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ABSTRACT

Given two vertices s, t in a graph, let P be the shortest path (SP)
from s to t, and P ⋆ a subset of the vertices in P . P ⋆ is a k-skip

shortest path from s to t, if it includes at least a vertex out of every
k consecutive vertices in P . In general, P ⋆ succinctly describes
P by sampling the vertices in P with a rate of at least 1/k. This
makes P ⋆ a natural substitute in scenarios where reporting every
single vertex of P is unnecessary or even undesired.

This paper studies k-skip SP computation in the context of spa-

tial network databases (SNDB). Our technique has two properties
crucial for real-time query processing in SNDB. First, our solution
is able to answer k-skip queries significantly faster than finding
the original SPs in their entirety. Second, the previous objective
is achieved with a structure that occupies less space than storing
the underlying road network. The proposed algorithms are the out-
come of a careful theoretical analysis that reveals valuable insight
into the characteristics of the k-skip SP problem. Their efficiency
has been confirmed by extensive experiments with real data.

Categories and Subject Descriptors

H3.3 [Information search and retrieval]: Search process

General Terms

Algorithms
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1. INTRODUCTION
Finding shortest paths (SP) in a graph is a classic problem in

computer science. Formally, let G = (V,E) be a graph where
V is a set of vertices and E a set of edges. Each edge carries a
non-negative weight. Define the length of a path P , represented as
‖P‖, to be the total weight of the edges in P . Given two vertices
s, t ∈ V , a SP query returns the path from s to t with the minimum
length.
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The SP problem has received considerable attention from the re-
search community in the past few years (see the recent work [4,
24, 27] and the references therein), due to its profound importance
in Spatial Network Databases (SNDB). An SNDB manages geo-
metric entities positioned in an underlying road network, and sup-
ports efficient data retrieval with predicates on network distances,
and optionally also on spatial properties (a representative system is
Google Maps). A standard modeling of a road network is a graph
where each vertex corresponds to a junction and each edge repre-
sents a road segment. An edge’s weight is often set to the length of
the corresponding road segment or the average time for a vehicle to
pass through the segment.

Traditionally, a SP query retrieves every vertex on the short-
est path P , which is sometimes unnecessarily detailed in practice.
Consider, for example, that a person leaves home for a retreat desti-
nation. Typically, the SP would first wind through her/his neighbor-
hood R1, continue onto a set of highways R2, and eventually enter
the neighborhood R3 of the destination. The region, in which fine-
detailed directions are imperative, is R3. In R1 and R2, it is often
sufficient to guide the user at a coarse level, in a manner similar
to putting sign-posts along the way, for example, by naming some
streets to be passed, and the highways to be taken in succession.

In fact, even the computation of turn-by-turn driving directions
does not always demand all the vertices on P . This is because P
may contain vertices at which no turning is needed. To illustrate,
assume that P stays on the Main Street in an urban area for one
kilometer, during which the street intersects another street every
100 meters. Each of those 10 intersections is a vertex in P , but
only the first and last of them are enough to generate the instruc-
tions for turning into and away from the Main Street, respectively.
The situation is similar if P involves a long highway, in which the
vertices between the points where P enters and leaves the highway
respectively can be ignored.

In this paper, we are interested in computing a subset, say P ⋆, of
the vertices in P . Instead of an arbitrary subset, however, we de-
mand that P ∗ be k-skip shortest path, namely, it should contain at

least one vertex out of every k consecutive vertices in P . Figure 1
shows an example with k = 4, where P consists of all the (black
and white) vertices while P ⋆ only the black ones. Note that there
can be more than one black vertex in every 4 consecutive vertices
in P , but it is impossible to have none.

P ⋆ succinctly describes P by sampling its vertices with a rate of
at least 1/k. Such a sample set can replace P in answering queries
like: what are the highways (alternatively, neighborhoods or cities)
that P needs to go through? P ⋆ is equally useful in discovering
the gas stations (similarly, attractions or hotels) along P , because
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Figure 1: The black vertices constitute a 4-skip shortest path

it is often sufficient to find the stations close to the vertices in P ⋆,
as opposed to all the vertices of P . This is the idea of [18] in
approaching the continuous nearest neighbor problem. Moreover,
P ⋆ is also adequate for estimating various statistics about P , as in
the query: find the percentage of dessert coverage in the route from
Los Angeles to Las Vegas. Finally, P ⋆ is exactly what is needed to
plot the original P in a digital map with a decreased resolution. For
example, at Google Maps, only a subset of the vertices on a path
need to be displayed according to the current zooming level.

For traditional mapping purposes, P ⋆ has two notable advan-
tages over P . First, it is (much) smaller in size, and hence, requires
less bandwidth to transmit. This is a precious feature in mobile
computing that will especially be appreciated by users charged by
the amount of Internet usage. Second, using a clever algorithm, P ⋆

can be faster to compute because, intuitively, fewer vertices need to
be retrieved than P . Such an efficiency gain provides valuable op-
portunities for in-car navigation devices and routing websites such
as Google Maps to support a great variety of on-route services in
shorter time.

The concept of k-skip SP comes with a zoom-in operation. Given
consecutive vertices u, v on P ⋆, the operation finds the missing
vertices on P from u to v. As there are at most k − 1 missing ver-
tices, for small k a zoom-in incurs negligible time, because it only
needs to compute a very short path. This adds a nice pay-as-you-go

feature in applying k-skip SP. First, a driver can request the least
zoom-in’s to complete the part of the route outside her/his knowl-
edge. This allows her/him to pay for the most useful information
only. Second, an algorithm preparing turn-by-turn directions can
zoom-in only when necessary (i.e., a turning may exist between two
adjacent vertices P ⋆), thus saving the cost of locating the skipped
vertices.

Contributions. Somewhat surprisingly, the notion of k-skip SP, or
in general the idea of sampling (the vertices in) a SP, has not been
mentioned previously to the best of our knowledge, let alone any
algorithm dealing with the problem of k-skip SP computation. We
fill the gap with a systematic study of this problem. In particular,
our objectives are twofold:

1. Resolve a k-skip query significantly faster than calculating
the original SP in entirety.

2. Achieve the previous purpose with a data structure that oc-
cupies less space than storing the input graph G = (V,E)
itself. This permits the structure to reside in memory even
for the largest road network, as is crucial for real-time query
processing in SNDB.

The first contribution of this paper is to formally establish the
fact that, only a small subset V ⋆ of the vertices in G need to be
considered to attack the k-skip problem. In other words, the other
vertices in V \V ⋆ are never needed to form any k-skip SP. Referring
to V ⋆ as a k-skip cover, we show that there always exists a V ⋆ with
size roughly proportional to |V |/k. This theoretical finding is of
independent interest because it is not limited to road networks, but
actually holds for general graphs.

Our second contribution is a full set of algorithms required to
process k-skip SP queries within a stringent time limit. Specifi-
cally, these algorithms settle three sub-problems: (i) find a small
V ⋆ in time linear to the complexity of G, (ii) construct from V ⋆

a space-economical structure, and (iii) answer a k-skip query by
accessing only a small portion of the structure. We thoroughly
evaluated these algorithms with extensive experiments on real data,
including the massive road network of the US which has about 24
million vertices and 58 million edges. Our results prove that the
proposed technique very well satisfy both requirements mentioned
earlier in all settings.

Roadmap. The next section reviews the literature of SP computa-
tion. Section 3 formally defines the target problem, and gives an
overview of our solutions. Section 4 elaborates the theoretical re-
sults on k-skip covers, and the algorithms for constructing the pro-
posed structure. Section 5 clarifies how to answer a k-skip query
and perform a zoom-in efficiently. Section 6 contains the experi-
mental results, while Section 7 concludes the paper with directions
for future work.

2. RELATED WORK
There is an extremely rich literature on the SP problem. In Sec-

tion 2.1, we clarify the details of the reach algorithm, which is the
state of the art for SP computation in road networks. Section 2.2
surveys the other recent progress in the database and theory com-
munities.

2.1 Dijkstra and reach
To facilitate discussion, given two vertices u, v in the input graph

G = (V,E), we denote by SP (u, v) the SP from u to v. The
length of SP (u, v), i.e., ‖SP (u, v)‖, is called the distance be-
tween u and v. If (u, v) is an edge in G, we represent its weight
as ℓ(u, v). In case G is directed, (u, v) is an edge from u to v,
and (v, u) means the opposite. To avoid unnecessary distraction,
our examples use undirected graphs, but all the notations in our
description are carefully written so that they are also correct for
directed graphs.

Dijkstra. Let us first review the Dijkstra’s algorithm [5], which is
the foundation of the reach method described shortly. Dijkstra finds
SP (s, t) by exploring the vertices in ascending order of their dis-
tances to the source s. At any time, each vertex u ∈ V has a status
chosen from {unseen, labeled, scanned}. Furthermore, u is
associated with a label l(u) equal to the distance of the SP from
s to u found so far (i.e., an even shorter path may be discovered
later). On this path, the vertex immediately preceding u is kept in
pred(u), referred to as the predecessor of u.

At the beginning of Dijkstra, all vertices u ∈ V have status
unseen, l(u) = ∞ and pred(u) = ∅. The only exception is s,
whose status is labeled, with l(s) = 0 and pred(u) = ∅. At all
times, the vertices of status labeled are managed by a min-heap
Q, using their labels as the sorting key. In each iteration, the algo-
rithm (i) de-heaps the vertex u ∈ Q with the minimum l(u), (ii)
relaxes all edges (u, v) such that the status of v is not scanned,
and (iii) changes the status of u to scanned. Specifically, relax-
ation of (u, v) involves the following steps:

relax (u, v)
1. if the status of v is unseen then

2. l(v)← l(u) + ℓ(u, v)
3. the status of v← labeled

4. else if l(v) > l(u) + ℓ(u, v) then
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5. l(v)← l(u) + ℓ(u, v)
6. pred(v)← u

The present l(u) is guaranteed to be ‖SP (s, u)‖. The algorithm
terminates as soon as t, the destination, is selected by an iteration.

To illustrate, assume that we want to compute SP (s, t) in Fig-
ure 2a. In the first iteration, Dijkstra scans s and relaxes (s, a),
after which Q = {a} and l(a) = 1. The next iteration de-heaps a
and relaxes (a, b), (a, c). Note that (a, s) is not relaxed because the
status of s has become scanned. Now Q contains b, c with labels
5, 6, respectively. The algorithm then scans b and relaxes (b, d),
which labels d with 10. This is followed by de-heaping c, and
relaxing (c, d), (c, e). Note that the relaxation of (c, d) decreases
l(d) to 9. The rest of the algorithm proceeds in the same manner.
By tracing the execution, one can verify that, at termination, all the
vertices except t have already been scanned.

Dijkstra can be implemented in O(m+n log n) time [3], where
n,m are the number of vertices and edges, respectively (i.e., n =
|V |,m = |E|). In a road network, each vertex has an O(1) degree,
so the time complexity is essentially O(n log n).

Bi-directional. Dijkstra starts a graph traversal from s and gradu-
ally approaches t; call this a forward search. Immediately by sym-
metry, the SP problem can also be solved by a backward search
from t to s (if G is directed, the backward search implicitly re-
verses the direction of each edge). The bi-directional algorithm
[10, 20] achieves better efficiency by performing both searches syn-
chronously, the effect of which is essentially to explore the vertices
u ∈ V in ascending order of rs,t(u), where

rs,t(u) = min{‖SP (s, u)‖, ‖SP (u, t)‖}. (1)

In fact, if u is closer to s (than to t), then it will first be touched in
the forward search; otherwise, the backward search will find it first.
The forward/backward search proceeds as in the standard Dijkstra’s
algorithm (as if the other search did not exist). Let Qf (Qb) be
the heap of the forward (backward) direction. Synchronization is
carried out by advancing in each iteration the direction that has a
smaller label at the top of the heap.

Bi-directional monitors the distance λ of the shortest s-to-t path
found so far. λ is set to∞ initially, and may be updated when the
forward search (the backward case is symmetric) de-heaps a vertex
u whose status in the backward direction is labeled1. Specif-
ically, at this time, the algorithm computes λ′ = lf (u) + lb(u),

1This status cannot be scanned; otherwise, the algorithm would
have terminated right after u was de-heaped by the forward search,
as will be clear shortly.
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Figure 3: Comparison of Dijkstra, bi-directional, and reach

where lf (u) and lb(u) are the labels of u in the forward and back-
ward search, respectively. λ is reduced to λ′ if λ > λ′, since
it implies the existence of a shorter s-to-t path that concatenates
SP (s, u), (u, v), and SP (v, t), where v is the current predecessor
of u in the backward search. The algorithm terminates when either
direction de-heaps a vertex already scanned in the other direction.

Let us demonstrate bi-directional on the graph in Figure 2a.
After three iterations of each direction, which are the same as
in Dijkstra, the forward (backward) search has scanned s, a, b
(t, g, f ), such that Qf (Qb) contains vertices c, d (e, d) with la-
bels 6, 10, respectively. Currently, λ = ∞. Next, the forward
search de-heaps c ∈ Qf and relaxes edges (c, d), (c, e), after
which lf (e) = 7, lf (d) = 9. Similarly, the backward search then
de-heaps e ∈ Qb. As the status of e in the forward direction is
labeled, the algorithm updates λ to lf (e)+ lb(e) = 7+6 = 13,
before it relaxes (e, c), (e, d). The forward search continues by
de-heaping e ∈ Qf , which, however, has been scanned in the
backward search. The algorithm therefore terminates, without de-
heaping d in either direction.

Reach. Intuitively, if λ is the length of SP (s, t), Dijkstra searches
a ball that centers at s, and has radius λ, shown as the dashed circle
in Figure 3. Bi-directional, on the other hand, explores two balls
with radius λ/2 that center at s, t respectively (the two solid circles
in Figure 3). The reach algorithm, which is the current state of
the art, dramatically shrinks the search area to a small dumb-bell
shape, as illustrated by the shaded region in Figure 3.

Let us start the explanation with the notion of local reach. Let u
be a vertex on SP (s, t). The local reach of u in SP (s, t) equals
rs,t(u) as calculated in Equation 1. Note that this notion relies on
a particular SP. Any vertex v /∈ SP (s, t) has no local reach defined
in SP (s, t). Now we extend the definition to global reach:

DEFINITION 1 (GLOBAL REACH [12]). The global reach,

denoted as r(u), of a vertex u is the maximum local reach of u
in all the shortest paths that pass u. Formally:

r(u) = max
s,t|u∈SP (s,t)

rs,t(u). (2)

The reach r(u) can be understood intuitively as follows. If u is
on SP (s, t), then either s or t must have distance at most r(u) to
u. In other words, in case neither s nor t is within distance r(u)
from u, u can be safely pruned in computing SP (s, t).

Consider, for instance, vertex c in Figure 2a. To decide its global
reach r(c), first collect the set S of all the SPs that pass c, namely,
S = {SP (s, t), SP (s, g), ..., SP (a, e), ...}. We then calculate
the local reach of c in each SP of S. For example, its local reach
in SP (a, e) is min{‖SP (a, c)‖, ‖SP (c, e)‖} = 1. The final r(c)



equals the maximum of all the local reaches, which can be verified
to be 6 (as is its local reach in SP (s, t)). Figure 2b shows the
global reaches of all the vertices.

In computing SP (s, t), the reach algorithm [10, 12] proceeds
in the same way as bi-directional, but may prune a vertex in re-
laxing an edge (u, v). Without loss of generality, suppose that the
relaxation takes place in the forward search (the backward case is
symmetric). This implies that the forward search just scanned u,
but has never scanned v (otherwise the edge would not have been
relaxed). The pruning of reach takes place as follows:

RULE 1. Vertex v is pruned if both of the following hold:

1. v has status labeled or unseen in the backward direction

2. r(v) < lf (u)

where lf (u) is the label of u in the forward search.

In general, reach can be understood as the execution of bi-

directional on the vertices that survive pruning. In Figure 2, for
example, reach finds SP (s, t) by scanning only s, a, c, e, g, t. As
in bi-directional, reach first scans s (t) in the forward (backward)
direction, after which Qf (Qb) includes a (g) with label 1. Next,
the forward search de-heaps a from Qf , and relaxes (a, b), (a, c).
The relaxation of (a, b) prunes b by Rule 1 because r(b) = 0 <
lf (a) = 1. The backward search then eliminates f in a similar
fashion. The rest of the algorithm proceeds as in bi-directional.
Vertex d does not need to be scanned for the reason explained ear-
lier for bi-directional.

The space consumption of reach is very economical because, ex-
cept G itself, only one extra value needs to be stored for each ver-
tex. However, it can be expensive to calculate the exact reach of
every vertex. Fortunately, there are fast algorithms [10, 12] to ob-
tain approximate reaches that are guaranteed to upper bound their
original values. Pruning remains the same except that r(u) should
be replaced by its upper bound. The outstanding efficiency of this
algorithm on road networks has been theoretically justified [1].

2.2 More results on SP computation
The A⋆ algorithm [13] is a classic SP solution that captures Dijk-

stra as a special case. The effectiveness of A⋆ relies on a method to
calculate, typically in constant time, a lower bound of ‖SP (u, v)‖
for any two vertices u, v. Apparently, 0 can be a trivial lower
bound, but in that case A⋆ degenerates into Dijkstra. In general,
the tighter the lower bounds are, the faster A⋆ is than Dijkstra.

Motivated by this, Agrawal and Jagadish [2] proposed to pre-
compute the distances between each vertex and a special set of ver-
tices called landmarks. In answering a SP query, those distances
are deployed to derive lower bounds based on triangle inequality.
This idea is also the basis of the ALT algorithm developed by Gold-
berg and Harrelson [9], which has lower query time (than [2]) at
the tradeoff of consuming more space. The experiments of [10]
indicate that ALT is slower than the reach method described in Sec-
tion 2.1. Note, however, that ALT and reach are compatible, in the
sense that their heuristics can be applied at the same time to maxi-
mize efficiency [10].

Sanders and Schultes [8, 25, 26] presented a highway hierar-

chy (HH) technique, whose rationale is to identify some edges that
mimic the role of highways in reality. In computing a SP, the algo-
rithm of HH modifies Dijkstra so that the search can skip as many
non-highway edges as possible, and thus, terminate earlier. Based

on the empirical evaluation of [10, 25], HH has comparable perfor-
mance with respect to reach.

The separator technique is another popular approach [15, 16,
17] to preprocess a graph G for efficient SP retrieval. The idea is to
divide the vertices of G into several components, and for each com-
ponent, extract a set of boundary vertices such that the SP between
two vertices in different components must go through a boundary
vertex. Query efficiency benefits from the fact that, most computa-
tion of a SP can be restricted only to the boundary vertices. Accord-
ing to [25], however, separator-based methods are not as efficient as
HH on road networks. Another disadvantage is that these methods
often have expensive space consumption. For example, the space
of [15] is at the order of n1.5 (where n is the number of vertices),
which is prohibitive for massive graphs.

In [28], Wagner et al. described a geometric container technique,
which associates each edge (u, v) in G with a geometric region.
The region covers all the vertices t such that the SP from u to t
goes through v. In running Dijkstra, such regions can be used to
prune many vertices that do not appear in the SP. Lauther [19] in-
tegrated a similar idea with the bi-directional algorithm discussed
in Section 2.1. Samet et al. [24] proposed to break the geometric
regions into smaller disjoint pieces that can be indexed by a quad-
tree. Their solution lowers the cost of SP calculation (compared to
[19, 28]), but entails O(n1.5) space. A common shortcoming of
[19, 24, 28] is that their preprocessing essentially determines the
SPs between all pairs of vertices. The all-SP problem is notori-
ously difficult. Even on planar graphs, the fastest solution requires
O(n2) time [7], which is practically intractable for large n.

Recently, Sankaranarayanan et al. [27] proposed a path oracle

that is constructed from well-separated pair decomposition, and
can be used to accelerate SP retrieval. Such an oracle consumes
O(s2n) space in 2-d space, where s is shown to be around 12 for
practical data. Xiao et al. [30] showed that SP queries can be accel-
erated by exploiting symmetry in the data graph. Their approach,
however, is limited to the case where all edges have a unit weight.
Wei [29] developed an alternative solution by resorting to tree de-

composition [23]. Rice and Tsotras [22] studied the shortest path
problem with label restrictions. Some other work considers how to
estimate shortest path distances, e.g., [11, 21].

We emphasize that all the works aforementioned calculate tradi-
tional, complete, SPs. The concept of k-skip SP has not appeared
previously, and is formalized in the next section for the first time in
the literature.

3. K-SKIP SHORTEST PATHS
For simplicity, we assume that the data graph G = (V,E) is

undirected, and will discuss directed graphs only when the exten-
sion is not straightforward. The following definition formalizes k-
skip SP:

DEFINITION 2 (k-SKIP SHORTEST PATH). Let SP (s, t) be

the shortest path from source s to destination t. Label the ver-

tices in SP (s, t) in the order they appear: v1, v2, ..., vl (i.e.,

v1 = s, vl = t), where l is the total number of vertices in the

path. If l ≥ k, let P ⋆ be an ordered subset of {v1, ..., vl}, where

the ordering respects that in SP (s, t). P ⋆ is a k-skip shortest path

from s to t if

P ⋆ ∩ {vi, ..., vi+k−1} 6= ∅ (3)

for every 1 ≤ i ≤ l − k + 1.
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Figure 4: Preprocessing for 3-skip SP computation

Even for fixed s and t, there can be multiple P ⋆ satisfying the
above condition. In other words, k-skip SPs are not unique, al-
though all of them have to be subsets of SP (s, t). Our objective is
to preprocess G into a space-economical structure such that, given
any s, t at run time, we can find a k-skip SP between any s and t
efficiently.

The first step of our preprocessing is to eliminate the redundant
vertices in G. The intuition is that, since most vertices in a SP need
not be reported under the k-skip definition, certain vertices would
end up being never returned. For example, consider the graph G
in Figure 4a where all edges have a unit weight. Observe that,
for k = 3, any SP with 3 vertices must contain at least one black
vertex. In other words, it suffices to form k-skip SPs using just the
black vertices, whereas the other (white) vertices can be discarded.

We refer to the set of black vertices in the above example as
a 3-skip cover. The next definition generalizes the notion to k-

skip cover, which contains a subset of the vertices that need to be
considered for k-skip SPs.

DEFINITION 3 (k-SKIP COVER). Let V ⋆ be a subset of the

vertices in G. V ⋆ is a k-skip cover if it has the property that, for

arbitrary s, t ∈ V such that SP (s, t) has at least k vertices,

V ⋆ ∩ SP (s, t)

is a k-skip SP from s to t, after ordering the vertices of V ⋆ ∩
SP (s, t) appropriately.

As will be clear in Section 5, the efficiency of our k-skip SP
algorithm crucially depends on the fact that, it does not need to
process the vertices of V \ V ⋆. Hence, the minimization of |V ⋆|
is essential, but it turns out to be rather challenging on an arbitrar-
ily complex G. In fact, it is non-trivial even if one simply wants
to know whether a small V ⋆ always exists. These issues will be
resolved in the next section.

We want to capture the adjacency of the vertices in V ⋆ as far
as k-skip SPs are concerned. For example, the black vertex a in
Figure 4a can be consecutive only to e and f in a 3-skip SP (ob-
serve that e and f have blocked all the possible ways that can lead
a to any other black vertex). We represent this by generating two
“super-edges” that link a to e, f respectively. After this, the orig-
inal edges (of G) incident on a can be ignored in computing any
k-skip SP beginning from a.

Let us formalize the rationales behind the preceding paragraph
in the next two definitions.

DEFINITION 4 (k-SKIP NEIGHBOR). Let u, v be two vertices

in a k-skip cover V ⋆. We say that v is a k-skip neighbor of u if

SP (u, v) (namely, the shortest path from u to v in G) does not pass

any other vertex in V ⋆.

It is easy to see that the SP from u to any of its k-skip neighbor v
can have at most k edges. In an undirected G, the relation implied
by the above definition is symmetric, i.e., u is a k-skip neighbor of
v if and only if v is a k-skip neighbor of u. This is not necessarily
true for directed graphs. In any case, let Nk(u) be the set of all
k-skip neighbors of u. For instance, in Figure 4a, N3(a) = {e, f}.

DEFINITION 5 (k-SKIP GRAPH). A k-skip graph of G is a

graph G⋆ = (V ⋆, E⋆), where

• V ⋆ is a k-skip cover of G;

• for every vertex u ∈ V ⋆, E⋆ has an edge (u, v) for each

k-skip neighbor v of u, namely, v ∈ Nk(u).

The weight of (u, v) ∈ E⋆ is ‖SP (u, v)‖.

We call each edge (u, v) ∈ E⋆ a super-edge. Figure 4b demon-
strates the 3-skip graph G⋆ of the graph G in Figure 4a. The weight
of (a, e) in G⋆ equals 3, which is the distance of a and e in G.

As shown later, finding a k-skip SP on the original graph G can
be reduced to computing a (traditional) SP on a k-skip graph G⋆.
In the next section, we will delve into the properties of G⋆, and
give a method to construct it efficiently. Then, the reduction and
the accompanied algorithms will be elaborated in Section 5.

4. K-SKIP GRAPH
The effectiveness of our pre-computed structure, namely a k-

skip graph G⋆ = (V ⋆, E⋆), relies on the size of the k-skip cover
V ⋆. No performance gain would be possible if a small V ⋆ could
not be guaranteed. Fortunately, we will show that such a good V ⋆

always exists (Section 4.1). Sections 4.2 and 4.3 then elaborate the
algorithms for building G⋆.

4.1 Size of k-skip cover
This subsection will establish:

THEOREM 1. Let G = (V,E) be a graph with n = |V | ver-

tices. For any 1 ≤ k ≤ n, G has a k-skip cover V ⋆ of size

O(n
k
log n

k
).

Our proof leverages the theory of Vapnik-Chervonenkis (VC) di-

mension, which quantifies how decomposable a search problem is.
Specifically, letD be a dataset andQ be a set of queries that can be
issued onD. Given a query q ∈ Q, define q(D) to be the result of q
on D. A shatterable set S ⊆ D is such that, for any S′ ⊆ S, there
is always a query q ∈ Q with q(D) ∩ S = S′. In other words, any
subset S′ ⊆ S needs to have the property that, a query q ∈ Q re-
trieves all the items of S′, and nothing from S \ S′ (the result of q,
however, may also include items from D \ S). The VC dimension
of (D,Q) is the size of the largest shatterable subset of D. Note
that the VC dimension is not defined on a dataset, but instead, on a
pair of a dataset and a query set.

Now let us analyze the VC dimension of the SP problem. Here,
we have an input graph G = (V,E). The D mentioned earlier
corresponds to V . A SP query qs,t is uniquely defined by a source
vertex s and a destination vertex t. Hence, the result qs,t(V ) of
qs,t is SP (s, t). Let Q be the union of all the possible SP queries,
namely, Q =

⋃
s,t∈V

qs,t (thus, |Q| = n2). Next, we give a crucial
lemma:



LEMMA 1. For any graph G, the VC dimension of (V,Q) is 2.

PROOF. Assume for contradiction that the VC dimension d of
(V,Q) is at least 3 (note that d must be an integer). Hence, there is
a shatterable set S with size d, which belongs to the SP returned by
a query q ∈ Q. Let u1, u2, ..., ud be the vertices of S ordered by
their appearance on the SP. Hence, u2 is on the SP from u1 to ud.
In this case, however, S′ = {u1, ud} cannot be in any SP that does
not contain u2, contradicting the fact that S is shatterable.

It remains to verify that the VC dimension can be 2. We omit the
details as this is trivial.

The rest of the proof (for Theorem 1) concerns ǫ-net. Let D,Q
be as defined earlier in our introduction to VC dimension. A set
S ⊆ D is an ǫ-net of (D,Q) if S ∩ q(D) 6= ∅ for any q satisfying
|q(D)| ≥ ǫ|D|. In other words, if q retrieves no less than ǫ|D|
items, at least one of these items must appear in S. The lemma
below draws the correspondence between ǫ-net and k-skip cover:

LEMMA 2. A ( k
n
)-net V ⋆ of (V,Q) is a k-skip cover of G.

PROOF. Let Q′ be the set of queries q ∈ Q such that the SP
q(V ) returned by q has exactly k vertices. By the definition of
(k/n)-net, for each q′ ∈ Q′, V ⋆ ∩ q′(V ) 6= ∅. Now consider a
query q ∈ Q \ Q′ whose result q(V ) has more than k vertices.
Clearly, any sub-path of q(V ) including k vertices is the result
q′(v) of some q′ ∈ Q′, from which V ⋆ contains at least a vertex.
Therefore, V ⋆ is a k-skip cover.

The ǫ-net theorem [14] dictates that any (D,Q) with VC dimen-
sion d has an ǫ-net of size O( d

ǫ
log 1

ǫ
). This, combined with Lem-

mas 1 and 2, gives Theorem 1.

Remark 1. Effectively, the proof of the ǫ-net theorem [14] shows
that a random subset of D with size O( d

ǫ
log 1

ǫ
) is an ǫ-net with

high probability. Hence, we can find a k-skip cover V ⋆ by simply
taking O(n

k
log n

k
) vertices from V randomly.

Remark 2. There is a trivial lower bound of n/k on the size of a k-
skip cover. Hence, the upper bound in Theorem 1 is asymptotically
tight, up to only a logarithmic factor.

4.2 Computing a k-skip cover
As mentioned in the previous subsection, a k-skip cover V ⋆ can

be obtained by taking O(n
k
log n

k
) random vertices from V . It is

well-known that randomized techniques generally work much bet-
ter in practice than predicted by theory. Therefore, the V ⋆ of a
real graph would be much smaller, rendering a sample set of size
O(n

k
log n

k
) most probably unnecessarily large. Of course, we

could artificially reduce the number of samples, but a good sam-
ple size appears to be difficult to decide. A large size gives only
marginal improvement, whereas a small size has the risk that the
sample set may no longer be a k-skip cover.

We propose an adaptive sampling (AS) algorithm to resolve the
above issue. Before explaining the algorithm, we need a few more
definitions. Let the λ-hop neighbor set of a vertex u ∈ V , denoted
as Vλ(u), be the set of all vertices v ∈ V that can be reached from
u by crossing at most λ edges. Each v ∈ Vλ(u) is called a λ-hop

neighbor of u. For example, assume an input graph G as shown
in Figure 5a, where all edges, except those explicitly labeled, have
weight 1. The 2-hop neighbor set V2(u) of u contains all the ver-
tices in the shaded diamond. Note that V2(u) is decided without

taking the edge weights into account.

Denote by Gλ(u) the graph induced by Vλ(u), which is referred
to as the λ-hop vicinity of u. That is, Gλ(u) includes all and only

the edges in G that are between the vertices of Vλ(u). For instance,
in Figure 5a, the edges of G2(u) are those that fall entirely in the
diamond.

By computing the SPs inside Gλ(u) from u to all the other ver-
tices in Vλ(u) (that is, each SP uses only the edges of Gλ(u)), one
obtains a λ-hop shortest path tree Tλ(u) rooted at u. For every ver-
tex v inGλ(u), the u-to-v path in Tλ(u) is the SP from u to v inside

Gλ(u). Figure 5b demonstrates the 2-hop SP tree T2(u) of u. It is
worth noting the difference between a SP inside the tree and a SP in
the whole graph. For example, the u-to-c path in T2(u) has length
5. Although this is the shortest when only the edges of G2(u) are
considered, there is an even shorter path u → f → e → d → c
which uses two edges (e, d), (d, c) outside the 2-vicinity of u.

We now arrive at the most crucial concept underlying the AS

algorithm. Let V ⋆ be a subset of the vertices in G. We say that
a λ-hop SP tree Tλ(u) is covered by V ⋆, if every u-to-v path in
Tλ(u) having at least λ edges goes through at least one vertex in
V ⋆, where v is a vertex in Tλ(u). In Figure 5a, for example, let
V ⋆ be the set of black vertices. Then, the T2(u) in Figure 5b is not

covered because the path u-to-b has 2 edges but passes no black
vertex.

The next lemma gives an important property:

LEMMA 3. V ⋆ is a k-skip cover if it covers the Tk−1(u) of all

u ∈ V .

PROOF. Assume for contradiction that a V ⋆ fulfilling the if-
condition of the lemma is not a k-skip cover. It follows that there
exist two vertices u, v ∈ V such that SP (u, v) has k vertices none
of which is in V ⋆. Since SP (u, v) has k−1 edges, by the construc-
tion of Tk−1(u), we know (i) all the vertices on SP (u, v) are in
Tk−1(u), and (ii) the u-to-v path in Tk−1(u) is exactly SP (u, v).
This means, however, that Tk−1(u) has not been covered by V ⋆,
thus reaching a contradiction.

We are ready to clarify the AS algorithm:

adaptive-sampling

1. V ⋆ = ∅
2. randomly permutate the vertices of V
3. for each vertex u ∈ V
4. if Tk−1(u) is not covered by V ⋆ then

5. add u to V ⋆

The correctness of the algorithm follows from Lemma 3, and the
fact that, if Tk−1(u) has not been covered by V ⋆ yet, including u
itself to V ⋆ immediately makes Tk−1(u) covered. For instance, as
shown earlier, the T2(u) in Figure 5b is not covered, but it will be,
once u is added to V ⋆.

Heuristic. We can further reduce the size of V ⋆ by first sorting the
vertices of V in descending order of their degrees, and then, ran-
domly permute the vertices with an identical degree. This increases
the chance of sampling a vertex with a higher degree, which is ben-
eficial because such a vertex tends to lie on more SPs, and therefore,
have stronger covering power.

Time complexity. We close the subsection by analyzing the ex-
ecution time of the algorithm, assuming that each vertex has an
O(1) degree, which is true in road networks. The randomization at
Line 1 can be implemented in O(n) time [6] where n = |V | (the
sorting in the high-degree-favoring heuristic can be done in O(n)
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Figure 5: Deciding whether to sample u into a 3-skip cover

time when there are only a constant number of possible degrees).
The λ-hop vicinity of a node u can be found by a standard breath

first traversal (BFT) initiated at u, which terminates in O(σλ(u))
time where σλ(u) is the number of λ-hop neighbors of u, i.e.,
σλ(u) = |Vλ(u)|. Then, the λ-hop SP tree Tλ(u) can be extracted
from Gλ(u) using the Dijkstra’s algorithm in O(σλ(u) log σλ(u))
time. Checking whether Tλ(u) is covered by V ⋆ demands a sin-
gle traversal of Tλ(u) in O(σλ(u)) time. Hence, the total cost of
the algorithm is O(nσ̄k−1 log σ̄k−1), where σ̄k−1 is the average
number of (k − 1)-hop neighbors of the vertices in V .

The value of σ̄k−1 depends on the structure of the road network,
but not the number n of the vertices. For example, consider two
simple road networks that are a 100 × 100 and 1000 × 1000 grid,
respectively. Although the second grid has 100 times more vertices,
the two grids have the same σ̄k−1 = Θ(k2). Hence, when k is far
smaller than n, O(nσ̄k−1 log σ̄k−1) grows linearly with n.

4.3 Computing a k-skip graph
Recall that the goal of our preprocessing is to produce a k-skip

graph G⋆ = (V ⋆, E⋆). V ⋆ is simply a k-skip cover, whose deriva-
tion has been clarified in Section 4.2. Next we complete the puzzle
by explaining the derivation of E⋆. Our discussion concentrates
on the subproblem that, given a vertex u ∈ V ⋆, how to calculate
the set Nk(u) of its k-skip neighbors (Definition 4). Once this is
done, it is trivial to obtain E⋆ according to Definition 5, because we
only need to add to E⋆ a super-edge from each u to every vertex
v ∈ Nk(u).

We will call each vertex of V ⋆ a sample from now on, due to the
sampling nature of the AS algorithm. A naive approach to acquire
Nk(u) is to first find the SP from u to every other sample v ∈
V ⋆, and then add v to Nk(u) if the path passes no other sample.
However, since |V ⋆| ≥ n/k (see Remark 2 of Section 4.1), doing
so for all u ∈ V ⋆ would incur Ω(n2/k) time, which is prohibitive
for large n. We circumvent the performance pitfall by aiming at
a superset Mk(u) of Nk(u). As will be clear shortly, despite that
Mk(u) may result in a G⋆ with more edges, it has the advantage
of being computable in significantly less time, thus allowing our
technique to support gigantic graphs.

Mk(u) can be conveniently defined by recycling the notations
of the previous subsection. Let us first have the k-hop SP tree
Tk(u) of u (as opposed to the Tk−1(u) in the AS algorithm). Then,
Mk(u) includes all the samples v 6= u in Tk(u) such that the u-
to-v path in Tk(u) does not pass any other sample. For illustration,
Figure 6a shows a 3-skip cover V ⋆ (the black vertices) on the data
graph of Figure 5a. To determine M3(u), we first extract the 3-
hop SP tree T3(u) as in Figure 6b. Then, it becomes clear that
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Figure 6: DecidingM3(u)

M3(u) = {b, f, g, h}. Note that a, for example, is not in M3(u)
due to the presence of b that blocks the path from u to a.

The lemma below establishes the relationship of Mk(u) and
Nk(u).

LEMMA 4. Nk(u) ⊆Mk(u).

PROOF. By Definition 4, the fact v ∈ Nk(u) implies that (i)
SP (u, v) does not pass any other sample, and (ii) SP (u, v) has
no more than k edges. Property (ii) indicates that all the vertices
of SP (u, v) must be in the k-hop vicinity of u, and hence, are
present in Tk(u). It follows that the u-to-v path in Tk(u) is exactly
SP (u, v). Property (i) further shows that the path cannot contain
any other sample. Therefore, by the construction of Mk(u), we
know v ∈Mk(u).

We call Mk(u) a super neighbor set of u. After acquiring it, we
create a super-edge (u, v) in E⋆ from u to each vertex v ∈Mk(u),
and set its weight to the length of the u-to-v path in Tk(u). In other
words, the super-edge represents a path in the original graph. The
final E⋆ is complete after carrying out the above procedure for all
the vertices u ∈ V .

Time complexity. After Tk(u) is ready, Mk(u) can be eas-
ily obtained by a single traversal of Tk(u) in O(σk(u)) time,
where σk(u) is the number of the k-hop neighbors of u (i.e., the
number of vertices in Tk(u)). A straightforward adaptation of
the analysis in Section 4.2 shows that the cost of processing all
u ∈ V ⋆ is O(nσ̄k log σ̄k), where σ̄k is the average number of k-
hop neighbors size of the vertices in V . For k far lower than n,
O(nσ̄k log σ̄k) is linear in n, due to the reasons explained at the
end of Section 4.2.

5. QUERY ALGORITHM
Given vertices s, t in the data graph G, next we will explain how

to obtain a k-skip SP from s to t using the k-skip graph G⋆ pre-
computed. Section 5.1 first gives an overview of our algorithm. A
part of the algorithm needs to retrieve a traditional SP from G⋆,
for which Section 5.2 presents an improved version of the reach

method. Finally, Section 5.3 will discuss how to perform a zoom-
in operation efficiently.

5.1 High-level description
Recall that the vertex set of G⋆ is a k-skip cover V ⋆. The task

of k-skip SP calculation is simple when both s and t are samples,
namely, they belong to V ⋆. In this case, we only need to find the
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SP from s to t in G⋆, that is, traveling only on the super-edges. By
the definition of G⋆, this SP is guaranteed to be a k-skip SP in the
original graph G.

Let us focus on the situation where neither s nor t is a sample.
Our solution is to sample them into G⋆ right away, so that the case
can be converted to the previous scenario where s and t are sam-
ples. The inclusion of s, t as samples is temporary; after query
processing, they will be removed from G⋆, whose size therefore
does not change.

Incorporation of s, t in G⋆ involves two steps. First, s and t
are inserted in V ⋆. Second, some super-edges are created to re-
flect the appearance of s, t, in the same way the existing super-
edges are computed. That is, given s (similarly for t), we first
obtain the super neighbor set Mk(s) of s, and then add to E⋆

a super-edge from s to each u ∈ Mk(s), all exactly as de-
scribed in Section 4.3. This process is illustrated in Figure 7.
The analysis of Section 4.3 shows that, the above strategy runs in
O(σs(k) log σs(k)+σt(k) log σt(k)) time. Remember that σs(k),
the number of k-hop neighbors of s, is low when k is small (simi-
larly for σt(k)). Hence, sampling-in-place s and t incurs insignifi-
cant overhead.

Let G⋆
s,t be the resulting G⋆ with the new super-edges, and

SP ⋆(s, t) be the SP from s to t on G⋆. The rest of our algorithm re-
turns directly SP ⋆(s, t), whose correctness is shown in the lemma
below:

LEMMA 5. SP ⋆(s, t) is a k-skip SP of SP (s, t).

PROOF. Let u be the first sample (counting also t) when we
walk from s along SP (s, t). By the definition of k-skip SP,
SP (s, u) has at most k edges, all of which appear in the k-hop
SP tree of s. Hence, u ∈ Mk(s) (otherwise, there would be an-
other sample on SP (s, u), contradicting the choice of u), which
means (s, u) is a super-edge in G⋆

s,t.

Let v be the last sample (counting also s) on SP (s, t) before we
arrive at t. A similar argument shows that (v, t) is also a super-
edge. The correctness of the lemma then follows from the fact that
every super-edge has a weight equal to the length of the path it
represents.

Remark on directed graphs. Let S be the set of super-edges on t
newly computed for G⋆

s,t. In the above, we computed S by first
finding the super neighbor set Mk(t) of t, and then inserting a
super-edge (u, t) for each u ∈ Mk(t). If G is directed, the deriva-
tion of S is slightly different, in the sense that we need to first
reverse the directions of the edges in G, before proceeding as de-
scribed earlier. Intuitively, Mk(t) should contain the samples that
can reach t “directly” (without passing another sample). Reversing
directions allows us to apply the same algorithm in Section 4.2 to
extract Mk(t), originally designed to find samples reachable from

t directly. The reversing incurs no additional execution time, be-
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Figure 8: Super reach calculation

cause a direction change can take place only when the relevant edge
is touched by the algorithm.

5.2 Reach⋆

Now that we have converted k-skip SP computation to finding
SP ⋆(s, t) on G⋆ (in case s, t are not samples, simply treat G⋆

s,t

as G⋆), many SP algorithms such as Dijkstra, bi-directional, and
reach, can be plugged in to obtain SP ⋆(s, t). However, as those
methods are not designed for our context, they may be improved
by taking into account the characteristics of G⋆. Next, we achieve
the purpose for reach.

As discussed in Section 2.1, reach prunes a vertex v in relaxing
an edge (u, v), if the global reach r(v) of v is small, compared to
the distance that the algorithm has traveled in the forward/backward
search (see Rule 1). On a k-skip graph, using only r(v) for pruning
may miss plenty of pruning opportunities. The reason is that, a
super-edge (u, v) implicitly captures a path in the original graph,
and hence, can be pruned as long as any vertex on that path has a
low global reach. Motivated by this, we formulate a new notion:

DEFINITION 6 (SUPER REACH). Let (u, v) be a super-edge

in G⋆, and P be the path in G that (u, v) represents. The super

reach of (u, v), denoted as sr(u, v), equals the minimum h(w) of

all the vertices w ∈ P , where

h(w) = r(w)−min{‖P1‖, ‖P2‖} (4)

where r(w) is the global reach of w, and P1 (P2) is the path on P
from u to w (w to v).

To illustrate, assume that the path P captured by a super-edge
(u, v) is as shown in Figure 8. The number above each vertex is
its global reach (e.g., r(u) = 3); and suppose for simplicity all the
edges have weight 1. To decide, for example, h(b), we first observe
‖P1‖ = 2 and ‖P2‖ = 4, and then calculate by Equation 4 h(b) =
4 − min{2, 4} = 2. After S = {h(u), h(a), ..., h(e), h(v)} is
ready, the super reach sr(u, v) can be determined as the minimum
of S, i.e., h(a) = 1.

Apparently, sr(u, v) can be computed in time linear to the num-
ber of vertices in P , i.e., at most k. Also, preserving all the super
reaches entails small space, as only one extra value per super edge
is stored. Next, we propose a new rule to enhance the pruning
power of reach.

RULE 2. When the forward search is about to relax a super

edge (u, v), prune the edge if sr(u, v) < lf (u), where lf (u) is

the label of u. A similar rule applies to the backward search.

More precisely, pruning the super-edge (u, v) means that (i) the
relaxation is not performed, and (ii) v is not en-heaped at this time
(it is possible for v to get en-heaped due to another later relaxation
though). Also note that the pruning happens regardless of the status

of v in the other direction (unlike Rule 1 which requires v to have
status labeled or unseen in the opposite search). This turns out
to be a valuable property that permits the development of a crucial
heuristic for maximizing efficiency, as discussed shortly.

Our algorithm, named reach⋆, for SP computation over G⋆ is
identical to bi-directional (see Section 2.1), except that Rule 2 is



checked prior to every edge relaxation in an attempt to avoid the
relaxation. The following theorem establishes the correctness of
the algorithm.

THEOREM 2. Reach⋆ finds a SP on G⋆ correctly.

PROOF. If the forward or backward search applies Rule 2 to
prune a super-edge on SP ⋆(s, t), we say that a blow occurs. The
lemma is obvious if no blow ever happens, so the subsequent dis-
cussion considers that there was at least one blow. Our argument
proceeds in two steps. First, we will show that there can be only
one blow during the execution of reach⋆. This implies that every
super-edge in SP ⋆(s, t) must be eventually relaxed in at least one

direction, since two blows are needed to eliminate a super-edge
from both directions. Equipped with these facts, we will prove the
lemma in the second step.

Step 1. Without loss of generality, assume that the first blow oc-
curred in the forward search, and eliminated super-edge (u, v) ∈
SP ⋆(s, t). It is easy to see that, when the blow happened, (i) the
forward direction had scanned all the vertices in SP ∗(s, u), and (ii)
sr(u, v) < lf (u) (by Rule 2), where lf (u) equals ‖SP ⋆(s, u)‖ =
‖SP (s, u)‖. Thus,

sr(u, v) < ‖SP (s, u)‖. (5)

Let P be the path in G that (u, v) represents, and w be the vertex in
P that minimizes h(w) (see Equation 4), i.e., sr(u, v) = r(w) −
min{‖SP (u, w)‖, ‖SP (w, v)‖}. Hence,

r(w)− ‖SP (u, w)‖ ≤ sr(u, v) (6)

r(w)− ‖SP (w, v)‖ ≤ sr(u, v). (7)

Inequalities 5 and 6 lead to r(w) < ‖SP (s, u)‖ +
‖SP (u, w)‖ = ‖SP (s, w)‖. By definition, r(w) is at
least min{‖SP (s, w)‖, ‖SP (w, t)‖}. So we know r(w) ≥
‖SP (w, t)‖ which, together with Inequality 7, gives:

sr(u, v) ≥ ‖SP (w, t)‖ − ‖SP (w, v)‖ = ‖SP (v, t)‖. (8)

Inequalities 5 and 8 indicate ‖SP (s, u)‖ > ‖SP (v, t)‖. Due to
(i) the way bi-directional synchronizes the two directions and (ii)
the choice of (u, v), the backward search must have scanned all the
vertices on SP (v, t) before the blow happened.

If there was a second blow, either the forward search needed to
de-heap a vertex in SP (v, t), or the reverse search needed to de-
heap a vertex in SP (s, u). But both events would have terminated
the algorithm immediately, because bi-direction ends when the for-
ward/backward search de-heaps a vertex already scanned in the
other direction. Therefore, no second blow could have occurred.

Step 2. The analysis of Step 1 shows that, at the moment the blow
took place, the status of v was scanned in the backward search.
This means that, u had a status of labeled in the backward di-
rection. Consequently, when the forward search de-heaped u (right
before the blow), as in bi-directional, reach⋆ updated λ, which
records the length of the SP found so far, to lf (u) + lb(u) =
‖SP ⋆(s, u)‖ + ‖SP ⋆(u, t)‖ = ‖SP ⋆(s, t)‖. In other words,
reach⋆ found the correct SP successfully.

After the forward (or backward) search de-heaps a vertex u, our
current reach⋆ attempts to prune each out-going super-edge at u
with Rule 2. Hence, the rule has to be applied numerous times
if many super-edges out of u can be eliminated. This can harm
the efficiency because each vertex in G⋆ may have a large degree
(unlike G, where each vertex’s degree is bounded), the result of

which is that we may end up applying the rule a huge number of
times during the entire algorithm.

The next heuristic allows us to significantly reduce the cost,
while still eliminating as many super-edges as before, with no in-
crease in the space assumption at all. The idea is to store the outgo-
ing super-edges of each vertex u in G⋆ in descending order of their
super reaches. After de-heaping u in the algorithm, we attempt
to prune those edges in the sorted order. The benefit is that once
an edge has been eliminated by Rule 2, we can assert that all the
remaining edges can be pruned as well, because all of them must
have lower super reaches (than the one pruned), and therefore, will
satisfy Rule 2 for sure.

The above heuristic is made possible by the fact that, to prune an
edge (u, v), Rule 2 does not require checking the status of v (in the
search opposite to the one where the pruning happens). If this was
not the case, the heuristic would virtually promise no performance
gain as checking the status of v takes nearly the same amount of
time as applying Rule 2 on (u, v).

Remark. It is worth pointing out that, the mechanism behind
reach⋆, namely the integration of bi-directional and the no-status-
checking pruning strategy of Rule 2, actually extends the algorith-
mic paradigm for SP computation as illustrated in Section 2.1. In
retrospect, reach⋆ is an immediate benefit of this extension.

5.3 Zoom-in
As mentioned in Section 1, the concept of k-skip SP is naturally

accompanied by a zoom-in operator. Given consecutive vertices
u, v on a k-skip SP ⋆(s, t), the operator finds all the vertices be-
tween u and v on the full SP (s, t). A naive way to zoom-in is to
run Dijkstra to extract the SP from u to v. A faster solution ap-
plies bi-directional. In fact, one can do even better using reach.
However, simply executing reach afresh to compute SP (u, v) is
not likely to outperform bi-directional much. This is because the
pruning of reach (i.e., Rule 1 in Section 2.1) is effective only if the
vertex u de-heaped in the, for example, forward search has a large
label lf (u). This requires the forward search to have come a long
way from the source, a situation that will not happen between u and
v, because they are at most k vertices apart on their SP.

There is a simple remedy to significantly boost the efficiency.
The main idea is to pretend as if we were running reach to compute
SP (s, t) (as opposed to SP (u, v)), and that the algorithm had just
come to u and v in the forward and backward searches, respec-
tively. We “continue” the forward direction by setting lf (u) =
min{‖SP (s, u)‖, ‖SP (v, t)‖}, and making u the only vertex in
the heap Qf (which implies giving u the status labeled). Note
that both ‖SP (s, u)‖ and ‖SP (v, t)‖ are available in the k-skip
SP ⋆(s, t) already calculated. Similarly, the backward direction is
also continued by setting lb(v) = lf (u) and creating a heap Qb

with only v inside. We then start a normal iteration and proceed as
in reach.

6. EXPERIMENTS
In this section, we empirically evaluate the performance of the

proposed solutions. Our experimentation used four spatial net-
works2 whose specifications are summarized in Table 1. Specif-
ically, NY, BAY, CA-NV, and USA contain the road networks in
New York city, San Francisco Bay area, California and Nevada
combined, and the entire US, respectively. The weight of an edge

2All datasets can be downloaded from
http://www.dis.uniroma1.it/∼challenge9/download.shtml.



dataset num. of vertices num. of edges

NY 264,346 733,846
BAY 321,270 800,172

CA-NV 1,890,815 4,657,742
USA 23,947,347 58,333,344

Table 1: Dataset specifications

k

dataset 4 6 8 10 12 14 16

NY 51% 38% 31% 26% 22% 20% 18%
BAY 46% 33% 26% 22% 18% 16% 14%

CA-NV 46% 33% 21% 19% 16% 16% 15%
USA 45% 32% 25% 21% 18% 16% 15%

(a) Vertex ratio

dataset 4 6 8 10 12 14 16

NY 72% 65% 61% 58% 56% 53% 52%
BAY 66% 57% 52% 48% 45% 43% 42%

CA-NV 63% 54% 49% 45% 43% 41% 40%
USA 61% 51% 47% 44% 41% 39% 38%

(b) Edge ratio

Table 2: Sizes of k-skip graphs

equals the travel time on the corresponding road segment. All of
our results were obtained on a computer equipped with an Intel
Core 2 DUO 3.0Ghz CPU and 2 Giga bytes memory, running Fe-
dora Linux 13.

Size of the pre-computed structure. Our technique has the fea-
ture of demanding only a structure with sub-linear size, i.e., a k-
skip graph G⋆ = (V ⋆, E⋆) occupies less space than the underlying
road network G = (V,E). The first set of experiments demon-
strates this by proving that G⋆ has fewer vertices and edges than
G. Equivalently, if we define the vertex ratio to be |V ⋆|/|V | and
the edge ratio to be |E⋆|/|E|, the goal is to show that both ratios
are below 1 by a comfortable margin. Moreover, remember that V ⋆

is a k-skip cover (Definition 3). Hence, the vertex ratio also reflects
the effectiveness of the AS algorithm in Section 4.2.

Table 2a presents the vertex ratios of each dataset as k varies
from 4 to 16. Interestingly, we noticed that the ratio roughly equals
2/k in all cases, that is, AS finds a k-skip cover with size about
2|V |/k. In the same style, Table 2b shows the corresponding edge
ratios, which are also much lower than 1, and decrease with the
increase of k. A general observation is that, both ratios tend to be
smaller (i.e., greater size reduction) when the underlying network
is sparser (NY is the densest among all the datasets).

Query characteristics. Ideally, a k-skip SP query should be an-
swered much faster than its traditional counterpart (that retrieves
the whole path). Next, we compare the reach⋆ algorithm devel-
oped in Section 5.2 against reach, which is the state of the art for
the (traditional) SP problem, as reviewed in Section 2.1. We also
examined a method reach-on-supergraph that can be regarded as a
compromise of the two algorithms. As mentioned in Section 5.2,
any SP algorithm can be applied to produce a k-skip SP by finding
a SP on the k-skip graph G⋆. Following this rationale, reach-on-

supergraph is a k-skip solution that simply employs reach on G⋆.
As a reference, we also report the performance of Dijkstra.

The cost of each method is measured as its average response time
in processing a workload of 1000 queries whose source and desti-
nation are both randomly selected from the vertices of the original
network G. Figures 9a-9d plot the costs of alternative solutions as
a function of k for the four datasets, respectively. The overhead of
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Figure 9: Cost of k-skip and traditional SP queries

Dijkstra is given separately beside the dataset name, because it is
substantially slower than all other competitors.

Both k-skip algorithms reach⋆ and reach-on-supergraph outper-
form reach significantly. Furthermore, their performance gains
over reach become increasingly obvious as k grows larger (reach

is irrelevant to k as it always reports the entire SP). This, therefore,
validates k-skip graph as an effective methodology to attack the
k-skip SP problem. Between the two k-skip algorithms, the con-
sistent superiority of reach⋆ ascertains the necessity of designing a
new algorithm that is able to leverage the characteristics of k-skip
graphs. Remember that reach⋆ gleans its performance advantages
at very little space overhead, because only one extra value needs to
be stored for each edge in G⋆.

For the subsequent discussion, we define the SP-cardinality of
query as the number of vertices in its complete SP. Figure 9 does
not shed much light on each method’s behavior in handling queries
with different SP-cardinalities. Figure 10 remedies the drawback
with a detailed version of the results for k = 10 (Dijkstra is omitted
due to its poor efficiency). To obtain Figure 10a, we first decided
the range ρ of the SP-cardinalities of all the queries in a workload.
Then, for each algorithm, we measured its average cost in answer-
ing the queries whose SP-cardinalities were among the first 10% of
ρ, second 10%, ..., and the last 10%, respectively. The collection
of these 10 values correspond to the dots on a curve in Figure 10a.
The other diagrams in Figure 10 were acquired in the same manner.
The relative performance of all algorithms remains stable through-
out the whole spectrum of SP- cardinality. The bell-shape of each
curve is a characteristic of the reach algorithm (and hence, also its
variant reach⋆).

The next experiment studies the number of vertices in a k-skip
SP. We present the number as a percentage of the query’s SP-
cardinality (e.g., 50% means that the k-skip path contains half of
the vertices in the entire SP), which is referred to as the output per-

centage. For each dataset, Table 3 reports the average output per-
centages of a workload under different values of k. As expected,
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Figure 10: Query cost vs. the number of vertices in the com-

plete SP (k = 10)

k

dataset 4 6 8 10 12 14 16

NY 55% 41% 34% 29% 27% 24% 22%
BAY 52% 36% 29% 25% 22% 20% 18%

CA-NV 52% 36% 29% 25% 22% 21% 19%
USA 51% 35% 28% 24% 22% 20% 19%

Table 3: Number of vertices in a k-skip SP (in percentage of

the SP-cardinality)

the percentage decreases as k increases. It is not hard to observe
a strong correlation between the output percentages and the vertex
ratios in Table 2.

We proceed to assess the efficiency of the zoom-in algorithm in
Section 5.3. The k-skip SP P ⋆ of a query naturally defines l − 1
possible zoom-in operations if P ⋆ has l vertices. For each road
network and a particular k, we randomly performed 10% of all the
zoom-in’s determined by 50,000 queries with random sources and
destinations, and gauged their average time. Figure 11 illustrates
the results of all datasets. Note that the y-axis is in µ-seconds (1µs
= 10−6 sec). In general, for k ≤ 16, the cost of a zoom-in is at the
order of 10µs, and is thus negligible in practice.

Pre-computation overhead. The last set of experiments examines
the time of constructing a k-skip graph G⋆. Given an input graph
G with all vertices’ reaches already computed (the time of reach
computation has been thoroughly evaluated in [10, 12]), the cost
of building G⋆ has two components: the time of (i) finding a k-
skip cover V ⋆ (Section 4.2), and (ii) determining the super-edges
of G⋆ (Section 4.3). For each road network, Figure 12 reports the
overhead of these components as a function of k. The overall pre-
processing time is dominated by the cost of (i) because it has to
process all vertices in G, whereas (ii) only needs to process the
vertices of G⋆. Consulting the specifications in Table 1, we observe
that the pre-processing overhead increases linearly with the number
of edges in the original graph. For example, for the same k, the
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Figure 12: Pre-processing cost vs. k

overhead on USA is about 12 times that of CA-NV, where 12 is
roughly the ratio between the numbers of edges in USA and CA-
NV.

7. CONCLUSIONS
This paper introduced a novel concept called k-skip shortest

path, which is a subset of the vertices in a traditional SP P , sub-
ject to the constraint that the subset must include at least one vertex
in every k consecutive vertices of P . We carried out a systematic
study on the problem of k-skip SP computation, where the goal is
to pre-process a road network into a structure of economical size
such that a k-skip query on the original network can be processed
significantly faster than finding the entire SP. We settled the prob-
lem with a new methodology that constructs a k-skip graph from a
set of selected vertices of G constituting a k-skip cover. The effi-
ciency of the proposed technique has been verified with extensive
experiments.

Our work also points to several promising directions for future
research on the k-skip SP problem. One, for example, is to design
a deterministic algorithm for finding the minimum k-skip cover,
which does not appear to be trivial at all even for k = 2. An-
other interesting problem is to prove (possibly by resorting to the



highway dimension [1]) a theoretical upper bound on the number
of super-edges in a k-skip graph, which will immediately lead to a
bound on the overall space consumption of our technique. Finally,
it is certainly an important direction to explore the semantics of k-
skip SP as well as the corresponding algorithms on other types of
graphs, such as social networks.
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