Finding Maximum Degrees

Yufei Tao Cheng Sheng

Chinese University of Hong Kong
{taoyf, csheng}@cse.cuhk.edu.hk

ABSTRACT

An (edge) hidden grapis a graph whose edges are not explicitly

given. Detecting the presence of an edge requires expeedge
probingqueries. We consider themost connected vertgxoblem
on hidden bipartite graphs. Specifically, given a bipaditephG
with independent vertex sef8 and W, the goal is to find the:

in Hidden Bipartite Graphs®

Jianzhong Li

Harbin Institute of Technology
lijzh@hit.edu.cn

1. INTRODUCTION

An (edge) hidden grapts a graph whose edges are not explicitly
available. Detecting the presence of an edge between twicegr
requires performing one, sometimes several, expensivatpes,
each of which is called ardge-probing query In recent years,
learning hidden graph§l8] has attracted considerable attention in

vertices inB with the largest degrees using the minimum number the theory community [4, 7, 11, 18]. The main objective ofritle-

of queries. This problem can be regarded as akteptension of a
semi-join, and is encountered in many applications in jrage.g.,
top-k spatial joinwith arbitrarily complex join predicates).

If B andW haven andm vertices respectively, the number of
queries needed to solve the problemis in the worst case. This,
however, is a pessimistic estimate on how many queries aesne
sary on practical data. In fact, on some easy inputs, thdgmoban
be efficiently settled with onljm +n edges, which is significantly
lower thannm for k < n. The huge difference betweémn + n
andnm makes it interesting to design adaptivealgorithm that is
guaranteed to achieve the best possible performance oniapeit
G. We give such an algorithm, and prove that iiristance opti-
mal among a broad class of solutions. This means tha@rigiG,
our algorithm can perform more queries than the optimalt&wiu
(which is currently unknown) by only a constant factor, whaan
be shown to be at most 2. Extensive experiments demondhiatte t
in practice, the number of queries required by our technigdar
less thamm, and agrees with our theoretical findings very well.

ACM Categories & Subject Descriptors
F.2[Analysis of Algorithms and Problem Complexity]: Miscel-
laneous.

General Terms: Theory

Keywords: Maximum Degree, Bipartite Graph, Competitive Anal-
ysis, Instance Optimality

*Yufei Tao and Cheng Sheng were supported by grants
GRF4161/07, GRF 4173/08, GRF4169/09 from HKRGC, and a

direct grant (2050395) from CUHK. Jianzhong Li was supmbrte

by National Grant Fundamental Research 973 Program of China
(2006CB303000), and Key Program of National Natural S@enc

Foundation of China (60533110).

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SIGMOD’10,June 6-11, 2010, Indianapolis, Indiana, USA.

Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

vant research is to find out whether the graph has a cetaperty,
by issuing the least number of edge-probing queries. Themrnd
neath rationale is that, learning only a property of the brépg.,
whether it is bipartite) is easier than revealing the whaiapg.
Therefore, the number of edges that need to be probed mag-e si
nificantly smaller than the total number of edges that magtexi

As reviewed in Section 2, the existing research on hiddeptgra
is mostly motivated by biological and chemical applicasioifhis
paper focuses on the database context. We considek thest
connected vertexkMCV) problem on hidden bipartite graphs.
Specifically, given a bipartite grapy between two set$3 and
W of vertices, the objective is to find thevertices inB having
the maximum degrees. In Figure 1, for examplehas vertices
{b1,b2,...,ba}, andW is {w1, wa, ..., ws }; then, the IMCV prob-
lem should returbz. Unlike many graph problems, the novel fea-
ture of ktMCV is that the edges af areunknowrinitially, such that
a costly edge-probing query is required to detect the poesefhan
edge. The challenge is to solve the problem using the minimum
number of queries. The problem is encountered in many dsgaba
applications, some of which are discussed below.

by b, b3 by

Figure 1: The IMCV resultis b,

1.1 Motivation

Application 1 (Semi-join aggregation with complex predicates).
ConsiderB andW as relational tables, and the edge-probing query
as a join condition betweeB andW. The result of the&kMCV
problem is thet tuples inB that can be joined with the most tuples
in W, as described by the following pesudo-SQL statement:

SELECTb FROMBDbL, W w

VWHERE [a join predicate about andw]

GROUP BY b
HAVI NG count(x) > the size of theé:-th largest group

Notice that, if we remove the GROUP-BY and HAVING clauses,

the statement becomes a standsenhi-join Hence kMCV can be
regarded as top+ extension of a semi-jojrwhich returns the:
tuples of tableB having the strongest joining power with respect
to another tabléV. Such an extension is useful in many scenarios.
For example, suppose thatis a list of hotels, and¥V is a list of
tour attractions. Setting an edge-probing query to chechthér a
hotelb and an attractiomw are within 1 mile, the above statement is
essentially dop-k spatial join[30], which finds the: hotels whose
1-mile vicinities cover the largest number of attractions.

The join predicate can be rather unfriendly to relationagrgu
optimization. For example, the simple geometric condiiiven
earlier (deciding whethdrandw are within 1 mile) is not well sup-
ported by a DBMS. This is especially true if the “1 mile" refe¢o
theroad networkdistance, in which case evaluating the join pred-
icate may even need to performshortest-pathsearch on a map
(which cannot be supported by [30], since it focuses on Haaln
distances). If effective optimization is impossible, thBNS may
execute the statement by first performing a cartesian ptdukic
tweenB andW, followed by a group-by and selection of the largest
groups. Such a strategy may incur prohibitive cost.

A remedy in the above situation is a fast algorithm forAMCV
problem, which may improve efficiency dramatically by reidigc
the number of join-predicate evaluation. Note that, to bmoin
porated in a relational engine, such an algorithm must bergén
enough to tackleany join predicate as opposed to only special
queries (for this reason, the solutions of [30] are not appate
for DBMS incorporation).

In fact, the concept of semi-join exists not only in relatbn
databases, but is implicit in numerous applications of oéri-
ronments. As detailed below, okiMCV problem finds use in those
applications as well.

Application 2 (frequent patterns). Assume that each vertéxc B
represents a candidate pattern, and each vertext?’ corresponds
to a data item. Given a pattebne B and a data itenw € W, an
edge-probing query detects whetlbegxists inw. In other words,
there is an edge it betweerb andw if b is observed inv. The
kMCYV problem returns thé patterns inB that are most commonly
found in the items of?. In some environments, detecting the pres-
ence of a pattern can be rather expensive, such that thdl@mra
putation time is dominated by the total cost of all queries.

As an example, currently, the pharmaceutical industry leemnb
establishing a novel methodology of discovering new draghed
fragment-based drug discovef32]. This is motivated by the frus-
tration that‘finding a new drug is like playing golf, where the tar-
get is the pin'[22]. The new methodology relieves the frustration
by initiating a drug-searching process fronfragment which is
a basic chemical compound common in the molecular strugture
of drugs. Hence, an important problem is to identify thérag-
ments that are most frequently present in a set of drugs. iJlas
typical kMCV problem, whereB includes all the fragments, and

Application 3 (querying by web service). Today, many websites
provide convenient interfaces to allow the public to qudrgirt
backend databases. Such services have significantly gexteéhe
amount of data that an ordinary user can access, withouhgawi
store locally the gigantic datasets. For instanc&inema Freenet
(www.cinfn.corjy people can input the name of an actor/actress and
the title of a movie; then the website will return (among otime
formation)whetherthe actor/actress played a role in the movie. As
another example, using the APIs@bogle Map a program is able
to obtain the road-network distance between two addresgds (
out requiring their coordinates).

These services can be leveraged to solve MgV problems
in a way we calfuerying by web servicé&or example, assume that
B is a set of actors and actresses, #ds a set of movies. Given
an actor/actresd € B and a moview € W, an edge-probing
query contact€inema Freeneto verify whether appeared iV .
The kMCV result is thek actors/actresses that participated in the
largest number of movies. Similari@oogle Mapcan be employed
to solve thetop-k spatial joinproblem mentioned in Application 1,
without knowing the coordinatesf the hotels and tour attractions
at all. As mentioned earlied3 can be a set of hotels, aid a
set of attractions. Given a hotele B and an attractiom € W,
a query connects t&oogle Mapto check if the distance frorh
to w is within 1 mile. Then, the output dMCYV is the k hotels
that have the most attractions within their 1-mile neigioads.
The performance bottleneck in the above environments itothé
network latency of the queries issued. Once again, minimgige
number of queries should be the aim dfCV algorithm.

1.2 Our main results

The objective of this work is to design a generic algorithmtfe
kMCV problem that can be directly used ablack boxin all the
above applications. If the vertex sdtsandW have sizes andm
respectively, in the worst case, solving the problem dersand
edge-probing queries. Howevenn is a very pessimistic estimate
on how many queries are needed on practical data. As we will se
on certain inputs, the problem can be settled efficientiyhwitly
km + n queries, which is significantly lower tharm for k < n.

The above discussion suggests that it is a wrong directideto
sign aworst-case optimahlgorithm — virtuallyany correct algo-
rithm is worst-case optimal. In fact, the wide spectrum testv
km + n (good case) anlm (worst case) indicates that we should
aim at anadaptivealgorithm, which is guaranteed to achieve the
lowest cost oreveryinput. Intuitively, the cost of the algorithm
ought to be a function of the difficulty of the input. Namelyhen
the input is “easy", the algorithm must perform far less than
queries. As the input’s hardness increases, the cost oflgoe a
rithm is allowed to grow, but only to the extent enough to tatke
additional difficulty.

This paper presents the first study on #CV problem. We

W is the set of drugs under screening. An edge-probing query propose an adaptive algorithm (with the properties desdribar-

checks whether a fragmebte B exists in a drugv € W. Since
molecular structures are graphs, the query essentialtiesasut a
subgraph isomorphism testhich can be very costly. Therefore,
reducing the number of queries is the key to efficiency.

In general, pattern detection is often achieved by evalgdtie
distance between a pattern and a data item: a pattern isleoedi
to exist if the distance is sufficiently small. Some distahaegc-
tions are expensive to evaluate (edynamic time warping23]
and evert, norms inultra-high dimensional spacg&9]). In those
cases, the cost of edge-probing queries will most likely idae
the execution time, justifying the need to minimize suchripse

lier), and prove that it isnstance optimabhmong a broad class of
solutions (to be defined in the next section). Instance aptiyn
[17] requires that, orany data input, our algorithm should be as
fast as the optimal solution (which is currently unknownp, to
only a constant factor. We are able to show that the constaatt i
most 2, regardless of the value fof In practice k is usually very
small (e.g., 10) compared to the sizeof B, such that it can be
regarded as a constant. In this case, we give a strong argtina¢n
our algorithm can be slower than the optimal solution by artliyny
factor of1 + O(1/n).

The rest of the paper is organized as follows. The next gectio
defines the problem and reviews the previous work relatedit®. o

Then, Section 3 explains the preliminary concepts requisedur
discussion. Section 4 explains the details of the proposgat a
rithms, and Section 5 presents a theoretical study of theiiop
mance. Section 6 experimentally evaluates the efficienoyuof
techniques. Finally, Section 7 concludes the paper witmasary
of our findings.

2. PROBLEM AND RELATED WORK

Next, we first expand the discussion in Section 1 to formally
define thek most-connected vertgkMCV) problem. Then, we
review the existing research on the relevant problems.

Problem definition. Let G = (B, W, E) be a bipartite graph,
where the sef of edges are between a sBtof black vertices
and a selV of white vertices GG is ahidden graph meaning that
noneof the edges irE is explicitly given. To find out whether an
edge exists between a vertex B and a vertexv € W, we must
perform anedge-probing query (b, w), which returns a boolean
answeryesor no. The edges of7 that have not been probed are
said to behidden The goal of thekMCV problem is to find thek
black vertices with the largest degrees, by minimizing theber
of queries (equivalently, the number of edges probed).

Two black vertices may have the same degree, namely, a tie. Fo
the sake of fairness, we adopt the policy that the verticesba
tie should receive the same treatment. That is, either tfeeglbre-
ported, or none of them is reported. This means that somstinee
result may have more thanvertices. Formally, denote hjeg(b)
the degree of a black vertéxe B; then, thekMCV result is the
minimalsetR of black vertices satisfying:

1. |R| > k,and
2. deg(b) > deg(t') foranyb € Randy’ € B — R

where|R| denotes the size dR, and B — R is the set difference
betweenB andR.

Denote byn andm the numbers of vertices i3 and W, re-
spectively. Apparently, the number of edgegdrcan range from
0 tonm. The value ofk can be any integer from 1 te. Notice
that, interestinglykMCYV is in fact the same problem as finding the
n — k vertices inB with the smallestdegrees (which are exactly
the vertices inB — R). In practice, users are usually interested in
thetop few(e.g., 10) black vertices with the maximum or minimum
degrees. Therefore, the valueskothat are of higher practical im-
portance are close to either 1 or In the former casek can be
regarded as a constant, namély= O(1), whereas in the latter
casen — k can be regarded as a constant, meakirgn — O(1).
Ideally, a solution to th&MCV problem should be especially effi-
cient in these two extreme cases.

Related work. Although graph databasestave been extensively
studied (see [6] for a recent survey), we are not aware of ewi-p
ous work dealing with th& MCV problem or hidden graphs. Tra-
ditionally, the edges of a graph are given explicitly (eig.anad-
jacency matri¥, so that accessing an edge incurs negligible cost.
In that scenario, it is not expensive to find thevertices with the
largest degrees. The novel feature of &MCV problem is that
detecting an edge is costly, such that the number of eddammo
queries is the key factor deciding the overall executioretim

Learning hidden graphsalso known agraph testing was first
studied by Goldreich et al. [18]. At a high level, given a tedd
graphG, the objective of learning is to eitheonfirmthatG has a
certain property, odenythe existence of such a property@ A
fuzzy answedon't-careis allowed wherG is closeto having such
a property. For example, a property that has been widelyestijd,

11, 18] is whethe(? is bipartite. Adon’t-careanswer is permitted
whenG can be converted to a bipartite graph by adding/removing
only a small number of edges. The learning of other propehaes
also been investigated; see, for example, [4, 5] for a suypmar

In the original setup of [18], an edge-probing query is assiito
detect an edge between only two vertices. In recent yearsrale
authors [2, 7, 10] have considersdper querieseach of which
detects whether a set of vertices induce any edge in the lynder
ing graph. This is motivated by biological and chemical aapl
tions. For example, considerreaction-graph where each vertex
is a chemical, and two vertices are connected if their cpmed-
ing chemicals react with each other. Then, a super query ean b
understood as an experiment of mixing many different chatsjc
and observing if any reaction happens. If yes, it implies #tdeast
two of the chemicals involved react with each other.

Our kMCYV problem differs from thegraph testingformulation
of [18]. Specifically, we are not attempting to verify any gea
property (that is possessed by a class of graphs) as in [isgdd,
we aim at identifying particular vertices in tlggven graph satis-
fying our degree requirements. This is analogous to retriethe
items of a dataset qualifying a query condition, as opposedd-
ognizing which distribution best describes the datasetth&best
of our knowledge, th&kMCV problem has not been addressed in
the literature of graph testing.

Finding the vertex with the maximum degree is a basic oparati
in attacking many classical problems on bipartite graphs. alyo-
rithms can be applied as a building brick in those problemdgeu
the circumstances where detecting the presence of edgeses-e
sive. An important example is the problemrafnimum set cover
(MSC), which has a huge number of applications in practice. |
the context of a bipartite graph between two setandW of ver-
tices, the MSC problem is to compute the minimum suli¥et B
such that every vertex ifi’ is connected to at least one vertex in
B’. The problem is NP-hard but a good approximate solution can
be found by a classical greedy algorithm [14], which recqugelv-
ing multiple IMCV problems. Our techniques can be immedyate
employed.

The concept of instance optimality was introduced by Fagin e
al. [17]. An earlier, similar, concept isompetitive analysifl2?],
whose differences from instance optimality are nicely axpd in
[17]. Instance optimal algorithms have been designed fanyma
other problems, such as manipulating binary search tré&gsdp-
proximating the distance from a point to a curve [8], compgiti
the union/intersection of sorted lists [16], finding the e hull
of polygons [9], to mention just a few. The most recent worktio
knowledge is [1], which proposes instance optimal alganghfor
several computational geometry problems.

Finally, thekMCV problem can be regarded as a variant of the
top-k problem which has been extensively studied in distributed
systems [17], relational databases [21], uncertain de&@§ gnd
so on. However, the solutions in those works are specifica th
own contexts, and cannot be adapted #MCV. Another related
problem in relational databasest@p-k join [20, 24, 26], which
returns the topk tuples from a join with the highestcores The
score of a (joined) tuple is calculated from a monotone fionct
based on the tuple’s attributes. The ranking criteri@iiCV, on
the other hand, are not based on any attribute, but insteapénd
on thejoining powerof a tuple in a participating relation (i.e., it
can be joined with how many tuples from the opposite relation

3. PRELIMINARIES

This section lays down the key concepts that pave the patteto t
technical discussion in the later sections. Specificaleywill first

explain the classes of algorithms considered by our argly$ien,
we will elaborate the concept of instance optimality, faliog the
framework established by Fagin et al. [17].

Algorithm classes.We aim at designing generic algorithms that do
not assume any pre-knowledge of the underlying gi@pn other
words, the algorithm obtains information abdgitonly from the
problem input (i.e., the vertex seBand¥¥), and the results of the
edge-probing queries already performed. To make our dismus
more specific, Figure 2 describes a high-level frameworlafiire

a broad class cfMCV algorithms.

algorithm MCV

1. repeat

2. b = pick-black

3. probe-nextb)

4. until itis safe to return the result

Figure 2: An algorithmic framework

The framework describes two core operations that are pedgdr
repetitively by an algorithm:

pick-black which returns the black vertexon which the algo-
rithm wants to probe a hidden edge, according to the current
status of the algorithm’s execution. Different strategian
make a huge difference. This is the key of the algorithm de-
sign.

probe-nextb), which reveals an edge oéfthat is still hidden at
this time. Specifically, it selects a white vert@xvhose edge
with b has not been probed, and performs a qugtyw).

It would be ideal if we could implememrobe-nexgb) in a way
that canselectivelyprobe an edge that is likely to be present or
absent. This, however, implies that we must know at leastesom
properties about?, such as the correlations between the edges al-
ready probed and the one to be probed next. Since our olgectiv
is to propose a generic algorithm, it appears unjustifiecorf a
specific application by leveraging its properties, sinds will in-
evitably disfavor another application that does not hawh sarop-
erties. Hence, we focus on two “neutral” versionpafbe-nextb):

e RandomizedA randomizedorobe-nextb), as shown in Fig-
ure 3, probes any hidden edgebofiith the same probability.
This is quite reasonable when the algorithm cannot predict
the nature (i.e., present or not) of any hidden edge.

algorithm probe-next(b)

[* for the random-probealgorithm classdran */

1. if b has no more hidden edge

2. return NULL

3. w =arandom vertex ofi” whose edge witlh remains hidden
4. return ¢(b, w)

Figure 3: Randomizedprobe-next(b)

e Deterministic. Assume that then white vertices inlW are
arranged into a sequen¢en , w, ..., wm }. A deterministic
probe-nexth), as shown in Figure 4, probes the next hidden
edge ofb in the sequence. This is a natural choice in scenar-
ios where the data items corresponding to the white vertices
are fetched in a sequential order, for example, bygetenext
function of a search engine [17].

algorithm probe-next(b)

[* for deterministic-probehe algorithm classApgr */

/* assume that the vertices W have been labeled as;, wa, ...
respectively */

1. ¢ =the number of edges éfthat have been probed

2. if i = m then return NULL

3. return ¢(b, wit1)

y Wiy

Figure 4: Deterministic probe-next(b)

Depending on which version girobe-nextb) is adopted, the
algorithmic framework of Figure 2 is specialized into twaad
rithm classes:Aran and Aper. Specifically,Aran, referred to as
the random-probe algorithm classncludes algorithms that apply
the randomized versiondper, the deterministic-probe algorithm
class contains algorithms that apply the deterministic versiim
each class, the algorithms differ in their implementatiofipick-
black As the number of edges that need to be probed camwbe
there argnm)! different probing orders, each corresponding to an
implementation opick-black Hence, the number of possible algo-
rithms is at leastnm)! in both Aran and.Aper.

Instance optimality. In the worst casepm edge-probing queries
are needed to solve the@MCV problem. To prove this, consider an
input G with no edge at all, namely, no black vertex is connected
to any white vertex. As a result, any algorithm must probe the
edge betweerachpair of black and white vertices, before it can
conclude that all black vertices have degree 0. Skippingeaiyg,
say betweem € B andw € W, leaves the risk thdt may have a
degree of 1.

Worst case analysis often incurs the criticism of being @oer-
servative in practice. In our problem, the previous panalgiadi-
cates that the worst-case cost of solviidCV is nm anyway. So
by this yardstick, it does not even make sense to study the- pro
lem, because all algorithms are equally bad. This, howesex,
pessimistic judgment because it is possible to do much ke
the worst case on many inputs.

To make our argument solid, consider an inguivhere one ver-
texb* in B has degreen (i.e., b* has an edge with every vertex
in W), and all the other, — 1 vertices inB have degre® (see
Figure 5). Itis easy to see that the IMCV problem can be solved
by issuing less tham + n queries. Specifically, we can probe
all the edges ob*, and onlyoneedge for every other black vertex
b € B,b # b*. The total number of queriesis +n — 1, but this is
enough to find out that (§* has degreen, and (ii) any other black
vertexb has degreat mostm — 1. Thereforep™ must be the only
vertex in the result.

Figure 5: An easy inputto IMCV

Motivated by this, we turn our attention to designing an algo
rithm that guarantees the best performanceweryinput. Specif-
ically, on difficult inputs that requirevm queries anyway, our al-
gorithm does not achieve any improvement. However, on easie
inputs, our algorithm incurs lower cost, actually so lowtthds
provably as fast as even the optimal algorithm (which resaim
known currently), up to a very small factor.

Next, we formalize the above discussion using the concept of

instance optimalityintroduced by Fagin et al. [17]. This concept
requires an algorithm to be optimal on every data input, arltis
stronger than worst-case optimality. In general,Adbe a class of
algorithms, andD a family of datasets. Denote leyst(A, D) the
cost of algorithmA € A on datasefD € D. Then, an algorithm
A* € Aisinstance optimabver A andD if there is a constant
satisfying

cost(A", D) < r-cost(A, D)

forany A € Aand anyD € D.

In our context,A is either.Aran Or Apet, andD includes all
the bipartite graphs. Note that while all the algorithmsApan
must be randomized, those iiper can be either randomized or
deterministic (depending on their implementationgpizk-black.

In any case, we defineost(A, G) to be theexpected cosbf an
algorithm A (in Agran or Apet) On the input graptt € D (a cost
is measured by the number of edge-probing queries perfobyed
A). This definition trivially applies to a deterministi¢, whose
cost(A, G) is simply its single-execution cost @r.

Our objective is to find anl™ in each algorithm class that makes
Equation 1 hold. Furthermore, it is important to keep thestamt
r as small as possible. In particular, a much stronger resualbi
tained ifr can be shown tdecreasewith the size of the input. For
example, if an algorithm achieves an= 1 + 1/n, then not only
the algorithm is instance optimal (notice that- 1/n is at most
2), but it is actually nearly optimal in the absolute sense nvhés
large (in which case is very close to 1).

@)

4. ALGORITHMS

In this section, we give two algorithms for solving tR&ICV
problem. The first one, callesample-sortis based on a simple
sampling idea. Itis included because, in general, it is goadtice
to disprovethe efficiency of straightforward solutions, before mov-
ing to more complex methods. Indeed, we give an argumentein th
next section showing thaample-sorfails to be instance optimal.
Our second algorithm, callesitch-on-emptyis less intuitive, but
turns out to be instance optimal.

Before elaborating the two algorithms, we will first intragu
some key notations and explain a basic bounding strategihdtu
more, we will first make the assumption tha n/2, wheren is
the number of black vertices. Later, we will remove the agsum
tion, by extending our solutions o> n/2.

Notations and basic strategy.Denote bydeg(b) the degree of a
black vertexb € B in the input graphG. Let R C B be the set of
black vertices that an algorithm decides to return. As noaetil in
Section 2, the algorithm must have evidence showing:

for anyb € Randd’ ¢ R, deg(b) > deg(V').

This, however, does not imply that the algorithm needs t@hhg
exactdeg(b) anddeg(b'). It suffices to show that a lower bound of
deg(b) is greater than an upper bounddafy (b').

Let us introduce two notions that will help the presentatitin
b € B does not have an edge with € W in G, we say thab has
anempty edgevith w; otherwisep has asolid edgewith w. Hence,
deg(b) equals the number of solid edgestofMoreover, the total
number of empty and solid edgestoéqualsm (= |W|).

For eachh € B, our algorithm maintains, at all times, an upper
boundm —empty(b) of deg(b), as well as a lower bouneblid(b).
It terminates as soon as it is able to conclude on the finaltrésu
based on these bounds, in the way explained earlier.

Algorithm sample-sort (SS).Next, we explain our first algorithm.
It aims at quickly discovering black vertices with large degrees.
After this is done, letz be thek-th largest degree of the vertices
identified. Then, we can prune any black verteoncem — = + 1

of its empty edges have been found. Apparently, a highgives
stronger pruning power.

But how do we know which vertices are likely to have large de-
grees? The idea of sampling naturally kicks in. Specificallgo-
rithm SS has two phases. The fisgimpling phaseandomly probes
s edges of every black vertex, whesés a parameter of the algo-
rithm. At the end of this phase, all the black verti¢eare sorted
in descending order ofolid(b). Denote the sorted list ab. As
Zsolid(b) is an unbiased estimate dég(b), L essentially ranks
all black vertices in descending order of their expected ety

The secondrefinement phaseprocesses the black vertices by
their sorted order ir.. For each black vertek SS keeps probing
its hidden edges until all of its edges have been probed (athwh
point, the exactleg(b) is available) orb can be pruned. To en-
able pruning, at all times, the algorithm maintains a thoégbh,
which equals thé-th largestsolid(b’) of all ¥’ € B (t may change
continuously as more edges are probed). Tlus, pruned once
empty(b) > m —t+ 1.

algorithm sample-sort

[* for eachb € B, solid(b) andempty(b) are dynamically maintained
throughout the algorithm */

1. for each black vertek
2. call probe-nexth) s times
sort all black vertices by solid(b) in descending order, breaking ties
randomly; letL be the sorted order
maintaint = the k-th largestsolid(b) of all b € B in the rest of the
algorithm
for each black vertek by the ordering in

repeat

probe-nextb)
until all edges ob have been testeat
empty(b) >m —t+1

9. return thek black vertices with the largest degrees (handle ties if

necessary)

&

o NG

Figure 6: Algorithm sample-sort

The overall algorithm is presented in Figure 6. Its main draw
back is the need of a parameteon which careful tuning is needed
to obtain good efficiency. This motivates the next algoritirhich
does not require any parameter.

Algorithm switch-on-empty (SOE). The algorithm works in
rounds where each round finds exactbne empty edge for ev-
ery black vertex. Rounds continue until the algorithm iseatal
conclude the result sét of black vertices.

More precisely, each round works as follows. For every black
vertexb, we keep probing its hidden edges, and stopgisoon as
an empty edge ob is found, or (ii) whenb has no more edge to
probe. In either case, we switch to another black vertexgidime
nameswitch-on-empfy and repeat the same. The round finishes

Each time when an edge-probing query is performed, the out- when all the black vertices il have been processed like this.
come reveals that the edge is either empty or solid. Denote by Before starting the next round, the algorithm checks whethe

empty(b) the number of empty edges bthat have been probed,
and similarly, letsolid(b) be the number of its solid edges probed.
It immediately follows that

solid(b) < deg(b) < m — empty(b). 2

some black vertices can be safely put into the refulind thus
removed fromB. Specifically, a verted € B is added toR if it
satisfies two conditions:

1. Allits m edges have been probed.

2. empty(b) is the lowest among all the vertices still B (re- bi by
member that the vertices iR are already removed frol).

To see why, note that Condition 1 implies that we have obthine
the exactdeg(b), and Condition 2 ensures thdeg(b) = m —
empty(b) > m — empty(d’) > deg(y’) for anyd’ € B,b" # b, W S 3
which means thai has the largest degree among all verticeBin) ! 2 ’ 4 >

SOE terminates when (iR has at leask vertices, and (i) the Figure 8: An example to illustrate SOE
remaining vertices irB definitely have lower degrees than those in
R. Namely, for each vertelx € B, we have found at least —¢+1
of its empty edges, whetds thek-th largest degree of the vertices
in the resultR. Figure 7 formally summarizes the algorithm.

Dealing with £ > n/2. So far we have assumed thats at most
n/2. Now, we are ready to explain how to handle the casg
n/2. As mentioned in Section 3, this is equivalent to finding the
(n — k) < n/2 vertices inB having thelowestdegrees.

Let us consider theomplemen& of the input graptG. Specif-
ically, G has the same vertex sesand W asG. However, for
each pair of black vertek € B and white vertexv € W, there is
an edge irG, if and only if b is not connected tav in G. In other

algorithm switch-on-empty
[* for eachb € B, solid(b) andempty(b) are dynamically maintained
throughout the algorithm */

1. R =0 /*theresultset* . .
2. maintaint = thek-th largest degree of the vertices iin the rest Wofds’ avertex with degreaieg(b) in & ha.s' a degrem - d_eg(b)
of the algorithm inG. Itth_us follows that the, — & black vertices with the_mlnlmym
3. maintaine;,, = the smallestmypty(b) of all verticesb still in B degrees i areexactly the samas then — & black vertices with
4. repeat the maximum degrees i@A.
5. perform-a-round* see below */ _ Since the originakMCV problem onG with & > n/2 has been
6. Bgone = {the vertices inB with no more hidden edge} reduced to a&'MCV problem onG with k' = n — k < n/2,
;' f’gi”f {;hg vertices inBgon,c With degreem — epmin} we can solve thé’MCV problem directly using the proposed al-
9 géaBmm to R, and removeB, .., from BB gorithms SS and SOE. In fact, no.moqlificatipn is needed inethos
/* this may change the values o&nde,y,;,, */ algorithms. The only change required is to simmyersethe out-
10. until all vertices still inB have a degree upper bound smaller than come of each edge-probing query. Namely, if the query retyes,
namely,m — emin <t —1 the algorithms should take it as no, and vice versa.
11. rewrnft Remark. Algorithm SOE simultaneously belongs to both the
algorithm perform-a-round random-probe algorithm clas$kan and the deterministic-probe al-
%- for eaChth B gorithm classAper, depending on which version pfobe-nextb)
: repea (Figure 3 or 4) is plugged in. Although the same is true fooalg
3. probe-nextb) ith itis b ted f h is that. in th
4 until an empty edge is founor b has no more hidden edge rithm SS, it is better suited foAran. The reason is that, in the con-

text of Apet, the sampling phase can no longer guarantee probing
a set of random edges for each black vertex, because thenseque
of white vertices in Figure 4 may not be a random sequence.

Figure 7: Algorithm switch-on-empty

Example.Next, we illustrate SOE using the input graph in Figure 8
where B and W have 2 and 5 vertices, respectively. Assuine: 5. THEORETICAL ANALYSIS

1 (i.e., we aim to solve the IMCV problem), and the algorithm In this section, we analyze the performance of the propolsed a
class considered is the random-probe cldsgy (the case of the rithms SS and SbE. Sinc):a both gf them belongltan gndF:AlDET,

deterministic-probe classlper is similar). At the beginning, all e will discuss the two algorithm classes separately iniSes6.1
the edges are hidden; so for each black vertex, SOE ingmkn and 5.2, respectively.

upper bound of V| = 5 on its degree.
Then, SOE executes its rounds, each of which keeps probing a5.1 The randomized algorithm class

black vertex's hidden edg_es until encountering an emptye estg Let us start with a property of all the algorithras € Agran.

the vertex has no more hidden edge. In round 1pforsuppose Consider any black vertex ¢ B. Assume, without loss of gener-

that SOE probes flrst its edge witty, which turns out to be SO!Id. ality, thatb hasm! empty edges in the input graggh, wherel is a

Hence, the algoritm probes another edgebaffor example, its value between 0 and 1. In other wordss connected ton(1 — [)

edge withws. As the edge is empty, SOE is done within this white vertices inG. Let Q(u) be the expected number of edge-

round. Forb, suppose that SOE first probes its edge with probing queries thatt must perform fow, in order to findu empty
(since it is solid) then its edge witlrs, and (since an empty edge edges ob. We have the following abou (u):
is found) stops. The first round finishes at this point. No ltesu

can be confirmed, because each black vertex still has hidtfgrse ProPOSITION 1. Q(u) = u(m + 1)/(ml + 1).
Nevertheless, the algorithm knows that the degree of eamtkbl
vertex can be at most 4 (because one empty edge has been found PrRooF Let X be the random variable whose expectation is
for b1 andbs, respectively). captured byQ(w). Namely, X is the number of queries that

In the second round, as all the (remaining) hidden edgés of must perform orb before seeing. empty edges ob. The distribu-
are solid, SOE probes all of them before processing the nagk b tion of X is a standardegative hypergeometric distributiomhose
vertex. Forbz, suppose that SOE probes (among its hidden edges) expectation is as given in the propositiori]
its edge withw1, which happens to be empty. Thus, the algorithm

finishes the second round. At this time, SOE sees dhath:) Equipped with the proposition, next we discuss algorithrBs S
equals 4, andleg(bz) is at most 3 (as 2 empty edges ef have and SOE separately.
been identified). Therefore, it terminates by reportingas the Sample-sort. Recall that SS has a parameterwhich specifies

result. 0O the number of edges to probe for each black vertex in the sagpl

phase. In generak can be a function of. andm, that is, SS may
decides after obtaining the sizes @ andW'.

As shown in the experiments, with a suitableSS can be fairly
efficient, but such am appears to heavily depend on the dataset.
Because of this, we are interested in knowing whether treee i
“universal” choice ofs that makes SS instance optimal. A positive
answer would allow us to get rid of this parameter. Unfortaha
we ended up proving:

THEOREM 1. If s is chosen without any query, algorithm SS
cannot be instance optimal.

PROOF See the appendix.]

The theorem indicates that, while sampling is a natural idea
attack thekMCV problem, it is non-trivial to decide the proper
sample size. In particular, straightforward strategiehas “sam-
ple a certain percentage of the edges of éaghB" does not work.
The theorem strongly implies that the correct sample sieelsi¢o
be chosemdaptively based on the degree distributions of the black
vertices. This implication is consistent with the desigmalgorithm
SOE, since it proceeds by continuously monitoring the eftyasd
on all the black vertices.

Switch-on-empty. In the sequel, we denote by the set of result
(black) vertices. Let™ be the lowest degree of the verticesinor
formally:

®)

Denote byR:.i; C R the set of vertices ik having degree¢™. Let
k* = |R|. Apparently,k* > k; furthermore, ifk* > k, thenRqu
must contain at leagt” — k + 1 vertices.

We first point out two more properties of all algorithras €
Aran. The first one concerns the statusdfvhen it finishes. For
eachb € B, letsolida(b) andemptya(b) be the numbers of solid
and empty edges that has found orb at its termination, respec-
tively. Denote byt 4 the minimumsolid 4 (b) of all verticesb € R,
namely,t4 = mingyer solida(b). We have:

"= min deg(t).

LEMMA 1. Attermination, for each non-result black veriex
B — R, itholds thatempty(b) > m —ta + 1.

ProOOF Obvious because otherwisk cannot have concluded
thatb has a smaller degree than the vertice®in [

The second property concerns the scenario whére k:

LEMMA 2. If k* > k, thenA has probed all then edges of at
leastk™ — k + 1 black vertices inR.

PROOFE LetS C Ry, be the set of vertices iR;,;; such that,
for any black vertex irf, algorithmA did notprobe all of its edges.
Letg = |Riaa| — (K™ — k). Note thatg must be positive.

The crucial observation is tha$| must be smaller thag. Oth-
erwise, assumgs| > g; then consider any vertices, says, bo, ...,
by, in S, and uses’ to denote the set of those vertices. Since each
b; has at least 1 hidden edge, it is possible that all thokilden
edges (one for eadh) turn out to be solid, and at the same time,
the black vertices ifR;,;; — S’ have no more hidden solid edge.
In this caseR:qi; — S’ must be eliminated from the result, which
contradicts the fact that was able to terminate safely.

Therefore, A must have probed all thex edges of at least
|Rtqit] — |S| > |Rtait] — (9 — 1) = k™ — k + 1 vertices. [

The above two properties also hold for all algorithms thainoa
predict whether a hidden edge is solid or empty. The next lamm
states a property of algorithm SOE:

LEMMA 3. SOE probes all then edges of each vertex iR.
For each verted € B — R, its finds exactlyn —t* 4 1 of its empty
edges. Furthermore, the last edgebqirobed by SOE is empty.

PrROOF The lemma follows directly from the algorithm descrip-
tionin Figure 7. [

We are ready to prove the main result of this paper:

THEOREM 2. Let A,,: be the fastest algorithm igan for
solving thekMCV problem on the inpu®, namely:

Aopt = {A | cost(A,G) < cost(A',G); A, A" € Aran}.

For any k£ < n/2, the expected cost of SOE is at mest
cost(Aopt, G), wherer < 1+ £

PrROOF Let us label ther — k™ black verticesotin the result
Ras

brx 41, brxy2, ..., bn,

respectively (the ordering is not important). For each [k* +
1,n], let

l; =1—deg(b;)/m.

Equivalently,ml; is the number of empty edgesiaf Furthermore,
define@;(u) as the expected number of edgespthat must be
probed by an algorithml € Aran, in order to findu empty edges
of b;.

For convenience, we denote algorithm SOEasBy Lemma 3,
the expected cost of* can be written as:

cost(A*,G) = mk™ + Z Qi(m —t" +1).

i=k*+1

4)

Now consider the optimal algorithi,,:. Define a random vari-
able:

topt = Ibléllr% solidopt (D).

®)

wheresolidopt (b) is the number of solid edges of a vertex R
that are found by,,; at termination. Next, we focus on the event:

W topt = .

Note that asolidoy: (b) < deg(b), it must hold that: < ¢*. Under
eventw, Lemma 1 indicates that,,: probes in expectation at least
Qi(m—z+1) edges ob;. Define functionC'(x) to be the expected
cost of A, conditioned ort,,: = x.

The rest of the proof will show that = cost(A*,G)/C(z) <
1+ k/(n — k). This, together witheost(Aopt, G) = 3, C(x) -
Pr[z], will establish the theorem. We proceed in two cases, de-
pending on the comparison bf andk:

Case 1:k* = k. It holds that
C(z) > zk + Z Qi(m —x+1).
i=k*+1
Combining the above with Equation 4, we know
< mk® + Z?Lk*ﬂ Qi(m —t" +1)
T .
T owk+ 3 1 Qilm —z 4+ 1)

Sincez < t*, we have
< mk® + Z?;k*+1 Qi(m—z+1)
T Y .
T owk A e Qilm— x4+ 1)

leading to
(m — x)k*
Tk* + Z?:k*+1 Qi(m—=z+1)

By Proposition 1Q;(m —xz + 1) = (m — z + 1)-2+tL

ml;+1"

r—1<

Hence:

1< (m — z)k”
= zk* +a(m—2z)’

where

m+1
mli—i—l‘

a=) ®)

i=k*41
If x = m, thenr = 1, trivially satisfyingr <1+ k/(n — k). For
x < m, equipped withe > n — k* = n — k, we have

(m—x)k k

r-ls (n—k)(m —x) T h—k

Case 2:k* > k. Lemma 2 indicates the existence of a Sedf
k™ — k + 1 vertices inR, such that4,,: must have probed all the
m edges of each vertex ifi. Hence:

Clz) > zk—1)4+mk"—k+1)+ z": Qi(m—z+1)
i=k*+1

Combining the above with Equation 4 gives:
§ mk* + 37 e Qilm =t +1)
S ak DA mE kD) ey, Qi(m— 2+ 1)
mk” 43 ey Qi(m —z +1)
mk* + Z?:k*ﬂ Qilm—z+1)—k(m—x)
where the last inequality used< ¢t* andz < m. Hence, decreas-

ing both sides of the above inequality by 1 and applying Psdpo
tion 1, we have:

k(m — x)
= mk* +a(m —x 4+ 1) — k(m — x)

r—1

wherea is given in Equation 6. Again ifn = z, thenr = 1 <
1+ k/(n — k). Otherwise, knowing > n — k*, we derive:

B k(m — x)
r-1s mk* + (n — k*)(m —z) — k(m — x)
k(m — x) kK

- nm—-z)—k(m—z) n—k

This completes the proof.[]

The above theorem concerhs< n/2. As mentioned in Sec-
tion 4, the case of > n/2 can be reduced to @ MCV problem
with ¥ = n — k < n/2 on the complemeng of the inputG.
The proof of Theorem 3 also holds @i Thus, we arrive at the
following general result:

COROLLARY 1. The expected cost of SOE is at mast
cost(Aopt, G), wherer < 1+ Ziittl and A, as defined
in Theorem 2.

The corollary has two significant implications:

e For anyk, the value ofr is definitely lower than 2 Hence,
SOE is instance optimal. Furthermore, since SOE performs
at leasttrm + n — 1 queries on any inpufy, it follows that
Q(km + n) is a cost lower bound cény algorithm in the
classAgran.

e Whenk = O(1)ork = n—0O(1),r = 1+ O(1/n),
namely, SOE imearly as fast as the optimal algorithin
these two extremes. Recall that, in practice= O(1) and
k = n — O(1) correspond to the important scenarios where
users want to find thep few(e.g., 10) black vertices having
the maximum and minimum degrees, respectively.

5.2 The deterministic algorithm class

Next, we extend the analysis of the previous subsectiondo th
algorithm class4per. We focus on only SOE because the instance
optimality of SS inAper can be disproved using an argument sim-
ilar to but much simpler than the proof of Theorem 1. Etyer,
Proposition 1 obviously is not applicable; Lemmas 1-3, have
are still correct. We first give a theorem that is the courasrpf
Theorem 2.

THEOREM 3. Let A,,: be the fastest algorithm iper for
solving thekMCV problem on the inpuf, namely:

Aopt = {A | cost(A,G) < cost(A',G); A, A" € Aper}.

For any k < n/2, the cost of SOE is at most- cost(Aopt, G),
wherer <1+ £,

PROOF The proof is similar to that of Theorem 2 (called the
old proofin the sequel). Refer to the sequeree,, wa, ..., wm }
in Figure 3 as th@robing sequenceLet A*, k*, t*, b; (k* +1 <
1 < n) retain their meanings in the old proof.

Let@; (k* + 1 < ¢ < n) be the number of edges bf that A*
has probed at terminatio®; equals the position of then — t* +
1)-th white vertex (in the probing sequence) that has an entdgg e
with b;. By Lemma 3cost(A*, G) = mk™ + 371 ., Q5.

Define topt, solidopt(b), C(x) in the same way as in the old
proof. Let@; be the least number of edges that (all possible execu-
tion of) A, Needs to probe fo;, conditioned ort,,: = x. The
crucial observation is that, sinae= t,,; < t*, by Lemma 1,4,
must have seen atleast—z+1 > m —t* + 1 empty edges df;.

In other words,A,,: must have probed all the edgestpfprobed
by A*; hence:

Qi < Q.. (")

Letr = cost(A",G)/C(z) anda = > ,. | Qi. Note that
a > (n—k*)(m—z+1). Assumingmn # x (Same as in Theorem 2,
if m=x,thenr =1 <1+ k/(n— k)), we proceed in two cases:

Case 1:k* = k. Itholds thatC(z) > zk* 4+ 3.7 .| Q:. Hence

< mk” 437 e 1 Q1
T owkt 4 e Qi

where the last inequality used Inequality 7. Hence:

mk* +a
— zk*+a’

o1 < (m —x)k <(m—:c)k.
- zk*4+a a

(m—-—x)k* k

m—k(m—2) n—k

Case 2:k* > k. ByLemma 2,C(z) > z(k — 1) + m(k* — k + Therefore, we can solve by equating the above formula #teg.

1)+ Z?:k*Jrl Qi. Thus NBA. This is a real graph selected to assess the benefits of the pro-
mk* + 3" Q: p_osed algorithms when they are ir_lc_orporated into the exetan-
r < ELARS gine of a relational DBMS. The original data (fronww.nba.com
T oak=DAmkr —k+ 1)+ 300, Qi consists of 16739 NBA players in history. For each playee, th
mk* +a dataset contains his performance statistics in 13 aspaat$, as
mk* +a — k(m —) the numbers of points scored, rebounds, assists, etc. Weedgefi
dominating relationshigpoetween players based on the concept of
Hence: k-dominance[13]. Specifically, a playep; 7-dominatesanother
k(m — x) playerp. if p1 has better statistics than in at least 7 aspects (i.e.,
r—1 < mk* +a — k(m —) a majority of the total 13 aspects). We want to find thelay-
k(m —) ers that 7-dominate the largest number of players, as giyeheb
< following pseudo-SQL statemént
mk* + (n—k*)(m—xz+1) — k(m —x)
SELECT p1 FROMPLAYER p1, PLAYER p2
k(m — x) k)
< = WHERE p; 7-dominate®:
nm—x)—k(m—2z) n-—k GROUP BY p,
(8) HAVI NG count(x) > the size of thek-th largest group
which completes the proof.[J where PLAYER is a table with 13 attributes, and one row forheac
player. The entire table occupies less than 1 mega bytes.aamide
With the same argument leading to Corollary 1, we get: comfortably kept in main memory. Therefore, the total oeadhis
determined by the number of times the join predicate is exatl
COROLLARY 2. The cost of SOE is at most cost(Aopt, G), As explained in Section 1.1, evaluating the above staternseat
wherer < 1 4 % kMCYV problem on a bipartite grapf = (B, W, E), where each

of the vertex set®3 and W includes all the players, and the edge
Therefore, the same conclusions.itkan can be drawn about ~ SetE has an edge between two playérs B andw € W if b

SOE inAper. Specifically, SOE is also instance optimalder. 7-dominatesw. The optimization goal is to minimize the number

Furthermore, whet = O(1), SOE can be more expensive than ©f edges probed.

the optimal algorithm indper only by a factor oft + O(1/n). Actor. This is a real graph chosen to evaluate our algorithms
in a querying-by-web-servicenvironment (introduced in Sec-

6. EXPERIMENTS tion 1.1). The underlying data, which is publicly availabtdMDB

(www.imdb.cor) is a social network between a set of actors, where
two actors have an edge if they collaborated in a movie before
We extracted the 10000 most “active" actors that have thgesir
number of collaborators, and focused on studying tBeiop re-
lationships Specifically, an acto#; has a 2-hop relationship with
another actous if either a; is a collaborator ofi2, or they have a
common collaborator (i.ea; is at most two hops away fromy in

the social network). Note that 2-hop relationships are groitant
type of characteristics of a social network, as pointed 0{27].

6.1 Datasets We aimed at finding thé actors that have the largest number
. . . of 2-hop relationships. This isfaVICV problem on a grapléz =

Our expenments are based on synthetic and real data whéch ar (B, W, E), where each oB andW contains all the actors, ané
explained in the sequel: has an edge between two actbrs B andw € W if b has a 2-hop
Power-law graphs. This is a family of synthetic graphs where the relationship withw. Detecting a 2-hop relationship betweleand
degrees of black vertices follow gower lawdistribution. Each w can be accomplished by submitting the names afidw to the

In the sequel, we experimentally evaluate the performarice o
the proposed algorithms. Section 6.1 describes the datéogath
in our experimentation, and Section 6.2 clarifies how atttve
methods will be compared. Then, Section 6.3 studies the@mnvi
ments where th& MCV problem can be settled much faster than
probing all edges. Sections 6.4 and 6.5 evaluate our tegbsiq
in the random-probe and deterministic-probe algorithrasgs, re-
spectively.

graph is generated as follows. It has 5000 black and whitiécest websiteCinema Freenefsee Section 1.1) and obtaining its reply.
respectively (i.e.]B| = [W| = 5000). For each black vertex The overall cost is dominated by the network latency, whictuin

b € B, its degreeleg(b) equalsd (0 < d < 5000) with probability is decided by the total number of relationships checked, he

o(d+ 1)) number of edges i probed).

where~ is a parameter of the power law, ands a normalizing 6.2 Methods

constant chosen to maRe ;™ c(d + 1)~ equivalent to 1 (i.e., Since no previous solution is known for théCV problem,

c =1/ Zjlozo(?(d + 1)77). Oncedeg(d) is decided, theleg(b) we concentrate on comparing the proposed algorithemsple-and-
white vertices connected toare selected randomly. sort(SS) andswitch-on-emptySOE). The value of will be varied

As discussed in the next section, we often need to control the from 1 to 100. Since the black vertex g@tin all our data graphs
average degreeleg of the black vertices in a power-law graph.
Hence, we need to set the parameteio generate a graph with This statement is essentiallt@p-k dominating querywhich has
the desiredieg. This is achieved by utilizing the fact that the ex- been studied in [25, 29]. However, the solutions in [25, 28]de-

pectation of the power law in Equation 9 is: signed for a different dominance definition, where an iggndom-
inates anothep- if and only if p; is better tharp. in all aspects.

5000 Those solutions heavily rely dransitivity, namely, the fact that;

Z cd(d+1)7" dominatesp. andp> dominatesp; implies thatp; dominatesps.

rrt As shown in [13], transitivity doesot hold onk-dominance.

have at least, = 5000 vertices, the conditio < n/2 always ~ g7,ererdueres (mion gy o orduertes (milion)
holds. 103 0.86

The cost of an algorithm is measured in the number of edgeig-i 0.84
probing queries issued (if the algorithm is randomized, dbst 10 082
reported is the average of 5 runs). Sometimes we will alse giv 9.9 0072
a theoreticalower bound(LB) of the cost of any algorithm on the =~ 3% 076
same data input. The lower bound is derived using the fadt tha¢¢ 07
the cost of SOE can be greater than that of the optimal ahgorit 15 1015 20 25 30 35 40 45 50 1 5 10 15 20 25 30 35 40 45 50
by a factor of at most + k/(n — k) (see Theorems 2 and 3 and t_ S
apply k < n/2). Therefore, if SOE needs to probeedges, we (a) Power law withleg = 50 (b) Power law withdeg = 3000

will report a lower bound Ofm number of queries (million) number of queries (million)
In Sections 6.3 and 6.4, we study the random-probe algorlthm 18 '

classAran, where an algorithm deploys tipgobe-neximplemen- 16

tation in Figure 3. Section 6.5 investigates the determimjgobe 1‘2‘

algorithm class4per, where an algorithm applies tipeobe-nexin 10

Figure 4. g

6.3 How pessimistic is the worst case? 41 5 10 15 20 2‘5 30 35 40 4‘5 50 > 1 5 10 15 20 25 30 35 40 45 50
If B andW haven andm edges respectively, solvingkdCV s *

problem requires probingm edges in the worst case. The objec- (c)NBA (d) Actor

tive of this subsection is to find out when it is possible toiewé Figure 10: Tuning the parameter s of algorithm SS

a cost (much) lower thanm. For this purpose, we generated a . . .
series of power-law graphs whosey (i.e., the average degree of (O decide a good value of. Towards this, given a data graph
black vertices) ranges from the minimum 0 to the maximum 5000 & = (B, W, E), we measure the cost of SS whers set to 1,

Then, we measured the performance of SOE in settling the 3MC 2; - 50, respectively. Figure 10 shows the results whenrtput
problem on each of these graphs. G is the power law graphs witlleg = 50 and 3000 respectively,

and the real graphSIBA and Actor. Clearly, the best value of
SOE —— LB —e— (minimizing the overhead of SS) is different for each dataNev-
32 w w w ertheless, a common pattern is that SS is expensive wihgtoo
small. Overall, a good choice afis around 20, which achieves
reasonable efficiency in all cases. Therefore, wes fi@ 20 in the
following experiments.

Scalability with k. We proceed to compare SOE and SEMCV
computation by increasing from 1 to 100. Figure 11 illustrates
the results, as well as the lower bounds, on the same graphs in
Figure 10. For benchmarking, remember that the worst-casta
0.25 L i ‘ 25 million for power-law graphs]6739% > 280 million for NBA,
0~ 1000 2000 3000 4000 5000 and10000% = 100 million for Actor.
average degree The overhead of SS and SOE is always significantly lower than

Figure 9: Impact of the average degree of black vertices the worst case (often by orders of magnitude), especiatly: f&

Figure 9 plots the cost of SOE and the lower bounds as a functio 10. The only exception is in Figure 11a, whérapproaches 100.
of deg (notice that the vertical axis is in log scale). Recall thathb This is expected because a graph wd#ly = 50 is very sparse (on
n andm are 5000 in every power-law graph, so the valueiof average, a black vertex is connected to only 1% of the white ve
equals 25 million. Whenleyg is close to the extreme value 0 or tices), so most of the edges must be probed to deal with aveiat
5000, SOE needs to probe all the edges, and thus, incurs tsewo largek. In all the experiments, SOE consistently outperforms SS,
case cost. However, its efficiency improves dramaticalgnsafter and its cost is only slightly higher than the lower bounds.
deg moves away from the extreme values. For example, wign L
equals 250 (i.e., on average, a black vertex is connectettofs 6.5 Performance of deterministic-probe algo-
the white vertices), SOE probes around 2 million edges, hvhic rithms
smaller than the worst case by a factor over an order of madgmit
The minimum overhead of SOE is observed widep is close to
the middle value 2500; in this case, SOE needs to probe osdy le
than half million edges.

It is clear that the worst-case cost can ocoualy in a highly
sparse or dense graph-or other graphs, the cost can be substan-
tially reduced. The efficiency of SOE is built exactly on thisser-
vation. In fact, as shown in Figure 9, the cost of SOE is veogel
to the lower bound.

number of queries (million)

The previous experiments focused on the random-probe algo-
rithm classAran. This subsection evaluates SS and SOE when
they are deployed as algorithms in the deterministic-prclass
Abpet. Recall that every algorithm idper probes the hidden edges
of each black vertex in the sanpeobing sequencéinstead of a
random order as itdran) that is prescribed by the underlying ap-
plication (see Figure 4).

The following experiments have two objectives. The first @ne
to inspect the efficiency of SS and SOE in the deterministéc sc

_ ; nario. The second, perhaps more interesting, objectiveusder-
6.4 Performance of random probe algonthms stand how their efficiency is affected by the ordering of thetev
Tuning sample-and-sort. Recall that algorithm SS needs a param- vertices in the probing sequence. For this purpose, we deresi a
eters, which is the number of edges that are probed for each black set of sequences that are controlled by a parameter chfitaition
vertex in the sampling phase. The next set of experiments aim d, which ranges from 0 to 1. Specifically, a sequence with disto

LB =)

number of queries (million) number of queries (million)
25 — T T T T T T 25 — T T T T T T

20 2

15 15
10 1

0.5

0t —t L L L L L L L L 0 L L L L L L L L L
1 10 20 30 40 50 60 70 80 90 100 1 10 20 30 40 50 60 70 80 90 100
k k

(a) Power law withdeg = 50 (b) Power law withdeg = 3000

number of queries (million) number of queries (million)
25 — T T T T T T T 20 — T T T T T T

20 q

15 - q

10 - q

5| 4

L L L L L L L L L
1 10 20 30 40 50 60 70 80 90
k k

0 ! ! ! ! ! ! ! ! !

1 10 20 30 40 50 60 70 80 90 100 100

(c) NBA (d) Actor
Figure 11: Performance vs.k (random-probe class)

tion O ranks the white vertices in ascending order of thegreles
(or equivalently, in descending order of how many empty sdge
they have). On the other extreme, a sequence with distottisn
simply a random permutation of the white vertices. In gelnéra
sequence with distortiod, the positions oflm white vertices are
randomly permutated (the other white vertices remain ierding
order of their degrees), where is the number of white vertices.

To distinguish with the SS (SOE) in the random-probe class
Aran, We refer to the version of SS (SOE) in the deterministic-
probe class4per as dSS (dSOE). The parameteof dSS is also
set to 20, after a tuning process similar to Figure 10. Caniogr
10MCV computation ofNBA Figure 12a plots the performance of
dSS and dSOE as a function of distortion, together with tee-th
retical lower bounds (which are calculated by dividing tlestoof
dSOE byl + ni—om wheren is the number of black vertices). For
referencing, we also include the cost of SS and SOE so thgg@em
ison can be made between random- and deterministic-prdbe so
tions. In the same fashion, Figure 12b presents the 10MCMtses
onActor.

Clearly, dSS and dSOE benefit significantly from a sorted or-
dering. In particular, when distortion is O (i.e., complgtsorted),
the cost of dSOE is nearly 10 times lower than its cost when dis
tortion is 1 (i.e., completely random). In general, the dead of
both dSS and dSOE grows with distortion, and eventually, @e

distortion 1) reaches the cost of SS and SOE. This phenomenon [8]

is not surprising at all. When the white vertices with morepgm
edges are probed first, many empty edges can be discoveneersoo
for each black vertex. As a result, the upper bounds of thecgsg
of the black vertices drop faster, which enables earlienitestion.
Finally, the relative performance of dSS and dSOE is sintibar
the random-probe class reported in Figure 11. Also, dSOEGs o
again nearly optimal, leaving little room for further impements.

7. CONCLUSIONS

This paper studied themost connected vert¢kMCV) problem
on hidden bipartite graphs, which has a large number of datab
applications in practice. The novelty of the problem is ffuslike
many other graph problems) the edges are not explicitlyngive
stead, a unit cost must be paid to detect the presence of dgeh e
We presented an algorithm that is guaranteed to be instanticead

number of queries (million)
5

dSS —+— dSOE —<— SS —%— SOE —=—

number of queries (million)
0

0 20 40 60

distortion (percent) distortion (percent)

(@)NBA (b) Actor

Figure 12: Effects of distortion (deterministic-probe class)

100 0 20 40 60 80

in a broad class of algorithms. In other words, for any dapatn
our algorithm can be worse than the optimal algorithm (whieh
mains unknown) by at most a constant factor, which can be show
to be at most 2. Furthermore, for smal(such as 10), we proved a
much stronger result indicating that our solution is neadyast as
the optimal algorithm.

We believe thatjuery processing in hidden grapisa promis-
ing research direction in the database area. Such grapkttatm
a powerful way to model many problems in a large number of ex-
isting and emerging applications. TR&CV problem studied in
this paper serves as the first step into this exciting topidadt, it
is worth re-visiting many conventional graph problems du¢he
novel features of hidden graphs. The existing algorithmg na
necessarily treat edge-probing as a cost-dominating tiperan
which case potential improvements are possible.

8. REFERENCES

[1] P. Afshani, J. Barbay, and T. M. Chan. Instance-optimal

geometric algorithms. IROCS 2009.

N. Alon, R. Beigel, S. Kasif, S. Rudich, and B. Sudakov.

Learning a hidden matchin@lAM J. Comput.

33(2):487-501, 2004.

N. Alon and M. Krivelevich. Testing k-colorabilitySIAM J.

Comput, 15(2):211-227, 2002.

N. Alon and A. Shapira. A characterization of the (natura

graph properties testable with one-sided ef$tAM J.

Comput, 37(6):1703-1727, 2008.

N. Alon and A. Shapira. Every monotone graph property is

testable SIAM J. Comput.38(2):505-522, 2008.

R. Angles and C. Gutiérrez. Survey of graph database

models. ACM Comp. Sury40(1), 2008.

D. Angluin and J. Chen. Learning a hidden graph using

O(logn) queries per edg@CS$74(4):546-556, 2008.

I. Baran and E. D. Demaine. Optimal adaptive algorithiors f

finding the nearest and farthest point on a parametric

black-box curvelnt. J. Comput. Geometry Appl.

15(4):327-350, 2005.

[9] J. Barbay and E. Y. Chen. Convex hull of the union of convex

objects in the plane: an adaptive analysisClBCG 2008.

T. C. Biedl, B. Brejova, E. D. Demaine, A. M. Hamel,

A. Lopez-Ortiz, and T. Vinar. Finding hidden independent

sets in interval graph3heo. Comp. S¢i310(1-3):287-307,

2004.

A. Bogdanov, K. Obata, and L. Trevisan. A lower bound for

testing 3-colorability in bounded-degree graphsF®CS

pages 93-102, 2002.

[12] A. Borodin and R. El-YanivOnline Computation and
Competitive AnalysisCambridge University Press, 1998.

[13] C. Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and

(2]

(3]
(4]

(5]
(6]
(7]

[10]

[11]

Z. Zhang. Finding k-dominant skylines in high dimensional
space. I'SIGMOD, pages 503-514, 2006.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.

Introduction to Algorithms, Second Editiofhe MIT Press,

2001.

E. D. Demaine, D. Harmon, J. lacono, D. Kane, and

M. Patrascu. The geometry of binary search treeSQDA

pages 496-505, 2009.

[16] E. D. Demaine, A. Lopez-Ortiz, and J. . Munro. Adaptive
set intersections, unions, and differencesS@DA pages
743-752, 2000.

[17] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. IRODS 2001.

[18] O. Goldreich, S. Goldwasser, and D. Ron. Propertyrgsti
and its connection to learning and approximatidaCM,
45(4):653-750, 1998.

[19] M. E. Houle and J. Sakuma. Fast approximate similarity
search in extremely high-dimensional data set$CIDE,
pages 619-630, 2005.

[20] I. F. llyas, W. G. Aref, and A. K. Elmagarmid. Supporting
top-k join queries in relational databasesMIbDB, pages
754-765, 2003.

[21] I. F. llyas, G. Beskales, and M. A. Soliman. A survey of
top-k query processing techniques in relational database
systemsACM Comp. Sury40(4), 2008.

[22] D. B. Kell. Screen idols: faster, smaller, cheaper amdser.
Trends in Biotechnol18:186—-187, 2000.

[23] E. J. Keogh. Exact indexing of dynamic time warping. In
VLDB, pages 406-417, 2002.

[24] A. Natsev, Y.-C. Chang, J. R. Smith, C.-S. Li, and J. Stevi
Supporting incremental join queries on ranked inputs. In
VLDB, pages 281-290, 2001.

[25] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive
skyline computation in database systeiffi®DS
30(1):41-82, 2005.

[26] K. Schnaitter and N. Polyzotis. Evaluating rank joinshw
optimal cost. IlPODS pages 43-52, 2008.

[27] P. Singla and M. Richardson. Yes, there is a correlation
from social networks to personal behavior on the web. In
WWW pages 655-664, 2008.

[28] M. A. Soliman, I. F. llyas, and K. C.-C. Chang. Probadtilt
top-k and ranking-aggregate querid®©DS 33(3), 2008.

[29] M. L. Yiu and N. Mamoulis. Multi-dimensional top-
dominating queriesVLDB J, 18(3):695-718, 2009.

[30] M. Zhu, D. Papadias, J. Zhang, and D. L. Lee. Top-k spatia
joins. TKDE, 17(4):567-579, 2005.

[15]

Appendix (proof of Theorem 1)

We will find two families of bipartite graph§, andgG., such that
(i) for any sufficiently largen andm satisfyingn > m, there is a
graphG1(n, m) in Gi and a graplGz(n, m) in G2, both of which
haven (m) black (white) vertices, and (ii) they demand conflicting

ways to sets so that algorithm SS can be instance optimal. Since

(without probing any edge) SS cannot tell whether the inpérom

G1 orGo, itis not able to set correctly, and thus, fails to be instance
optimal. For the above purpose, we only need to focus: oa

1. Given a pair ofn and m, next we explain how to construct
G1(n,m) andG2(n, m) respectively.

G1(n,m) is exactly the graph illustrated in Figure 5, where a

unique black vertex has degree and the other black vertices all

solves the problem with +m — 1 = O(n) queries. As for SS, its
sampling phase already prob®@$sn) edges; s must beO(1) if
SS needs to be instance optimal. In the sequel, we assuma,
where\ is a constant.

Figure 13: lllustration of G2(n,m)

G2(n, m) is such that one black vertéX has degreen, and
the other black vertices all have degr@e, wherec, which will
be determined later, is a constant close to 1 from below.rEig@
illustratesG2(n, m) by using the height of a column to represent
a black vertex’s degree. Consider the sampling phase of SS on
Gz2(n,m). Let S be the set of black verticds € B such that
all the s edges ofb probed by SS are solid (clearly; is defi-
nitely in S). The choice of will make sure thatS| > n/4 with
probability at least /2 (later we will argue that suchalways ex-
ists). AssumingS| > n/4, let us look at the refinement phase
of SS, where the black verticésare processed in descending or-
der of solid(b), i.e., how many solid edges éfwere found in the
sampling phase. Since all vertices $hhave the sameolid(b),
their ordering is random. Hence, with probability at lebst, n/8
of the vertices inS rank beforeb*. For each such verte) SS
needs to probe all of its: edges; hence, at leasin/8 edges are
probed in total. Therefore, the expected cost(i(n,m) is at
least(1/4) - (nm/8) = Q(nm).

The 1MCV problem onG2(n,m) can be solved by algorithm
SOE withO(n) queries in expectation. Specifically, when SOE
terminates, it has found exactly one empty edge of éaglB, b #

b*, plus all them edges ofb*. By Proposition 1, in expectation,

SOE probesmgii*j+1 = O(1) edges ofb. Hence, the expected
cost of SOE iD(n — 1 + m) = O(n), meaning that SS is worse
by a factor ofQ2(m).

It remains to show that thewe need always exists. L& be a
random variable that equals the sizeSoéfter SS finishes its sam-
pling phase X follows a Binomial distributionB(n — 1, p), where
p is the probability that all the edges probed fora e B,b # b*
are solid. More precisely is the success probability of the follow-
ing sampling-without-replacememiperation: imagine a bag with
m balls in whichem are red, and the others blue; we sample
balls from the bag without replacement, and call suecessf all
of them are red. Whem is large enoughp can be approximated
with arbitrarily small error by the success probability of the
correspondingsampling-with-replacemerdperation. So, conser-
vatively, assume > ¢* —e > & — ¢, wheree > 0isan arbitrarily
small constant. By Hoeffding’s inequalftyX > (n—1)/2 > n/4
with probability at leasi — exp(—2(n — 1)(p — 0.5)%), which is
at least 0.5 ifp > (12)%5 4 (.5, To ensure this, it suffices to
guarantee™ > (1¥2)05 4 (.5 4 . Hence, for large:, we can

-1
setct0 0.6/,

We have shown, for a specifig there is always a that makes
SSworse than SOE by a factor@{m) on G2 (n, m) (implying SS
cannot be instance optimal). To break the argumkiggnnot exist
which, by the definition of\, means that must bew(1). This,
however, conflicts with the requirementobn G (n, m).

2In general, ifX obeysB(n, p), thenPr[X < z] < exp(—2(np—

have degree 0. In Section 4, we have shown that algorithm SOE z)?/n).

