Logging Every Footstep:
Quantile Summaries for the Entire History"

Yufei Tao* Ke Yi2

1Chinese University of Hong Kong
3Simon Fraser University

ABSTRACT

Quantiles are a crucial type of order statistics in datahadex-
tensive research has been focused on maintaining a sfagengf
structure for approximate quantile computation as the rdyideg
dataset is updated. The existing solutions, however, asigmied
to support only the current, most-updated, snapshot of ateset.
Queries on the past versions of the data cannot be answered.
This paper studies the problemtatorical quantile searchThe
objective is to enable-approximate quantile retrieval amy snap-
shot of the dataset in history. The problem is very imporiant
analyzing the evolution of a distribution, monitoring theadjty of
services, query optimization in temporal databases, arwhsdVe
present the first formal results in the literature. First, pveve
a novel theoretical lower bound on the space cost of supyprti
e-approximate historical quantile queries. The bound revidee
fundamental difference between answering quantile gsiet®ut

the past and those about the present time. Second, we prapose

structure for findinge-approximate historical quantiles, and show
that it consumes more space than the lower bound by only aesqua
logarithmic factor. Extensive experiments demonstraaéithprac-
tice our technique performs much better than predicted bgrih

In particular, the quantiles it returns are remarkably nawreurate
than the theoretical precision guarantee.

ACM Categories & Subject Descriptors
F.2[Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems.

General Terms: Theory

Keywords: Quantile, Approximation, Lower Bound.

*Yufei Tao and Cheng Sheng were supported by grants
GRF4161/07, GRF 4173/08, GRF4169/09 from HKRGC, and a
direct grant (2050395) from CUHK. Ke Yi was supported by a
Hong Kong DAG grant (DAGO07/08). Jian Pei was supported by

an NSERC Discovery grant and an NSERC Discovery Accelerator

Supplement grant. Feifei Li was partially supported by NS&r®
11S-0916488.

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SIGMOD’10,June 6-11, 2010, Indianapolis, Indiana, USA.

Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

Cheng Sheng!
2Hong Kong University of Science and Technology

Jian Pei? Feifei Li*

“Florida State University

1. INTRODUCTION

Quantiles are widely recognized as a crucial type of oradsisst
tics in databases. Specifically, I&t be a set ofN ordered data
items. Given a parameter € (0, 1], the k-th ¢-quantile (k =
1,2,...,|1/¢]) is the item of D at the rank| k¢ N | in the ordered
sequence. An important problem is to maintain a space-fiici
structure to support quantile retrieval whéhis updated with in-
sertions, and sometimes deletions as well. The problem éais b
extensively studied, as will be reviewed in Section 1.2. Tdwais
of the relevant works, however, is to desigsrepshostructure on
the currentD. Namely, afterD is updated, the previous state of the
structure is not preserved. As a result, quantile queriehempast
versions ofD cannot be answered.

In this paper, we consider the problemha$torical quantile re-
trieval. Our goal is to support quantile queriesalhthe past snap-
shots ofD. To illustrate, imagine that an initially empfy has been
modified with an arbitrary sequence of insertions and dmieti In
other words,D has evolved through a numberrsions one af-
ter each update. We aim at building a space-efficient streichat
allows us to compute accuragequantiles in any version ab in
history.

Historical quantiles are useful for many purposes. Sintitar
“snapshot quantiles" that serve as a succinct summary alate
distribution in the currenD, historical quantiles capture the entire
evolutionof the distribution ofD. For example, in monitoring the
performance of a web server, the server’s present efficieacybe
reflected by all thq%-quantiles on the response times for the recent
requests (i.e., the longest delay of the 10% fastest resppothe
20% fastest, ...). Then, historical quantiles provide arcfgcture
of how the server’s efficiency has been changing over timehSu
information is vital to studying the server’s usage and tbledvior
of users. Similar applications can be found in a variety ofterts
involving different study subjects, such as the waitingetiof a
hotline, appeal processing time, elapsed time till thegediarrival
after a 911 call, and so on.

Historical quantiles are also helpful to query optimizatiotem-
poral databaseswhich track the historical changes of a dataset
(see [17] for an excellent survey). Consider, for instarsceem-
poral database that manages the balances of bank accodtes. A
a deposit/withdrawal, the previous balance of the affearmbunt
is not discarded, but instead, needs to be preserved in thbadze.
The objective is to enable retrieval of the past data, sucffiras
all accounts whose balances were larger than 1 millon on 1 Jan
2009". As with relational databases, effective query oftition
in temporal databases also demands accurate estimatibe of-t
sult sizes. Historical quantiles serve the purpose very. wefact,
it is well-known that quantiles are closely relatedréamge count-
ing: given an intervalz1, z2], a range count query ob returns

how many items ofD fall in the interval. Typically, a structure
for quantile computation can also be leveraged to perfonngea
counting with good precision.

Itis easy to see that, to answer historical quantile quesiastly
we must capture all the updatesofin history, which requires ex-

some previous works, is thieth ¢-quantile (1 < k& < |[1/¢]),
which in our context is the item with rankk¢N(¢)] in D(q).
For the purpose of our discussion, it suffices to regardkttte ¢-
quantile simply as thé¢-quantile.

We aim at retrieving:-approximate quantilesFormally, given

pensive space consumption. On the other hand, it has beén wele € (0, 1], ane-approximatep-quantileof D(:) is a valueu in the

acknowledged that approximate quantiles already fulf#l pur-

poses of many applications (in fact, most of the previoudistu
focus only on approximate quantiles). Informally, an apprate

quantile returns items whose ranks only slightly diffemfrthe de-

sired ranks, by just a few percentage points. The benefittimme
is that the amount of necessary space (for computing appeigi
historical quanties) can be significantly reduced.

This work presents the first formal results on approximageolni
ical quantile retrieval. We propose a structure and its mp@mying
query algorithm to find historical quantiles with strong @sgon
guarantees, which match the guarantees of the existingslsoap
structures (i.e., the quantiles returned are alwagpproximate as
formalized shortly). Our structure deterministic namely, it al-
ways correctly answers all queries, instead of failing emrzally
as in a probabilistic solution. Moreover, we prove a loweurm

on how much space must be spent in the worst case by any struc

ture, in order to support all (historical quantile) queri€he lower
bound shows that the space cost of our structure is tigh oply
a square-logarithmic factor. Our theoretical results anéfied by
extensive experiments, which also demonstrate that, iotipea
the proposed structure works much better than predictechéy t
ory. Specifically, the actual query results have errors dgnatsig-
nificantly lower than the theoretical upper bounds.

The rest of the section will formally define the problem, esvi

the previous results related to our work, and summarize eur r

sults. The subsequent sections are organized as followtioS&
proves the space lower bounds feapproximate historical quan-
tile retrieval. Section 3 presents the proposed structodestudies
its efficiency theoretically. Section 4 evaluates the pcatperfor-
mance of our technique with extensive experiments. Fin8dc-
tion 5 concludes the paper with directions for future work.

1.1 Problem definition

Let D be the dataset for the interest of quantile retrieval. We

consider that the items i are integers, but it is straightforward to
apply our results to any ordered domain. Each integer isasgu
to fit in a constant number of words.

D is initially empty. We are given the sequence of all updates

on D in history. Denote byV/ the total number of updates. Each
update is either an insertion or a deletion. Specificallynaartion
adds an integer t®, while adeletionremoves an existing number
in D. Denote byD(i) the snapshot aD after thei-th update { <

i < M).

We will refer to D(:) as theversioni of D. Let N(i) be the
size of D(i), namely, N(i) = |D(i)|. Obviously, since an in-
sertion (deletion) increases (decreases) the siz@ by 1, it fol-
lows that|N (i + 1) — N(i)|] = 1. We refer to the ordered list
(N(1),..., N(M)) as thesize sequenceWithout loss of general-
ity, we assumeV (i) > Oforall 1 <3 < M. Otherwise, the update
sequence can be broken into several continuous segmecispea
which satisfies the assumption, and can be processed sdparat

Given a parametep € (0,1], the ¢-quantile of D(7) is the
|#N (i)]-th greatestitem in D(). Alternatively, this is the item
with rank | ¢N(¢)] in non-ascending order of the items In(3).
Ties are broken arbitrarily. A related concept, which appéan

1By symmetry, our technique can be easily adapted in casg-the
quantile is defined as the N () |-th smallestitem in D(3).

data domain fulfilling two conditions:

e Atleast(¢ — ¢)N(3) items of D(¢) are greater than or equal
tou;

e Atmost(¢ + €)N (z) items of D(¢) are greater than or equal
to u.

Intuitively, these conditions imply that the rankwoftiffers from the

requested rank N (z) by at moste N (¢). Usually multiple values

can be returned as the result Preciselyu can be any value that

is not smaller than the item iV (¢) with rank [(¢ — ¢) N (¢)], and

strictly smaller than the item itV () with rank | (¢ + €) N (¢) | + 1
Given a value ok, our goal is to pre-process the historical up-

dates ofD into a structure that can be used to answapproximate

quantile queries with anyy € (0,1], in all possible versions

i € |1, M] of D. The structure should consume small space, but

needs to answer each query efficiently, both in the worst case

1.2 Previous work

To our knowledge, no formal result is known in the literatfme
computing historical quantiles. The previous researcmiyndo-
cused on approximate quantile search in the current, maistted,
snapshot of the datasél. The objective is to maintain a struc-
ture along with the updates dp, so that it can be used to answer
queries correctly. The challenge is to minimize the spacthef
structure.

Most works consider thab is updated with only insertions, i.e.,
no item inD is ever removed. In this setting, Munro and Paterson
[16] suggested a structure ferapproximate quantile retrieval that
consume)(L log?(eN)) space, whereéV is the number of inser-
tions. Various heuristic improvements (without affectthg space
complexity) were discussed and experimented in [1, 14]. daat
al. [15] proposed a randomized structure that successiukyvers
a query with probability at leadt— § for any§ € (0, 1], and occu-
piesO(1 (log® 2 +1log” log 1)) space. Greenwald and Khanna [10]
gave a deterministic structure that requir@é! log(eN)) space.
Cormode et al. [5] extended the structure of [10] to compbissed
guantiles which were also studied by Gupta and Zane [11].

e-approximate quantile search is much harder when delegians
allowed. Only a few results exist in this setting. Gilberét[9]
are the first to tackle this challenge. They designed a random
ized structure that requireS(=% log® U log 252) space, where
1 — § is the success probability of answering a query, &hib
the size of the data domain. Theunt-minsketch of Cormode and
Muthukrishnan [6] reduces the space by a factod of. In the
sliding-window modelwhere D contains only theR items most
recently received, Arasu and Manku [2] proposed a struatexe
quiring O(2 log 1 log R) space. Note, however, that the sliding
window model imposes a strict ordering on the insertionsdeid-
tions. Hence, the solution of [2] cannot be applied to seqeginf
updates where insertions and deletions are arbitrarilgcix

As for exactquantiles, Blum et al. [4] were the first to show that
the median (i.e., thé-quantile) of a dataset withV items can be
found inO(N) time. Their algorithm can be modified to retrieve
any ¢-quantile with the same time bound.

It would be tempting to adapt one of the above methods to our
historical quantile problem, but the adaption seems to theeim-
possible or space expensive. First, obviously only mettibds

supportarbitrary deletions can be considered, which already elim-
inates all the approximate solutions, except [6, 9]. Unfioately,
the algorithms of [6, 9] are quite specific to their own sefsinit

is not clear how their footprints in history can be compadciffec-
tively for querying historical quanties. Naive extensioesult in
Q(M) storage. In any case, the solutions of [6, 9] are probaiilist
(i.e., they may fail occasionally), as opposed to our irdene de-
terministic algorithms. Finally, although the exact aitan of [4]
can be directly applied to find a historical quantile, itsapand
query cost®) (M) are excessive for our goal.

1.3 Our main results

The first major contribution of this paper is a space lowemubu
of any (deterministic or random) structure feapproximate quan-
tile search in history. The lower bound is relatedtehe number
M of updates, and somewhat surprisingly, Hermonic meand
of the sizes ofD at all past versions. Specifically, as defined in Sec-
tion 1.1, letN (z) be the size of the-th version ofD, 1 <1 < M;
then, H is given by:

M
M 1 -
Zz‘:lm

We show that every structure must consume at I@4sf) space
for anye < 1/2 in the worst case. Furthermore, if > 1/e,
the space lower bound becom@$2%) for anye < 1/4. These
bounds are drastically different from the well-known spémeer
bound2(1/¢) for computingsnapshot-approximate quantiles. In
particular, the presence @f in our bounds is a unique feature of
historical quantile retrieval.

The paper’s second contribution is a new deterministicine
for answerings-approximate historical quantile queries. The struc-
ture require@(% log? %) space, which is higher than the theoret-
ical lower bound by only a factor ad(log? %). Its accompanying
query algorithm takeﬁ)(log% + log %) time to compute ar-
approximate quantile. Note that none of our bounds depends o
the sizeU of the data domain.

Our experiments deployed both synthetic and real data te eva
uate the efficiency of our techniques. The results indidaag by
consumingonly 1%of the underlying dataset, the proposed struc-
ture can be used to find very accurate quantiles througheutrih
tire history. Furthermore, the accuracy increases grigefinen
additional space is allowed.

H= 1

2. SPACE LOWER BOUNDS FOR
HISTORICAL QUANTILE SEARCH

In this section, we will derive a lower bound on the space aded
to supporte-approximate historical quantile queries. First of all,
it is easy to see that, in some extreme scenarios, the spate co
must beQ (M), whereM is the number of updates in history. For
example, suppose that each past verdigf) of the dataseb (1 <
i < M) is so small thatV (i) = |D(i)| < L. Inthis case, the error
permitted by are-approximate quantile is less thav (i) < 1.

In other words, no error is allowed, and we must returnekact
quantiles. This, in turn, means that all the updates in higtust
be captured, which requirés(1/) space.

The situation in practice is much better, because typical(y)
is by far larger tharl /¢, which makes it possible to use much less
space thaf2(M) to find e-approximate historical quantiles. Nev-
ertheless, the above discussion implies that the size &f past
version of D should play a role in the minimum amount of space
needed. It turns out that there is a close relationship betviiee

space and the Harmonic meahof the sizes of all the versions of
D (see Equation 1).

In the sequel, we will establish the relationship in two step
First, we give a lower bound that is weaker than our final lower
bound, but its proof is simpler, and illustrates the mairréuaiients
of our methodology. The analysis will then be extended t@iobt
our ultimate lower bound.

The first lower bound. The bound is stated in the following theo-
rem:

THEOREM 1. For any size sequendeV (1), N(2), ..., N(M))
ande < 1/2, a structure for answering historical-approximate
quantile queries must use(M/H) words in the worst case.

Our earlier discussion already demonstrates that theghed
correct if N(i) < 1/eforall 1 < i < M, noticing that theH of
such a size sequence is less thaa soQ(M/H) = Q(M). Next,
we will show that the theorem is correct fany size sequence.
Towards this purpose, we first prove a relevant lemma:

LEMMA 1. For any ¢ < 1/2 and any size sequence
(N(1),N(2),..., N(M)), there exists a sequence of updates such
that, if we query the-approximate median at each versione
[1, M], the number of different results (returned by any strugture
must beQ(M/H).

To prove the lemma, we construct a hard sequence of up-
dates, based on the following principlan insertion always in-
serts a value greater than the maximum valuelinand a dele-
tion always removes the minimum valuelin Whether thei-th
(i > 1) update is an insertion or deletion depends on the com-
parison of N (i) and N (i — 1) (recall that| N (i) — N(i — 1)| =
1). For example, assum&/ 6, and that the size sequence
is (1,2,3,2,3,2). The constructed sequence of updates can be
(+10, 420, +30, —10, +40, —20), where+u (—u) represents an
insertion (deletion) of value.. Note that each inserted value is
greater than all the previously inserted values, whereels éele-
tion removes the smallest value that has not been deleted.

Next, we define a sequence of valyes$l), v(2),...). They in-
dicate some special versions Bfthat are important to space con-
sumption, as elaborated later. Specifically:

e v(l)=1.

e Inductively,v(i+1) is the smallesj > v (i) satisfyingeither
of the following conditions:

C1: N(j) =2 N(v(2))/(1/2 = €);

C2: there have beel (v(7)) - (1/2 + €) deletions between
versionsuv(z) andj.

Intuitively, Condition C1 means that the size ab at version
v(i+ 1) has increased by a factor ?jﬁ compared to the size at

versionu (7). ConditionC2, on the other hand, indicates that many
deletions have occurred between versiofy andv(i + 1). The
inductive definition ofv(i 4+ 1) continues until such g cannot be
found. LetL be the number of values in the sequence, i:€l),
v(2), ...,v(L) are successfully defined. The following is a useful
property about these values:

LEMMA 2. v(i4+1)—v(i) < N(v(i))-
L—1.

3—4é? .
T foranyl <i <

ProOF. Note thatv(i + 1) — v(¢) equals the number of up-
dates to transform version(i) to v(i + 1). Among them, there
can be at mostV(v (7)) - (1/2 + €) deletions due to Condition
C2. Thus, before Conditio’'1 is violated, there can be at most

A{;;@g + N(v(4)) - (1/2 + €) insertions. This makes the total
number of updates at moﬁ% + 2N(v(7)) - (1/2 +¢) =

N@(@) - 3= O

Recall that, as mentioned in Section 1.1, there may be mare th
one value that can be returned ascaapproximatep-quantile. For
proving Lemma 1, we consider only = 1/2, namely, theg-
quantile is the median. For theh versionD(i) of D, 1 < i < M,
we define alegal rangeto be the range of values (in the data
domain) that can be as-approximate median oD(7). More
precisely, the legal range starts from the itemIof:) at rank
[(1/2 — €)N(4)], and ends right before (but does not touch) the
item at rank|(1/2 + ¢)N(i)] + 1. Now we give a fact which
reveals why a certain amount of space is inevitable:

LEMMA 3. The legal ranges at versiong1),
are mutually disjoint.

v(2), ..., v(L)

PrROOF We will show that the legal range ofi + 1) must be
completely above(i) for eachi > 1. We distinguish two cases,
depending on how is decided in defining (i + 1).

Case 1:j is decided by Conditioi@1. It follows that N (v(i +
1)) > J%) | etcut be the maximum value ib at versiono(i).
Clearly,cut has rank 1 inD(v(7)), which is lower thanV(v(7))/2
by more thare N (v(4)) (due toe < 1/2)). Hence, the legal range
of versionwv(i) must finish strictly beforeut. On the other hand,
there areV(v(i+1)) — N(v(¢)) items inD(v(i+ 1)) greater than
cut. FromN (v(i + 1)) > F%4), we know

N(v(i +1)) = N(v(i))

\Y

N(i+1)(1 - (1/2 - €))
N(i+1)(1/2 + ¢).

Therefore, the legal range ofi + 1) must start strictly aftecut.

Case 2:j is decided by Conditiolw2. Let cut be the minimum
value inD at versionv(i + 1). Notice that the deletions during the
period fromu (i) to v(i + 1) remove all the items oD () below
cut. With reasoning similar to Case 1, it is easy to verify that th
legal range of versiom(i) must finish strictly beforecut, while
that ofv(i + 1) must start strictly afterut. [

The above lemma implies that no common value can be returned

as anc-approximate median simultaneously for any two of the ver-
sionsv(1), v(2), ...,v(L). Equivalently, any structure must return
L different values to be theapproximate medians at thogever-
sions, respectively.

Next, we complete the proof of Lemma 1 by showihg >

=29 M _ (\/H). For this defi -
"8 H — . purpose, define(L + 1) =

M + 1 to tackle the boundary case in the following equation:

M L v(it+l)—1
RN
By Condition C2, for anyj € [v(i),v(i + 1) — 1], N(j) >
N(u()) = N(w(0)) - (1/2 + €) = N(v(i)) - (1/2 —). Thus:

v(i+1)—1 v(i+1)—1

1 1
Jzu;) N < j:zv;i) N(v(3)) - (1/2 —¢)
_ v(t+1) —v(i)
N@@®)-(1/2-9
N(v(i)) - 31:426:
= N(v(z)) . (1/2 — E) (By Lemma 2)
_ 6 — 8¢
= a2
Therefore:
1 6 — 8¢2
H “N() ~ (1-202

which is what we need for Lemma 1.

Using a standard information theoretical argument, we ea@-c
fully specify the inserted values (each fittingdn1) words) such
that there are at leagt? ™"/ possibilities for the set of results
atallv(i), 1 < i < L, whereW is the length of a word. This
establishes Theorem 1.

A tighter lower bound. The above analysis can be extended to
obtain a stronger result that appliesctel 1/4 andH > 1/e.

THEOREM 2. For any ¢ < 1/4 and any size sequence
(N(1),N(2),..., N(M)) satisfyingH > 1/e, a structure for an-
swering historicak-approximate quantile queries must lﬁ%)
words in the worst case.

To prove the theorem, we need the following property aliut
LEMMA 4. If H > 1/¢, then at least half of the values in
(N(1),N(2),..., N(M)) are at leastl /(2¢).

PROOF Otherwise Z

would forceH = M/(Z
contradictingH > 1/e.

L 1/N (i) > 2¢(M/2) = eM, which
1/N()) to be strictly lower than /e,

We define a sequence of values
(N'(1),N"(2), ..., N'(M"))

by extracting all theM’ numbers in(N (1), N(2), ..., N(M))
that are at least/(2¢). Lemma 4 indicates that/’ > M/2.
Specifically, for1 < ¢ < M’, N'(i) is the i-th number in
(N(1),N(2),..., N(M)) atleastl /(2¢). Note that since is ini-
tially empty, N’(1) must be[1/(2¢)], which implies that

N'(1) < N'(4) @
foralli € [2, M].

To prove Theorem 2, we deploy the same hard update sequence
of D that was used earlier to prove Theorem 1. In the same fashion
of definingv(.) on N(.) (in proving Theorem 1), we re-defingl),

v(2), ... onN'(1), N'(2), ..., N'(M") in a slightly different way:

e v(l)=1.

e Inductively,v(i + 1) is the smallesj > v(i) satisfyingany
of the following conditions:

C1: N'(j) = N'(v(4))/(1/2 = €);

C2.1: there have beedV'(v(i)) - (1/2 + €) deletions be-
tween versions (i) and j; furthermore,N'(v(j)) >

TN (v(@));

C2.2: same ag'2.1 but N’ (v(5)) < 3N’ (v (7).

The inductive definition continues ungilis undefined. Denote by
L' the total number of values defined.

Observe that when Conditiofi'l or C2.1 is satisfied, at least
N'(v(3))/4 = Q(N'(v(3)) new items have been addedoafter

2. deletén): delete a node;
3. modify(n, t): reset the information tag, of noden to¢.

Traditionally, a binary tree isphemerabecause, after an update,
the previous version df” is lost. Apersistent binary tre§” [8],

versionv(i). Moreover,all these items rank ahead of the items of ©n the other hand, retains all the past versiong dbne version
D(v(3)). Using a standard argument to design the inserted values, Pe" update) in a space-efficient manner.

we can show that, after versiei), 2(1/¢) extra words are needed
to supporte-approximate queries at versiaifi + 1) on the ranks
of those items inserted afte(:).

There is another imperative observation. ket z2, andxs be
the number of times ConditiorG1, C2.1, andC2.2 are satisfied,
respectively. It must hold thats = O(z1 + z2). This is because

e at each occurrence @f1 or C2.1, the cardinality ofD can
be at most—— < 4 times that ofD(v(i)), and

e at eachC2.2, the cardinalityD must be smaller than that of
D(v(4)) by a factor of at least/4.

Therefore:
N'(1) - 4"1F%2 . (3/4)*3 > N'(M")
which, with the factV (M) > N(1) (Inequality 2), leads to

T3 < 10;%(561 + x2) = O(x1 + x2).

Using the argument proving Lemma 1, we know tHat =
1 + x2 + 23 = QM'/H'), where H' is the Harmonic mean
of N'(1), N'(2), ..., N'(M’). Hencex, + z2 = Q(M'/H').

Note thatH’ > H because any value ifiV(1), ..., N(M)) not
included in(N'(1), ..., N'(M")) must be smaller than all the val-
ues in(N'(1), ..., N'(M’)). Combining withM’ > M/2, we
know 1 + z2 = Q(M/H). In other words£2(1/¢) new words
must be stored at each of at le&xt\//H) versions, which com-
pletes the proof of Theorem 2.

Remark. An interesting special case is when all thé updates
are insertions. In this case, tii&(i) has exactlyN (i) = 7 items.
AsaresultM/H = Y 1/i = ©(log M). So the space lower
bound become€ (< log M).

3. A STRUCTURE FOR HISTORICAL
QUANTILE SEARCH

Section 3.1 briefly reviews thgersistence technigugnce it is
deployed by our solutions. Section 3.2 explains the higbtlieleas
behind the proposed structure, which is formally describeSlec-
tion 3.3, together with its query algorithm. Section 3.4belates
how to construct our structure, and Section 3.5 analyzespise
and query complexities. Finally, in Section 3.6, we givethro
solution that is fairly simple to implement.

3.1 Persistence technique

The persistence framewol8] (also known as thenulti-version
frameworK{3]) is a general technique for capturing all the historical
changes of a dynamic structure. In the database area, itdeas b
applied to design many access methods (see, for exampl@, [3,
13, 18, 19]). To illustrate, assume that the underlyingcstne
is a binary treeT (e.g., ared-black tree[8]). Each noden of T
stores an index kek,, and a constant-size information tag We
consider three update operationsdn

1. insert(k, t): insert a node with ke and information tag;

For example, consider a binary tree at time 1 as shown in Fig-
ure la. Attime 2, key 30 is deleted, and the tree changes to Fig
ure 1b. The corresponding persistent tree is demonstratBdy+
ure 1c. Each pointer is associated with its creatiorestampnote
that a timestamp is stored with an edge, as opposed to thenafo
tion tag in a node). The purpose of such timestamps is toifglent
the ephemeral binary tree of a specific version. For exanasle,
sume that we want to single out, from the tree in Figure 1c, the
nodes of the ephemeral tree at time 2. Although n2@é&as two
right pointers, no ambiguity can be caused: clearly, thecamey-
ing timestamp 2 belongs to the tree at time 2.

Fod o &> d b

(a) Ephemeral tree attime 1 (b) Ephemeral tree at time 2

pointer’s timestamp
m”

(c) Persistent tree
Figure 1: lllustration of the persistent binary tree

As shown in [8], a persistent tree occupi@$N) space, where
N is the total number of updates (i.&nsert delete and modify)
in history. In other words, each update incurs oglyl) space.
Finally, note that the persistence technique fsamework That
is, given a sequence of updates on a traditional binaryfrethe
corresponding persistent trgé can be created by standard algo-
rithms [3, 8]. Hence, we can focus on explaining how to update
itself, without worrying about the technical details of m@ining
TP (including its edges’ timestamps).

3.2 High-level rationales and challenges

The proposed technique is motivated by the fact that a binary
tree can be used to query exact quantiles efficiently. Tatilue,
assume that the datasBtconsists of 10 integers: 10, 20, ..., 100.
Figure 2 shows a binary tree on these values. Each natgries
anr-counter(as the information tag of) that equals the number
of values in the right subtree of. For example, the-counter of
the root is6 since its right subtree has 6 values 50, 60, ..., 100.

The binary tree allows us to find any exagtguantile by ac-
cessingat mosta single path from the root to a leaf. For instance,
assumep = 1/2, namely, thep-quantile is thep| D| = 5-th great-
est item inD. We can find such an item as follows. At any time,
our algorithm maintaing:.:,:, which intuitively is the number of
items inD that are confirmed to be greater than the node being pro-
cessed. This value is increased whenever we access thkildfot
a node. Initially;r::a; = 0 and the first node visited is the root 40.
Its r-counter 6 indicates that the result item (i.e., the 5-tlatgst
in D) must lie in the root’s right subtree. Hence, we accessgts ri

@ﬂ

0]

Figure 2: Using a binary tree to query quantiles

907

child 80. Ther-counter 2 of node 80 shows that the result item is
in its left subtree. Before descending, however, we in@eas.;

by 2+ 1 = 3, to indicate tha8 items are definitely greater than the
node 60 we are about to process. Specifically2tbemes from the
r-counter of 80, and thé refers to node 80 itself. Now, we visit
node 60, and obtain its-counter 1. Combined with;,tq; = 3, it

is clear that exactly 4 items i are greater than 60. Therefore, the
algorithm returns 60 and terminates.

Extending the above idea, we could maintain such a binaey tre
on every snapshot dd in history, which would enablexactquan-
tile queries on any snapshot. All these trees, however,neeu-
pensive space, but since our goatigpproximate quantile search,
the space consumption can be reduced by permitting seypies t
of imprecision in each tree. First, it is not necessary t@tma
node for every item inD, but instead, multiple items can be col-
lectively represented by one node, which corresponds toterval
in the data domain. Second, theounters do not have to be fully
accurate. Third, as opposed to using the ekB¢tin the above al-
gorithm, we can work with an approximat®|, to avoid keeping
track of the exact size of every past snapshabofThe challenge,
however, is to develop all the above rationales into a caeateuc-
ture that can guaranteeapproximate quantiles, and at the same
time, consume small space.

3.3 The structure and its query algorithm

This subsection will formally discuss the proposed striecand
its query algorithm. Denote b the data domain. As before, let
D(3) be thei-th version ofD (i.e., the snapshot ab after thei-
th update), andvV (z) be the size oD(i), 1 < i < M. H is the
Harmonic mean oV (1), N(2), ..., N(M), as given in Equation 1.
Overview. Our structure is a forest of persistent binary trégs

TF, ... each of which supportsapproximate quantile search in
some versions ab. Specifically:

1. 7P supports queries oP(1) and D(2).

2. Inductively, if7}” covers up to version — 1, then7}”+1 sup-
ports queries on the nett+ [N (v)/2] versions, namely,
Dw),D(v+1),...,Dw+ |N(v)/2)].

The above construction continues until all thé versions ofD
have been covered.

Let T be the total number of persistent trees built.
tion 3.5, we will show thal’ = O(M/H), and each tree occupies
O(2 log® 1) space. Hence, the total space cosd{s’s log” 2).
Structure and properties. Next, we explain the details of each
persistent tre@;”, 1< j <T. Since all7}p have the same struc-
ture, we will drop the subscriptwhen there is no ambiguity. Fur-
thermore, ifD(v) is the first version ofD covered by7?, we say
thatv is theinitial versionof 77.

As explained in Section 3.1, a persistent binary tree cannbe u
derstood as a set of ephemeral binary trees. Asjor it cap-
tures1l + | N(v)/2] ephemeral trees, that ig,(:) for v < i <

In Sec-

v+ | N(v)/2], wherev is the initial version of/ ?. Each7 (7) is
used to answer queries on th¢h versionD(4) of D. It is sim-
ilar to the binary tree in Figure 2, but permits some impriecis
(mentioned in Section 3.2). Specifically:

e The keyk,, of each node: in 7 () is an interval in the data
domainD, such that the keys of all nodes (i) constitute
a disjoint partitioning ofD. 7 (¢) is built on the natural or-
dering of these intervals.

e Each node: carries an information tag, = (cn,), where

1. ¢y is (approximately) the number of items b(i) cov-
ered by the intervak,, of n. We refer toc,, as thec-
counterof n.

2. ry is (approximately) the number of items bf(:) cov-
ered by the intervals in thigght subtree of.. Itis called
the r-counterof n. If n does not have a right chilet,,
must be 0.

e The root7n of 7(i) has an extra information tag L L,
which is (approximately) the siz&(i) of D(¢). We refer
to ALL; as theAL L-counterof 7.

Furthermore, four properties are ensured/d):

P1: There areD(L log 1) node$ in 7'(), whose height is there-
fore at most:

h = alog(1/e¢) 3)
for a properly chosen constaant
P2: ¢, < [B], where
B =¢eN(v)/16 4)
with v being the initial version of ™.
P3: All the c- andr-counters can have errors at most:
E = max{0,B/h — 1}. (5)
In other words, letc;, be the accurate number of items in
D(i) covered by intervat,,, and letr;, be the accurate num-
ber of items inD (%) covered by the intervals in the right sub-
tree ofn. Then,|c, — c;,| < Eand|r, —r;| < E.
P4: For the rootn, ALL; can have an error at mosiV (v) /4,

namely,|/ALL; — N(7)| < eN(v)/4.

Example 1Next, we give an example ephemeral binary t7eg),
assumingB = 120 andF = 19. Since the value of is not impor-
tant, we abbreviatg () as7, andD(:) asD.

Recall that the key of each node‘nis an interval, and the keys
of all nodes in7 partition the data domaib. Figure 3a shows the
right-most few intervalé: , k2, ..., ks indexed by7 (these intervals
are the “largest" elements in). The number below each interval
indicates how many items @b are covered by the interval (e.gs,
covers 105 items).

Figure 3b demonstrates partdf Observe that the nodes’ coun-
ters are not all accurate, but their errors are at niost= 19.
Consider, for example, the root; its interval covers 105 items,
so itsc-counter 120 has an error of 15. On the other handy its
counter 600 has an error of 14. To see this, notice that thsroo

2We can reduce the number of nodesTiii) to O(1/e), using a
somewhat more complex construction algorithm than the oee p
sented later. Details are left to the full paper.

right subtree has 5 intervals;, ks, ..., ks. They cover totally
1304120+ ...+ 139 = 614 items (Figure 3a), which is 14 greater
than the root's"-counter. Finally, note that the errors of counters
can be either positive or negative. O

domain D k1 k2 k3 k4 k5 k6
[(——c—— | | I I 5]
other intervals 105 130 120 115110 139

(a) Number of items oD covered by each interval

algorithm historical-quantile (¢, q)
/* find an e-approximatep-quantile in versiorD(q) */

1. T =the ephemeral binary tree fé¥(q)

2. A= ¢ ALL;, wheren is the root of T
3. Totatl =0;n=1n

4. while (true)

5. If Ttotal + Tn S A S Ttotal + Cn + T'n then
6. return the starting value of,,

7. else ifA < 7¢otar + 7n then

8. n = the right child ofn

9. else

10. Ttotal = Ttotal T Cn + Tn

11. if n has a left child

12. n = the left child ofn

13. else returnthe starting value of,,

AL 1500
nl@ c 120
/ 71600
c 120
n
5@ r 120
left subtree of k
¢ 1120
/@r 120 r 0
c 120 ‘ c 120
n n
Z@r 0 4 0

(b) Ephemeral binary treg
Figure 3: The structure of an ephemeral binary tree

Query algorithm. Before explaining how to build our structure,
let us first give the algorithm for finding anapproximate histor-
ical quantile, as it will clarify many rationales behind alesign.
Assume that a query requests eapproximatep-quantile in ver-
sion D(q). We answer it using the ephemeral binary tieg) on
D(q). LetA = ¢ - ALL;, where is the root of 7 (g).

Our algorithm accesses at most a single patff @f). It main-
tains a valuer;.:q;, Which equals the sum of the andr-counters
of every node where we descended to its left child. Initjally
riotal = 0, and the first node visited is the root. In general, after
loading a node:, we proceed differently depending on the compar-
ison between\ and the rang€riotar + 7, Ttotal + cn + rnl:

1. f riotar + ™n < X < Piotal + Cn + Tn, then terminate by
returning the starting value of the k&y of n (remember that
kr, is an interval).

. X < 7riotar + Tn, recursively visit the right child of.

. Otherwise (i.e.A > Tiotal + Cn + 72), first increaser;otq;
by ¢, + r», and then recursively visit the left child ef If n
does not have a left child, terminate by returning the stgrti
value ofk,.

The query algorithm is formally presented in Figure 4.

Example 2.To demonstrate the algorithm, assume that a query re-
quests thg4/15)-quantile in the version oD in Figure 3a. We
answer it with the tre€/” in Figure 3b. The value ofA equals
1;451500 = 400, where 1500 is thel LL counter of the root.

At the beginning,rota; = 0, and the algorithm starts from the
rootni. Sinceriotar + mn, = 600 is greater tham = 400, we
descend to the right childs of n1, without changing-:ota:. This
time, A is greater tham,o¢q1+Cng +7n; = 04+120+120 = 240, we
firstincrease;otar by cny +7n; = 240, and then, visit the left child
ng of ns. Now,) falls betweenr;oiq; + rns = 240 + 120 = 360
andriotal + Cng + rny = 240 + 120 4+ 120 = 480. Hence, the
algorithm terminates by returning the first value in the didaain
D that is covered by the kel of ns. 0O

Figure 4: Algorithm for finding historical quantiles

We now establish the correctness of our algorithm:

LEMMA 5. When Properties?2, P3 and P4 hold, the above
algorithm correctly finds am-approximatep-quantile.

PROOF We discuss onlyf > 0 because the error-free case
E = 0 is trivial. Letu be the value returned by our algorithm.
Denote byz the number of items in the queried versiti{q) that
are greater than or equal to Let \' = ¢N(q). To prove the
lemma, we must show thatcan differ from)’ by at most N (q).

Let 7(¢) be the ephemeral binary tree d»(q). Recall that
T (q) is captured by a persistent binary tfE&. Letv be the initial
version of 7P. SinceD has incurred at mostN (v)/2] updates
between versions andg, it holds thatN(q) > N(v)/2. Next, we
will show [z—X'| < eN(v)/2, which willimply |[z—\'| < eN(q).

Consider the\ = ¢- ALL; in our query algorithm. By Property

P4, ALL; differs from N(q) by at moste N (v)/4. This means
that A and \’ can also differ by at mostN (v)/4, regardless of
¢. Hence, to provér — X'| < eN(v)/2, it suffices to showz —
Al < eN(v)/4. We distinguish three cases, depending on hde/
returned (according to the pseudo-code of Figure 4) anditsrete
value. In all cases, denote Bythe set of nodes ifi (¢) visited by
our algorithm.

Case 1:u is returned by Line 6First, notice that if all the- and
c-counters of the nodes aR are fully accurate, them can differ
from X by at most[B] (Equation 4) due to Properti.. Now, let
us account for the errors of the counters aldig The errors of
each node orP can increase the difference betweeand\ by at
most2FE due to Property?3. SinceP has at mosh nodes, the
total difference accumulated is at mo#t] + 2Eh < eN(v) /4.

Case 2:u is returned by Line 13, and is the smallest value in the
data domairD. Soxz = N(q), and P involves the at most nodes
on the left-most path of (¢). Furthermore \ must be greater
than the final valugy of r:,:,; When the algorithm finishes. Note
that if there is no error in the- andr-counters of those nodeg,
ought to be exactlyV (¢). As each counter may have an erronf
after accumulating all errorg, may differ from N (g) by at most
2hE < eN(v)/8. Therefore A must be at leasW(q) — eN(v)/8.
On the other hand) cannot exceed\LL; < N(q) + eN(v)/4.
Soinany casér — A\| < eN(v)/4.

Case 3:u is returned by Line 13, but is not the smallest valu®in
Then, there is at least one node where the algorithm visgatyht
child. Denote byn' the lowestsuch node inP, and byS the set
of nodes inP that are below:’. Also, letn be the leaf node .

Finally, lety’ be the value of,:.; Whenn’ was being processed
at Line 5 and, as in Case 2 be the final value of;otq:.

We will bound the difference betweenand\ by relating them
toy. First, asu is returned by Line 13\ must be greater than On
the other hand, since the algorithm descended into the cigld
of n, A must be lower thaw’ + r,,-, wherer,,, is ther-counter of
n’. Note thaty — 3’ equals the sum of the andr-counters of all
the nodes inS. The sum should be exactly, if all counters are
accurate, and can differ from),, by at mos2hE < eN(v)/8 if
errors are accounted for. Thus;-y' > r,» —eN(v)/8. The above
analysis indicateg < A < y + eN(v)/8. Another crucial fact is
that, if no counter has error, thanequals the sum of the andr-
counters of all nodes oR, which is exactlyy. Hence, the counters’
errors can make differ from y by at most2hE < eN(v)/8. It
therefore follows thatr — A\| < eN(v)/4. [

3.4 Construction algorithm

We are ready to explain how to build a persistent binary tree
TP. As before, letD(v) be the first version oD covered by7?,
i.e., TP captures the ephemeral binary trgéi) of D(i) for each
v<i<wv+|[NW)/2].

As mentioned in Section 3.1, to describe the constructioa of
persistence tree, it suffices to elaborate the list of ugdate.,in-
sert, delete andmodify) on an ordinary binary tree. Hence, to de-
scribe7?, we will explain the updates on the following binary tree
T. The initial 7 is the ephemeral tre@ (v) on D(v). For ev-
ery subsequent update (i.e., an insertion or a deletion) ofi is
maintained accordingly, so that the curr@ntalways corresponds
to 7 (v + ¢), where: is the number of updates ab that have
been processed since versiarNext, we give the initialization and
maintenance algorithms &f.

Initialization. The initial 7 = 7 (v) is built as follows. We par-
tition the data domaiid into several intervals, each covering]
(Equation 4) items of the curreifi?, except perhaps the last inter-
val. In this way, roughlyN(v)/B = 16/¢ intervals are obtained.
T simply indexes all such intervals. All countersjnare set accu-
rately (including the=- andr-counters of each node, as well as the
ALL-counter of the root).

Maintenance.Given a noden in 7, denote bys,, the set of items
in D that are covered by the key, of n. As D is updated with in-
sertions and deletions;, undergoes changes, too. At all times, for
eachn, we maintainS,, and the accurate values, r;, of counters
cn, Tn, respectively. Precisely;, = |S,| andr;, equals the sum of
|S,s | of all nodesn’ in the right subtree of. in 7. Note thatS,,,
¢y, andr;, are needed only for structure construction, and do not
need to be stored in our structure.

T is updated only when any counter of a nadencurs error
higher thanF (Equation 5). There are 4 differeavents

E1l: |r, — 7| > E. In this case, we reset thecounter ofn
accurately. Formally, we perform an update operation

modify(n, t)

on 7, wheret = (cn,r;) is the new information tag of.
Note that the-counter ofn remains unchanged.

E2: ¢, — ¢, > E. Namely,c, is greater than the accurate value
by more thanE. The event is dealt with by resettirgpth
counters ofn with an operation oV : modify(n, t), where
t=(cp,Tn)-

E3: ¢}, — ¢, > E. Thatis,c, is lower than the accurate value

by more thanE. We create two nodes, andns by splitting

domain D

other intervals 105 130 120 115110

splits into

ki ky ks Ky

[————]

k7 kg
— —

70 70

(a) Split of ks in an EventE'3

AL 1500
”11@ c|120
/ 1600
c 120
n
5@ 71140

left subtree of ki

c| 70
s c]120 ns@
/@ 120 r| 0
c|120 ‘ ¢ 120 c| 70
n n n
2 () |2y (k) (kg

rl 0
(b) The binary treg” after update
Figure 5: Updating an ephemeral binary tree

~

Sy, evenly (i.e., sort the items of,, in descending order; then
Sn, gets the first half of the sorted list, ais¢l, gets the other
half). Then, 3 updates are performedn

deletén), insert(n1, t1), andinsert(ns, t2)

where tagst: = (cp,,7mn,) andtz = (c;,,mn,). Fi-
nally, the 3 operations may alter the right pointers of some
nodes. For each such nod§g reset itsr-pointer accurately
(without affecting itsc-pointer) with modify(n’,¢'), where
t' = (cor, 7).
E4: |ALL, — |D|| > eN(v)/4. In this eventy is the rootn of
T. We handle the event by accurately resettibhgL; and
r4, Without changing:,. Specifically, this is achieved with
an operatiormodify(#, £, | D|), wheref = (ca, %), and|D|
is the new value oAL L.

Example 3. Next we illustrate our maintenance algorithm with
an example, focusing on Eveiit3, because the handling of the
other events involves only simptaodifyoperations. In particular,
we will continue Example 1, where Figure 3a shows the intsrva
(a.k.a. keys) of the nodes 1R, and Figure 3b gives the structure of
T in detail. Also, recall thaf? = 19.

Now assume that a new value is insertedlinand this value
falls in ks, which now covers 140 items (as in Figure Bacovered
139 items previously). As a result, tkecounter 120 ofig incurs
a negative error of -20. Since the (absolute value of theyrasr
higher thanE' = 19, an EventE3 is generated. To handle the
event, we first spliks into intervalsk, andks (see Figure 5a), each
of which covers 70 items, namely, half as manyasThen, node
ne is deleted fronf/", while n; andns are inserted. The resulting
structure is presented in Figure 5b. The counters-ondns are
shaded to indicate that they are newly (accurately) seb stieded
is the r-counter ofns, which needs to be precisely reset because
the right child ofns has changed (fromg to ng). Note that the
c-counter ofns is not modified. 0O

Now we verify that our construction algorithm guaranteespPr
ertiesP1-P4.

LEMMA 6. PropertiesP1-P4 hold on any ephemeral binary
tree7.

PROOF This is obvious forP3 and P4, as they are explicitly
ensured by EventE'1-E4. As for P2, it trivially holds whenT is
initiated. After that, the-count of an existing node can be modified
only in EventE2, which, however, cannot violat®2 because it
decreases the count. Finally, when a new node is creatediit a s
in EventE3, its c-count can be at mo$f B] + E + 1)/2 < [B].

Next, we will validateP1 by showing that7 can have at most
O(2log %) nodes. We discuss onlig > 0 (the caseE = 0 is
trivial). When 7 is initiated, it has?(1/¢) nodes. Then, a new
node can be created only in Evei8. SinceD must incur at least
[E updates to generate @8, and sinceJ is maintained only for
| N(v)/2] updates orD, T can have at mosP(< + %) =
O(h/e) nodes. Solving: = O(log(h/e)) we geth = O(log 1).
So7 can have at mosP(h/e) = O(Llog 1) nodes. O

3.5 Complexity analysis

We will first show that our structure requires at most
O(% log? %) space, and then prove that our query algorithm takes
O(log % +log %) time. Here,M is the total number of updates on
D in history, andH (Equation 1) is the Harmonic mean 8f(1),
N(2), ...,N(M), with N (3) being the size of theth versionD (%)
of D,1<¢< M.

Space costRecall that our structure consistsBfersistent binary
trees7?, 77, ..., TF#. We will bound the space of eadjp, 1<
j < T, andT separately in two lemmas.

LEMMA 7. Each7P,1 < j < T, requiresO(+ log” 1) space.

PROOF As the same analysis is used for @f’, we drop the
subscriptj. Assume thaD(v) is the first version oD covered by
TP. In other words,7? supports queries o (v), D(v + 1), ...,
D(v + | N(v)/2]). Namely, the underlying binary trég of 77 is
maintained wherD evolves fromD(v) to D(v 4+ | N(v)/2]). As
mentioned in Section 3.1, the spaceTof is linear to the number
of updates orv .

Let z, y, andz be the numbers dhsert, delete andmodifyop-
erations orT, respectively. Next, we will show that+ y + z =
O(%1og” 1). Infact,z = O(2 log 1) has already been established
in the proof of Lemma 6. Since a deletion is always accompinie
by two insertions (Eveng3), it follows thaty = O(%1log 1). So
it suffices to prover = O(% log? 1).

A modifyoperation may be performed in all Everiig- E4. We
do not need to worry, however, about those due to EEntThis is
because the number of right-pointer changes in a binary(¢rge
ared-black tree) is bounded Bz + y), as argued in [8]. Each of
E1, E2 andE4 issuegD(1) modifyoperations. Itis easy to see that
a new Eventr4 can happen only after at ledstV (v) /4] updates
on D since the last EvenE'4. Since totally| N(v)/2] updates
occur onD during the versions covered By, EventE4 happens
at mostO(1/¢) times, thus generating onty(1/¢) modify.

It remains to analyze Event&1l and £2. We focus on only
E1 because the analysis &2 is similar. EventE1 is due to the
changes of--counters. The-counter of a node: in 7 can have
its error increased by 1, only if (i) a value b is inserted/deleted,
and (i) the value falls in the kek,, of n (remember thak, is an
interval in the data domain). Hence,may trigger an Event'l
only after[E'| updates orD since the creation of. On the other
hand, each inserted/deleted value ip may fall in the keys (i.e.,
intervals) ofO(log) nodes on a single path ifi. It follows that

the total number of Ever1’s is bounded byO (X222 Jog 1) =
O(log®l). O

LEMMA 8. T =O(M/H).

ProoFr Definev(j), 1 < j < T, be the first versiorD(v)
covered by the persistent trérf . By our construction described at
the beginning of Section 3.3(1) = 1, and forj > 1:

v(j + 1) = min{M,v(j) + [N(v(5))/2] + 1}.

For notational convenience, definél’ + 1) = M + 1.

Consider any version € [v(j),v(j + 1) — 1]. SinceD has
incurred at most NV (v(5))/2| updates between version§;) and
1, it holds thatV (i) < 3N (v(j))/2. With this, we have:

T v(i+1)—1
J=1 i=v(j)
v(j+1)—1

1
N (i)

Y

Hence, M/H
O(M/H). O

It thus follows from the above lemmas that our structure pisi
O(2 log® 1) space.
Query time. The analysis of query time is trivial. Given a query,
we can find the persistent trge” that covers the queried version
1 in O(log T') time. After that, by the same argument in [8], the
ephemeral binary tre@ (i) in 77 can be identified irO(log 1)
time. Then, the query algorithm terminates after accessisiggle
path of 7(i) in O(log 1) time. Hence, the overall query cost is
O(log T +log 1) = O(log X + log).
Remark. The above results can be summarized as:

THEOREM 3. Given a sequence d¥f/ updates on an initially
empty D, there is a structure that occupi@(% log? %) space,
and finds anye-approximate historical quantile irO(log% +
log) time.

As a corollary, if all the updates o are insertions (so
H ©(M/log M)), the space and query costs become
O(2 log® L1log M) andO(log 1 + loglog M), respectively. Fi-
nally, it is worth mentioning that our structure can be beffi-
ciently in O(M log(eM) log %) time. Details will appear in the
full paper.

3.6 An alternative simple solution

We close the section by pointing out an alternative striediome-
approximate historical quantile search, which consufaeg}g %)
space. Although this is higher than the space complexityha-T
orem 3, the structure has the advantage of being very simple t
implement. The idea is to periodically extra@{1/¢) items, and
use them to answer queries Bxe N (v)) versions ofD, wherev
is the versionD(v) from which the set is extracted.

item in D(1). In general, if setS; covers up to versiom — 1, we
build S;+1 as follows:

o If N(v) < 4/e, Sit1 simply includes all the items i (v), 1t

and supports (queries on) only versian

0.1f-

gSpacecost(megabyt

e Otherwise,S;+1 contains thg ke N (v)/4]|-th greatest itemsg o
in D(v) for k = 1,2,...,[4/€]. Siy1 supports versions,
v+1,..,v+ |eN(v)/4].

In any case, fofS;+1, we also store avalug L L; 1, which equals
N (v). Furthermore, every item ifi; 1 keeps its rank irD(v).

Given ane-approximatep-quantile query on versiogq, we iden-
tify the setS; coveringq, and return the item in S; whose asso-
ciated rank is the closest t8ALL; from above. If such an item
is not found (i.e.p ALL; exceeds the ranks of all items #), the
smallest value of the data domdinis returned. It can be verified
thatu is ane-approximatep-quantile at version.

4. EXPERIMENTS

In this section, we evaluate the proposed solutions witlegxp
ments. Section 4.1 first clarifies the competing methods amd h
they will be compared. Then, Section 4.2 explores their atar
teristics using synthetic data. Finally, Section 4.3 ex@sitheir
usefulness in a real networking scenario.

4.1 Competitors and metrics

In the sequel, we refer to our main method (developed in Sec-
tions 3.2-3.5) apersistent quantile fore¢PQF). Since no previous
solution is available foe-approximate historical quantile search,
we comparePQF with Si npl e, which is the approach presented
in Section 3.6. Recall that, althou@i npl e has a higher space
complexity thanPQF, it is much simpler to implement. Hence, a
chief objective of the experiments is to identify when it paff to
apply PQF.

PQF andSi npl e aresynopsis structure§ust like histograms)
that reside in main memory. Both of them answer a quantileyque
in negligible time (less than is). Therefore, we will assess (i)
their space overhead, and (ii) the precision of their quesylts.

In particular, to measure the precision of a structure, wpleyna

workloadthat consists of 100 queries. Each query has two parame-

ters: the value of, and the version queried. Thep of each query
is randomly selected ifD, 1]. Furthermore, the versions of the 100
queries are placed evenly throughout the history. Thahisi-th

(1 <4 < 100) query inquires about thgiM /100 |-th version of
the dataset, wher®{ is the total number of updates in history. The

0.00625 0.0125 0.025 0.05 0.1
&

O PQF
O Simple

) 11

2 4 8 16

(a) Space v (b) Space vsp

Figure 6: Space comparison
error O PQF A Simple

“ A A 28 AN DAD A
Afm% AAA&AM% g A&AA@AAAA A; AA;AAZAA a L e
0.01 bé%——o—e—ﬁow——gy—%ﬁw 250 sawdo.

&, © %0%0 A OROAG o R L ONCy o 1
O 00 s 154 o o «° ® o >
0.001} -0 o0 S NAR M. S S o

0.1

0.0001

0.0000% : : : :
0.2 0.4 0.6 0.8 1
number of updates (million)

Figure 7: Error vs. the number of updates

and a Gaussian distribution. Specifically, at the first wersthe
dataset has 100k items uniformly distributed in the dom@imen,

1 million updates are generated according to several riHast,
each update ip times more likely to be an insertion than a dele-
tion, wherep is a parameter callethsertion-deletion ratio As a
special case, ib = 1, then roughly an equal number of insertions
and deletions are created. Second, a deletion always rdpdem
moves an existing item of the dataset. Third, if an inserippears

in the first half million updates, the inserted value follow&aus-
sian distribution with mea#y /2 and standard deviatidii (a value
outside the domain is discarded and re-generated). On ke ot
hand, for an insertion that is in the second half million oflafes,
the inserted value is uniformly distributed in the domairec&d-
ing all the updates of a dataset requires storage of aroundga m
bytes, regardless op.

The first experiment compares the space consumptidPQef
andSi npl e as a function ok. We fix p to 1, and double from
().1/24 to0.1. As shown in Figure 6&RQF scales withe much bet-
ter thanSi npl e. In particular, even for a ting = 0.00625, PQF
requires only slightly more than 1 mega bytes, wher@iaspl e

error of a query is calculated as the difference between the actual yemands over 50 mega bytes (i.e., 6 times more than captiting

rank (of the returned result) and the requested rank, itioaldo
the size of the queried version of the dataset. Specificadlyume
that the queried version has items, andA of them are greater
than or equal to the query result; then, the error equals

|A—¢N|/N.

This is a standard error definition in the literature (seeek@mple,
[5, 9]). Sometimes we will report the errors of all queriesedily.
When this is not convenient, we report both therage errorand
maximum erroiof all the queries in a workload.

4.2 Performance characteristics

This subsection studies the general behavior PGF and
Si npl e. For this purpose, we generated synthetic data in a do-
main from 1 toU = 23°. The update sequence of each dataset ex-
hibits a transition of distribution involving the uniformstribution

the updates precisely). This phenomenon confirms the rigcebs
designing a method whose space cost grows slower gbmse
decreases.

Next, we study the impact gf on the space overhead, by set-
ting ¢ = 0.1/2% and doublingp from 1 to 16. Recall thap is the
ratio between the numbers of insertions and deletions. &halts
are illustrated in Figure 6b. For a largerSi npl e requires less
space because the Harmonic mdar(Equation 1) grows withp
(remember that the space complexitySfnpl e is O(%)). Al-
though the space complexity B is also inversely proportional
to H, its space cost actually increased. This is because a higher
also necessitates more counter updateBQR, which cancels the
benefits of a smalleH for the range of examined.

SEach update requires two integers: the inserted value anhth
sertion time.

| average erro

0.01
0.001
& PQF A Simple
0.0001——— : ‘
816 32 64 128

space (10k bytes)

(a) Error vs. space
average erro
0.1

<& PQF A Simple

0.01} -t T

0.001

12 4 8 16
P

(b) Error vs.p
Figure 8: Comparison of average and maximum errors

actual ------ PQF

port frequencies
A0p -
/LT 0.1-quantile
K R R T
25 e
P Y, S,Sk€eeSeSe——e-
1) S = £ —
100~ S = 0.2-quantile
g ”:f’:;ifjjii;:;lllw""’i? 0.5-quantile

0 0.5 1 15 2 25 3

number of updates (million)

Figure 9: Exact and approximate quantiles (Abilene traffic)

O PQF A Simple
0o7émr ©P QF 4 Smple
0.06) - A A e
005 . P S-S N I Y
. A A A
0.04L. A & @8
A O anp &2 A A

,,,,,,,,,,,,,,,,,,,,,,,,,,,, N S
0.03 AAOAA Bon o o 290 % o0b ool
0.02%08 0S4

<o
0.01] %,g,éog,%,%,QQO,,,A%@%, 0 oo -
A

0 15306 0%, < o® %,
0 0.5 1 15 2 25 3
number of updates (million)
(a) 250k bytes of storage
error <& PQF A Simple
[P
0.01pant2 £08%00 & st o, £ Lt @&A%ﬁﬁﬁf
A AAAAA}. A M A A AAX
0.00 f%&ﬁ Y %@Ww&& R A Foua e, ‘&3%9
o
0.0001--— - o> O o ,,<,>,,f?,>§>,<,> ,,,,,,, o
o
©
0.0000% -~y
0.000001 w \ ‘ s ‘ ‘
0 0.5 1 15 2 25 3

number of updates (million)

(b) 4 mega bytes of storage
Figure 10: Error vs. the number of updates (Abilene)

insertion-deletion rati@ on precision. For this purpose, we fix the
space of each method to 320k bytes, and measure their avardge
maximum errors on the datasets wjith= 1, 2, ..., 16, respectively.

As shown in Figure 8b, when there are more insertions, the ac-
curacy ofPQF (Si npl e) is adversely (positively) affected, which

is consistent with the result of Figure 6b. NevertheldX3; still
substantially outperformSi npl e for all values ofp.

4.3 Performance on real data

In this subsection, we evaluaRQF andSi npl e in a real net-
work monitoring scenario. The dataset was obtained from the
authors of [12], and consists of over 1.6 million packetsspas

Now we proceed to evaluate the precision of each method. The through a router in thAbilene backbone netwarkor each packet,

next experiment employs the dataset witk 1. Both methods are
allowed storage of 80k bytes, which is around 1% of the space f
recording all the updates. Figure 7 gives the errors of afigs in a
workload, as a function of their versions (equivalentlg ttumber
of updates already processed when the query is issuedeNbtit,
for most queries, the error ¢1QF is lower than that ofSi npl e
by a wide margin. This is not surprising because the lowecepa
complexity of PQF allows it to choose a smallerthanSi npl e
under the same space budget. In particular, in Figure 7¢ thfe
PQF andSi npl eare 0.05 and 0.18, respectively. Observe that, for
all queries, the actual errors of each method are significhetow
the theoretical upper bound

Still using the dataset with = 1, we increase the space limit

the dataset contains the timestamp the packet is recefsesuirce
and destination IPs, the ports at the source and destinatimhso
on. We focused on monitoring the usage distribution ofdasti-
nation ports Specifically, the arrival of a packet with (destination)
portp increases th&equencyof p by 1. At any snapshot, the goal
is to enable quantile retrieval on the frequencies of altgpoFor
this purpose, each packet with pprgenerates a deletion followed
by an insertion: we first remove the previous frequency,odnd
then the add its new, incremented, frequency. The total eurob
updates is therefore over 3.2 million. Each port is an intégéhe
domain(1, 65535]. There are totally53940 distinct (destination)
ports in the entire dataset. Storing all the updates demanmisd
25 mega bytes.

of each method, and measure their average and maximum errors Port usage distribution is useful for detecting abnornsffitr in

(of all the queries in a workload), respectively. Figure 3atp
the average error as a function of the space budget. Eachtedpo
value has a bar on top to indicate the corresponding maximum e
ror. The precision oPQF improves dramatically when more space
is available, and is better than that &f npl e by a factor more
than an order of magnitude. Finally, we study the influencthef

the network. The distribution of normal traffic should be Hiig
skewed because some ports, such as 80 for the HTTP protocol,
should be used much more frequently than others. The thiige so
lines in Figure 9 (in the top-down order) plot respectivédig pre-

cise 0.1-, 0.2-, and 0.5-quantiles of the Abilene datasafasction

of the number of updates. The dotted lines represent the-corr

average erro

T
0.01
0.001
O PQF A Simple
0.000%+——— :)
0.250.5 1 2 4

space (mega bytes)

Figure 11: Average and maximum errors vs. space (Abilene)

sponding approximate quantiles retrieved frB@F, when it con-

sumes 1 mega bytes of space. Both the exact and approximate

quantiles clearly indicate a skewed distribution. Alsoelse that
thewholefrequency distribution gradually shifts upwards, which is
a tough scenario for quantile computation as mentioned]in [9
Next, we compare the precision BfF and Si npl e using a
workload of queries (that inquire about versions scatténealigh-
out the history). Figure 10a (10b) shows the errors of alligse

when each method is allowed to use 250k (4 mega) bytes of space

which accounts for around 1% (16%) of the storage neededpto ca
ture all updates exactlPQF is highly accurate in all queries, and
outperformsSi npl e significantly (note that the error axis in Fig-
ure 10b is in log scale). The last experiment examines theracg

of the two methods as the space budget doubles from 250k bytes
to 4 mega bytes. Figure 11 presents each method's average and

maximum errors of all the queries in a workload (in the sansafa
ion as in Figure 8). The results confirm our earlier findingsfr
Figure 8a.

Summarizing all the experiments, a few observations can be

made regarding the performanceR{®F andSi npl e in practice.
First, for obtaining highly accurate results (with errotsttze or-
der of 0.001 or below)PQF must be deployed, because the space
cost ofSi npl e is prohibitive. Second, with space around 1% of
the space of the underlying datade@F achieves an average error
around 0.01. This makd&F a nice choice for query optimization
in temporal databases, where an error of 0.01 is fairly debép
Third, if an application can accept an error between 0.05Ghd

Si npl e will be more appropriate due to its simplicity.

5. CONCLUSIONS AND FUTURE WORK

This paper presented a set of formal results on the problem of
approximate historical quantile retrieval, which has ne¢m stud-
ied previously in spite of its significant importance in gree. Our
first major contribution is to establish a lower bound on thace
consumption of any access method for solving the problem cor
rectly. Besides its theoretical values, our lower boundyasigalso
reveals critical insights into the characteristics of thebpem, in-
cluding the identification of the factors affecting the spaost.
As the second major contribution, we match the lower boumd (u
to only a square-logarithmic factor) by developing a cotecdata
structure to suppor-approximate historical quantile retrieval. Ex-
tensive experiments demonstrate that the proposed tedsare
fairly effective in practice.

This work also creates several open problems that desethefu
investigation. First, it remains unknown whether we carselthe
square-logarithmic gap between the space lower and uppeidso
A promising direction would be to apply a probabilistic apach,
by allowing a method to occasionally fail in answering a quer
Second, it would be natural to extend our results to othéants

of quantile search (such &sased quantilesn [5]). Finally, in this
work, we assume that the data domain can be arbitrarily |dngte
it is interesting to consider historical quantile retrileva a domain
with limited size. In that case, the space complexity mayuie s
stantially improved.

6. REFERENCES

[1] K. Alsabti, S. Ranka, and V. Singh. A one-pass algorittom f
accurately estimating quantiles for disk-resident data. |
VLDB, pages 346—-355, 1997.

[2] A. Arasu and G. S. Manku. Approximate counts and

quantiles over sliding windows. IRODS pages 286—296,

2004.

B. Becker, S. Gschwind, T. Ohler, B. Seeger, and

P. Widmayer. An asymptotically optimal multiversion Bére

VLDB J, 5(4):264-275, 1996.

M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E.

Tarjan. Time bounds for selectiodCSS 7(4):448—-461,

1973.

G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava

Effective computation of biased quantiles over data steeam

In ICDE, pages 20-31, 2005.

G. Cormode and S. Muthukrishnan. An improved data

stream summary: the count-min sketch and its applications.

J. Algorithms 55(1):58-75, 2005.

[7] J. V. den Bercken, B. Seeger, and P. Widmayer. A generic
approach to bulk loading multidimensional index strucsure
In VLDB, pages 406415, 1997.

[8] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan.
Making data structures persisted€SS$ 38(1):86—124, 1989.

[9] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Stissi

How to summarize the universe: Dynamic maintenance of

quantiles. InVLDB, pages 454—465, 2002.

M. Greenwald and S. Khanna. Space-efficient online

computation of quantile summaries. $\GMOD, pages

58-66, 2001.

[11] A. Gupta and F. Zane. Counting inversions in listsSI@DA
pages 253-254, 2003.

[12] A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E. D.
Kolaczyk, and N. Taft. Structural analysis of network traffi
flows. INnSIGMETRICSpages 61-72, 2004.

[13] D. B. Lomet and B. Salzberg. Access methods for
multiversion data. I'8IGMOD, pages 315-324, 1989.

[14] G. S. Manku, S. Rajagopalan, and B. G. Lindsay.
Approximate medians and other quantiles in one pass and
with limited memory. INSIGMOD, pages 426435, 1998.

[15] G. S. Manku, S. Rajagopalan, and B. G. Lindsay. Random
sampling techniques for space efficient online computation
of order statistics of large datasets S-GMOD, pages
251-262, 1999.

[16] J. 1. Munro and M. Paterson. Selection and sorting with
limited storageTheo. Comp. S¢i12:315-323, 1980.

[17] B. Salzberg and V. J. Tsotras. Comparison of accessaudsth
for time-evolving dataACM Comp. Sury.31(2):158-221,
1999.

[18] Y. Tao and D. Papadias. MV3R-tree: A spatio-temporal
access method for timestamp and interval querie¥'LiRB,
pages 431-440, 2001.

[19] D. Zhang, A. Markowetz, V. J. Tsotras, D. Gunopulos, and
B. Seeger. On computing temporal aggregates with range
predicatesTODS 33(2), 2008.

(3]

(4]

(5]

(6]

[10]

