount. In contrast to the linear dependence on k, the query cost of
ct-jump and t-jump only depends on N by a O(logN) factor, and
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Figure 14: Queryable splitters, vary N .

the query cost of sc-tree only depends on N by a O(logB N logN)
factor. On the other hand, the increases in running time for all
three methods are more significant when N increases, as shown in
Figure 14(b). This is because that as N becomes larger, for a fixed k
value, the distance between two consecutive splitters also becomes
larger. Since all three methods essentially make k jumps over the
data to solve a cost-t splitters problem instance, a larger jump in
distance leads to poorer caching performance, which explains the
more notable increase in query time than that in query IO when
N increases. Nevertheless, ct-jump outperforms sc-tree by about
60% and t-jump by about 30% in time on average.
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Figure 15: The update cost for queryable splitters.

Lastly, updates to the data may happen for the queryable splitters
problem. When dealing with updates is important, as we have ana-
lyzed earlier in Section 6, sc-tree becomes a much more attractive
method than ct-jump and t-jump. The fundamental reason is that a
stabbing count tree is a dynamic indexing structure with an update
cost of O(logB N) IOs, while a stabbing count array is not with an
update cost of O(N/B) IOs. Of course, the update-friendly prop-
erty in a stabbing count tree comes with the price of having more
expensive query cost, as we have already shown.

That said, we generate a number of updates by randomly issuing
a few insertions/deletions on the initial set of intervals. We report
the average cost in IOs and time from 10 updates, as shown in Fig-
ure 15(a) and Figure 15(b). Clearly, the sc-tree method is much
more efficient in handling updates than t-jump and ct-jump.

In summary, for the queryable splitter problem in external mem-
ory, when data is static (which is often the case for big data), the
ct-jump method is the most efficient method. When dealing with
dynamic updates is important, sc-tree works the best. Nevertheless,
all three methods have excellent efficiency and scalability on big
data, and the key idea behind all three methods is our observation
on solving O(logN) cost-t problem (or testing) instances.

7.3 Optimal Point Splitters
A special case of our problem is when all intervals degenerate

to just points, where each interval starts and ends at one same time
instance.

Our solution can gracefully handle such special case, i.e., to find
the optimal splitters for a point set. The state-of-the-art method
for finding the optimal splitters in a point set runs in O(k log2 N)
time [21], assuming the set of input points has already been sorted.
We dub this approach the p-split method. The details of this study
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Figure 16: Comparison

with p-split [21] to find op-

timal point splitters.

will be surveyed in Section 8.
In contrast, t-jump runs in
only O(k logN) time, saving
a O(logN) factor compared to
the state-of-the-art on a point
dataset. Note that the investigation
from [21] focuses only on the
RAM model, i.e., p-split is an in-
ternal memory method. Therefore,
in this experiment, we compare
p-split against our internal mem-
ory method t-jump by using all
the internal memory datasets. In particular, we represent each
interval only by its starting value and report the running time
for finding the optimal point splitters. The results are shown in
Figure 16. Not surprisingly, t-jump performs 3-4 times faster than
the state-of-the-art method p-split across all datasets.

7.4 Final Remark
It is also interesting to point out our algorithms, t-jump, ct-jump,

and sc-tree also produce very balanced buckets while minimizing
the size of the maximum bucket. This is due to the fact that they all
use our algorithm for solving the cost-t splitters (or cost-t testing)
problem as a basic building block. And the way we solve the cost-
t splitters (or cost-t testing) problem is to attempt to produce each
bucket with a size t. When this is not possible, our algorithm finds a
bucket with a size that is as close as possible to t, before producing
the next bucket. In other words, in the optimal partition P ∗ that
our algorithms find with the maximum bucket size being equal to
t∗, the size of each bucket in P ∗ is in fact very close to t∗.
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Figure 17: Balanced partitions produced by our algorithms.

Figure 17 verifies this claim over both real data sets, when we
vary k and show the average and the standard deviation for the
sizes of all buckets in the optimal partition P ∗ produced by our al-
gorithms, along with t∗ = c(P ∗), the size of the maximum bucket
in P ∗. In all cases, the average bucket size is very close to t∗, and
the standard deviation is very small (hundred to a thousand, com-
pared to tens of or hundred thousand for the average bucket size).
Furthermore, note that the average size of a bucket is not necessar-
ily N

k+1
in our problem, since an interval may span over multiple

buckets. In fact, it is always ≥ N
k+1

and varies for different parti-
tions depending on the data set I , the budget k, and the partitioning
algorithm used. Nevertheless, all three of our methods, t-jump, ct-
jump, and sc-tree, produce the same P ∗ for a given k and I .

8. RELATED WORK
To the best of our knowledge, this is the first work that investi-

gates the problem of finding optimal splitters for large interval data.
Ross and Cieslewicz studied the problem of finding optimal split-

ters for a set of one dimensional points [21]. In their problem, a
partition consists a set of disjoint buckets over the point dataset.
The buckets are produced by k splitters. However, a set of k split-
ters will produce (2k + 1) buckets instead of just (k + 1) buckets:



they count all points that have values equal to a splitter as a sep-
arate bucket, so k splitters form k distinct buckets by themselves
(which we refer to as the splitter buckets), plus the other (k + 1)
buckets formed by any two neighboring splitters (which we refer
to as the non-splitter buckets). Their goal, however, is to minimize
the size of the maximum bucket from only the (k + 1) non-splitter
buckets. Their motivation was to disregard buckets that contain
only a single (but many duplicates) value. This finds applications
in incremental sorting, distributed and parallel processing (of some
applications), etc., as they argued in [21]. They have proposed a
O(k log2 N) method for memory-resident point sets. Clearly, their
problem is fundamentally different from the interval splitters prob-
lem. Interestingly, it is possible to extend our stabbing-count array
based methods, namely, t-jump and concurrent t-jump, to solve this
problem in internal and external memory respectively. In that case,
our solution leads to a O(k logN) method, which improves the
results in [21] by a O(logN) factor for the point splitters problem.

On the other hand, the array partitioning problem is as follows.
The input is an one-dimension array E of N non-negative num-
bers, and a weight function w that maps a contiguous segment of
A to a non-negative integer. The k-partition of E is a division
of E into (k + 1) contiguous segments, that is, setting dividers
ℓ0 = 0 < ℓ1 < · · · < ℓk < ℓk+1 = N . Here, the ith seg-
ment is E[ℓi−1 + 1 · · · ℓi]. The MAX norm of a partition over E
is maxk+1

i=1 w(E[ℓi−1 + 1 · · · ℓi]. The goal is to find a partition of
size k that minimizes the MAX norm of any size-k partitions over
E. Typical weight function includes addition and Hamming weight
function [14,18] among others. This problem can also be extended
to 2-dimensional arrays, where a partition consists of a number
of disjoint but complete-covering 2-dimensional blocks over the 2-
dimensional array E. Khanna et al. studied this problem and gave
an O(N logN) algorithm for memory resident arrays in 1d for ar-
bitrary k. This problem is NP-hard in 2d and they gave approxima-
tion methods instead. More efficient and effective approximations
were then given in [18]. This problem is related but certainly very
different from our work. An interesting open problem is the in-
terval array partitioning problem, which is defined similarly as the
array partitioning problem, except that each element in the array is
an interval of values (e.g., those from an uncertain object).

Our study may find interesting applications in parallel interval
scheduling problems [9], where each job has a specified interval
within which it needs to be executed. Each machine has a busy

interval which contains all the intervals corresponding to the jobs
it processes. Given the parallelism parameter g ≥ 1, which is the
maximal number of jobs that can be processed simultaneously by a
single machine. The goal is to assign the jobs to machines such that
the total busy time of the machines is minimized. This problem is
known to be NP-hard for g ≥ 2. Nevertheless, it is an intriguing
future work to explore if our techniques can help design efficient
approximate solutions for such problems.

Lastly, the DP method follows the general intuition of bucke-
tization that finds application in optimal histogram constructions,
e.g., the DP method for constructing a V-optimal histogram [11,20].
The construction of the stabbing count array is somewhat related
to the prefix sum array that finds applications in data warehouses
and histogram constructions, e.g., [10, 15]. Our study is also gen-
erally related with the management of interval and temporal data
[1,5,8,16,16,22].

9. CONCLUSION
Temporal and multi-version databases often generate massive

amounts of data. Therefore, it becomes increasingly important to
store and process these data in a distributed and parallel fashion.

This paper makes an important contribution in solving the optimal
splitters problem, which is essential in enabling efficient distributed
and parallel processing of such data. An interesting open problem
is to extend our study to higher dimensions.
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