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ABSTRACT
This paper studies thenearest keyword(NK) problem on XML doc-
uments. In general, the dataset is a tree where each node is asso-
ciated with one or more keywords. Given a nodeq and a keyword
w, an NK query returns the node that is nearest toq among all the
nodes associated withw. NK search is not only useful as a stand-
alone operator but also as a building brick for important tasks such
as XPath query evaluation and keyword search. We present an in-
dexing scheme that answers NK queries efficiently, in terms of both
practical and worst-case performance. The query cost is provably
logarithmic to the number of nodes carrying the query keyword.
The proposed scheme occupies spacelinear to the dataset size, and
can be constructed by a fast algorithm. Extensive experimentation
confirms our theoretical findings, and demonstrates the effective-
ness of NK retrieval as a primitive operator in XML databases.

Categories and Subject Descriptors
H3.1 [Content analysis and indexing]: Indexing methods

General Terms
Theory

Keywords
Nearest keyword, XPath, keyword search, group steiner tree

1. INTRODUCTION
We consider the problem ofnearest keyword(NK) search on

XML documents. The dataset is a treeT with undirected edges.
Each node is associated with one or more keywords. Define the
distancebetween two nodes as the number of edges in the (unique)
path linking them. Given a nodeq in T and a keywordw, anNK
queryfinds thenearestw-neighborof q, namely, the node having
the minimum distance toq among all the nodes associated withw.

To illustrate, Figure 1 shows part of an XML document, where
all nodes have been encoded with the Dewey code [34] for easy
reference. Anelement nodehas itstypedisplayed in brackets, while
the other nodes arevalue nodes. Given a nodeq = 012000 and a
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keywordw = guard, an NK query returns node012010, whose
distance toq is 4 (edges). It is the nearestguard-neighbor ofq.

1.1 Motivation
NK queries can serve as the building brick to tackle some im-

portant problems in XML databases, as elaborated below. Forcon-
venience, we assign each value node to a type, whose name con-
catenates its parent’s type and the stringVal (e.g., node0100 has
typetnameVal, and so does node0200). Every node carries its
type as a keyword. In addition, each value node has its value as
another keyword. For example, node0100 has two keywords: its
typetnameVal, and its valueLakers.

XPath query evaluation. NK search gives a new methodology for
efficiently solving a class of XPath queries. An example is:

Q: Find the names of all players that originated from Mary-
land, but are in a team of the west division.

The XPath statement ofQ can be expressed as atwig pattern[4, 15]
shown in Figure 2a, where a single-lined (double-lined) edge rep-
resents parent-child (ancestor-descendent) relationship. The goal is
to find occurrencesof the pattern in the data tree, and for each oc-
currence, output the value at the position ofpnameVal (signified
as underlined). Figure 2b demonstrates such an occurrence in Fig-
ure 1, from which the output is the valueBlake of node012000.

There are two interesting facts about the patternQ in Figure 2a,
with respect to the data of Figure 1:

• Let q be the node in an occurrence corresponding to the node
Maryland of Q. The type ofq is fromVal. The nearest
west-neighbor ofq must have distance exactly 6 toq. For
example,q is node012020 in Figure 2b, and its nearest
west-neighbor is node0110.

• Let q be any fromVal node that carries the word
Maryland, but isnot in any occurrence, i.e., the team ofq
is in the east division. The nearestwest-neighbor ofq must
have distancegreater than6 to q, noticing that the neighbor
must come from a team different from that ofq. For exam-
ple, let q be node022020 in Figure 1. Its nearestwest-
neighbor is node0110, which has distance 8 toq.

The above facts enable us to processQ via NK search as follows.
We enumerate all thefromVal nodes that containMaryland.
For each such nodeq, find its nearestwest-neighbor. If the neigh-
bor retrieved has a distance greater than 6 toq, it is ignored. Oth-
erwise, we have found an occurrence, from which thepnameVal
should be output. ThepnameVal node can be found with another
NK query, which obtains the nearestpnameVal-neighbor ofq.

Group steiner tree retrieval. Keyword searchhas emerged as a
new paradigm of inquiring XML databases. It enables a user to
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Figure 2: An XPath query example

specify only a few keywords as the query, instead of complying
with a rigorous syntax. Its advantage is that the user does not need
to learn any query language like XPath, and neither does s/heneed
to be aware of the data schema. The disadvantage, however, is
that what should be the query result becomes heavily dependent
on the application backdrop. This has triggered the propositions of
a variety of result semantics, among which an intuitive one is to
return thegroup steiner tree(GST) [12, 20, 23, 25].

More specifically, given a set of query keywords{w1, ..., wl}, a
GST is a tree that (i) contains all the query keywords in the texts of
its nodes, and (ii) has the fewest edges among such trees. Forex-
ample, Figure 3 presents the GST for{Lakers,Blake,guard}
on the data of Figure 1. GST computation is known to be NP-hard
(even if the dataset is a tree) [17]. Fortunately, as discussed later,
NK queries provide an elegant way to extract a good approximate
solution, namely, a tree that satisfies requirement (i), andhas more
edges than the GST by only a small factor.

1.2 Contributions
This paper presents the first study on the NK problem. We

propose an indexing scheme that can answer any NK query in
O(logNw) time, whereNw is the number of nodes associated with
the query keywordw. The scheme consumes spacelinear to the
size of the dataset. Somewhat surprising is the fact that, despite
the complication of the underlying theory, our access method can
be implemented as merely a number of binary trees. All the re-
sults also hold in disk-oriented environments, where each binary
tree is simply replaced with a B-tree. Accordingly, the query cost
is O(logB Nw) I/Os, whereB is the size of a disk block.

The proposed index also leads to rigorous results on the useful-
ness of the NK operator. Specifically:

• We theoretically establish the fact that a large class of XPath
queries can be reduced to NK search (in a way similar to how
the query of Figure 2a was answered earlier). Our algorithm
for processing this query class enjoys a worst-case time com-
plexity that is irrelevant to the number of elements whose
types appear as an internal node ofQ. No previous solution
is known to have this feature (as surveyed in Section 5).

• We give a fast solution to finding an approximate GST with
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Figure 3: The group steiner tree of {Lakers, Blake, guard}
in Figure 1

an attractive quality guarantee (which is actually optimalif
the query has only two keywords). We achieve the running
time ofO(Nminl logNmax), plus the cost of outputting the
resulting tree, wherel is the number of keywords in the
query,Nmin is the number of nodes carrying therarestquery
keyword (i.e., the one appearing the least times in the XML
document), andNmax conversely is the number of nodes car-
rying themost frequentquery keyword.

Besides confirming our theoretical findings, our experimenta-
tion also demonstrates the effectiveness of the NK operatoron real
XML documents. In particular, we show that XPath queries like
the one in Figure 2a can be processed via NK search with perfor-
mance comparable to or better than that of the existing approaches.
Furthermore, for XML keyword search, our NK-based algorithm
discovers high-quality approximate GSTs in real time.

Roadmap.The rest of the paper is organized as follows. Section 2
clarifies the problem definition and several technical preliminaries.
Section 3 elaborates on the proposed solutions for NK search. Sec-
tion 4 discusses the applications of NK queries in XPath evaluation
and keyword search. Section 5 reviews the previous work related to
ours. Section 6 contains extensive experimentation to evaluate the
effectiveness and efficiency of our techniques. Finally, Section 7
concludes the paper with a summary of our findings.

2. PRELIMINARIES
For each nodeu in the data treeT , we useW (u) to represent

the set of keywords associated withu. For simplicity, assume that
W (u) has at least one keyword. Define thelengthof a path inT
as the number of edges it contains. Denote by‖u, v‖ the distance
between two nodesu, v, namely, the length of the path connecting
u andv. Let U(w) be the set of nodes inT that include wordw
(hence,Nw = |U(w)|). Given a nodeq and a keywordw, the
result of an NK query is a nodeu ∈ U(w) such that

‖u, q‖ ≤ ‖v, q‖ ∀v ∈ U(w).

We denoteu, the nearestw-neighbor ofq, asNN(q, w).
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Figure 4: A running example

Figure 4 shows an exampleT , where each node is labeled an
integer. Sometimes we may refer to a node by its label directly,
when the meaning is clear. For instance, as node 2 carries a single
keywordt, we writeW (2) = {t}. Similarly, ast also appears in
nodes 5, 9 and 23,U(t) = {2, 5, 9, 23}. The keywords of the other
nodes are omitted for clarity. Givenq = node 17 andw = t, an
NK query returns node 2, namely,NN(17, t) = 2.

Let N be the number of nodes inT , andK the total number of
keywords in all the nodes (counting a word twice if it appearsin
two nodes), i.e.,K =

∑

u |W (u)|. Note thatT requiresΩ(K)
space to store. In other words,linear cost should be interpreted as
O(K), instead ofO(N). We label the levels ofT in a top-down
manner, setting the root at level 0. Denote bylevel(u) the level of
a nodeu, which is also the number of edges on the path from the
root tou. In Figure 4, all the leaf nodes are at level 4. Also, we use
sub(u) to represent the subtree ofu.

In the sequel, we review several basic results useful in our tech-
nical discussion.

Interval encoding. For each nodeu of T , define itsrank, denoted
asrank(u), to be the sequence number ofu in thepre-ordertraver-
sal ofT . We associateu with an intervalR(u) = [x, y], wherex
is the rank ofu, andy is the largest rank of the nodes insub(u). In
Figure 4, the label of each node indicates its rank directly.As an
example, the intervalR(10) associated with node 10 is[10, 16].

The intervals defined this way have several properties commonly
utilized in managing XML data:

• For any two nodesu andv,R(u) containsR(v) if and only if
u is an ancestor ofv. In other words, the ancestor-descendent
relationship ofu andv can be verified in constant time.

• The intervals of the nodes at thesamelevel of T must be
disjoint. In Figure 4, for instance, the nodes at level 2 have
disjoint intervalsR(3) = [3, 9], R(10) = [10, 16], R(18) =
[18, 24], andR(25) = [25, 31].

The above properties allow us to solve the so-calledlevel-on-
path queries efficiently. Letu be an ancestor ofv; given a level
ℓ ∈ [level(u), level(v)], a level-on-path query finds the level-ℓ
node on the path fromu to v. For example, ifu (v) is node 1 (15),
a level-on-path query withℓ = 2 retrieves node 10.

LEMMA 1. T can be pre-processed into a structure that oc-
cupiesO(N) space, such that any level-on-path query can be
answered inO(logN) time. The structure can be built in
O(N logN) time.

PROOF. We manage the nodes ofT of each level separately.
Specifically, create a binary tree to index the ranks of the nodes at
the same level (i.e., there are as many trees as the number of levels
in T ). As each node appears in only one tree, the overall space is

O(N). Assume that we want to perform a level-on-path operation
to find the level-ℓ node fromu to v (which is a descendent ofu).
We find inO(logN) time the predecessor ofrank(v), among all
the ranks indexed in the level-ℓ binary tree. The node whose rank
equals that predecessor is exactly what we are looking for.

Subtree NK search. NK search is easy if attention is restricted
to the subtree of the query node. Formally, given a nodeq and a
keywordw, asubtree-NK queryfinds the nodeu with the smallest
distance toq, among all nodes insub(q) that are associated withw.
We refer tou as thesubtree nearestw-neighborof q. For instance,
let q be node 17 in Figure 4; the subtree-NK query withw = t
returns node 23. Note that the (global) nearestt-neighbor of node
17 is in fact node 2.

LEMMA 2. T can be pre-processed into a structure that occu-
piesO(K) space, such that any subtree-NK query can be answered
in O(logNw) time. The structure can be built inO(K logK) time.

PROOF. Let us first review a related result. LetS be a set of
numbers in the real domainR. Each numberx ∈ S is associated
with a weight in R. Given an intervalI , a range-minquery finds
the number that has the minimum weight among all the numbers in
S∩I . We can indexS with an SB-tree [36] that usesO(|S|) space,
and solve any range-min query inO(log |S|) time. The tree can be
built in O(|S| log |S|) time.

We can convert subtree-NK search to the range-min problem.
Letw be the keyword of concern. ConstructS to include the ranks
of the nodes inU(w). Each rank is associated with a weight that
equals the level of the corresponding node. Subtree-NK search
with nodeq is equivalent to a range-min query onS with inter-
val R(q). We settle the problem with an SB-tree inO(logNw)
query time. The tree occupiesO(Nw) space and can be built
in O(Nw logNw) time. The SB-trees of all keywords require
O(

∑

w Nw) = O(K) space in total. The overall construction time
is O(

∑

w(Nw logNw)) = O(K logK).

Both Lemmas 1 and 2 will be needed to analyze the construction
cost of the proposed structure.

Lowest common ancestor (LCA).We uselca(u, v) to denote the
LCA of nodesu, v in T (e.g.,lca(20, 26) is node 17 in Figure 4).
In general, the distance of two nodes can be calculated in constant
time, once their LCA has been identified, as can be seen from the
following equation:

‖u, v‖ = (level(u)− level(z)) + (level(v)− level(z))

wherez = lca(u, v).
LCA computation has been thoroughly studied. Harel and Tar-

jan [18] were the first to observe that the problem can be settled
optimally in constant time using linear space. Their structure, how-
ever, is rather theoretical and difficult to implement. To remedy the
drawback, several (much) simpler structures [1, 2, 13] havebeen
developed, keeping the same space and query performance. Asa
corollary, we can obtain‖u, v‖ of anyu, v in constant time.

3. NEAREST KEYWORD SEARCH
We pre-process the data treeT by building a separate structure

for each distinct keywordw that appears inT . This is reminiscent
of the inverted index, which also has aninverted listdedicated to
eachw. Instead of a simple list, however, our structure forw is a
binary tree constructed in a more sophisticated manner.



3.1 Overview
We concentrate on NK queries with a specific keywordw, as

the structure is identical for all keywords. The term “nearest w-
neighbor” will be abbreviated asnearest neighbor(NN), when no
ambiguity arises. Accordingly, we simplify notationNN(u, w) to
NN(u).

A straightforward solution to answering an NK query is to per-
form a breath first traversal(BFT) starting fromq. Namely, the
BFT explores the nodes ofT in ascending order of their distances
to q, and stops as soon as it encounters a node associated withw.
This approach is efficient only if the NN ofq is close, and may end
up visiting a large number of nodes otherwise.

Alternatively, we can pre-compute the NN of every node inT .
Each query can be answered in constant time, because we can sim-
ply return the (pre-computed) NN of the query nodeq. This ap-
proach, however, has the severe drawback that, the pre-computation
incursΩ(N) space foreverykeyword appearing inT . The number
of distinct keywords can be easilyΩ(N). In this case, the space
complexity of the above approach isΩ(N2), which is prohibitively
large in practice.

The chief observation towards reducing the space is that, many
nodes ofT have the same NN, thus raising the hope that we could
capture them collectively with much less information. Recall that
each node can be uniquely identified by its rank, while the ranks of
all nodes come from therank domainD = [1, N ] (e.g.,D = [1, 31]
in Figure 4). We can always partitionD into a setI of disjoint
intervals such that, for each intervalI ∈ I, the nodes with ranks in
I have the same NN, which can be associated withI . Given an NK
query with nodeq, we can solve it by identifying the (only) interval
I that coversrank(q), and returning the NN associated withI .
This can be easily achieved by indexingI with a binary tree, which
consumesO(|I|) space and has query costO(log |I|). Figure 5
illustrates the contents of a possibleI for the data of Figure 4 when
the keywordw of concern ist.

1

2

3 4 6 7 9 10 17 18 2425 31

2 2235 7

node 2 is the NN for any node in rank interval [1, 3]

ranks

Figure 5: A tree Voronoi partition

We refer toI as atree Voronoi partition(TVP) of w. An imme-
diate issue is whether a smallI alwaysexists. Fortunately, we will
show in Section 3.2 that there is definitely anI with sizeO(Nw),
whereNw is the size ofU(w) (i.e., the number of nodes inT car-
rying w). Furthermore, the size ofO(Nw) is asymptotically tight
because|I| needs to be at leastNw – every node inU(w) appar-
ently finds itself as the NN.

Another important issue is how to computeI efficiently.
Naively, one could first compute the NN of every node inT , and
then go over the nodes in ascending order of their ranks, merging
consecutive nodes into an interval if their NNs are the same.This
approach, however, entailsΩ(N) time, which would render the to-
tal pre-computation cost (for all keywords) prohibitivelyexpensive
in practice. In Section 3.3, we will give a significantly faster algo-
rithm to produceI in O(Nw logNw) time.

3.2 TVP characteristics
This subsection will establish our first main result:

THEOREM 1 (TVP THEOREM). For any keywordw appear-
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ing inT , there is a tree Voronoi partitionI with size less than8Nw ,
whereNw is the number of nodes inT associated withw.

Let us start the proof by introducing thecompact treeof w, de-
noted asCT (w). First, all the nodes ofU(w) are inCT (w), and
termed thedata nodes. Second, a non-data nodeu belongs toT , if
and only ifthere areat leasttwo child nodes ofu whose subtrees
contain a data node. We callu a branching node. Considerw = t
in Figure 4. There are four data nodes 2, 5, 9, 23, and two branching
nodes 1, 3. Node 17, for example, is not a branching node because
only one of its child nodes (i.e., node 18) has a data node in its
subtree. LetS be the set of all data and branching nodes. We form
CT (w) by drawing an edge from each nodeu ∈ S to its lowest
ancestor inS. Figure 6a shows theCT (t) for the data of Figure 4.
Node 5, for instance, is connected to node 3, because among all the
data and branching nodes, node 3 is the lowest ancestor of node 5.

LEMMA 3. CT (w) has at most2Nw − 1 nodes.

PROOF. Each branching node must have at least two child nodes
in CT (w). AsCT (w) has at mostNw leaf nodes, the total number
of branching nodes cannot be more thanNw − 1.

Consider any edge(u, v) in CT (w). Let us walk, in the data tree
T , along the path fromu tov. As we go, monitor theNN(z) of the
nodez being visited, and count how manychangesin NN(z) there
are in total. Call each of those changes anNN-changeon(u, v). As
an example, consider edge(1, 23) in theCT (t) of Figure 6a. Now
we walk from node 1 to node 23 in theT of Figure 4. Along the
path there is only a single NN-change, which happens as we move
from node 17 to node 18 (i.e.,NN(17) = 2, butNN(18) = 23).
The next lemma gives an important fact:

LEMMA 4. There can be at most one NN-change on each edge
of CT (w).

PROOF. Let(u, v) be an edge ofCT (w). The removal of(u, v)
cutsCT (w) into two connected components. LetCu (Cv) be the
component includingu (v). Denote byP the path fromu to v in
T . Suppose thatu⋆ (v⋆) is the data node inCu (Cv) closest tou
(v). We claim that, for any nodez onP , NN(z) must be eitheru⋆

or v⋆. In fact, for any nodeu′ ∈ Cu, it holds that

‖z, u⋆‖ = ‖z, u‖+ ‖u, u⋆‖ ≤ ‖z, u‖+ ‖u, u′‖ = ‖z, u′‖.

Similarly, for any nodev′ ∈ Cv, we have‖z, v⋆‖ ≤ ‖z, v′‖.
Therefore, exceptu⋆ andv⋆, no other data node inCu ∪Cv can be
the NN ofz.

Hence, if there were at least two NN-changes on(u, v), there
would have to be three nodesz1, z2, z3 onP such thatz2 was on
the path fromz1 to z3, butNN(z1) = NN(z3) 6= NN(z2). It is
trivial to show that such a scenario cannot happen.

Next, CT (w) is augmented with the nodes where NN-changes
occur. Consider any edge(u, v) of CT (w) on which there is an



NN-change. Letz be the first node on theu-to-v path inT such
that NN(z) 6= NN(u). If z is different fromv, we add it to
CT (w), breaking(u, v) into two edges(u, z) and(z, v). Denote
by ECT (w) the resulting tree, after applying such transformation
on all edges ofCT (w) with NN-changes. In caseroot(T ) is not
already inECT (w), we add it as the parent of the current root of
ECT (w). The finalECT (w) is called theextended compact tree
of w. Let us illustrate the transformation with edge(1, 23) in the
CT (t) of Figure 6a (i.e.,u = 1, v = 23). As mentioned earlier,
on the path from node 1 to node 23 in Figure 4, there is an NN-
change as we cross from node 17 to node 18. Hence,z = 18, and
accordingly,(1, 23) is broken into two edges(1, 18) and(18, 23)
in the extended compact treeECT (t), as shown in Figure 6b.

We are ready to generate a tree Voronoi partitionI of w. It
suffices to invoke the following algorithm for every nodeu of
ECT (w) in turn (ordering does not matter):

algorithm voronoiIntv(u)
/* u is a node inECT (w) */

1. S = {R(u)}
2. for each child nodev of u in ECT (w) do
3. I ← the (only) interval inS coveringR(v)
4. breakI into intervalsI1, R(v), I2

/* I1 (I2) is the part ofI to the left (right) ofR(v) */
5. removeI fromS, and addI1, I2
6. add toI the intervals inS, after associating them withNN(u)

For example, letu be node 1 in theECT (t) of Figure 6b. At
Line 1, voronoiIntv setsS = {R(1)} = {[1, 31]}. Since
node 1 has two child nodes inECT (t), the for-loop in Lines 2-
5 is executed twice. The first time trimsR(2) = [2, 16] away
from [1, 31], after whichS = {[1, 1], [17, 31]}. The second
execution cutsR(18) = [18, 24] out of [17, 31], leavingS =
{[1, 1], [17, 17], [25, 31]}. Line 6 adds all three intervals ofS to
I, after associating them withNN(1) = 2, indicating that node 2
is the NN of any node (whose rank falls) in those intervals.

LEMMA 5. ApplyingvoronoiIntv to all nodes ofECT (w)
creates a tree Voronoi partitionI with less than8Nw intervals.

PROOF. We start by proving that the intervals ofI are disjoint,
and their union covers the rank domainD. Observe that the in-
tervals inserted inI at Line 6 are disjoint with theR(v) of any
child nodev of u, whereu is the input to the current execution
of voronoiIntv. None of those intervals can overlap with the
intervals added toI by the execution ofvoronoiIntv invoked
with v (which only adds intervals withinR(v)). On the other hand,
every valuex ∈ D is covered by an interval in the finalI. Such an
interval is inserted inI by runningvoronoiIntvwith the lowest
nodeu in ECT (w) whoseR(u) coversx.

We proceed to show that, for each intervalI ∈ I, the NN asso-
ciated withI is indeed the NN of all nodes inI . Consider any node
u in ECT (w). Denote its child nodes inECT (w) asv1, ..., vf for
somef ≥ 0. For each1 ≤ j ≤ f , cuttingR(vj) out of R(u) at
Line 4 effectively removessub(vj) from sub(u) (recall thatsub(.)
represents the subtree of a node). Letsub△(u) be the set of nodes in
sub(u), but not in thesub(vj) of anyj. It suffices to prove that all
nodes insub△(u) have the same NN asu. For each edge(u, vj) of
ECT (w), defineP (u, vj) as the path inT from nodeu to vj , but
excludingnodevj . Each nodez ∈ sub△(u) is either (i) onP (u, vj)
for somej, or (ii) has an ancestorz′ in T that is onP (u, vj) for
somej. In the former case,NN(z) must beNN(u) by the way
ECT (w) is constructed. In the latter case,NN(z) = NN(z′),
while z′ is a node of case (i), implyingNN(z) = NN(u) as well.

It remains to bound the size ofI. By Lemma 3,CT (w) has at
most2Nw − 2 edges. As each of them may generate two edges
in ECT (w), the number of edges inECT (w) is at most4Nw −
4 + 1 = 4Nw − 3, including the (potential) extra edge due to
root(T ). In voronoiIntv, each edge breaksD into at most 2
more intervals. Therefore, the final|I| is bounded above by1 +
2(4Nw − 3) = 8Nw − 5.

The proof of Theorem 1 is thus completed.

3.3 Finding the minimum TVP
This subsection completes our discussion of NK search by elab-

orating an algorithm for computing a TVPI of a keywordw with
theminimumsize. In fact, the main idea of the algorithm has been
mentioned in Section 3.2, as summarized below:

algorithm computeTVP(w)

1. buildCT (w)
2. buildECT (w) from CT (w)
3. I = ∅
4. for each nodeu in ECT (w) do
5. voronoiIntv(u)

/* at the end of the for-loop,|I| < 8Nw */
6. merge consecutive intervals inI that are associated with

the same NN
7. return I

Next, we clarify the details of Lines 1 and 2, because
voronoiIntv has been presented in the previous subsection.

Construction of CT (w). We constructCT (w) in two steps: first
collect the setS of nodes inCT (w), and then connect them prop-
erly to meet the definition ofCT (w). The first step applies the
algorithm below to computeS:

algorithm collectCTnodes(U(w))

1. S = U(w)
2. sort the nodes ofU(w) in ascending order of ranks
3. for each pair of consecutive nodesu, v do
4. S = S ∪ lca(u, v)

We claim that the finalS includes all the branching nodes. Letz
be any branching node. By definition, it has at least two childnodes
that have a data node in their subtrees, respectively. Letu1, u2

be the two left-most ones of those child nodes, withu1 being the
left-most one. Denote byv1 (v2) the data node with the largest
(smallest) rank in the subtree ofu1 (u2). By the property of pre-
order ranking,v1 andv2 constitute a pair of consecutive data nodes
in the rank domain. Hence,z will be discovered aslca(v1, v2).

Recall that each node inCT (w) should be connected to its low-
est ancestor (if any) among all the nodes inCT (w). We achieve the
purpose using a stackJ . Specifically, we process the nodes ofS in
ascending order of their ranks, and maintainCT (w) for the nodes
already seen. At each moment,J keeps the right-most root-to-leaf
path of the currentCT (w). Nodes of the path are pushed inJ in
the same order they are scanned, i.e., with the leaf (root) atthe top
(bottom).

algorithm computeCTedges(w)

1. sort the nodes ofS in ascending order of ranks
2. J = ∅
3. while S 6= ∅ do
4. u← the first node ofS; removeu from S



5. keep popping the top nodev of J as long asR(v) is
disjoint withR(u)

6. if J is not emptythen
7. add an edge betweenu and the top node ofJ
8. pushu in J

Let us illustrate the algorithm using the set of nodes in theCT (t)
of Figure 6a. Here,S = {1, 2, 3, 5, 9, 23}. Node 1 is the first
scanned, and directly pushed toJ . For node 2, Line 5 has no effect,
while Lines 6-7 add an edge between nodes 1 and 2.J = {2, 1} at
this time (with node 2 at the top). Similarly, the scanning ofnodes
3 and 5 create edges(2, 3) and(3, 5) respectively, after whichJ =
{5, 3, 2, 1}. Next, the algorithm comes to node 9. Line 5 pops node
5 out ofJ becauseR(5) is found to be disjoint withR(7). Line 6
then spawns another edge(3, 9) in CT (t). Finally, the handling of
node 23 pops nodes 9, 3, 2, and adds one more edge(1, 23). The
CT (t) now becomes final asS has been exhausted.

Construction of ECT (w). Let (u, v) be an edge inCT (w), with
u being an ancestor ofv. Lemma 4 states that there can be at most
one NN-change on(u, v). In case no NN-change exists,(u, v) is
kept directly inECT (w). Otherwise, we should create two edges
(u, z), (z, v) in ECT (w), wherez is the first node (on theu-to-v
path inT ) such thatNN(u) 6= NN(z).

Our algorithm for buildingECT (w), namedcomputeECT,
processes the edges(u, v) of CT (w) in ascending order of
level(u). It keeps the invariant that, at the time(u, v) is to be
processed, we have already determinedNN(u). It is easy to
see thatNN(v) can only be eitherNN(u) or NNsub(v), where
NNsub(v) is the subtree nearestw-neighbor ofu (see Section 2).
Another key to the algorithm is that, ifNN(v) turns out to be dif-
ferent fromNN(v), the nodez splitting (u, v) can be identified
by a level-on-path query. This is because the levelℓ of z can be
calculated as:

ℓ =

⌈

δ + level(u) + level(v)

2

⌉

(1)

whereδ = ‖v,NN(v)‖ − ‖u,NN(u)‖.

algorithm computeECT(CT (w))

1. sort the edges(u, v) of CT (w) in ascending order of
level(e); E ← the sorted list

2. find the NN of the root ofCT (w) with a subtree NK query
3. while E 6= ∅ do
4. (u, v)← the first edge ofE; remove it fromE

5. NNsub(v)← the subtree nearestw-neighbor ofv
6. NN(v)← whichever ofNN(u) andNNsub(v) that

is closer tov
7. if NN(u) = NN(v) then
8. create edge(u, v) in ECT (w)
9. else
10. z ← the result of a level-on-path query using

(u, v) andℓ (Equation 1)
11. create edges(u, z) and(z, v) in ECT (w)

We demonstrate the algorithm by explaining how to derive
the ECT (t) in Figure 6b from theCT (t) in Figure 6a. First,
Line 1 arranges the edges ofCT (t) in the order of E =
{(1, 2), (1, 23), (2, 3), (3, 5), (3, 9)}. Line 2 obtainsNN(1) = 2.
The subsequent execution examines each edge ofE in turn. The
first one,(1, 2), is easy to handle becauseNN(2) = NN(1) = 2.
Hence,(1, 2) is included inECT (t) directly. Consider the second
edge(1, 23) of E. As NN(23) = 23 is different fromNN(1),
Line 10 calculatesℓ = ⌈(−1 + 0 + 4)/2⌉ = 2, and issues a level-
on-path query to find the level-2 nodez on the path from node 1

to node 23 in the data tree of Figure 4. Thez retrieved is node 18.
Line 11 then adds edges(1, 18) and(18, 23) into ECT (t). The
rest of the algorithm proceeds in the same manner.

Analysis. Line 1 of computeTVP invokescollectCTnodes
and computeCTedges, both of which terminate in
O(Nw logNw) time. The same complexity applies to at
Line 2, which executescomputeECT. Lines 4-5 essentially spend
constant time on each edge ofECT (w), and hence, incur only
O(Nw) cost. Line 6 apparently requiresO(Nw) time. Therefore,
the overall complexity ofcomputeTVP isO(Nw logNw).

THEOREM 2. T can be pre-processed into a structure that oc-
cupiesO(K) space, such that any NK query can be answered in
O(logNw) time, whereNw is the number of nodes inT carrying
the query keyword. The structure can be built inO(K logK) time.

PROOF. The result follows from the discussion in Section 3.1,
Theorem 1, the analysis of this subsection, and the fact that(i)
the total construction cost of the structures of all keywords is
O(

∑

w(Nw logNw)) = O(K logK), and (ii) the space of all
these structures isO(

∑

w Nw) = O(
∑

u |W (u)|) = O(K).

When B-trees, instead of binary trees, are deployed, the space
and query complexities of our structure areO(K/B) disk blocks
andO(logB Nw) I/Os, respectively, whereB is the size of a block.

4. NEAREST KEYWORD SEARCH AS AN
OPERATOR

In the introduction, we outlined why NK search can be deployed
as a primitive operator to support other tasks efficiently. Sec-
tions 4.1 and 4.2 elaborate this for XPath query answering and
group steiner tree computation, respectively.

4.1 XPath evaluation
This subsection aims at a theoretical justification that many

XPath queries can be reduced to NK search. We consider queries
that can be represented as a twig patternQ as follows. Each internal
node ofQ gives an element type. A leaf node is designated as the
output, indicating the information solicited (extension to multiple
output nodes is trivial). Every other, non-output, leaf node carries
a keyword, which imposes a predicate that must hold on each oc-
currence ofQ in the data treeT . See Figure 2a for an example.
Without loss of generality, we assume thatQ is compatible with
the data schema; otherwise, it can be rejected by standard syntax
checking with the DTD.

We will prescribe two conditions whose satisfactionguarantees
the success of reducingQ to a set of NK queries. These conditions
are conservative, in the sense that one may still carry out reduction
even if the conditions do not hold (as shown in the experiments).
We will see that the class of reducible queries can be processed by
a new algorithm with an attractive worst-case performance bound.

Type-sequence condition.Let P be any path ofT starting from
root(T ). Define thetype sequenceof P as the ordering of the
node types encountered as we walk alongP . For instance, ifP is
the path from node0 to node010 in Figure 1, its type sequence is
(league, team, tname).

CONDITION 1. For each nodeu of the same type, the root-to-u
path inT has the same type sequence.

In Figure 1, for example, the path from the root to everyplayer
node has type sequence (league, team, players, player).
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Figure 7: Type pattern of the query in Figure 2a

Anchor condition. As the next condition is more complex, we first
explain the idea using an example. ConsiderQ to be the pattern in
Figure 2a. Let us examine itstype pattern, which is also a tree, and
results from replacing each node ofQ with its type, as shown in
Figure 7. Denote the type pattern ofQ astype(Q).

Let us fix a leaf node,fromVal, in type(Q) as theanchor, de-
noted asanc. Then, find the LCA, called acritical LCA, of anc
and every other leaf, namely, (i)clca1 = team, which is the LCA
of anc and leaf1 = divisionVal, and (ii) clca2 = player,
which is the LCA ofanc and leaf2 = pnameVal. Each pair
(clcai, leafi) decides acritical setrepresented ascseti, which in-
cludes all the types on the path fromclcai to leafi. That is,cset1
= {team, division, divisionVal}, and cset2 = {player,
pname, pnameVal}.

In theT of Figure 1, for each type-clcai nodeu, sub(u) (i.e.,
the subtree ofu) has at most onenode of each type incseti.
To be specific, let us inspectclca1 = team. The subtree of a
team node can have at most one node of typeteam, division,
anddivisionVal, respectively. Similarly, this is also true for
clca2, i.e., everyplayer node can have in its subtree at most one
player, pname, andpnameVal node, respectively. In this case,
we say thatQ is unambiguous.

Not all the choices ofanc would makeQ unambiguous. For
example, it is not hard to see thatQ is not unambiguous if
divisionVal is selected as the anchor. The second condition
requires:

CONDITION 2. At least one choice of anchor makesQ unam-
biguous.

To grasp the intuition behind the condition, consider againthe
strategy explained in Section 1.1 for processing the queryQ of
Figure 2a. Recall that we used thefromVal nodes carrying
Maryland as the query nodesq for NK search. Instead, let us
chooseq as thedivisionVal nodes associated withwest. That
is, for each suchq, say node0100, the algorithm finds its nearest
Maryland-neighbor (i.e., node012020) in the set offromVal
nodes, and then checks whether the neighbor has distance 6 toq.
The answer is yes, so the presence of an occurrence has been de-
tected. The problem, however, is that we can no longer find theout-
put valueBlake by identifying the nearestpnameVal-neighbor
of q. This is because multiplepnameVal nodes have aniden-
tical (smallest) distance 6 toq and, hence, the NK search with
pnameVal as the query word may happen to return a node (e.g.,
012100) that is not describing the same player as node012020.

We point out that, although the definitions and notations lead-
ing to Condition 2 were introduced with an example, they can be
generalized in a straightforward manner to arbitraryQ.

Reducibility. The theorem below formally establishes the reduc-
tion from XPath evaluation to NK search.

THEOREM 3. An XPath query can be reduced to NK search un-
der Conditions 1 and 2.

PROOF. As in Section 1.1, we set the type of each nodeu in T as
a keyword inu. Each value node has its value as an extra keyword.
An XPath queryQ is processed with the following algorithm:

algorithm xpath(Q)

1. for each nodeq in T having typeanc do
2. for each non-output leaf nodeu of Q do
3. w ← the keyword ofu
4. v ← the result ofNN(q, w) among all nodes inT

of the same type asu
/* This can be done with minor extension to our technique
in Section 3. For example, one simple solution is to prefix
each word with the type of the node containing it. Such a
prefix is added tow, which automatically restricts the
search to the nodes of the designated type. */

5. if ‖q, v‖ 6= the correct value as in an occurrencethen
6. markq as pruned
7. break for
8. if q has not been prunedthen
9. w ← the type of the output node ofQ
10. v ←NN(q, w)
11. if ‖q, v‖ = the correct value as in an occurrencethen
12. report the value ofv

Let us refer to the type-anc node in an occurrence ofQ as an
anchor node. Denote byf be the number of leaf nodes intype(Q)
other thananc. Lines 2-12 ofxpath are collectively called anit-
eration. We will prove that (a) the output value in every occurrence
is reported byxpath, and (b) every value reported is indeed the
output value of an occurrence.

Proof of statement (a).Let occ be any occurrence withq as its
anchor node. Denote byui the type-leafi node inocc (1 ≤ i ≤ f ).
Eachui must be retrieved by the NK-query at Line 4 (or 10) in the
iteration for q, and pass the if-condition at Line 5 (or 11). The
iteration reports the output value ofocc at Line 12.

Proof of statement (b).Under Condition 1, it suffices to consider
Q with single-lined edges only, because any double-lined edge can
be expanded into a set of single-lined edges without affecting the
query result. Condition 1 also allows us to focus onQ (i) that has
only a single node, or (ii) whose root has at least two child nodes.
If root(Q) has a single child, we can remove the root while still
obtaining the same result.

Assume thatxpath reports a value in an iteration withq as the
anchor node. Line 4 or 10 must have fetched a type-leafi nodeui

(1 ≤ i ≤ f ). Let occ be the tree that (i) is rooted at the LCA of
u1, ..., uf , q, and (ii) includes (only) the edges on the path from the
LCA to each ofu1, ..., uf , q. The rest of the proof argues thatocc
is an occurrence. Towards this, we consider treetype(occ), which
is obtained by replacing each node ofocc with its type. Our goal is
to show thattype(occ) andtype(Q) are exactly the same.

Condition 1 implies that all nodes of a type must be at the same
level. Given a node typez, we useseq(z) to represent the type
sequence of the path in the data treeT that goes from the root
(of T ) to an arbitrary type-z nodeu (recall thatseq(z) is unique
regardless ofu). Also, suppose thatclca1, ...,clcaf are in the top-
down order.

As clcai ∈ seq(anc) for eachi ∈ [1, f ], q has a (unique) type-
clcai ancestor inT , which we represent asvi. A key observation is
thatui must be in the subtree ofvi. Otherwise,‖q, ui‖ would have
been at least 2 more than the correct value in an occurrence, notic-
ing that the path fromq to ui would need to go outsidesub(vi),
and then eventually descend to the level where type-leafi nodes
are. Fromtype(Q), we know thatclcai is the last common type in
seq(leafi) andseq(anc), implying thatvi must be the LCA ofui

andq, and belong toocc. Hence, the root ofocc has typeclca1.
Let PQ (or Pocc) be the path intype(Q) (or type(occ)) from

the root toanc. The earlier analysis indicates thatPQ is identi-



cal to Pocc. Next we prove thattype(occ) and type(Q) are the
same in the other parts as well. Let us walk downPQ andPocc

synchronously, and stop as soon as encountering aclcai (of any
i ∈ [1, f ]) in both paths. LetTQ (orTocc) be the subtree ofclcai in
type(Q) (or type(occ)), removing the subtree rooted atz, wherez
is the child node ofclcai that is an ancestor ofanc.

DefineS = {j | clcaj = clcai} (it is possible for several critical
LCAs to coincide on one node). Letz be any type in thecsetj of
anyj ∈ S. Under Condition 2, there is a unique type-z node in the
subtree ofvi in T . Therefore, each type inTQ (Tocc) can appear
only once. For eachleafj (j ∈ S), define a type-sequencesj that
equals the suffix ofseq(leafj) starting fromclcai. Regarding each
type as a symbol, bothTQ andTocc are in fact a trie of the same set
of strings{sj | j ∈ S}.

The above reasoning ofTQ andTocc is independent ofi. We thus
have established the equivalence oftype(Q) andtype(occ).

Remark 1. We outline the main ideas on how to verify Conditions
1 and 2 efficiently, while leaving the complete details to thefull
paper. We regard each rule of the DTD as having the forme → s,
wheree is an element type ands a string specifying the possible
child element types ofe. Combine multiple rules whose left hand
sides are the same type. Denoting byS the set of resulting rules, we
can show that Condition 1 is satisfied if and only if every element
type appears on the right hand side (RHS) of exactly one rule inS.

To check Condition 2, we resort to aschema treeST , where each
node is an element typee, whose child nodes are the element types
in the RHS of rulee → s. Recall that every element typec in s may
carry a star (e.g.,e → c∗ means that there can be multiple instances
of c belowe directly). In this case, the edge (inST ) from e to c is
a star edge; otherwise, it is anon-star edge. Given a queryQ, ST
allows us to verify Condition 2 as follows. First pick a leaf node
of type(Q) as the anchoranc. Perform the following for every
other leaf nodeu: identify the LCAv of anc andu, and examine
if the path fromv to u in ST has a star edge. If the answer is no
for all u, we assert thatQ satisfies Condition 2. Otherwise, pick a
different anchor and repeat the above process. If all anchors have
been attempted andQ has not been confirmed to satisfy Condition
2, we conclude that it violates the condition. Clearly, the time of
Condition-2 checking depends only on the schema, is irrelevant to
the size of the XML document, and hence, typically accounts for
only a fraction of the total query cost.

Note that Condition 1 (2) is a constraint on the data (queries). It
is worth mentioning that the two conditions are satisfied by many
real datasets and meaningful queries. In particular, we note that all
the datasets experimented in [4, 6, 10, 34, 35] and at least one in
[7, 15, 16, 20, 27, 28, 29, 30, 32, 37] satisfy Condition 1 (seealso
our experiments). We point out that simplealiasing can often be
carried out to make a dataset satisfy Condition 1. For example, in
the well-knownDBLP dataset, anauthor element may be under
anarticle or inproceedings element. To meet Condition
1, we can rename theauthor of former type asa-author, and
that of the latter type asi-author.

Remark 2. Denote byleaf1, ..., leaff the leaf nodes ofQ that are
not the anchoranc. By Theorem 2, algorithmxpath terminates in
O(Nanc

∑f
i=1

logNleafi) time, whereNx is the number of nodes
in the data treeT fulfilling the predicateimplied by the nodex in
type(Q). For example, for theQ of Figure 2a, the execution time
is O(NMaryland(logNwest + logNpnameVal)). In general, the time
complexity ofxpath is independent on the number of nodes inT
whose types areinternal nodes oftype(Q). This is a unique per-
formance characteristic that is not shared by any previous solution.

4.2 Finding approximate group steiner trees
This section discusses the GST problem as motivated in Sec-

tion 1. The dataset is a treeT as described in Section 2. A query
specifies a set of keywordsQS = {w1, ..., wl}. Recall thatU(wi)
is the set of nodes inT associated withwi (1 ≤ i ≤ l). Any
l nodesu1, ..., ul, whereui ∈ U(wi) for eachi, uniquely deter-
mines aminimum connecting tree(MCT) [20] M as follows. M
has the LCA of allu1, ..., ul as its root, and includes (all and only)
the edges on the path inT from the LCA to everyui. Referring to
(u1, ..., ul) as avector, the GST problem is equivalent to discov-
ering the vector that minimizes the number of edges inM . This
problem is NP-hard [17].

As an example, assumeT to be the data tree in Figure 1, and
w1 = Lakers, w2 = Blake, w3 = guard (l = 3). Givenu1 =
node0100, u2 = node012000, andu3 = node012010, Figure 3
demonstrates the corresponding MCTM . Notice that the root of
M is the LCA ofu1, u2 andu3.

We assume thatw1, ..., wm have been arranged in such a way
that |U(w1)| ≤ ... ≤ |U(wl)|. The following algorithm extracts
an MCT with a small number of edges.

algorithm approxGST(w1, ...,wl)

1. dmin ←∞
2. for each nodeu1 ∈ U(w1) do
3. for i← 2 to l do
4. ui ← NN(u1, wi)

5. d←
∑l

i=2
‖u1, ui‖

6. if d < dmin then
7. remember(u1, ..., ul) as thebest vector
8. dmin = d

9. return the MCTM determined by the best vector

The for-loop in Lines 2-8 enumerates each nodeu1 ∈ U(w1).
Lines 3-4 find the nearestwi-neighbor ofu1 for every other query
keywordwi. The resulting neighbors, together withu1, determine
an MCT. The key of the algorithm is to measure the quality of the
tree as the sum of the distance fromu1 to each retrieved neighbor
(see Line 5). The algorithm eventually returns the best treeaccord-
ing to this quality metric.

We say that an MCTM is ac-approximate GSTif it has at most
c times more edges than the GST. Formally, ifcost(M) represents
the number of edges inM , it holds thatcost(M) ≤ c · cost(M⋆),
whereM⋆ is the (optimal) GST.

LEMMA 6. The output of approxGST is an (l − 1)-
approximate GST.

PROOF. For eachi ∈ [1, l], let u⋆
i be a node inM⋆ associated

with keywordwi (if there are several such nodes,u⋆
i can be any of

them). Defined⋆ =
∑l

i=2
‖u⋆

1 , u
⋆
i ‖. Since every edge ofM⋆ is

included at most once in the path fromu⋆
1 to eachu⋆

i (2 ≤ i ≤ l),
it holds that:

d⋆ ≤ (l − 1) · cost(M⋆). (2)

Let Mapx be the output ofapproxGST. The dmin in the se-
quel refers to the finaldmin of approxGST. Notice that{u⋆

1 ,
NN(u⋆

1 , w2), ...,NN(u⋆
1 , wl)} is a set{u1, ..., ul} that must have

been inspected at Line 5 ofapproxGST. In other words:

dmin ≤
l

∑

i=2

‖u⋆
1 , NN(u⋆

1 , wi)‖ ≤ d⋆. (3)

where the second≤ is because‖u⋆
1, NN(u⋆

1 , wi)‖ ≤ ‖u⋆
1 , u

⋆
i ‖.



Let {û1, ..., ûl} be the set{u1, ..., ul} that determinesMapx at
Line 7 of approxGST. Then,dmin =

∑l
i=2

‖û1, ûi‖. Every
edge ofMapx is used at least once in the union of the paths from
û1 to û2, ..., ûl, respectively. Hence:

cost(Mapx) ≤ dmin. (4)

Combining Inequalities 2-4 givescost(Mapx) ≤ (l − 1) ·
cost(M⋆).

By Theorem 2, the execution time ofapproxGST is bounded
byO(Nminl logNmax), plus the cost of outputting the tree, where
Nmin = |U(w1)| andNmax = |U(wl)|.

Remark 3. Sometimes it is useful to returnk MCTs with small
cost, wherek is a user-specified parameter. In this case, we main-
tain thek best vectors currently found, as opposed to only the top-1.
This can be achieved with minor modification toapproxGST.

5. RELATED WORK
NK search has not been studied previously. In the sequel, we

review the existing work on other topics related to our discussion.
The first topic is the processing ofholistic twig joins, where the

goal is to enumerateall occurrences of a twig pattern. The existing
algorithms can be classified assequentialor indexed. A sequential
algorithm [4, 5, 8, 7, 15, 21, 30, 32, 37] scans synchronously the
nodes, whose types appear in the query pattern, in ascendingor-
der of their ranks. The drawback of these algorithms is that they
must access every such nodeat least once, even though it does not
participate in any occurrence. Motivated by this, anindexed algo-
rithm [4, 21] utilizes a data structure that can be used to efficiently
retrieve a particular ancestor/descendent of a node. Such an abil-
ity allows the algorithm to skip many nodes not involved in any
occurrence and, therefore, to terminate much earlier.

In this paper, we do not attempt to attack general holistic twig
joins. Instead, our focus is to improve the efficiency of those
XPath queries that can be processed with NK search. As far as
these queries are concerned, our method significantly outperforms
all the solutions in the sequential category because (similar to in-
dexed algorithms) it only needs to access a small number of nodes
that may form an occurrence. Regarding the indexed category, the
comparison is more subtle, mainly because the algorithms of[4,
21] are heuristic in nature, and are not accompanied by any non-
trivial complexity analysis. We will experimentally compare our
technique against the state of the art,TSGeneric+ [21], of that cat-
egory. Noteworthily, an advantage of our algorithmxpath (Sec-
tion 4.1) is that, in practice, its cost can be accurately estimated by
a query optimizer. This is not possible for [4, 21], as their behavior
is sensitive to the data distributions.

We note that no existing algorithm has the performance char-
acteristic pinpointed in Remark 2. The only approach that comes
close to having the characteristic is TJFast [30], which is asequen-
tial algorithm that needs to scan the nodes matching only theleaves
of the query pattern. Unfortunately, theextended dewey codesthat
TJFast relies on can be as long as the height of the XML tree. The
time of reading a node is proportional to the length of its extended
dewey code. The length, unfortunately, is linear to the number of
ancestors of the node, which can be asymptotically identical to the
total number of nodes in the tree in the worst case. It is also worth
mentioning that there exist some other methods [9, 24], justlike
ours, that are designed for certain special classes of XPathqueries.

Another related topic is keyword search in XML databases. A
bulk of the existing research [6, 10, 16, 20, 27, 28, 29, 35] explores
various semantics of query results that is suitable for different sce-
narios. In this work, we showed the applicability of NK search to

the GST semantics [12, 20, 23, 25]. This choice does not implyour
preference of GST; in fact, the potential application of theNK oper-
ator to the other semantics is an exciting direction for future work.
As mentioned before, the GST problem on trees is NP-hard, and
remains so even if the goal is changed to finding anO(log2−ǫ n)-
approximate solution for arbitrarily smallǫ > 0 [17], wheren is the
number of nodes in the data tree. The best known approximation
ratio achievable in polynomial time isO(log n log l) [14], wherel
is the number of query keywords (and can be as large asn). The
algorithm of [14], which is based on linear programming, is highly
theoretical and not appropriate for practical implementation.

In the database area, research on GST computation (e.g., [3,12,
19, 20, 22, 25]) is largely motivated by the observation thatthe
value ofl can often be regarded as a constant in reality. In this case,
thel−1 approximation ratio guaranteed by our solution (Lemma 6)
can be (much) lower thanO(log n log l). A small l also consider-
ably shrinks the search space for discovering the GST. This fact
is leveraged in [20] to enumerate all the MCTs (defined in Sec-
tion 4.2), and thereby, eventually come across the GST (which is
also an MCT). While the method of [20] works on trees only, the
approaches reviewed below apply to general graphs1. Algorithms
for computing approximate GSTs (faster than extracting theGST
with [20]) are presented in [3, 22]. Somewhat surprisingly,there is
a dynamic-programming algorithm [12] for finding theexactGST,
in even less time than the approximate methods of [3, 22].

The above approaches do not rely on pre-computation, whereas
the BLINKS system [19] leverages a sophisticated access method
constructed in advance to producel-approximate GSTs efficiently.
The most serious drawback of BLINKS, however, is that it occu-
piesΩ(n4/3) space2, wheren is the number of nodes in the graph.
Forn at the order of millions,Ω(n4/3) amounts to duplicating the
database 100 times, which is too expensive in many environments.
Furthermore, the query algorithm of BLINKS is ad-hoc and hasno
interesting worst-case performance bound. Note that our result in
Lemma 6 in fact dominates the performance of BLINKS, i.e., we
guarantee a slightly better approximation ratio, with alinear space
access method and worst-case efficient query time. It shouldbe
noted, however, that the improvement is made possible by utilizing
properties of a tree (recall that BLINKS deals with general graphs).
The work of [23, 25] considers thesteiner treeproblem, which is a
special case of the GST problem where there can be only a single
node in the data tree associated with each query keyword. Note
that, while the steiner tree problem is NP-hard on graphs, itis not
on trees, as is clear from the way that MCT is built from a vector in
Section 4.2.

Finally, in the special case where only one distinct keywordex-
ists, NK retrieval is similar tonearest neighbor search on spatial
networks. In that problem, the data consist of a graphG and a setS
of points, each located at a node ofG. Given a nodeq of G, a query
returns the point inS that has the smallest shortest-path distance to
q. This problem has been well studied in various settings withdif-
ferent performance goals (see [11, 26, 31, 33] and the references
therein). The existing solutions (i) perform Dijkstra-like expansion
from the query point (e.g., [11]), (ii) pre-compute the answer for
each node ofG (e.g., [31]), or (iii) rely on specialized structures
that leverage properties of spatial data (e.g., [26, 33]). In our con-

1Given a set of keywords, the GST in a graph is the minimum tree
(i) whose nodes and edges come from the underlying graph, and(ii)
that has the minimum number of edges among all trees satisfying
(i). When the graph is a tree, this definition degenerates into the
one in Section 4.2.
2This can be derived from Theorem 3 of [19] by observing that,
∑

b N
2
b +BP ≥ n2/B +B2, which isΩ(n4/3).



text, solutions of (i) degenerate into the BFT approach explained in
Section 3.1, those of (ii) incur prohibitive space when the number
of keywords is large, whereas those of (iii) are simply inapplicable
to XML data.

6. EXPERIMENTS
This section empirically evaluates the performance of the pro-

posed techniques. We used two real XML documents:

• NBA, which contains all the teams and players of the leagues
during 1946-2004.

• DBLP, which includes all the conference papers during
1959-2010 collected by the DBLP website.

Figure 8a (8b) shows the part of theNBA (DBLP) schema that is
relevant to the queries in our experiments. An asterisk indicates that
the corresponding node can have an arbitrary number of siblings of
the same type. For example, anNBA node can have multiple child
nodes of typeleague. Table 1 lists the main statistics about each
dataset.

NBA

league*

year

yearVal
author*year title

titleVal authorValyearVal

booktitle

booktitleVal

DBLP

inproceedings*

division

divisionVal

players

player*

pname

pnameVal

position

positionVal

college

collegeVal

team*

tnameVal

tname

(a) (b)

Figure 8: Schemas ofNBA and DBLP relevant to our queries

NBA DBLP
num. of nodes 135,940 17,501,788

num. of keywords 223,500 48,191,004
num. of distinct keywords 8,302 2,893,195

Table 1: Dataset statistics

We will first explore the characteristics of NK search, and then
assess the usefulness of the NK operator in XPath evaluationand
GST computation, respectively. Our experiments were performed
on a computer that was running Linux, and equipped with an Intel
DUO CPU at 3.0Ghz and 4 GB of memory. All the data were
memory resident.

Performance of NK search.In our indexing scheme, namedTVP,
we followed the convention mentioned in Section 1.1 to associate
nodes with keywords. Specifically, every node had its type asa
keyword. Furthermore, ifu is a value node, each wordw in the
value ofu was taken as another keyword ofu, afterw was prefixed
with the type ofu (see Remark 1 of Section 4.1). The name of a
person/team was always regarded as a single word. For instance, if
u has typepnameVal and a valueKobe Bryant, then it carries
a (prefixed) keywordpnameVal:Kobe-Bryant. Table 2 shows
the space consumption ofTVPand the raw dataset, while Table 3
gives the construction time ofTVP.

The next experiment compares the query efficiency ofTVPand
the BFT algorithm described in Section 3.1. For this purpose, we
report their performance on the (realistic) queries in Figure 9, each
of which can be handled by a single NK operator. Queries denoted
with a first letterN (D) were designed forNBA(DBLP). For each

NBA DBLP
TVP 3.8 759

raw dataset 2.4 427

Table 2: Space (mega bytes)

NBA DBLP
< 1 second < 2.5 minutes

Table 3: Construction cost of
TVP

NQ1: Find the team of Shaquille O’Neal in 2000.
q = the pnameVal node with value Shaquille-O’Neal in the
league 2000;w = tnameVal

NQ2: Were Shaquiile O’Neal and Kobe Briant in the same team in year
2000?
q = same asNQ1; w = pnameVal:Kobe-Bryant; distance (of
a positive answer) = 6

NQ3: Same asNQ2 but in 2002.
q = same asNQ1 but in 2002;w and distance as inNQ2

DQ1: Find the conference name of “Holistic Twig Joins: Optimal XML
Pattern Matching”.
q = the ptitleVal node of the paper;w = booktitleVal

DQ2: Is Nicolas Bruno an author of the paper inDQ1?
q = same asDQ1; w = authorVal:Nicolas-Bruno;
distance = 4

DQ3: Same asDQ2 but with respect to Jim Gray.
q and distance same asDQ2; w = authorVal:Jim-Gray

Figure 9: Query set for examining NK efficiency

query, Figure 9 clarifies the nodeq and keywordw of the corre-
sponding NK operator. For a boolean query, the figure also points
out the distance (toq) that the nearestw-neighbor should have in
order to return a positive answer. For instance, the answer forNQ2
is “yes” if and only if the retrieved neighbor has distance 6 to q.
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Figure 10: Cost of NK search

Figure 10 illustrates the cost ofTVP and BFT for each query.
Note that the vertical axis is in logarithmic scale, and has the unit of
µ-second (=10−6 second).BFT is especially slow for the boolean
queriesNQ3 andDQ3 with answers “no”. This is expected be-
cause, for these queries, the retrieved neighbor has a largedistance
to the query node.

XPath evaluation. We proceed to assess the efficiency of the NK
operator in answering XPath queries. Our technique integrated
the proposed access methodTVP with the xpath algorithm de-
veloped in Section 4.1. As discussed in Section 5, the existing
algorithms for holistic twig joins can be classified into thesequen-
tial and indexedcategories, with the solutions in the latter cate-
gory significantly faster than those of the former. Therefore, we
chose to compareTVP against the state-of-the-art indexed algo-
rithm TSGeneric+ [21].

Figures 11a and 11b explain the meaning and twig patterns of
the queries examined, respectively. The box in each patternsig-
nifies the anchor node chosen byxpath. Observe thatNQ7 and
DQ7 violatethe anchor condition (i.e., Condition 2) in Section 4.2.
Nevertheless, they are still reducible to NK search and, in fact, can
be answered directly by thexpath algorithmwith no modification.

For fairness, our implementation ofTSGeneric+ utilizes an in-
verted index to filter all the nodes that do not satisfy the keyword
conditions. For example, forNQ4, only thecollegeVal nodes



NQ4: Find the names of all players from Duke University.

NQ5: Find the names of all centers from the west division.

NQ6: Find the names of all players that came from Boston College
but were in a team of the west division in year 1999.

NQ7: Find the teams where Hakeem Olajuwon and Charles Barkley
were teammates.

DQ4: Find the titles of all papers by Jim Gray.

DQ5: Find the titles of the SIGMOD papers by Nick Koudas.

DQ6: Find the conferences of the papers by Divesh Srivastava that
contained “XML” in the titles.

DQ7: Find the titles of the SIGMOD papers co-authored by Hector
Garcia-Molina and Jennifer Widom.

(a) Query description

NQ7

NQ4 NQ5

NQ6

DQ7

DQ4 DQ5

DQ6

team

player division

pname pos

pnameVal center

west

SIGMOD

booktitle authortitle

titleVal

inproceedings

author

Jennifer
Widom

Hector
Garcia-
Molina

XML

booktitle authortitle

booktitleVal

inproceedings

Divesh
Srivastava

inproceedings

title

titleVal

author

Jim Gray SIGMOD

booktitle authortitle

titleVal

inproceedings

Nick Koudas

team

tname

tnameVal

player player

Charles
Barkley

Hakeem
Olajuwon

player

pname college

pnameVal Duke

league

team year

player division

pname college

Boston

1999

west

pnameVal

(b) Twig patterns

Figure 11: Query set for examining XPath efficiency
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Figure 12: Cost of XPath queries

whose values are equal toDuke are considered, as opposed to all
thecollegeVal nodes (as proposed in [21]). This optimization
reduces the average overhead of the originalTSGeneric+ by at least
an order of magnitude. Figure 12 demonstrates the executiontime
of TVPandTSGeneric+ for all queries.TVP lost narrowly in two
out of the eight queries, but was at least twice faster in fourqueries.

GST computation. The final set of experiments investigate
the efficiency and effectiveness of the NK operator in keyword
search. Our approach combined theTVPindexing scheme with the
approxGST algorithm in Section 4.2. We compared the approach
against the dynamic programming algorithm of [12] (as reviewed
in Section 5), hereafter denoted byDP. Recall thatDP returns the
exactGST. We evaluated the two methods only withNBA, as the
excessive memory requirements ofDP rendered it infeasible to run
experiments withDBLP on our hardware. As the XML schema is
irrelevant to keyword search, theTVP built here does not require
the keyword prefixing explained earlier. In other words, each el-
ement node (as before) is associated with its type, whereas each

NQ8: {Shaquille-O’Neal,Anfernee-Hardaway}

NQ9: {Shaquille-O’Neal,Anfernee-Hardaway,
Orlando-Magic}

NQ10: {Shaquille-O’Neal, Anfernee-Hardaway,
Orlando-Magic, 2000}

Figure 13: Query set for keyword search evaluation
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Figure 14: Quality and efficiency of GST computation

value node is simply associated with the words in its value. Fig-
ure 13 illustrates the queries executed.

Figure 14a depicts, for each query, the number of edges in the
trees output byTVPandDP, respectively. It also indicates the ap-
proximation ratio ofTVP. Notice thatTVP returns the exact GST
for NQ8 andNQ9, whereas its result forNQ10 has one more
edge than the optimal solution. This shows that, in practice, the
actual approximation ratio ofTVP is much better than predicted
by theory (Lemma 6). Figure 14b plots the CPU time of the two
methods.TVPoutperformsDP by two to five orders of magnitude.
Moreover, unlikeDP whose cost surges with the number of query
words, the overhead ofTVPis only slightly affected.

To better capture the usefulness ofTVP in keyword search,
Figure 15 presents the trees returned byTVP in the previ-
ous experiment. The result ofNQ8 essentially states that
Shaquille-O’Neal and Anfernee-Hardaway played for
the same team at least once in their career. The tree ofNQ9 implies
that the above players were once teammates inOrlando-Magic.
Finally, the NQ10 result indicates thatShaquille-O’Neal
andAnfernee-Hardawaybelonged to different teams in2000,
neither of which wasOrlando-Magic.

We conclude our experiments by comparingTVP and DP in
searching for the top-k GSTs ofNQ9 with k > 1. TVPnow mod-
ifies approxGST as discussed in Remark 3. Note thatboth TVP
andDP are approximate, namely,DP guarantees returning the top-
1 GST, but such optimality is not ensured fork > 1. Figure 16a
plots the result quality (in the number of tree edges) as a function
of k. The two algorithms output trees with identical sizes when

player

pname

Shaquille-O′Neal

pname

player

Anfernee-Hardaway

players players

team team team

tname

Orlando-Magic

year

league

2000

players
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pname pname

player

Shaquille-O′Neal Anfernee-Hardaway
players

player

pname pname
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NQ8 NQ9
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Figure 15: MCTs returned by TVP for the queries of Figure 13
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Figure 16: Quality and efficiency of top-k GST computation

k ∈ [1, 3], whereasDP offers slightly smaller trees fork ∈ [4, 5].
Figure 16b gives their CPU cost. The overhead for both methods
gradually elevates withk. TVPconstantly outperformsDP by more
than four orders of magnitude.

7. CONCLUSIONS
This paper proposed the problem of NK search on XML docu-

ments. Given a nodeq and a keywordw, an NK query returns the
node in the XML tree that has the shortest distance toq, among
all nodes associated withw. We solved the problem with a novel
technique called tree Voronoi partition that gives rise to an indexing
scheme with rigorous worst-case performance guarantees. Specif-
ically, our scheme consumes linear space, and answers everyNK
query in time logarithmic to how many nodes carry the query key-
word. We also demonstrated, both theoretically and experimen-
tally, the usefulness of the NK operator in supporting several im-
portant tasks in XML databases. In particular, our technique results
in (i) a new methodology for solving a wide class of XPath queries
that is both asymptotically and practically efficient, and (ii) a fast
algorithm for finding an approximate GST with bounded quality.
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