Nearest Keyword Searc

h in XML Documents

Yufei Tao Stavros Papadopoulos Cheng Sheng Kostas Stefanidis
Department of Computer Science and Engineering

Chinese University
New Territories,

of Hong Kong
Hong Kong

{taoyf, stavros, csheng, ksteff@cse.cuhk.edu.hk

ABSTRACT

This paper studies theearest keywor@NK) problem on XML doc-
uments. In general, the dataset is a tree where each nodgois as
ciated with one or more keywords. Given a nedand a keyword
w, an NK query returns the node that is nearest &mong all the
nodes associated with. NK search is not only useful as a stand-
alone operator but also as a building brick for importanksasich

as XPath query evaluation and keyword search. We present an i
dexing scheme that answers NK queries efficiently, in terihoth
practical and worst-case performance. The query cost isphp
logarithmic to the number of nodes carrying the query keyword.
The proposed scheme occupies sgamar to the dataset size, and
can be constructed by a fast algorithm. Extensive expetitien
confirms our theoretical findings, and demonstrates thetafée
ness of NK retrieval as a primitive operator in XML databases

Categories and Subject Descriptors
H3.1 [Content analysis and indexind: Indexing methods

General Terms
Theory

Keywords

Nearest keyword, XPath, keyword search, group steiner tree

1. INTRODUCTION

We consider the problem afearest keywordNK) search on
XML documents. The dataset is a trgewith undirected edges.
Each node is associated with one or more keywords. Define the
distancebetween two nodes as the number of edges in the (unique)
path linking them. Given a nodgin 7 and a keywordv, anNK
queryfinds thenearestw-neighborof ¢, namely, the node having
the minimum distance tg among all the nodes associated with

To illustrate, Figure 1 shows part of an XML document, where
all nodes have been encoded with the Dewey code [34] for easy
reference. Arelement nodbas itstypedisplayed in brackets, while
the other nodes anaalue nodesGiven a hode; = 012000 and a

Permission to make digital or hard copies of all or part o§ twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SIGMOD’11,June 12-16, 2011, Athens, Greece.

Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

keywordw = guar d, an NK query returns nod@12010, whose
distance tqy is 4 (edges). It is the nearegtiar d-neighbor ofy.

1.1 Motivation

NK queries can serve as the building brick to tackle some im-
portant problems in XML databases, as elaborated belowcéior
venience, we assign each value node to a type, whose name con-
catenates its parent’s type and the stifag (e.g., node&d100 has
typet nameVal , and so does nodg200). Every node carries its
type as a keyword. In addition, each value node has its vaue a
another keyword. For example, no@&00 has two keywords: its
typet naneVal , and its valud_aker s.

XPath query evaluation. NK search gives a new methodology for
efficiently solving a class of XPath queries. An example is:

Q: Find the names of all players that originated from Mary-
land, but are in a team of the west division.

The XPath statement @} can be expressed aswg pattern[4, 15]

shown in Figure 2a, where a single-lined (double-lined)ecdgp-

resents parent-child (ancestor-descendent) relatipn$hie goal is

to find occurrencef the pattern in the data tree, and for each oc-

currence, output the value at the positiorpofaneVal (signified

as underlined). Figure 2b demonstrates such an occurrerkgg-i

ure 1, from which the output is the vali@ ake of node012000.
There are two interesting facts about the patt@rim Figure 2a,

with respect to the data of Figure 1:

e Letg be the node in an occurrence corresponding to the node
Mar yl and of Q. The type ofg is f ronial . The nearest
west -neighbor ofg must have distance exactly 6 go For
example,q is node012020 in Figure 2b, and its nearest
west -neighbor is nod€®110.

Let ¢ be any fronVal node that carries the word
Mar yl and, but isnotin any occurrence, i.e., the team @f
is in the east division. The neare®st -neighbor ofg must
have distancgreater than6 to ¢, noticing that the neighbor
must come from a team different from that@f For exam-
ple, letq be node022020 in Figure 1. Its nearestest -
neighbor is nod®110, which has distance 8 tp

The above facts enable us to proc€sgia NK search as follows.
We enumerate all thér omVal nodes that contaiivar yl and.
For each such nodg find its nearesivest -neighbor. If the neigh-
bor retrieved has a distance greater than 6, i is ignored. Oth-
erwise, we have found an occurrence, from whichghaneVal
should be output. ThpnaneVal node can be found with another
NK query, which obtains the neargataneVal -neighbor ofg.

Group steiner tree retrieval. Keyword searcthas emerged as a
new paradigm of inquiring XML databases. It enables a user to

<league>

h

<team>
02

<team>

//\ %
<tname><division> <players> <tname><division> <players>
070 OTI 012 020 OTl 022
Lakers west <player> <player> <player> . . . Nets east <player> <player> - -
0100 011?///////%120 0121 0123 0200 0210 0220 0221

<pname><position> <from> <pname><position><from>
01200 01201 01202 01210 01211 01212

Blake guard Maryland Walton guard Michigan
012000 012010 012020 012100 012110 012120

<pname><position> <from>
02200 02201 02202

Smith forward Maryland
022000 022010 022020

Figure 1: A sample of the NBA dataset

<team>

<divi;;;;:/Qj::Z>er>
RS PN

west <pname> <from> 0110 01200 01202

pnameVal Maryland 012000

on/“\

0120

012020
(a) Twig pattern forQ ~ (b) An occurrence in Figure 1
Figure 2: An XPath query example
specify only a few keywords as the query, instead of complyin

with a rigorous syntax. Its advantage is that the user doesewil
to learn any query language like XPath, and neither doesnebé

to be aware of the data schema. The disadvantage, however, is

that what should be the query result becomes heavily depende
on the application backdrop. This has triggered the préijposi of
a variety of result semantics, among which an intuitive anéoi
return thegroup steiner treéGST) [12, 20, 23, 25].

More specifically, given a set of query keyworfis, ..., w; }, a
GST is a tree that (i) contains all the query keywords in tixestef
its nodes, and (ii) has the fewest edges among such treegxfor
ample, Figure 3 presents the GST {&raker s, Bl ake,guar d}
on the data of Figure 1. GST computation is known to be NP-hard
(even if the dataset is a tree) [17]. Fortunately, as dismlisster,
NK queries provide an elegant way to extract a good appraeima
solution, namely, a tree that satisfies requirement (i),reagdmore
edges than the GST by only a small factor.

1.2 Contributions
This paper presents the first study on the NK problem. We

01

010 012

0100 0120

01200 01201

012000 012010

Figure 3: The group steiner tree of {_aker s, Bl ake, guar d}
in Figure 1

an attractive quality guarantee (which is actually optimfal
the query has only two keywords). We achieve the running
time of O(Nminllog Nmaz), plus the cost of outputting the
resulting tree, wheré is the number of keywords in the
query,Nni» is the number of nodes carrying tregestquery
keyword (i.e., the one appearing the least times in the XML
document), an@V,,., conversely is the number of nodes car-
rying themost frequentiuery keyword.

Besides confirming our theoretical findings, our experiraent
tion also demonstrates the effectiveness of the NK opecatoeal
XML documents. In particular, we show that XPath queries lik
the one in Figure 2a can be processed via NK search with perfor
mance comparable to or better than that of the existing agpes.
Furthermore, for XML keyword search, our NK-based alganth
discovers high-quality approximate GSTs in real time.

Roadmap. The rest of the paper is organized as follows. Section 2
clarifies the problem definition and several technical pralaries.

propose an indexing scheme that can answer any NK query in Section 3 elaborates on the proposed solutions for NK se&et:

O(log N.,) time, whereN,, is the number of nodes associated with
the query keywordv. The scheme consumes spdioear to the
size of the dataset. Somewhat surprising is the fact thapite
the complication of the underlying theory, our access nttitem
be implemented as merely a number of binary trees. All the re-
sults also hold in disk-oriented environments, where edchrp
tree is simply replaced with a B-tree. Accordingly, the queost
is O(log; Nw) I/Os, whereB is the size of a disk block.

The proposed index also leads to rigorous results on thellkisef
ness of the NK operator. Specifically:

e We theoretically establish the fact that a large class oftXPa
queries can be reduced to NK search (in a way similar to how
the query of Figure 2a was answered earlier). Our algorithm
for processing this query class enjoys a worst-case time com
plexity that isirrelevant to the number of elements whose
types appear as an internal nodeidf No previous solution
is known to have this feature (as surveyed in Section 5).

e \We give a fast solution to finding an approximate GST with

tion 4 discusses the applications of NK queries in XPathuatain
and keyword search. Section 5 reviews the previous workee: @
ours. Section 6 contains extensive experimentation taeatafthe
effectiveness and efficiency of our techniques. Finallgti®a 7
concludes the paper with a summary of our findings.

2. PRELIMINARIES

For each node: in the data tre€/, we useW (u) to represent
the set of keywords associated with For simplicity, assume that
W (u) has at least one keyword. Define teagthof a path in7
as the number of edges it contains. Denotd|byv|| the distance
between two nodes, v, namely, the length of the path connecting
u andv. Let U(w) be the set of nodes i that include wordw
(hence,N,, = |U(w)|). Given a node; and a keywordw, the
result of an NK query is a node € U(w) such that

lw, gl < llv,qll - Vo € U(w).

We denote, the nearesiv-neighbor ofg, asN N (q, w).

25
f\ 14 19 22 26

Jiﬁééééém i

Figure 4: A running example

Figure 4 shows an examplg, where each node is labeled an
integer. Sometimes we may refer to a node by its label directl
when the meaning is clear. For instance, as node 2 carriegjle si
keywordt, we write W (2) = {¢}. Similarly, ast also appears in
nodes 5, 9 and 23/ (¢) = {2, 5, 9, 23}. The keywords of the other
nodes are omitted for clarity. Givep= node 17 andv = ¢, an
NK query returns node 2, namelyf N (17,¢) = 2.

Let NV be the number of nodes ifi, and K the total number of
keywords in all the nodes (counting a word twice if it appears
two nodes), i.e. X = > |W(u)|. Note thatT requiresQ(K)
space to store. In other wordgjear cost should be interpreted as
O(K), instead ofO(N). We label the levels of" in a top-down
manner, setting the root at level 0. Denotelbyel(u) the level of
a nodeu, which is also the number of edges on the path from the
root tow. In Figure 4, all the leaf nodes are at level 4. Also, we use
sub(u) to represent the subtree of

In the sequel, we review several basic results useful inexh-t
nical discussion.

Interval encoding. For each node of 7, define itsrank, denoted
asrank(u), to be the sequence numberoh thepre-ordertraver-
sal of 7. We associate with an intervalR(u) = [z, y], wherez
is the rank ofu, andy is the largest rank of the nodesdnb(u). In
Figure 4, the label of each node indicates its rank diredly.an
example, the intervaR(10) associated with node 100, 16].

The intervals defined this way have several properties camymo
utilized in managing XML data:

e Forany two nodes andv, R(u) containsR(v) if and only if
w is an ancestor af. In other words, the ancestor-descendent
relationship ofu andv can be verified in constant time.

e The intervals of the nodes at tlsamelevel of 7 must be
disjoint. In Figure 4, for instance, the nodes at level 2 have
disjoint intervalsk(3) = [3,9], R(10) = [10, 16], R(18) =
[18,24], and R(25) = [25, 31].

The above properties allow us to solve the so-caleaal-on-
path queries efficiently. Let be an ancestor of; given a level
¢ € [level(u),level(v)], a level-on-path query finds the levél-
node on the path from to v. For example, ifu (v) is node 1 (15),
a level-on-path query with = 2 retrieves node 10.

LEMMA 1. T can be pre-processed into a structure that oc-
cupies O(N) space, such that any level-on-path query can be
answered inO(log N) time. The structure can be built in
O(N log N) time.

PROOF We manage the nodes Gf of each level separately.
Specifically, create a binary tree to index the ranks of thaesat
the same level (i.e., there are as many trees as the numkbeets |

O(N). Assume that we want to perform a level-on-path operation
to find the level¢ node fromu to v (which is a descendent af).

We find inO(log N) time the predecessor ofink(v), among all
the ranks indexed in the levélbinary tree. The node whose rank
equals that predecessor is exactly what we are looking far.

Subtree NK search. NK search is easy if attention is restricted
to the subtree of the query node. Formally, given a ngéad a
keywordw, asubtree-NK queryinds the node: with the smallest
distance t@;, among all nodes isub(q) that are associated with.
We refer tou as thesubtree nearesi-neighborof ¢. For instance,
let ¢ be node 17 in Figure 4; the subtree-NK query with= ¢
returns node 23. Note that the (global) neareseighbor of node
17 is in fact node 2.

LEMMA 2. 7 can be pre-processed into a structure that occu-
piesO(K) space, such that any subtree-NK query can be answered
in O(log N,,) time. The structure can be built (K log K) time.

PROOF Let us first review a related result. LStbe a set of
numbers in the real domaR. Each number € S is associated
with aweightin R. Given an intervall, arange-minquery finds
the number that has the minimum weight among all the numbers i
SN1I. We can indexS with an SB-tree [36] that use3(]S|) space,
and solve any range-min query@(log |S|) time. The tree can be
builtin O(]S|log | S]) time.

We can convert subtree-NK search to the range-min problem.
Letw be the keyword of concern. Construgto include the ranks
of the nodes i/ (w). Each rank is associated with a weight that
equals the level of the corresponding node. Subtree-NKckear
with nodeq is equivalent to a range-min query ¢hwith inter-
val R(q). We settle the problem with an SB-tree @(log N.,)
query time. The tree occupie®(N,,) space and can be built
in O(Ny log N,,) time. The SB-trees of all keywords require
O(>",, Nw) = O(K) space in total. The overall construction time
isO(>,, (Nylog Ny)) = O(Klog K). [

Both Lemmas 1 and 2 will be needed to analyze the construction
cost of the proposed structure.

Lowest common ancestor (LCA)We use€lca(u, v) to denote the

LCA of nodesu, v in T (e.g.,lca(20, 26) is node 17 in Figure 4).

In general, the distance of two nodes can be calculated istaon

time, once their LCA has been identified, as can be seen frem th

following equation:
[|lu,v|| = (level(u) —

level(z)) + (level(v) — level(z))

wherez = lca(u,v).

LCA computation has been thoroughly studied. Harel and Tar-
jan [18] were the first to observe that the problem can beeskttl
optimally in constant time using linear space. Their suiethow-
ever, is rather theoretical and difficult to implement. Toesly the
drawback, several (much) simpler structures [1, 2, 13] Hseen
developed, keeping the same space and query performance. As
corollary, we can obtaifju, v|| of anyu, v in constant time.

3. NEAREST KEYWORD SEARCH

We pre-process the data trégeby building a separate structure
for each distinct keyworav that appears iffi . This is reminiscent
of theinverted indexwhich also has amverted listdedicated to
eachw. Instead of a simple list, however, our structure dofs a

in 7). As each node appears in only one tree, the overall space isbinary tree constructed in a more sophisticated manner.

3.1 Overview

We concentrate on NK queries with a specific keywardas
the structure is identical for all keywords. The term “nesare-
neighbor” will be abbreviated asearest neighbo(NN), when no
ambiguity arises. Accordingly, we simplify notatioiV (u, w) to
NN (u).

A straightforward solution to answering an NK query is to-per
form abreath first traversalBFT) starting fromg. Namely, the
BFT explores the nodes 6f in ascending order of their distances
to ¢, and stops as soon as it encounters a node associated with
This approach is efficient only if the NN qfis close, and may end
up visiting a large number of nodes otherwise.

Alternatively, we can pre-compute the NN of every node/in
Each query can be answered in constant time, because wentan si
ply return the (pre-computed) NN of the query nageThis ap-
proach, however, has the severe drawback that, the prettatigm
incurs)(V) space foreverykeyword appearing iffi’. The number
of distinct keywords can be easify(N). In this case, the space
complexity of the above approach(® N?), which is prohibitively
large in practice.

The chief observation towards reducing the space is thatyma
nodes of7 have the same NN, thus raising the hope that we could
capture them collectively with much less information. Retteat
each node can be uniquely identified by its rank, while th&sanf
all nodes come from theaink domairD = [1, N] (e.g.,.D = [1, 31]
in Figure 4). We can always partitidh into a setZ of disjoint
intervals such that, for each intervak Z, the nodes with ranks in
I have the same NN, which can be associated WitGiven an NK
query with nodey, we can solve it by identifying the (only) interval
I that coversrank(q), and returning the NN associated with
This can be easily achieved by indexihgvith a binary tree, which
consumesD(|Z|) space and has query ca3(log |Z|). Figure 5
illustrates the contents of a possitiléor the data of Figure 4 when
the keywordw of concern ig.

node 2 is the NN for any node in rank interval [1,3]

Figure 5: A tree Voronoi partition

We refer toZ as atree Voronoi partition(TVP) of w. An imme-
diate issue is whether a smillalwaysexists. Fortunately, we will
show in Section 3.2 that there is definitely Awith sizeO (N,),
whereN,, is the size ofU (w) (i.e., the number of nodes in car-
rying w). Furthermore, the size @(V,,) is asymptotically tight
becausgZ| needs to be at leag{,, — every node iU (w) appar-
ently finds itself as the NN.

Another important issue is how to compute efficiently.
Naively, one could first compute the NN of every node7inand
then go over the nodes in ascending order of their ranks, ingerg
consecutive nodes into an interval if their NNs are the sahmés
approach, however, entally V) time, which would render the to-
tal pre-computation cost (for all keywords) prohibitivelypensive
in practice. In Section 3.3, we will give a significantly fasalgo-
rithm to produceZ in O(N,, log N,) time.

3.2 TVP characteristics

This subsection will establish our first main result:

THEOREM1 (TVPTHEOREM). For any keywordw appear-

1 2/10\
2/0\23 © Q

N
W Q@) };;
)

@CT(t (b) ECT(t)
Figure 6: Compact and extended compact trees

18

ing in T, there is a tree Voronoi partitio with size less thaBN,,,
whereN,, is the number of nodes i associated withw.

Let us start the proof by introducing tllempact treeof w, de-
noted asC'T'(w). First, all the nodes o/ (w) are inC'T'(w), and
termed thedata nodesSecond, a non-data nodebelongs toT7, if
and only ifthere areat leasttwo child nodes ofu whose subtrees
contain a data node. We caldla branching node Considerw = ¢
in Figure 4. There are four data nodes 2, 5, 9, 23, and two hiagc
nodes 1, 3. Node 17, for example, is not a branching node becau
only one of its child nodes (i.e., node 18) has a data node in its
subtree. LefS be the set of all data and branching nodes. We form
CT(w) by drawing an edge from each nodec S to its lowest
ancestor inS. Figure 6a shows th€'T'(t) for the data of Figure 4.
Node 5, for instance, is connected to node 3, because amidhg al
data and branching nodes, node 3 is the lowest ancestor effaod

LEMMA 3. CT(w) has at mos2N,, — 1 nodes.

PrROOF Each branching node must have at least two child nodes
in CT(w). AsCT (w) has at mosiV,, leaf nodes, the total number
of branching nodes cannot be more thén — 1. [

Consider any edgg:, v) in CT'(w). Let us walk, in the data tree
T, along the path froma tov. As we go, monitor théV N (z) of the
nodez being visited, and count how manfiangesn N N (z) there
are in total. Call each of those changed\#changeon (u, v). As
an example, consider edgg, 23) in the C'T'(¢) of Figure 6a. Now
we walk from node 1 to node 23 in thE of Figure 4. Along the
path there is only a single NN-change, which happens as we mov
from node 17 to node 18 (i.eNN(17) = 2, but NN (18) = 23).

The next lemma gives an important fact:

LEMMA 4. There can be at most one NN-change on each edge
of CT(w).

PROOF. Let(u,v) be an edge of T'(w). The removal ofu, v)
cutsC'T'(w) into two connected components. L@, (C,) be the
component including: (v). Denote byP the path fromu to v in
T. Suppose that* (v*) is the data node i@, (C.,) closest tou
(v). We claim that, for any nodeon P, N N(z) must be either*
orv*. In fact, for any node:’ € C,, it holds that

2wl = [z, ull + llu, w” || < NIz ull + llu, o'l = |z, v']].

Similarly, for any nodev’ € C.,, we have|z,v*|| < |z,v'|.
Therefore, except* andv*, no other data node i, U C,, can be
the NN of z.

Hence, if there were at least two NN-changes(atw), there
would have to be three nodes, z2, z3 on P such thatzo was on
the path fromz; t0 z3, PULNN(21) = NN(z3) # NN(22). Itis
trivial to show that such a scenario cannot happenl

Next, CT'(w) is augmented with the nodes where NN-changes
occur. Consider any edge:, v) of CT(w) on which there is an

NN-change. Let be the first node on the-to-v path in7 such
that NN(z) # NN(u). If z is different fromv, we add it to
CT(w), breaking(u, v) into two edgequ, z) and(z,v). Denote
by ECT(w) the resulting tree, after applying such transformation
on all edges of2'T'(w) with NN-changes. In caseot(T) is not
already inECT'(w), we add it as the parent of the current root of
ECT(w). The finalECT (w) is called theextended compact tree
of w. Let us illustrate the transformation with edg@k 23) in the
CT(t) of Figure 6a (i.e.p = 1,v = 23). As mentioned earlier,
on the path from node 1 to node 23 in Figure 4, there is an NN-
change as we cross from node 17 to node 18. Henee,18, and
accordingly,(1, 23) is broken into two edge§l, 18) and(18, 23)
in the extended compact tré&C'T'(t), as shown in Figure 6b.

We are ready to generate a tree Voronoi partitioof w. It
suffices to invoke the following algorithm for every nodeof
ECT (w) inturn (ordering does not matter):

algorithm vor onoi I nt v(u)
* wis anode iNECT (w) */
. §={R(u)}
for each child node of v in ECT(w) do
I «+ the (only) interval inS coveringR(v)
break into intervalsiy, R(v), I2
/* I (I2) is the part off to the left (right) of R(v) */
removel from S, and addl, I
add taZ the intervals inS, after associating them witlV N (u)

rwbhE

2N

For example, let, be node 1 in theZC'T'(t) of Figure 6b. At
Line 1, voronoi I ntv setsS = {R(1)} = {[1,31]}. Since
node 1 has two child nodes iIBCT(t), the for-loop in Lines 2-
5 is executed twice. The first time trim8(2) = [2, 16] away
from [1, 31], after whichS {[1,1],[17,31]}. The second
execution cutsR(18) = [18,24] out of [17,31], leaving S =
{[1,1],[17,17],[25,31]}. Line 6 adds all three intervals ¢f to
Z, after associating them with N (1) = 2, indicating that node 2
is the NN of any node (whose rank falls) in those intervals.

LEMMA 5. Applyingvor onoi | nt v to all nodes ofECT (w)
creates a tree Voronoi partitio@ with less thar8V,, intervals.

PROOF. We start by proving that the intervals Bfare disjoint,
and their union covers the rank domdin Observe that the in-
tervals inserted ir¥ at Line 6 are disjoint with the?(v) of any
child nodewv of u, wherew is the input to the current execution
of vor onoi | nt v. None of those intervals can overlap with the
intervals added t@ by the execution ofor onoi | nt v invoked
with v (which only adds intervals withif(v)). On the other hand,
every valuer € D is covered by an interval in the fin@l Such an
interval is inserted i by runningvor onoi | nt v with the lowest
nodeu in EC'T (w) whoseR(u) coversz.

We proceed to show that, for each interyat Z, the NN asso-
ciated with/ is indeed the NN of all nodes ih Consider any node
win ECT (w). Denote its child nodes iEC'T'(w) asvs, ..., vy for
somef > 0. For eachl < j < f, cutting R(v;) out of R(u) at
Line 4 effectively removesub(v;) from sub(u) (recall thatsub(.)
represents the subtree of a node). 6" (u) be the set of nodes in
sub(u), but not in thesub(v;) of anyj. It suffices to prove that all
nodes insub® (u) have the same NN as For each edgéu, v;) of
ECT(w), defineP(u, v;) as the path iry” from nodeu to v;, but
excludingnodev;. Each node € sub” (u) is either (i) onP (u, v;)
for somej, or (ii) has an ancestor’ in 7 that is onP(u, v;) for
somej. In the former caselN N (z) must beN N (u) by the way
ECT(w) is constructed. In the latter cas¥,N(z) = NN (z2'),
while 2’ is a node of case (i), implyiny N(z) = NN (u) as well.

It remains to bound the size @ By Lemma 3,C'T'(w) has at
most2N,, — 2 edges. As each of them may generate two edges
in ECT(w), the number of edges iIBCT (w) is at most4N,, —
4+ 1 = 4N, — 3, including the (potential) extra edge due to
root(T). Invoronoi | ntv, each edge breaks into at most 2
more intervals. Therefore, the findl| is bounded above by +
2(4N,, — 3) =8N, — 5. O

The proof of Theorem 1 is thus completed.

3.3 Finding the minimum TVP

This subsection completes our discussion of NK search Iy ela
orating an algorithm for computing a TVPof a keywordw with
theminimumsize. In fact, the main idea of the algorithm has been
mentioned in Section 3.2, as summarized below:

algorithm conput eTVP(w)

1. buildCT (w)

2. build ECT(w) from CT'(w)

3. I=90

4. for each node:in ECT(w) do

5. vor onoi | ntv(u)
[* at the end of the for-loop|Z| < 8N, */

6. merge consecutive intervalsinthat are associated with
the same NN

7. return 7

Next, we clarify the details of Lines 1 and 2, because
vor onoi | nt v has been presented in the previous subsection.

Construction of CT'(w). We construcCT (w) in two steps: first
collect the sefS of nodes inC'T'(w), and then connect them prop-
erly to meet the definition of’T'(w). The first step applies the
algorithm below to comput§:

algorithm col | ect CTnodes (U (w))
S =U(w)
sort the nodes df (w) in ascending order of ranks
for each pair of consecutive nodesv do
S = SUlca(u,v)

e N

We claim that the finab' includes all the branching nodes. Let
be any branching node. By definition, it has at least two anildes
that have a data node in their subtrees, respectively. ul gt
be the two left-most ones of those child nodes, withbeing the
left-most one. Denote by; (v2) the data node with the largest
(smallest) rank in the subtree af (u2). By the property of pre-
order rankingp; andv, constitute a pair of consecutive data nodes
in the rank domain. Hence,will be discovered atca(v1,v2).

Recall that each node ifi7"(w) should be connected to its low-
est ancestor (if any) among all the node&1fi (w). We achieve the
purpose using a stack Specifically, we process the nodesSin
ascending order of their ranks, and maintaii’(w) for the nodes
already seen. At each momertkeeps the right-most root-to-leaf
path of the curren€T'(w). Nodes of the path are pushed.Jrin
the same order they are scanned, i.e., with the leaf (rotteaop
(bottom).

algorithm conput eCTedges (w)
sort the nodes & in ascending order of ranks
J=0
while S # (do
u < the first node of5; removeu from S

SN

5. keep popping the top nodeof .J as long ask(v) is
disjoint with R(u)

6. if J is not emptythen

7. add an edge betweenand the top node of

8. pushu in J

Let us illustrate the algorithm using the set of nodes inifgt)
of Figure 6a. HereS = {1,2,3,5,9,23}. Node 1 is the first
scanned, and directly pushedfoFor node 2, Line 5 has no effect,
while Lines 6-7 add an edge between nodes 1 anti2.{2, 1} at
this time (with node 2 at the top). Similarly, the scanninghotles
3 and 5 create edg¢g, 3) and(3, 5) respectively, after whicl =
{5,3,2,1}. Next, the algorithm comes to node 9. Line 5 pops node
5 out of J becauseR(5) is found to be disjoint withR(7). Line 6
then spawns another ed@& 9) in C'T'(¢). Finally, the handling of
node 23 pops nodes 9, 3, 2, and adds one more @dg8). The
CT(t) now becomes final aS has been exhausted.

Construction of ECT (w). Let (u, v) be an edge i7" (w), with

u being an ancestor af. Lemma 4 states that there can be at most
one NN-change oifu,v). In case no NN-change existsy, v) is
kept directly inECT (w). Otherwise, we should create two edges
(u, 2), (z,v) in ECT(w), wherez is the first node (on the-to-v
path in7") such thatV N (u) # NN (z).

Our algorithm for buildingECT' (w), namedconput eECT,
processes the edges:,v) of CT(w) in ascending order of
level(u). It keeps the invariant that, at the tinte,v) is to be
processed, we have already determim€dV(u). It is easy to
see thatV N (v) can only be eithe?V N (u) or N Ny (v), where
N Ngup(v) is the subtree nearest-neighbor ofu (see Section 2).
Another key to the algorithm is that, i¥ NV (v) turns out to be dif-
ferent from NN (v), the nodez splitting (u,v) can be identified
by a level-on-path query. This is because the Iévef ~ can be
calculated as:

: 6

wheres = [, NN ()| — |lu, NN (u)].

/- P + level(u) + level(v)"

algorithm conput eECT(CT' (w))

1. sortthe edgegu, v) of CT(w) in ascending order of
level(e); E < the sorted list
2. find the NN of the root 0€T'(w) with a subtree NK query
3. while E # () do
(u,v) < the first edge of; remove it fromE
N Ngyp(v) the subtree nearest-neighbor ofv
NN (v) + whichever of N N (u) and N N, (v) that
is closer tov
if NN(u) = NN(v) then
create edgéu,v) in ECT (w)
else
0. z <+ the result of a level-on-path query using
(u, v) and? (Equation 1)
create edge@y, z) and(z,v) in ECT (w)

o g s

B oo~

11.

We demonstrate the algorithm by explaining how to derive
the ECT(t) in Figure 6b from theCT'(¢) in Figure 6a. First,
Line 1 arranges the edges @f'7'(t) in the order of £
{(1,2),(1,23),(2,3),(3,5),(3,9)}. Line 2 obtainsNVN (1) = 2.
The subsequent execution examines each edde iafturn. The
first one,(1, 2), is easy to handle becaud&V(2) = NN(1) = 2.
Hence,(1,2) is included inECT'(t) directly. Consider the second
edge(1,23) of E. As NN (23) = 23 is different from NN (1),
Line 10 calculate$ = [(—1 4 0+ 4)/2] = 2, and issues a level-
on-path query to find the level-2 nodeon the path from node 1

to node 23 in the data tree of Figure 4. Theetrieved is node 18.
Line 11 then adds edgds, 18) and (18,23) into ECT(t). The
rest of the algorithm proceeds in the same manner.

Analysis. Line 1 of conmput eTVP invokescol | ect CTnodes
and conput eCTedges, both of which terminate in
O(Nylog N,,) time. The same complexity applies to at
Line 2, which executesonput eECT. Lines 4-5 essentially spend
constant time on each edge BfC'T'(w), and hence, incur only
O(N.,,) cost. Line 6 apparently requir€s(V,,) time. Therefore,
the overall complexity o€onput eTVP is O(N, log Ny,).

THEOREM 2. T can be pre-processed into a structure that oc-
cupiesO(K) space, such that any NK query can be answered in
O(log N,,) time, whereN,, is the number of nodes Ifi carrying
the query keyword. The structure can be builti(X log K) time.

ProoFE The result follows from the discussion in Section 3.1,
Theorem 1, the analysis of this subsection, and the fact(that
the total construction cost of the structures of all keywsorsl
o>, (Nwlog N,y)) = O(K log K), and (i) the space of all
these structures 9(>°,, Nw) = O3, [W(u)]) = O(K). O

When B-trees, instead of binary trees, are deployed, theespa
and query complexities of our structure &¢K/B) disk blocks
andO(log ; N.,) 1/Os, respectively, wher8 is the size of a block.

4. NEAREST KEYWORD SEARCH AS AN
OPERATOR

In the introduction, we outlined why NK search can be depdoye
as a primitive operator to support other tasks efficientlyec-S
tions 4.1 and 4.2 elaborate this for XPath query answerird) an
group steiner tree computation, respectively.

4.1 XPath evaluation

This subsection aims at a theoretical justification that ynan
XPath queries can be reduced to NK search. We consider querie
that can be represented as a twig patt@mas follows. Each internal
node of(@ gives an element type. A leaf node is designated as the
output indicating the information solicited (extension to mplé
output nodes is trivial). Every other, non-output, leaf @adrries
a keyword, which imposes a predicate that must hold on each oc
currence of@ in the data tre€¢. See Figure 2a for an example.
Without loss of generality, we assume tl@atis compatible with
the data schema; otherwise, it can be rejected by standatexsy
checking with the DTD.

We will prescribe two conditions whose satisfactiguarantees
the success of reducin@ to a set of NK queries. These conditions
are conservative, in the sense that one may still carry alutcteon
even if the conditions do not hold (as shown in the experis)ent
We will see that the class of reducible queries can be preddsg
a new algorithm with an attractive worst-case performarment.

Type-sequence condition.Let P be any path of/” starting from
root(T). Define thetype sequencef P as the ordering of the
node types encountered as we walk aldhgFor instance, ifP is
the path from nod® to node010 in Figure 1, its type sequence is
(I eague, t eamt nane).

CONDITION 1. For each node: of the same type, the root-to-
path in7” has the same type sequence.

In Figure 1, for example, the path from the root to evenay er
node has type sequendes@gue,t eam pl ayer s, pl ayer).

team

TN

division player

divisionVal pname from

pnameVal fromVal
Figure 7: Type pattern of the query in Figure 2a

Anchor condition. As the next condition is more complex, we first
explain the idea using an example. Consi@eto be the pattern in
Figure 2a. Let us examine itgpe patternwhich is also a tree, and
results from replacing each node @fwith its type, as shown in
Figure 7. Denote the type pattern@fastype(Q).

Let us fix a leaf nodef, r onVal , in type(Q) as theanchor, de-
noted asunc. Then, find the LCA, called aritical LCA, of anc
and every other leaf, namely, @ca; =t eam which is the LCA
of anc andleafi; = di vi si onVal , and (ii) clcaz = pl ayer,
which is the LCA ofanc andleaf: = pnameVal . Each pair
(clcas,leaf;) decides aritical setrepresented asset;, which in-
cludes all the types on the path fraftza; to lea f;. That is,csetq
={teamdi vi si on, di vi si onVal }, and cset> ={pl ayer,
pnane, pnaneVal }.

In the 7" of Figure 1, for each typetca; nodeu, sub(u) (i.e.,
the subtree ofu) hasat most onenode of each type irset;.
To be specific, let us inspeeica; = t eam The subtree of a
t eamnode can have at most one node of tygam di vi si on,
anddi vi si onVal , respectively. Similarly, this is also true for
clcas, i.e., everypl ayer node can have in its subtree at most one
pl ayer, pnane, andpnanmeVal node, respectively. In this case,
we say that) is unambiguous

Not all the choices ofinc would make@ unambiguous. For
example, it is not hard to see th& is not unambiguous if
di vi si onVal is selected as the anchor. The second condition
requires:

CONDITION 2. At least one choice of anchor mak@sunam-
biguous.

To grasp the intuition behind the condition, consider agha
strategy explained in Section 1.1 for processing the qugrgf
Figure 2a. Recall that we used tffi¢ onival nodes carrying
Mar yl and as the query nodeg for NK search. Instead, let us
choosg; as thedi vi si onVal nodes associated witkest . That
is, for each sucly, say nodeD100, the algorithm finds its nearest
Mar yl and-neighbor (i.e., nod@€12020) in the set off r onVal

algorithm xpat h(Q)
1. for each nodey in 7 having typeanc do

2. for each non-output leaf nodeof @ do
3. w < the keyword ofu
4., v < the result ofN N (¢, w) among all nodes ifi”

of the same type as

/* This can be done with minor extension to our technique
in Section 3. For example, one simple solution is to prefix
each word with the type of the node containing it. Such a
prefix is added tav, which automatically restricts the
search to the nodes of the designated type. */

5. if ||g, v|| # the correct value as in an occurrerthen
6. markq as pruned

7. break for

8. if ¢ has not been prundtien

9. w < the type of the output node ¢}

10. v < NN(q,w)

11. if ||g, v|| = the correct value as in an occurrerthen
12. report the value af

Let us refer to the typenc node in an occurrence @ as an
anchor node Denote byf be the number of leaf nodes igpe(Q)
other tharunc. Lines 2-12 ofxpat h are collectively called ait-
eration We will prove that (a) the output value in every occurrence
is reported byxpat h, and (b) every value reported is indeed the
output value of an occurrence.

Proof of statement (a).Let occ be any occurrence with as its
anchor node. Denote hy; the typetea f; node inocc (1 < i < f).
Eachu; must be retrieved by the NK-query at Line 4 (or 10) in the
iteration forg, and pass the if-condition at Line 5 (or 11). The
iteration reports the output value afc at Line 12.

Proof of statement (b)Under Condition 1, it suffices to consider
Q@ with single-lined edges only, because any double-linec eda
be expanded into a set of single-lined edges without affgdtie
query result. Condition 1 also allows us to focus@rfi) that has
only a single node, or (ii) whose root has at least two childeso
If root(Q) has a single child, we can remove the root while still
obtaining the same result.

Assume thakpat h reports a value in an iteration withas the
anchor node. Line 4 or 10 must have fetched a tigagfs nodew;
(1 < i < f). Letoce be the tree that (i) is rooted at the LCA of
u1, ..., ur,q, and (ii) includes (only) the edges on the path from the
LCA to each ofus, ..., uy, ¢. The rest of the proof argues thaic
is an occurrence. Towards this, we consider tige:(occ), which

nodes, and then checks whether the neighbor has distance.6 to s gptained by replacing each nodesot: with its type. Our goal is
The answer is yes, so the presence of an occurrence has been dgg show thatype(occ) andtype(Q) are exactly the same.

tected. The problem, however, is that we can no longer findtite
put valueBl ake by identifying the nearegtnaneVal -neighbor
of ¢. This is because multiplpnaneVal nodes have aiden-
tical (smallest) distance 6 t9 and, hence, the NK search with
pnaneVal as the query word may happen to return a node (e.g.,
012100) that is not describing the same player as nodi2020.

We point out that, although the definitions and notationslHea
ing to Condition 2 were introduced with an example, they can b
generalized in a straightforward manner to arbitr@ry

Reducibility. The theorem below formally establishes the reduc-
tion from XPath evaluation to NK search.

THEOREM 3. An XPath query can be reduced to NK search un-
der Conditions 1 and 2.

PROOF Asin Section 1.1, we set the type of each nadie 7 as
a keyword inu. Each value node has its value as an extra keyword.
An XPath quernyQ is processed with the following algorithm:

Condition 1 implies that all nodes of a type must be at the same
level. Given a node type, we useseq(z) to represent the type
sequence of the path in the data trEethat goes from the root
(of 7)) to an arbitrary type: nodeu (recall thatseq(z) is unique
regardless ofi). Also, suppose thaticai, ...,clcay are in the top-
down order.

As clca; € seq(anc) for eachi € [1, f], ¢ has a (unique) type-
clea; ancestor iy, which we represent as. A key observation is
thatu; must be in the subtree of. Otherwise]|q, u;|| would have
been at least 2 more than the correct value in an occurrentie; n
ing that the path frony to u; would need to go outsideub(v;),
and then eventually descend to the level where fyjag; nodes
are. Fromiype(Q), we know thatlca; is the last common type in
seq(leaf;) andseq(anc), implying thatv; must be the LCA ofu;
andq, and belong t@cc. Hence, the root ofcc has typecica .

Let Py (or P,..) be the path inype(Q) (or type(occ)) from
the root toanc. The earlier analysis indicates th&y is identi-

cal to P,... Next we prove thatype(occ) andtype(Q) are the
same in the other parts as well. Let us walk doim and P,

synchronously, and stop as soon as encounteriaiga (of any
i € [1, f]) in both paths. Lef o (or T,..) be the subtree afica; in

type(Q) (or type(occ)), removing the subtree rooted atwherez

is the child node o€ica; that is an ancestor @inc.

DefineS = {j | clca; = clca;} (itis possible for several critical
LCAs to coincide on one node). Letbe any type in theset; of
anyj € S. Under Condition 2, there is a unique typerode in the
subtree ofv; in 7. Therefore, each type ifip (To..) can appear
only once. For eackeaf; (j € S), define a type-sequeneg that
equals the suffix ofeq(lea f;) starting fromclca;. Regarding each
type as a symbol, bothy andT,.. are in fact a trie of the same set
of strings{s; | j € S}.

The above reasoning @, and7s.. is independent of. We thus
have established the equivalencegbe(Q) andtype(occ). [

Remark 1. We outline the main ideas on how to verify Conditions
1 and 2 efficiently, while leaving the complete details to thi
paper. We regard each rule of the DTD as having the form s,
wheree is an element type ang a string specifying the possible
child element types of. Combine multiple rules whose left hand
sides are the same type. Denotingdthe set of resulting rules, we
can show that Condition 1 is satisfied if and only if every etem
type appears on the right hand side (RHS) of exactly one nue i
To check Condition 2, we resort tasahema treéT", where each

node is an element type whose child nodes are the element types

inthe RHS of rulee — s. Recall that every element typén s may

carry a star (e.geg — ¢* means that there can be multiple instances

of ¢ belowe directly). In this case, the edge (Fi') from e to c is
astar edge otherwise, it is anon-star edgeGiven a quen®, ST
allows us to verify Condition 2 as follows. First pick a leaide

of type(Q) as the anchoanc. Perform the following for every
other leaf node:: identify the LCAv of anc andu, and examine

if the path fromov to w in ST has a star edge. If the answer is no
for all u, we assert thaf) satisfies Condition 2. Otherwise, pick a
different anchor and repeat the above process. If all aschave
been attempted ang@ has not been confirmed to satisfy Condition
2, we conclude that it violates the condition. Clearly, timeet of
Condition-2 checking depends only on the schema, is iraglieto
the size of the XML document, and hence, typically accouats f
only a fraction of the total query cost.

Note that Condition 1 (2) is a constraint on the data (quiries
is worth mentioning that the two conditions are satisfied anyn
real datasets and meaningful queries. In particular, we thatt all
the datasets experimented in [4, 6, 10, 34, 35] and at leastron
[7, 15, 16, 20, 27, 28, 29, 30, 32, 37] satisfy Condition 1 (@lse
our experiments). We point out that simg@kasing can often be
carried out to make a dataset satisfy Condition 1. For exanpl
the well-knownDBLP dataset, amut hor element may be under
anarticl e orinproceedi ngs element. To meet Condition
1, we can rename theeut hor of former type as- aut hor , and
that of the latter type as- aut hor .

Remark 2. Denote byleaf1, ..., lea f¢ the leaf nodes of) that are
not the anchoanc. By Theorem 2, algorithmpat h terminates in
O(Nane Z{Zl log Nieay,) time, whereN.,, is the number of nodes
in the data tred fulfilling the predicateimplied by the nodex in
type(Q). For example, for thé) of Figure 2a, the execution time
is O(Nwaryl and (10g Nuest + 1og Npnaneval)). In general, the time
complexity ofxpat h is independent on the number of node§in
whose types areternal nodes oftype(Q). This is a unique per-
formance characteristic that is not shared by any previolugien.

4.2 Finding approximate group steiner trees

This section discusses the GST problem as motivated in Sec-
tion 1. The dataset is a tré€ as described in Section 2. A query
specifies a set of keyword3S = {wi, ..., w; }. Recall thatU (w;)
is the set of nodes ifi” associated witho, (1 < i <). Any
l nodesus, ..., u;, whereu; € U(w;) for eachi, uniquely deter-
mines aminimum connecting tre@MCT) [20] M as follows. M
has the LCA of allu1, ..., u; as its root, and includes (all and only)
the edges on the path ih from the LCA to everyu;. Referring to
(u1, ..., u1) as avector, the GST problem is equivalent to discov-
ering the vector that minimizes the number of edged/n This
problem is NP-hard [17].

As an example, assumg to be the data tree in Figure 1, and
wy = Lakers, w2 = Bl ake, ws = guard (I = 3). Givenu; =
node0100, u2 =node012000, andus = node012010, Figure 3
demonstrates the corresponding MGT. Notice that the root of
M is the LCA ofuy, uz andus.

We assume thatb, ..., w,, have been arranged in such a way
that |U(w1)| < ... < |U(wi)|. The following algorithm extracts
an MCT with a small number of edges.

algorithm appr oxGST (w1, ...
1. dmin — o0

2. for each node:; € U(w;)do
3 for i < 2tol do

4 ui<—NN(u1,wi)
5. de i fusul
6. if d < dynin then
7.
8
9.

s wy)

remembefuq, ...
dmin =d

return the MCT M determined by the best vector

,uy) as thebest vector

The for-loop in Lines 2-8 enumerates each nadec U(w1).
Lines 3-4 find the nearest;-neighbor ofu; for every other query
keywordw;. The resulting neighbors, together with, determine
an MCT. The key of the algorithm is to measure the quality ef th
tree as the sum of the distance framto each retrieved neighbor
(see Line 5). The algorithm eventually returns the bestdaoeerd-
ing to this quality metric.

We say that an MCTV is ac-approximate GSTf it has at most
c times more edges than the GST. Formally,dft (M) represents
the number of edges i/, it holds thatcost(M) < ¢ - cost(M*),
whereM™* is the (optimal) GST.

LEMMA 6. The output ofapproxGST is an (I — 1)-
approximate GST.

PrROOFR For eachi € [1,1], letu; be a node inM/* associated
with keywordw; (if there are several such nodes, can be any of
them). Defined* = 2222 [lut,u;]|. Since every edge a¥/* is
included at most once in the path fram to eachu; (2 < ¢ < 1),
it holds that:

d* < (1—1)-cost(M™").)

Let M,,. be the output oippr oxXGST. The dp.in in the se-
quel refers to the finall,..,, of appr oxGST. Notice that{u],
NN (ui,ws2), ... NN(ui,w;)}isasef{ui, ..., u; } that must have
been inspected at Line 5 appr oxGST. In other words:

l
dmin < Y [lui, NN (ui, wi)|| < d*. 3)
1=2

where the second is becauséuy, NN (ui,w;)| < [Jul,u;].

Let {1, ..., } be the se{us, ..., w;} that determined/,,. at
Line 7 of appr oxGST. Then, dmin = Zi‘:z |[ti1, ds||. Every
edge ofM,,, is used at least once in the union of the paths from
11 10 o, ..., U, respectively. Hence:

cost(Mapz) < dmin-

4)

Combining Inequalities 2-4 givesost(Mapz) < (I — 1) -
cost(M*). O

By Theorem 2, the execution time appr oxGST is bounded
by O(Nminllog Nmaa), plus the cost of outputting the tree, where
Npin = |U(w1)] and Npaz = |U(wy)].

Remark 3. Sometimes it is useful to returlh MCTs with small
cost, wherék is a user-specified parameter. In this case, we main-
tain thek best vectors currently found, as opposed to only the top-1.
This can be achieved with minor modificationappr ox GST.

5. RELATED WORK

NK search has not been studied previously. In the sequel, we
review the existing work on other topics related to our désoon.

The first topic is the processing hblistic twig joing where the
goal is to enumeratall occurrences of a twig pattern. The existing
algorithms can be classified ssquentiabr indexed A sequential
algorithm[4, 5, 8, 7, 15, 21, 30, 32, 37] scans synchronously the
nodes, whose types appear in the query pattern, in ascending
der of their ranks. The drawback of these algorithms is they t
must access every such naatdeast onceeven though it does not
participate in any occurrence. Motivated by this,iatiexed algo-
rithm [4, 21] utilizes a data structure that can be used to effisient
retrieve a particular ancestor/descendent of a node. Suclbia
ity allows the algorithm to skip many nodes not involved iry an
occurrence and, therefore, to terminate much earlier.

In this paper, we do not attempt to attack general holistig tw
joins. Instead, our focus is to improve the efficiency of #hos
XPath queries that can be processed with NK search. As far as
these queries are concerned, our method significantly dotpes
all the solutions in the sequential category because (@irtol in-
dexed algorithms) it only needs to access a small numberd#gso
that may form an occurrence. Regarding the indexed catetimy
comparison is more subtle, mainly because the algorithnig,of
21] are heuristic in nature, and are not accompanied by any no
trivial complexity analysis. We will experimentally conmgaour
technique against the state of the @%Generi¢ [21], of that cat-
egory. Noteworthily, an advantage of our algoritbupat h (Sec-
tion 4.1) is that, in practice, its cost can be accuratelyresged by
a query optimizer. This is not possible for [4, 21], as theihévior
is sensitive to the data distributions.

We note that no existing algorithm has the performance char-
acteristic pinpointed in Remark 2. The only approach thate®
close to having the characteristic is TJFast [30], whichdeguen-
tial algorithm that needs to scan the nodes matching onliethes
of the query pattern. Unfortunately, tegtended dewey coddsat
TJFast relies on can be as long as the height of the XML tree. T
time of reading a node is proportional to the length of iteaxied
dewey code. The length, unfortunately, is linear to the nemdf
ancestors of the node, which can be asymptotically iddrttictoe
total number of nodes in the tree in the worst case. It is atsahw
mentioning that there exist some other methods [9, 24], ljkst
ours, that are designed for certain special classes of XRetties.

Another related topic is keyword search in XML databases. A
bulk of the existing research [6, 10, 16, 20, 27, 28, 29, 3p|aes
various semantics of query results that is suitable foedifit sce-
narios. In this work, we showed the applicability of NK séato

h

the GST semantics [12, 20, 23, 25]. This choice does not ity
preference of GST; in fact, the potential application ofl{tkeoper-
ator to the other semantics is an exciting direction for feitaork.

As mentioned before, the GST problem on trees is NP-hard, and
remains so even if the goal is changed to findingHiog? ¢ n)-
approximate solution for arbitrarily small> 0 [17], wheren is the
number of nodes in the data tree. The best known approximatio
ratio achievable in polynomial time & (log nlog) [14], wherel

is the number of query keywords (and can be as large)aghe
algorithm of [14], which is based on linear programming, igghty
theoretical and not appropriate for practical implemeatat

In the database area, research on GST computation (e.42,[3,
19, 20, 22, 25]) is largely motivated by the observation that
value ofl can often be regarded as a constant in reality. In this case,
thel— 1 approximation ratio guaranteed by our solution (Lemma 6)
can be (much) lower tha@(log nlog!). A smalll also consider-
ably shrinks the search space for discovering the GST. Huss f
is leveraged in [20] to enumerate all the MCTs (defined in Sec-
tion 4.2), and thereby, eventually come across the GST {wisic
also an MCT). While the method of [20] works on trees only, the
approaches reviewed below apply to general grapAsgorithms
for computing approximate GSTs (faster than extractingGIsa
with [20]) are presented in [3, 22]. Somewhat surprisintiigre is
a dynamic-programming algorithm [12] for finding thgactGST,
in even less time than the approximate methods of [3, 22].

The above approaches do not rely on pre-computation, wherea
the BLINKS system [19] leverages a sophisticated acceskadet
constructed in advance to producapproximate GSTs efficiently.
The most serious drawback of BLINKS, however, is that it eccu
piesQ(n*/3) spacé, wheren is the number of nodes in the graph.
Forn at the order of millions§2(n*/®) amounts to duplicating the
database 100 times, which is too expensive in many envirotsne
Furthermore, the query algorithm of BLINKS is ad-hoc and ihas
interesting worst-case performance bound. Note that cultren
Lemma 6 in fact dominates the performance of BLINKS, i.e., we
guarantee a slightly better approximation ratio, witinear space
access method and worst-case efficient query time. It shoaild
noted, however, that the improvement is made possible bying
properties of a tree (recall that BLINKS deals with generabdps).
The work of [23, 25] considers thateiner tregproblem, which is a
special case of the GST problem where there can be only asingl
node in the data tree associated with each query keyworde Not
that, while the steiner tree problem is NP-hard on graplis,ribt
on trees, as is clear from the way that MCT is built from a veito
Section 4.2.

Finally, in the special case where only one distinct keywexd
ists, NK retrieval is similar tanearest neighbor search on spatial
networks In that problem, the data consist of a gragland a sef
of points, each located at a node®f Given a node of G, a query
returns the point irt' that has the smallest shortest-path distance to
q. This problem has been well studied in various settings wifth
ferent performance goals (see [11, 26, 31, 33] and the rafese
therein). The existing solutions (i) perform Dijkstradikexpansion
from the query point (e.qg., [11]), (ii) pre-compute the amsvior
each node of7 (e.g., [31]), or (iii) rely on specialized structures
that leverage properties of spatial data (e.g., [26, 33])our con-

!Given a set of keywords, the GST in a graph is the minimum tree
(i) whose nodes and edges come from the underlying graphjiand
that has the minimum number of edges among all trees satisfyi
(i). When the graph is a tree, this definition degenerates tim
one in Section 4.2.

2This can be derived from Theorem 3 of [19] by observing that,

S, N2 + BP > n?/B + B?, which isQ(n*/?).

text, solutions of (i) degenerate into the BFT approacharpd in
Section 3.1, those of (ii) incur prohibitive space when thenber
of keywords is large, whereas those of (iii) are simply ifagble
to XML data.

6. EXPERIMENTS

This section empirically evaluates the performance of ttee p
posed techniques. We used two real XML documents:

e NBA which contains all the teams and players of the leagues
during 1946-2004.

e DBLP, which includes all the conference papers during
1959-2010 collected by the DBLP website.

Figure 8a (8b) shows the part of tiNBA (DBLP) schema that is
relevant to the queries in our experiments. An asterislcatds that
the corresponding node can have an arbitrary number ohgibbf
the same type. For example, BBA node can have multiple child
nodes of typd eague. Table 1 lists the main statistics about each
dataset.

NBA

leaguex*
4&

year

DBLP
inproceedings*
| tnsme players division year booktitle title

yearVal | | | ‘
tnameVal player* divisionVal yearVal booktitleValtitleVal authorVal

authorx*

pname position college

pnameVal positionVal collegeVal
(@) (b)

Figure 8: Schemas oNBA and DBLP relevant to our queries

| NBA | DBLP

num. of nodes| 135,940| 17,501,788

num. of keywords| 223,500| 48,191,004

num. of distinct keyword 8,302 | 2,893,195

Table 1: Dataset statistics

We will first explore the characteristics of NK search, anenth
assess the usefulness of the NK operator in XPath evaluatidn
GST computation, respectively. Our experiments were perdo
on a computer that was running Linux, and equipped with asl Int
DUO CPU at 3.0Ghz and 4 GB of memory. All the data were
memory resident.

Performance of NK search.In our indexing scheme, namé&d/P,
we followed the convention mentioned in Section 1.1 to assec
nodes with keywords. Specifically, every node had its typa as
keyword. Furthermore, if; is a value node, each word in the
value ofu was taken as another keywordwfafterw was prefixed
with the type ofu (see Remark 1 of Section 4.1). The name of a
person/team was always regarded as a single word. For gastdin
u has typepnaneVal and a valu&obe Bryant,then it carries
a (prefixed) keyworgonaneVal : Kobe- Br yant . Table 2 shows
the space consumption VP and the raw dataset, while Table 3
gives the construction time diVP.

The next experiment compares the query efficiency\dP and
the BFT algorithm described in Section 3.1. For this purpose, we
report their performance on the (realistic) queries in Fegy each
of which can be handled by a single NK operator. Queries @ghot
with a first letterN (D) were designed foNBA (DBLP). For each

| NBA | DBLP NBA DBLP
TVP | 3.8 ‘ 759 < 1second| < 2.5minutes
raw dataset| 2.4 | 427 Taple 3: Construction cost of

Table 2: Space (mega bytes)I'VP

INQ1: Find the team of Shaquille O’'Neal in 2000.
q =the pnanmeVal node with value Shaquille-O’Neal in the
league 2000w = t naneVal
INQ2: Were Shaquiile O’'Neal and Kobe Briant in the same team im yea
20007
g =same asVQ1; w = pnaneVal : Kobe- Br yant ; distance (of
a positive answer) = 6
INQ3: Same asVQ2 but in 2002.
g =same asN (@1 but in 2002;w and distance as itV Q2

DQ1: Find the conference name of “Holistic Twig Joins: OptimafiX
Pattern Matching”.
g =theptitleVal node of the paperw = bookt it | eVal

DQ2: Is Nicolas Bruno an author of the paperiinQ1?
g =same asDQ1; w = aut hor Val : Ni col as- Bruno;
distance =4

DQ3: Same aDQ2 but with respect to Jim Gray.
g and distance same d3Q2; w = aut hor Val : Ji m Gr ay

Figure 9: Query set for examining NK efficiency

query, Figure 9 clarifies the nodeand keywordw of the corre-
sponding NK operator. For a boolean query, the figure alsotpoi
out the distance (tq) that the nearesi-neighbor should have in
order to return a positive answer. For instance, the answeéy)2

is “yes” if and only if the retrieved neighbor has distance g.t

O TVP O BFT

1
NQ1 NQ2 NQ3 DQ1 DQ2 DQ3

Figure 10: Cost of NK search

Figure 10 illustrates the cost @VVP and BFT for each query.
Note that the vertical axis is in logarithmic scale, and hasunit of
u-second (=10~° second) BFTis especially slow for the boolean
queriesN @3 and DQ3 with answers “no”. This is expected be-
cause, for these queries, the retrieved neighbor has adaigace
to the query node.

XPath evaluation. We proceed to assess the efficiency of the NK
operator in answering XPath queries. Our technique intedra
the proposed access methdd P with the xpat h algorithm de-
veloped in Section 4.1. As discussed in Section 5, the egjsti
algorithms for holistic twig joins can be classified into geguen-
tial andindexedcategories, with the solutions in the latter cate-
gory significantly faster than those of the former. Therefare
chose to compar@VP against the state-of-the-art indexed algo-
rithm TSGeneric [21].

Figures 11a and 11b explain the meaning and twig patterns of
the queries examined, respectively. The box in each pasigrn
nifies the anchor node chosen gat h. Observe thatvQ7 and
DQ?7 violatethe anchor condition (i.e., Condition 2) in Section 4.2.
Nevertheless, they are still reducible to NK search andadn, tan
be answered directly by thepat h algorithmwith no modification

For fairness, our implementation ®SGeneri¢ utilizes an in-
verted index to filter all the nodes that do not satisfy thewkayl
conditions. For example, faNQ4, only thecol | egeVal nodes

INQ4: Find the names of all players from Duke University.
INQ5: Find the names of all centers from the west division.

INQ6: Find the names of all players that came from Boston College
but were in a team of the west division in year 1999.

NN Q7: Find the teams where Hakeem Olajuwon and Charles Barkley
were teammates.

DQ4: Find the titles of all papers by Jim Gray.
DQ@5: Find the titles of the SIGMOD papers by Nick Koudas.

DQ6: Find the conferences of the papers by Divesh Srivastava tha
contained “XML” in the titles.

DQT: Find the titles of the SIGMOD papers co-authored by Hector
Garcia-Molina and Jennifer Widom.

(a) Query description

NQ4 player _team NQ5
pn?xmege Pplayer d1v1‘51on
nameVal pna‘me p?s west

pnameVal
league

NQ6 team ye‘ar tean _ NQt

player division 1999 tt“?“\‘f L player paayer
pne‘xme college west thaneras gléia—ﬂ%}s;
pnameVal [Boston]

DQ4 }np&ee&ngs inproceedings DQ5
title author ti1‘;1e booki‘:itle aut‘hor
titleVal titleVal SIGMOD
DQ6 inproceedings inproceedings DQ7
booktitle tit‘ile author title booktitle author author

Al
booktitleVal XML title\lal SIGMOD Jennifer
Srivastaval arcia-| Widom

Molina

(b) Twig patterns

Figure 11: Query set for examining XPath efficiency
672 1431

cost @ sec) ==
200 ----+ Tl
180 r-----
160
140
120
100
80
60
40
20

O TVP O TSGenerlc

NQ4 N65 NQ6 NQ7 DQ4 DQ5 DQ6DQ7

Figure 12: Cost of XPath queries

whose values are equal Buke are considered, as opposed to all
thecol | egeVal nodes (as proposed in [21]). This optimization
reduces the average overhead of the origli@Generi¢ by at least
an order of magnitude. Figure 12 demonstrates the exectiien
of TVPandTSGeneri¢ for all queries.TVP lost narrowly in two
out of the eight queries, but was at least twice faster in fparies.

GST computation. The final set of experiments investigate Shaquill‘e»D’Neal !

the efficiency and effectiveness of the NK operator in keylvor
search. Our approach combined TAéPindexing scheme with the

appr oxGST algorithm in Section 4.2. We compared the approach

against the dynamic programming algorithm of [12] (as reeie
in Section 5), hereafter denoted By. Recall thatDP returns the
exactGST. We evaluated the two methods only WNBA, as the
excessive memory requirementsif® rendered it infeasible to run
experiments wittDBLP on our hardware. As the XML schema is
irrelevant to keyword search, thev/P built here does not require
the keyword prefixing explained earlier. In other words,heat:
ement node (as before) is associated with its type, wher@as e

INQ8: {Shaqui | | e- O Neal , Anf er nee- Har daway}

INQ9: {Shaqui | | e- O Neal , Anf er nee- Har daway,
Or | ando- Magi c}

NQ10: {Shaqui | | e- O Neal , Anf er nee- Har daway,
Or | ando- Magi ¢, 2000}

Figure 13: Query set for keyword search evaluation

of edge
6

‘ NQ10 ' NQ8 NQ10
(@) Number of edges (b) CPU time
Figure 14: Quality and efficiency of GST computation

NQ8 NQ9

value node is simply associated with the words in its valuig- F
ure 13 illustrates the queries executed.

Figure 14a depicts, for each query, the number of edges in the
trees output byf VP andDP, respectively. It also indicates the ap-
proximation ratio ofTVP. Notice thatTVPreturns the exact GST
for NQ8 and NQ9, whereas its result foNQ10 has one more
edge than the optimal solution. This shows that, in practice
actual approximation ratio 6f VP is much better than predicted
by theory (Lemma 6). Figure 14b plots the CPU time of the two
methodsTVP outperformsDP by two to five orders of magnitude.
Moreover, unlikeDP whose cost surges with the number of query
words, the overhead dfVPis only slightly affected.

To better capture the usefulness BYP in keyword search,
Figure 15 presents the trees returned BYP in the previ-
ous experiment. The result aVQ8 essentially states that
Shaqui | | e- O Neal andAnf er nee- Har daway played for
the same team at least once in their career. The traggd implies
that the above players were once teammat€s inrando- Magi c.
Finally, the NQ10 result indicates thaShaqui | | e- O Neal
andAnf er nee- Har daway belonged to different teams 2000,
neither of which wa$x | ando- Magi c.

We conclude our experiments by comparimyP and DP in
searching for the top-GSTs of NQ9 with £ > 1. TVPnow mod-
ifies appr oxGST as discussed in Remark 3. Note thath TVP
andDP are approximate, namelP guarantees returning the top-
1 GST, but such optimality is not ensured for> 1. Figure 16a
plots the result quality (in the number of tree edges) as atitm
of k. The two algorithms output trees with identical sizes when

NQ@8 NQ9
players team
layer layer tname
play play ‘
pne‘une pnz‘ame Orlando-Magic
players
Anfernee-Hardaway
pla‘yer pla‘uyer
pname pname

Shaquille-0’'Neal Anfernee-Hardaway

NQ10 league
team team team year
pla‘ ers pla‘ ers tn‘ 2000
player player Orlando-Magic
pne‘u;ue pne‘xme

Shaquille-0'Neal Anfernee-Hardaway

Figure 15: MCTs returned by TVP for the queries of Figure 13

of edge
16

OTvPO DP

OTVPE DP cost (msec
0

(a) Number of edges

(b) CPU time
Figure 16: Quality and efficiency of top-k GST computation

k € [1, 3], whereaDP offers slightly smaller trees fdt € [4, 5].

Figure 16b gives their CPU cost. The overhead for both mathod

gradually elevates with. TVPconstantly outperformBP by more
than four orders of magnitude.

7. CONCLUSIONS

This paper proposed the problem of NK search on XML docu-

ments. Given a nodeg and a keywordv, an NK query returns the
node in the XML tree that has the shortest distance,tamong
all nodes associated with. We solved the problem with a novel
technique called tree Voronoi partition that gives risertéralexing
scheme with rigorous worst-case performance guarantgesifS
ically, our scheme consumes linear space, and answers ¥ery
query in time logarithmic to how many nodes carry the query ke
word. We also demonstrated, both theoretically and exparim
tally, the usefulness of the NK operator in supporting saivien-
portant tasks in XML databases. In particular, our techmigsults
in (i) a new methodology for solving a wide class of XPath iger
that is both asymptotically and practically efficient, anyld fast
algorithm for finding an approximate GST with bounded qgyalit

Acknowledgements

This work was supported by grants GRF 4173/08, GRF 4169/09,
and GRF 4166/10 from HKRGC. We thank the anonymous review-

ers for their constructive suggestions on improving thespap

8. REFERENCES

[1] S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe. Neageshmon
ancestors: a survey and a new distributed algorithnSRAA pages
258-264, 2002.

[2] O.Berkman and U. Vishkin. Recursive star-tree paralkth
structure SIAM J. of Comp.22(2):221-242, 1993.

[3] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, ands8darshan.
Keyword searching and browsing in databases using BANKS. In
ICDE, pages 431-440, 2002.

[4] N. Bruno, N. Koudas, and D. Srivastava. Holistic twigrjsi Optimal
XML pattern matching. I'SIGMOD, pages 310-321, 2002.

[5] L. Chen, A. Gupta, and M. E. Kurul. Stack-based algorishiior
pattern matching on dags. \LDB, pages 493-504, 2005.

[6] L.J.Chen and Y. Papakonstantinou. Supporting top- ke
search in XML databases. I€DE, pages 689-700, 2010.

[7] S. Chen, H.-G. Li, J. Tatemura, W.-P. Hsiung, D. Agraveald K. S.
Candan. Twigstack: Bottom-up processing of
generalized-tree-pattern queries over XML document¥.LIDB,
pages 283-294, 2006.

[8] T.Chen, J. Lu, and T. W. Ling. On boosting holism in XML i
pattern matching using structural indexing technique$SIGMOD,
pages 455-466, 2005.

[9] Y. Chen, S. B. Davidson, and Y. Zheng. Blas: An efficientaxt?
processing system. BIGMOD, pages 47-58, 2004.

[10] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. Xsearch: Assgin
search engine for XML. IVLDB, pages 45-56, 2003.

[11] K. Deng, X. Zhou, H. T. Shen, S. W. Sadiqg, and X. Li. Ingtan
optimal query processing in spatial networké.DB J,
18(3):675-693, 2009.

[12] B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin. Eiing
top-k min-cost connected trees in database$CDE, pages
836-845, 2007.

[13] J. Fischer and V. Heun. Theoretical and practical inaproents on
the RMQ-problem, with applications to LCA and LCE.Amnual
Symp. on Combinatorial Pattern Matchingages 36—-48, 2006.

[14] N. Garg, G. Konjevod, and R. Ravi. A polylogarithmic
approximation algorithm for the group steiner tree problém
Algorithms 37(1):66—84, 2000.

[15] N. Grimsmo, T. A. Bjgrklund, and M. L. Hetland. Fast apéal twig
joins. PVLDB, 3(1):894-905, 2010.

[16] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XQAN
Ranked keyword search over XML documentsSIEMOD, pages
16-27, 2003.

[17] E. Halperin and R. Krauthgamer. Polylogarithmic ineppmability.
In STOGC pages 585-594, 2003.

[18] D. Harel and R. E. Tarjan. Fast algorithms for finding nesa
common ancestor§IAM J. of Comp.13(2):338-355, 1984.

[19] H. He, H. Wang, J. Yang, and P. S. Yu. BLINKS: ranked keyaivo
searches on graphs. 8iGMOD, pages 305-316, 2007.

[20] V. Hristidis, N. Koudas, Y. Papakonstantinou, and Dv&stava.
Keyword proximity search in XML treeS.KDE, 18(4):525-539,
2006.

[21] H. Jiang, W. Wang, H. Lu, and J. X. Yu. Holistic twig joins
indexed XML documents. INLDB, pages 273-284, 2003.

[22] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshamésai, and
H. Karambelkar. Bidirectional expansion for keyword sbawo
graph databases. WVLDB, pages 505-516, 2005.

[23] G. Kasneci, M. Ramanath, M. Sozio, F. M. Suchanek, and
G. Weikum. STAR: Steiner-tree approximation in relatiapsh
graphs. INCDE, pages 868879, 2009.

[24] R. Kaushik, R. Krishnamurthy, J. F. Naughton, and R. Blarishnan.
On the integration of structure indexes and inverted lists.
SIGMOD pages 779-790, 2004.

[25] B. Kimelfeld and Y. Sagiv. Finding and approximatingtk answers
in keyword proximity search. IRODS pages 173-182, 2006.

[26] M. R. Kolahdouzan and C. Shahabi. Voronoi-based k retare
neighbor search for spatial network database¥ DB, pages
840-851, 2004.

[27] Y. Li, C. Yu, and H. V. Jagadish. Enabling schema-freeueqy with
meaningful query focus/LDB J, 17(3):355-377, 2008.

[28] Z. Liu and Y. Chen. Identifying meaningful return infoation for
XML keyword search. I'SIGMOD, pages 329-340, 2007.

[29] Z. Liu and Y. Chen. Return specification inference arsiite
clustering for keyword search on xmlIODS 35(2), 2010.

[30] J.Lu, T. W. Ling, C. Y. Chan, and T. Chen. From region ating to
extended dewey: On efficient processing of XML twig pattern
matching. INVLDB, pages 193-204, 2005.

[31] A. Okabe, B. Boots, K. Sugihara, and S. N. Clpatial
Tessellations, Concepts and Applications of Voronoi Daags John
Wiley & Sons Ltd., 2000.

[32] P. Rao and B. Moon. Sequencing XML data and query twigs$ast
pattern matchingTODS 31(1):299-345, 2006.

[33] H. Samet, J. Sankaranarayanan, and H. Alborzi. Sealadtivork
distance browsing in spatial databasesSIBMOD, pages 43-54,
2008.

[34] 1. Tatarinov, S. Viglas, K. S. Beyer, J. ShanmugasuacarE. J.
Shekita, and C. Zhang. Storing and querying ordered xmbusin
relational database system.$iGMOD, pages 204-215, 2002.

[35] Y. Xu and Y. Papakonstantinou. Efficient keyword sedmtsmallest
LCAs in XML databases. 1I8IGMOD, pages 537-538, 2005.

[36] J. Yang and J. Widom. Incremental computation and reasmce of
temporal aggregate¥LDB J, 12(3):262-283, 2003.

[37] N. Zhang, V. Kacholia, and M. T. Ozsu. A succinct physg@arage
scheme for efficient evaluation of path queries in xmIlGDE,
pages 54-65, 2004.

