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ABSTRACT
We identify proximity breach as a privacy threat specific to
numerical sensitive attributes in anonymized data publica-
tion. Such breach occurs when an adversary concludes with
high confidence that the sensitive value of a victim individ-
ual must fall in a short interval — even though the adversary
may have low confidence about the victim’s actual value.

None of the existing anonymization principles (e.g., k-
anonymity, l-diversity, etc.) can effectively prevent proxim-
ity breach. We remedy the problem by introducing a novel
principle called (ε, m)-anonymity. Intuitively, the principle
demands that, given a QI-group G, for every sensitive value
x in G, at most 1/m of the tuples in G can have sensitive
values “similar” to x, where the similarity is controlled by
ε. We provide a careful analytical study of the theoretical
characteristics of (ε, m)-anonymity, and the corresponding
generalization algorithm. Our findings are verified by ex-
periments with real data.

ACM Categories and Subject Descriptors: H3.3 [In-
formation Search and Retrieval]: Retrieval Models.

General Terms: Algorithms, Theory

Keywords: Privacy, Anonymization, Numeric, (ε, m)-
anonymity

1. INTRODUCTION
Anonymized data publication has received considerable

attention from the research community in recent years, due
to the need of preventing“linking attacks” in numerous data-
dissemination applications. Consider, for example, that a
company wants to contribute its payment records in Ta-
ble 1a, called the microdata, to sociology scientists. At-
tribute Salary is sensitive, that is, the publication must en-
sure that no adversary can accurately infer the salary of
any employee. Age and Zipcode are quasi-identifier (QI) at-
tributes, because they can be utilized in a linking attack
to recover employees’ identities. Assume that an adversary
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 Age Zip. Salary 
Andy 17 12k 1000 

 19 13k 1010 
 20 14k 1020 
 24 16k 50000 
 29 21k 16000 
 34 24k 24000 
 39 36k 33000 
 45 39k 31000 

 

Group  
ID Age Zip. Salary 

1 [17,24] [12k,16k] 1000 
1 [17,24] [12k,16k] 1010 
1 [17,24] [12k,16k] 1020 
1 [17,24] [12k,16k] 50000 
2 [29,34] [21k,24k] 16000 
2 [29,34] [21k,24k] 24000 
3 [39,45] [36k,39k] 33000 
3 [39,45] [36k,39k] 31000 

 (a) The microdata (b) Generalization

Table 1: Privacy-preserving publication

knows Andy’s age 17 and Zipcode 12k. Given Table 1a,
s/he ascertains that the first tuple must belong to Andy,
and hence, Andy’s salary must be 1000.

Generalization [35, 36] is a popular methodology to thwart
linking attacks. It divides the microdata into QI-groups,
and then transforms the QI-values in each group to a uni-
form format. Table 1b demonstrates a generalized version
of Table 1a (e.g., the age 17 of Andy, for instance, has been
generalized to an interval [17, 24]). The generalization pro-
duces 3 QI-groups, as indicated by their group-IDs, such
that the tuples in the same group are indistinguishable by
the QI-attributes. Given Table 1b, the adversary mentioned
earlier can no longer uniquely determine Andy’s salary: any
tuple of the first QI-group may belong to Andy; hence, his
salary may be 1000, 1010, 1020 or 50000.

An anonymized table is considered “adequately pro-
tected”, if it satisfies an anonymization principle. The ex-
isting principles for generalization include k-anonymity [35,
36], l-diversity [27] (and its variants [40, 42]), variance con-
trol [23], t-closeness [26], (k, e)-anonymity [44], (c, k)-safety
[28], privacy skyline [12], and δ-presence [31]. They achieve
different types of privacy protection; therefore, the choice of
a principle depends on the needs of the underlying applica-
tion.

1.1 Motivation: Proximity Breach
The motivation of this work is that, none of the previous

anonymization principles can prevent “proximity breach”,
which is a privacy threat specific to numerical sensitive at-
tributes (such as Salary in Table 1b). Intuitively, proximity
breach occurs when an adversary concludes with high con-
fidence that the sensitive value of a victim individual must
fall in a short interval — even though the adversary may
have low confidence about the victim’s actual value.



For example, as explained earlier, an adversary possessing
the QI-values of Andy is able to find out that Andy’s record
is in the first QI-group of Table 1b. Without further infor-
mation, s/he assumes that each tuple in the group has an
equal chance of being owned by Andy. Thus, s/he concludes
that Andy’s salary is in the interval [1000, 1020] with 75%
probability (although s/he only has 25% chance to discover
Andy’s real salary 1000). Equivalently, the adversary has
arrived at a privacy-intruding claim: “Andy’s salary is very
likely around 1000”.

Somewhat surprisingly, despite its apparent importance
in practice, proximity breach has not been addressed in
the literature. Specifically, no existing principle targets di-
rectly this type of privacy leakage. As a result, even if an
anonymized table conforms to such a principle, it may still
incur proximity breach. We will provide detailed explana-
tions in Section 3.

1.2 Contributions
We introduce a new anonymization principle, (ε, m)-

anonymity, which eliminates proximity breach in publish-
ing numeric sensitive attributes. This principle is based on
a natural rationale: given a QI-group G, for every sensitive
value x in G, at most 1/m of the tuples in G can have sensi-
tive values “similar” to x. The interpretation of “similarity”
is quantified by the parameter ε. We discuss two interpre-
tations that are especially useful in practice. The first one
dictates that two values x and y are similar, if their absolute
difference is at most ε, i.e., |y − x| ≤ ε. The second inter-
pretation, on the other hand, judges similarity in a relative
sense: y is similar to x, if |y − x| ≤ ε · x.

The two interpretations lead to two instantiations of the
proposed principle: absolute (ε, m)-anonymity and relative
(ε, m)-anonymity, respectively. Note that ε and m define
the degree of protection against proximity breach from dif-
ferent perspectives. The former parameter specifies, for each
sensitive value x, the length of its private “neighborhood”,
whereas 1/m limits the probability that an adversary real-
izes x falling in that neighborhood. Apparently, stronger
protection is achieved with a higher ε or higher m.

This paper presents a systematic study of proximity
breach. First, we explain why the previous anonymization
principles are inadequate for eliminating this privacy threat.
Second, we present a careful theoretical analysis, which re-
veals several important characteristics of the proposed prin-
ciple (ε, m)-anonymity. In particular, our results clarify the
tradeoff between the extent of value similarity (captured by
ε) and the risk of privacy breach (controlled by m), and lead
to a reliable guideline for selecting ε and m in practice. Fi-
nally, utilizing our analytical findings, we develop an efficient
algorithm for computing (ε, m)-anonymous generalization.

The rest of the paper is organized as follows. Section
2 clarifies privacy attacks and formulates the concepts un-
derlying (ε, m)-anonymity. Section 3 points out the limita-
tions of the previous anonymization techniques when they
are applied to prevent proximity breach. Section 4 discusses
the theoretical properties of (ε, m)-anonymity, and Section
5 elaborates the generalization algorithm. Section 6 experi-
mentally evaluates the effectiveness of our solutions. Section
7 concludes the paper with directions for future work.

2. FORMALIZATION
Let T be a microdata table storing the private informa-

tion of a set of individuals. T has d QI-attributes A1,..., Ad,
and a sensitive attribute (SA) S. We consider that S is nu-
merical, and there is a linear ordering on the values of every
QI-attribute Ai (1 ≤ i ≤ d). The ordering is obvious for a
numerical Ai. When Ai is categorical, the ordering juxta-
poses, from left to right, the leaf values in the generalization
taxonomy on Ai. All attributes have finite and positive do-
mains. For each tuple t ∈ T , t.Ai (1 ≤ i ≤ d) denotes its
value on Ai, and t.S represents its SA value.

2.1 Privacy Attacks
We first clarify two fundamental concepts, and then illus-

trate the process taken by an adversary to deduce privacy.

Definition 1. A partition of a microdata table T is a
set of buckets G1, ..., Gg, where each bucket is a subset of
T , and it holds that G1 ∪ ... ∪ Gg = T and Gi ∩ Gj = ∅ for
any i 6= j.

Definition 2. Let {G1, ..., Gg} be a partition of the mi-
crodata table T . A generalization of T is a table T ∗ hav-
ing the same schema as T . For each tuple t ∈ T , T ∗ con-
tains a generalized tuple t∗ such that t∗.Ai (1 ≤ i ≤ d)
is an interval covering t.Ai and t∗.S equals t.S. Each Gj

(1 ≤ j ≤ g) defines a QI-group of T ∗, which includes all
the tuples generalized from the tuples in Gj. All tuples in
the same QI-group are indistinguishable by their QI-values.

Given T ∗, an adversary may use it to infer the SA value
o.S of a victim individual o. We consider that the adversary
possesses full identification information [28], as formulated
next.

Definition 3. The background knowledge of an ad-
versary includes (i) the identities (e.g., SSN) of the people
in the microdata T , (ii) their exact QI-values, and (iii) the
QI-group, denoted as G, in the generalized relation T ∗ that
contains the record of the victim o.

In practice, knowledge of Types (i) and (ii) in Definition 3
can be gleaned from an external database [28, 36]. For ex-
ample, in the context of Table 1a, an external database can
be the list of tax payers (every employee is definitely in the
list). By examining the QI-values in T ∗, the adversary can
identify a small number of “candidate QI-groups” that can
contain the record of o. By tackling knowledge of Type (iii),
we are dealing with the unfortunate scenario where there is
only one candidate QI-group.

After obtaining G (i.e., the QI-group in T ∗ including the
tuple of o), the adversary proceeds to deduce the privacy of
o with a probabilistic approach. Specifically, s/he considers
that any tuple in G may belong to o with identical likelihood.
Let X be a random variable modeling the distribution of o.S.
After consulting G, the adversary’s understanding about o.S
is a probability density function (pdf):

P [X = v] = n(G, v)/|G| (1)

where n(G, v) is the number of tuples in G whose SA values
are v. For example, after realizing that Andy’s record ap-
pears in the first QI-group of Table 1b, an adversary derives
P [X = v] = 25%, where X models the salary of Andy, and v
can be any salary amount (i.e., 1000, 1010, 1020, or 50000)
in that group.



2.2 (ε, m)-Anonymity
Let us associate each tuple t in the microdata T with an

interval I(t), indicating that we do not want the public to
discover that its sensitive value t.S is inside I(t). We refer
to I(t) as the private neighborhood of t:

Definition 4. For a tuple t ∈ T , its private neighbor-
hood I(t) is a range in the domain of S that contains the
sensitive value t.S of t.

As explained in Section 2.1, after a linking attack, an ad-
versary derives a pdf, as in Equation 1, of a random variable
X modeling t.S. Hence, s/he believes X ∈ I(t) with a prob-
ability

∑
∀v∈I(t) P [X = v], which is the risk of breaching

the proximity requirement enforced by I(t). This risk can
be represented in a closed form, as shown below:

Definition 5. Let t be a tuple in T , and G the QI-group
in T ∗ that t is generalized to. The risk of proximity
breach of t, denoted as Pbrh(t), equals x/|G|, where x is
the number of tuples in G whose sensitive values fall in I(t),
and |G| the size of G.

For example, let T , T ∗ be Tables 1a and 1b respectively.
Suppose that t is the tuple of Andy, and I(t) = [900, 1100].
Then, the breach risk Pbrh(t) of t equals 3/4. In the sequel,
we use the term proximity attack to refer to a linking attack
whose purpose is to infer the probability that the SA value
of a tuple t is in its private neighborhood I(t).

We now instantiate Definition 4 into two specific types of
private neighborhoods, which are particularly important in
practice, and can be specified with a single parameter ε.

Definition 6. For each tuple t ∈ T , its I(t) is an abso-
lute ε-neighborhood if

I(t) = [t.S − ε, t.S + ε],

where ε is any non-negative value. Similarly, I(t) is a rel-
ative ε-neighborhood if

I(t) = [t.S · (1 − ε), t.S · (1 + ε)],

where ε is a real value in [0, 1].

By specifying an absolute (relative) ε-neighborhood on a
tuple t, we indicate our willingness to allow the public to
associate t with a sensitive value that has at least absolute
(relative) error ε with respect to the real t.S.

We are ready to formalize (ε, m)-anonymity, and the prob-
lem of (ε, m)-anonymous generalization.

Definition 7. Given a real value ε and an integer
m ≥ 1, a generalized table T ∗ fulfills absolute (relative)
(ε, m)-anonymity, if

Pbrh(t) ≤ 1/m (2)

for every tuple t ∈ T , where Pbrh(t) is the risk of proximity
breach with I(t) being the absolute (relative) ε-neighborhood.

Problem 1. Given a microdata table T , a pair of ε
and m, the objective of absolute (relative) (ε, m)-
anonymous generalization is to compute a generalization
T ∗ of T that fulfills absolute (relative) (ε, m)-anonymity.

By increasing the value of ε or m, we are strengthening
the protection from proximity breach, however, in different
ways. Specifically, the effect of raising ε is to enlarge the
protection range of each sensitive value, whereas the purpose
of elevating m is to lower an adversary’s chance of beating
that protection.

Some pairs of (ε, m), however, are not achievable by any
generalization, i.e., Problem 1 has no solution for such a
pair. For example, imagine a fairly large ε such that the
absolute ε-neighborhood I(t) of each tuple t ∈ T covers the
entire domain of the sensitive attribute. In this case, given
any generalized table, the breach risk Pbrh(t) always equals
100%, rendering (ε, m) un-achievable for any m > 1.

In fact, there is an inherent conflict between ε and m,
such that increasing either parameter may force the other to
decrease. We refer to the phenomenon as the (ε, m)-tradeoff.
Understanding the tradeoff is imperative to striking a good
balance between the length of the protected neighborhood
of a sensitive value and an adversary’s chance of breaking
the protection. We will analyze this issue in Section 4.

3. INADEQUACY OF THE EXISTING
ANONYMIZATION METHODS IN PRE-
VENTING PROXIMITY ATTACKS

This section reveals why the previous solutions to
anonymized publication are not sufficient for Problem 1.
Section 3.1 first discusses generalization, and then Sec-
tion 3.2 analyzes perturbation.

3.1 Inadequacy of Known Generalization
Principles

The privacy-preservation power of generalization is deter-
mined by the adopted anonymization principle. Next, we re-
visit the principles in the literature, and establish their limi-
tations (in proximity-attack prevention) in two steps. First,
for each principle, we will explain why proximity breach
may still occur, even if the principle has been properly en-
forced. For this purpose, our analysis distinguishes these
principles according to whether they are designed for cate-
gorical sensitive attributes (Section 3.1.1), or numeric ones
(Section 3.1.2). Remember that our problem deals with nu-
meric sensitive attributes. Second, in Section 3.1.3, we will
argue that these principles cannot be easily adapted to avoid
proximity breach.

3.1.1 Principles for Categorical Sensitive Attributes

k-anonymity [35, 36]. This is the first anonymization
principle in the literature. It requires each QI-group to con-
tain at least k tuples. Due to its pioneering nature, how-
ever, k-anonymity places no constraint on the SA (sensitive
attribute) values in each QI-group. Absence of such con-
straints may result in a “homogenous” QI-group [27], where
all tuples possess exactly the same SA value. The homo-
geneity offers virtually no protection against linking attacks:
once an adversary realizes that a victim is in a homogeneous
QI-group, s/he immediately becomes affirmative about the
victim’s precise SA value.

l-diversity [27] and Its Variants. Prevention of homo-
geneity is equivalent to ensuring adequate diversity in the SA
values of a QI-group. This is the motivation of l-diversity



[27], which demands at least l “well-represented” SA val-
ues in every QI-group. Focusing on categorical sensitive at-
tributes, l-diversity aims at forbidding the public from dis-
covering the exact SA value of a tuple.

A similar principle, called (α, k)-anonymity, is developed
in [40]. Combining k-anonymity and l-diversity, (α, k)-
anonymity dictates that, in every QI-group, (i) there are at
least k-tuples, and (ii) at most α-percent of the tuples carry
an identical SA value. On the other hand, m-invariance [42]
is a principle originally proposed for re-publication of the
microdata, after it has been updated with insertions and
deletions. It is a stringent version of l-diversity. Specifically,
it requires that each QI-group should have at least m tuples,
all of which must have different SA-values.

(c, k)-safety [28] and Skyline-privacy [12]. This prin-
ciple considers that an adversary may have the so-called im-
plicational knowledge. Specifically, each piece of the knowl-
edge says that, if an individual o1 has an SA value v1, then
another individual o2 has an SA value v2. (c, k)-safety guar-
antees that even if an adversary has k pieces of such knowl-
edge, s/he can successfully figure out the precise SA value
of an individual with probability at most c. This princi-
ple achieves stronger privacy protection than l-diversity, be-
cause the latter guards only against adversaries with no im-
plication knowledge. Aiming at the same privacy attack as
(c, k)-safety (i.e., precise SA reconstruction), Skyline-privacy
[12] extends (c, k)-safety by considering other types of back-
ground knowledge (one of which is implicational knowledge),
and offers a way to tune the amount of privacy protection
against each type.

Common Drawback of Principles for Categorial At-
tributes. The goal of all the above principles is to avoid
exact sensitive-value reconstruction. This goal is reasonable
for a categorical sensitive attribute, where different values
do not have any sense of proximity. However, it is inappro-
priate for numerical sensitive attributes. Specifically, even
if an adversary is able to re-build an SA-value with a very
small error, this is still not considered as a privacy breach
(by the above principles), while it already constitutes a prox-
imity breach. As a concrete example, in Figure 1b, QI-group
1 has four different tuples, three of which are very close to
each other. As explained in Section 1.1, equipped with the
correct QI-values of Andy, an adversary declares that Andy’s
salary is in a short interval [1000, 1020] with a high proba-
bility 75%. However, the adversary has only a low chance of
25% to discover Andy’s actual salary 1000, which is deemed
acceptable by the previous principles.

3.1.2 Principles for Numeric Sensitive Attributes

(k, e)-anonymity [44]. Under this principle, each QI-
group must have at least k different sensitive values, and
the difference between the maximum and minimum values
in the group must be at least e. Even with very large k and e,
however, a (k, e)-anonymous QI-group may still incur prox-
imity breach. For example, consider a QI-group with size k,
where k − 1 tuples have nearly identical (but still different)
sensitive values, and the remaining tuple carries a faraway
sensitive value to satisfy the requirement posed by e. Thus,
for any of the first k − 1 tuples, its risk of proximity-breach
is as high as (k − 1)/k, even if its private neighborhood is a
short interval.

Variance Control [23]. This is a natural anonymization
principle for numerical sensitive attributes. Specifically, it
specifies a threshold t, and demands that, in every QI-group,
the variance of the sensitive values must be at least t. Unfor-
tunately, no matter how large the variance is, the QI-group
may still suffer from proximity breach. Imagine a QI-group
G, where |G| − 1 tuples share the same sensitive value v.
We may set the sensitive value of the remaining tuple to
be sufficiently different from v, in order to acquire an arbi-
trarily large variance in G. The first |G| − 1 tuples incur
proximity-breach risk of at least (|G| − 1)/|G|, regardless of
their private neighborhoods.

t-closeness [26]. Let f be the distribution of sensitive val-
ues in the entire microdata T . The rationale of t-closeness
[26] is that, in every QI-group G, the distribution fG of
sensitive values should mimic f . Specifically, EMD(f, fG)
must not exceed t, where function EMD(.) measures the
earth mover distance [26] between f and fG.

Unfortunately, EMD is not a reliable indicator of
proximity-breach risk (given in Definition 5), because the
former does not have provable mathematical relation to the
latter. To illustrate this, assume a microdata table T with
6 tuples, whose sensitive values are {1, 2, 3, 4000, 5000,
6000}. Let G1 and G2 be two QI-groups in a generaliza-
tion of T . They contain sensitive values {1, 3, 5000} and
{2, 4000, 6000}, respectively. Both groups have the same
EMD1 to T . However, the values 1 and 3 in G1 are more
vulnerable to proximity breach than any value in G2.

δ-presence [31]. This principle achieves privacy protection
from a perspective different from all the above principles.
Specifically, it prevents an adversary from inferring that an
individual is in the microdata. Trivially, if the adversary is
only δ (percent) sure that an individual is in the microdata,
then any SA-value in the published table can belong to that
individual with at most probability δ.

In our settings, however, we tackle the challenge that an
adversary already knows that an individual is definitely in
the microdata. This is indeed the case in many applications.
For example, let the microdata be the tax database; then as
long as a friend of Andy knows that Andy has a formal
job, the friend is certain that Andy must have a record in
the microdata. Nevertheless, it is worth mentioning that δ-
presence is indeed an option for guarding against proximity
attacks, in applications where an adversary does not know
about the presence of any individual in the microdata.

3.1.3 Discussion
We are not aware of any simple approach of adapting the

existing principles to prevent proximity attacks. There are
three primary reasons. First, those principles are proposed
for purposes drastically different from ours. This is espe-
cially true for the principles (Section 3.1.1) on categorical
sensitive attributes. Second, many principles (for example,
l-diversity, (c, k)-safety, skyline-privacy, to name just a few)
are supported by a set of solid theory that is built upon
the intrinsic properties of those principles. Modification of
a principle can easily topple its underlying theory, and de-
mand most of its properties to be re-established. This is

1Closed formulae for EMD calculation can be found in [26].
With those equations, it can be easily verified that both G
and G′ have an EMD of 0.1.



really not an easy task, given the complexity of the under-
lying theoretical derivation.

Third, all the principles reviewed earlier share a crucial
feature: monotonicity. Namely, let G1 and G2 be two sets
of tuples both of which fulfill a principle; then G1 ∪ G2 def-
initely satisfies the principle, too. As proved in Section 5.1,
however, (ε, m)-anonymity is not monotonic. The differ-
ence immediately invalidates the applicability of the previ-
ous anonymization algorithms [7, 17, 18, 24, 25, 43, 44] to
achieving (ε, m)-anonymity. This fact justifies the necessity
of studying the characteristics of (ε, m)-anonymity, and the
corresponding generalization algorithm.

3.2 Inadequacy of Perturbation
This subsection discusses another popular methodology of

data anonymization called perturbation [6, 15, 33]. We will
show that although in theory this methodology can be ap-
plied to prevent proximity attacks, its applicability in prac-
tice is rather limited, since it usually entails considerable
information loss.

Given a microdata T , perturbation creates a perturbed
relation T ′ as follows. For each tuple t ∈ T , it generates a
random number x between 0 and 1. If x ≤ p, where p is a
parameter called retention probability, the SA value t.S of t is
retained; otherwise, t.S is replaced with (i.e., perturbed to) a
random value in the domain of the sensitive attribute. After
processing all the tuples in T , the resulting tuples constitute
T ′, which is then published.

The privacy guarantee of perturbation has been very well
studied [6, 15, 33]. Adapting the result in [6], it is easy to
derive the breach risk Pbrh(t) (Definition 5) as:

Pbrh(t) =
P [I(t)] · (p + (1 − p) · |I(t)|)

P [I(t)] · p + (1 − p) · |I(t)|
. (3)

where P [I(t)] is the percentage of the tuples in the microdata
T whose sensitive values fall in I(t), and |I(t)| is the length of
I(t), assuming that the domain size of the sensitive attribute
has been normalized to 1. In particular, note that P [I(t)]
depends on the data distribution of T . In general, a smaller
p lowers the risk Pbrh(t), which is expected because a smaller
p introduces more noise, and hence, loses more information.

To satisfy Pbrh(t) ≤ 1/m (as required by Definition 7), the
highest permissible p varies for different tuples t (call that p
as the best p of t), as it depends on the SA-value distribution
around the SA-value t.X (due to the effect of P [I(t)]), and
|I(t)| (which may change for different t in the case of relative
ε-neighborhood; see Definition 6). Apparently, the publisher
must adopt a value of p that cannot exceed the lowest best
p of all tuples.

The drawback of this approach is that, even under practi-
cal settings, the p that can be used by the publisher must be
very low, in which case the perturbed relation T ′ is too noisy
for data analysis. Imagine, for example, that the SA values
in the microdata T follow a uniform distribution from 0 to
1. Suppose that our objective is to achieve absolute (0.1, 4)-
anonymity, namely, I(t) has length 0.1 for every tuple t,
and Pbrh(t) must not exceed 1/4. As |I(t)| = 0.1, we know
P [I(t)] = 0.1 (due to uniformity), and thus, it is easy to
obtain that p must be below 7%. In other words, more than
93% of the SA values in the perturbation relation T ′ are
random noise, rendering T ′ useless for research (as shown
in [6], the retention probability p should be at least 20% to
produce a T ′ useful for mining).

Another advantage of our technique over perturbation is
that, we can still guarantee adequate privacy protection even
when perturbation has failed completely. To illustrate, still
assume a T with a uniform distribution on the sensitive at-
tribute, but this time, we want to ensure absolute (0.1, 5)-
anonymity. It can be verified that p will have to be 0 for
perturbation, i.e., all the SA values in T ′ are noise. In fact,
according to Theorem 1 (to be presented in Section 4.2), our
solution can actually achieve absolute (0.1, 10)-anonymity
(as will be clear later, the n/maxsize(T ) in Theorem 1 eval-
uates to 10 here), let alone (0.1, 5)-anonymity which is less
stringent.

4. CHARACTERISTICS OF (EPSILON, M)
ANONYMITY

We proceed to study the “(ε, m)-tradeoff” mentioned at
the end of Section 2.2. Our results serve two crucial pur-
poses:

• Permit a publisher to determine whether a target level
of privacy protection is reachable. For example, if we
want to apply an absolute (or relative) ε-neighborhood
for each salary amount, is it possible to limit the risk
of proximity breach to 10%? If not, what is the lowest
possible risk limit? Conversely, if the breach risk must
be controlled at 10%, what is the longest absolute (rel-
ative) private neighborhood that can be offered to each
salary?

• Provide the theoretical foundation for designing an ef-
ficient algorithm for finding a good (ε, m)-anonymous
generalization.

4.1 A Reduction
Interestingly, although absolute and relative (ε, m)-

anonymity are based on different private neighborhoods,
they are instances a generic form of proximity privacy:
(e1, e2, m)-anonymity. The next two definitions formally
elaborate this notion.

Definition 8. For each tuple t in the microdata T , its
private neighborhood I(t) is an (e1, e2)-neighborhood, if
I(t) = [t.S − e1, t.S + e2], where t.S is the SA (sensitive
value) of t, and e1, e2 two non-negative values.

Definition 9. Give two non-negative values e1, e2 and
an integer m ≥ 1, a generalized table T ∗ fulfills (e1, e2, m)-
anonymity, if Pbrh(t) ≤ 1/m for every tuple t ∈ T , where
Pbrh(t) is the risk of proximity breach (given in Definition 5)
with I(t) being the (e1, e2)-neighborhood.

Problem 2. Given a microdata table T , and the values of
e1, e2, m, the objective of (e1, e2, m)-anonymous gener-
alization is to compute a generalization T ∗ of T that fulfills
(e1, e2, m)-anonymity.

Both the absolute and relative versions of Problem 1
are a special case of Problem 2. Obviously, an absolute
(ε, m)-anonymous generalization is (e1, e2, m)-anonymous,
where e1 = e2 = ε. Next, we provide a reduction
that transforms relative (ε, m)-anonymous generalization to
(e1, e2, m)-anonymous generalization, where e1 = log 1

1−ε

and e2 = log(1 + ε). All the “log” in this paper have a base
of 2. For example, if the goal is relative (0.2, 2)-anonymity,



we can aim at achieving (0.32, 0.26, 2)-anonymity, where
0.32 = log 1

1−0.2
and 0.26 = log(1 + 0.2).

Given a microdata table T , we convert each SA value v in
T to log v. In this way, T is transformed into an alternative
table T ′. Let T ′∗ be a (log 1

1−ε
, log(1 + ε), m)-anonymous

generalization of T ′. For every SA value v in T ′∗, we replace
it with 2v. The replacement changes T ′∗ into a different
table T ∗. The next lemma shows that T ∗ is definitely a
relative (ε, m)-anonymous generalization of the original mi-
crodata T .

Lemma 1. For each t ∈ T , Pbrh(t) ≤ 1/m, where Pbrh(t)
is calculated from the T ∗ obtained as described earlier, with
I(t) being the relative ε-neighborhood of t.

Proof. Let t′ be the tuple in T ′ that is converted from
t, and I(t′) its (e1, e2)-neighborhood with e1 = log 1

1−ε
and

e2 = log(1 + ε). Use G′ (G) to denote the QI-group in T ′∗

(T ∗) that t′ (t) is generalized to. By (e1, e2, m)-anonymity,
there are at most |G′|/m SA values v in G′ that lie in [t′.S−

e1, t
′.S + e2]. Hence, 2v falls in [2t′.S−e1 , 2t′.S+e2 ], which is

exactly the relative ε-neighborhood I(t) of t. It follows that
no more than |G|/m SA values in G are covered by I(t),
thus completing the proof.

The above reduction allows us to analyze the (ε, m)-
tradeoff for both absolute and relative (ε, m)-anonymity in
a unified framework. In the next two subsections, we will
study the characteristics of (e1, e2, m)-anonymity, and then,
extend the results to (ε, m)-anonymity in Section 4.4.

4.2 Achievable Range of m Given e1 and e2

Next, we answer the following question: given a pair of
(e1, e2), what is the condition on m such that Problem 2
has at least one solution? Let n be the cardinality of the
microdata T . For any tuple t ∈ T , I(t) represents its (e1, e2)-
neighborhood.

Definition 10. Given a subset G of T , the left cover-
ing set of t ∈ G, denoted as left(t, G), is the set of tuples
in G whose SA values are at most t.S, and are covered by
I(t).

Given G, the right covering set of t ∈ G, denoted as
right(t, G), is the set of tuples in G whose SA values are at
least t.S, and are covered by I(t).

As a running example, let T be the microdata in Ta-
ble 1a, which has eight tuples with SA values (in ascending
order) t1.S =1000, t2.S =1010, t3.S =1020, t4.S =16000,
t5.S =24000, t6.S =31000, t7.S =33000, and t8.S =50000.
Let G be the whole T , and assume e1 = 20 and e2 = 10000.
Hence, left(t3, T ) = {t1, t2, t3}, because the SA values of t1,
t2, t3 fall in the range of [t3.S − e1, t3.S] = [0, 1020]. Simi-
larly, right(t3, T ) = {t3} because no other tuple in T has an
SA value in the range [t3.S, t3.S + e2] = [1020, 11020].

For every tuple t ∈ G, we deploy size(t, G) to indicate the
cardinality of the more sizable set between left(t, G) and
right(t, G), namely:

size(t, G) = max{|left(t, G)|, |right(t, G)|}. (4)

In our running example, since (as mentioned earlier)
|left(t3, T )| = 3 and |right(t3, T )| = 1, we have
size(t3, T ) = max{3, 1} = 3.

Definition 11. For any subset G of T , its max-
imum covering-set size maxsize(G) is the largest
size(t, G) of all tuples t ∈ G. Formally, maxsize(G) =
max∀t∈G size(t, G).

In the running example, maxsize(T ) = 3, because no
other tuple t ∈ t has a size(t, T ) higher than size(t3, T ),
which equals 3 as explained before. Maximum covering-set
size has an interesting property:

Lemma 2. Let G1 and G2 be two disjoint subsets of T ,
and G = G1 ∪ G2. Then:

maxsize(G)

|G|
≤ max{

maxsize(G1)

|G1|
,
maxsize(G2)

|G2|
}. (5)

Proof. We first show maxsize(G) ≤ maxsize(G1) +
maxsize(G2). Due to symmetry, assume t ∈ G1, and that
maxsize(G) is the size of the left covering set left(t, G)
of a tuple t ∈ G. Use S1 (S2) to denote the set of tu-
ples in left(t, G) that also belong to G1 (G2). Obviously
left(t, G) = S1∪S2 and S1∩S2 = ∅. Let t′ be the tuple in S2

with the largest SA value. Notice that S1 ⊆ left(t, G1) and
S2 ⊆ left(t′, G2). Therefore, maxsize(G) = |S1| + |S2| ≤
|left(t, G1)|+ |left(t′, G2)| ≤ maxsize(G1) + maxsize(G2).

Given any subset G of T , we define α(G) =
maxsize(G)/|G|, and α(G1), α(G2) in the same manner.
As maxsize(G) ≤ maxsize(G1) + maxsize(G2), we have
(|G1|+ |G2|) ·α(G) = |G1| ·α(G1) + |G2| ·α(G2), leading to
|G1|
|G2|

· (α(G) − α(G1)) + α(G) ≤ α(G2). If α(G) ≤ α(G1),

Lemma 2 already holds. If α(G) > α(G1), the term
|G1|
|G2|

· (α(G) − α(G1)) > 0; hence α(G) < α(G2).

In the running example (with e1 = 20 and e2 = 10000),
let G1 = {t1, t2}, and G2 = {t3, t4, ..., t8}. Clearly, G1 ∪ G2

equals the entire microdata T . It is easy to verify that
maxsize(G1) = size(t1, G1) = 2 and maxsize(G2) =
size(t5, G2) = 3. Hence, the right hand side of Inequality 5
is max{ 2

2
, 3

6
} = 1. As mentioned earlier, maxsize(T ) = 3;

hence, the left hand side of the equality is 3
8
, which indeed

bounded by the right hand side.
Based on the previous lemma, we establish an important

theorem:

Theorem 1. Given a pair of e1 and e2, T has at least
one (e1, e2, m)-anonymous generalization, if and only if m ≤
bn/maxsize(T )c.

Proof. The proof consists of two steps. Step 1: Here, the
goal is to show that, if m > b|T |/maxsize(T )c, no gener-
alization T ∗ can satisfy (e1, e2, m)-anonymity. Assume that
T ∗ is created from a partition {G1, ..., Gg} of T (see Def-
inition 2). Hence, T =

⋃g
i=1 Gi. As a directly corollary

of Lemma 2, maxsize(T )/|T | ≤ maxg
i=1 maxsize(Gi)/|Gi|.

Without loss of generality, assume maxsize(T )/|T | ≤
maxsize(G1)/|G1|. Let t be the tuple in G1 such that
size(t, G1) = maxsize(G1). Thus, the proximity-breach risk
Pbrh(t) of t is at least size(t, G1)/|G1| = maxsize(G1)/|G1|,
which is at least maxsize(T )/|T | > 1/m.

Step 2: Let g = maxsize(T ) and mmax = b|T |/gc; the
objective is to prove that, as long as m ≤ mmax, there exists
at least an (e1, e2, m)-generalization T ∗ of T . Let us sort the
tuples in T in ascending order of their SA values, and use
ti (1 ≤ i ≤ n) to denote the i-th tuple in the sorted list. A
crucial observation is that, for any two tuples ti and tj , if



|i− j| ≥ g, ti.S does not fall in I(tj), and likewise, tj .S does
not fall in I(ti).

We divide T into g disjoint buckets G1, G2, ..., Gg by as-
signing tuples into buckets in a round-robin fashion. Specif-
ically, tuple ti (1 ≤ i ≤ n) is added to Gj , where j = (i
mod g) + 1. The assignment guarantees that, in any bucket
G ∈ {G1, ..., Gg}, (i) there is no tuple whose SA value lies
in the (e1, e2)-neighborhood of another tuple in G, and (ii)
|G| ≥ mmax.

Now, take a generalization T ∗ of T based on the g buckets
obtained earlier. T ∗ fulfills the property that, given any
tuple t ∈ T , Pbrh(t) = 1/|G| ≤ 1/mmax, where G is the
QI-group that t is generalized to.

In our running example (where e1 = 20 and e2 = 10000),
we already know that maxsize(T ) = 3. Hence, the above
theorem indicates that (20, 10000, m)-anonymity can be
achieved, if and only if m ≤ b8/3c = 2.

Finding the Maximum m. At first glance, maxsize(T )
seems to depend on both e1 and e2, whereas it actually relies
on only the larger of e1 and e2. We present this observation
as a formal lemma.

Lemma 3. Let emax equal max{e1, e2}, and G be any sub-
set of T . Regardless of the concrete values of e1 and e2, as
long as emax is fixed, maxsize(G) remains the same.

Proof. Assume that the tuples in G have been sorted in
ascending order of their SA values. Use ti (1 ≤ i ≤ |G|) to
denote the i-th tuple in the sorted list. Next we will prove
the lemma for the case e1 ≥ e2, as the extension to the
symmetric case is straightforward.

For any right(ti) = {ti, ..., tj} (1 ≤ i ≤ j ≤ |G|), ti.S
is also covered by I(tj), which implies right(ti) ⊆ left(tj).
Hence, maxsize(G) is determined by the sizes of left cov-
ering sets, which, in turn, are determined by emax = e1.
Therefore, e2 has no influence on maxsize(G).

To illustrate, recall that in our running example, when
e1 = 20 and e2 = 10000, maxsize(T ) = 3. The above
lemma implies that maxsize(T ) must also be 3, if e1 and e2

swap their values. Indeed, given e1 = 10000 and e2 = 20,
maxsize(T ) = size(t1, T ) = right(t1, T ) = 3.

Based on the above lemma, we develop an algorithm find-
maxsize, as in Figure 1 for obtaining the maxsize(G) of any
subset G of T . Provided that the tuples in G have been
sorted in ascending order of their SA values, the algorithm
terminates in O(|G|) time.

Now we are ready to settle the question raised at the be-
ginning of this subsection. Given e1, e2 and m, we invoke
find-maxsize by setting G to T and emax to max{e1, e2}.
Then, according to Theorem 1, an (e1, e2, m)-anonymous
generalization exists, if and only if m ≤ b|T |/maxsize(T )c.

4.3 Achievable e1 and e2 Given m

This subsection deals with a problem opposite to the one
solved in Section 4.2. Specifically, if we must put an upper
bound of 1/m to the risk of proximity breach, what are
the conditions on e1 and e2 so that there is at least one
(e1, e2, m)-anonymous generalization of the microdata T?
In the sequel, we use ti (1 ≤ i ≤ n) to denote the tuple
having the i-th largest SA value in the microdata T . For
any tuple t ∈ T , I(t) is its (e1, e2)-neighborhood.

Algorithm find-maxsize (G, emax)
/* the tuples in G have been sorted in ascending order of
their SA values */
1. maxsize = 1; i = 1; j = 2
2. while (j ≤ |G|)
3. if tj .S − ti.S ≤ emax

/* ti.S falls in I(tj) or tj .S falls in I(ti) */
4. j++; maxsize++
5. else
6. j++; i++
7. return maxsize

Figure 1: Computation of maxsize(G)

Algorithm find-e-max (T , m)
/* the tuples in T have been sorted in ascending order of
their SA values */
1. h = b|T |/mc
2. emax = ∞
3. i = 1; j = h + 1
4. while (j ≤ |T |)
5. if (emax > tj .S − ti.S)
6. emax = tj .S − ti.S
7. i++; j++
8. return emax

Figure 2: Finding the upper bound of e1, e2

Theorem 2. Given a positive integer m, T has at least
one (e1, e2, m)-anonymous generalization, if and only if

max{e1, e2} <
n−h

min
i=1

(ti+h.S − ti.S) (6)

where h = bn/mc.

Proof. Let α be the right hand side of Inequality 6. We
establish the theorem in two steps. Step 1: This step will
show that, if e1 ≥ α, no (e1, e2, m)-anonymous generaliza-
tion of T exists. The extension to the symmetric case where
e2 ≥ α is straightforward. Assume, without loss of gener-
ality, that α is minimized when i equals j. If e1 ≥ α, tj .S
is covered by I(tj+h), meaning that left(tj+h) includes at
least h + 1 elements tj , tj+1, ..., tj+h. Hence, maxsize(T ),
given in Definition 11, is strictly larger than h = bn/mc
(notice that maxsize(T ) ≥ |left(tj+h)|). It follows that,
m > bn/maxsize(T )c. By Theorem 1, T has no (e1, e2, m)-
anonymous generalization.

Step 2: Here, the goal is to prove that, as long as
max{e1, e2} < α, we can always find a generalization T ∗

of T , such that Pbrh(t) ≤ 1/m for any tuple t ∈ T . Ob-
serve that, when max{e1, e2} < α, for any tuples tx, ty with
|x − y| ≥ h, tx.S and ty.S are not covered by I(tx) and
I(ty), respectively. Thus, we create a partitioning of T with
h buckets G1, ..., Gh by assigning ti (1 ≤ i ≤ n) to Gj ,
where j = (i mod h) + 1. This assignment ensures that, in
any bucket G ∈ {G1, ..., Gh}, (i) there is no tuple whose SA
value lies in the (e1, e2)-neighborhood of another tuple in G,
and (ii) |G| ≥ bn/hc ≥ m. Compute a generalization T ∗ of
T based on the h buckets obtained earlier. Thus, given any
t ∈ T , it holds that Pbrh(t) ≤ 1/|G| ≤ 1/m.

In other words, after m has been decided, T has
(e1, e2, m)-anonymous generalization, if and only if both e1



and e2 are smaller than a certain “upper bound”, which
equals the right hand side of Inequality 6. Earlier in Sec-
tion 4.2, we know that, in our running example, when
e1 = 20 and e2 = 10000, (e1, e2, m)-anonymity is possible
only for m ≤ 2. Next, let us utilize the above theorem to
understand why m cannot reach 3.

Assume m = 3. Then, h (in Theorem 1) equals b8/3c =
2. For convenience, let us juxtapose the SA-values in
the microdata of our running example in ascending order
here: {t1.S =1000, t2.S =1010, t3.S =1020, t4.S =16000,
t5.S =24000, t6.S =31000, t7.S =33000, t8.S =50000}. In
the summation of Inequality 6, for i = 1, ti+h.S − ti.S =
t3.S − t1.S = 20; similarly, given i = 2, ti+h.S − ti.S =
t4.S − t2.S = 14900, and so on. Thus, it is easy to see that
the right hand side of the inequality evaluates to 20 (i.e., the
minimum is achieved at i = 1). Hence, to achieve (e1, e2, 3)-
anonymity, both e1 and e2 have to be strictly smaller than
20. This is the reason why, given e1 = 20 and e2 = 10000,
m must be smaller than 3.

Finding the Upper Bound of e1 and e2. Leveraging
Theorem 2, Figure 2 presents an algorithm for computing
this upper bound efficiently. Specifically, after the tuples in
T have been sorted in ascending order of their SA values,
the algorithm terminates in O(|T |) time.

4.4 Selecting the Parameters of (ε, m)-
Anonymity

Now let us return to (ε, m)-anonymity, and explain how
a publisher can utilize the previous results (on (e1, e2, m)-
anonymity) to decide the parameters ε and m. We distin-
guish three situations.

Both ε and m Decided. A publisher may already have
clear preferences for the length ε of a private neighborhood
and the limit 1/m of breach risk. In this case, it needs to
check whether the (ε, m)-pair is achievable. This can be
done easily with Theorem 1. Specifically, if the publisher
wants to enforce absolute (ε, m)-anonymity, it can set both
e1 and e2 directly to ε. The original (ε, m)-anonymity is
achievable, if and only if m qualifies the condition in The-
orem 1, where maxsize(T ) can be obtained with the algo-
rithm find-maxsize in Figure 1. On the other hand, in case
relative (ε, m)-anonymity is the target, the publisher needs
to transform the microdata T to an alternative table T ′, fol-
lowing the reduction described in Section 4.1. Then, it can
equate e1 to log 1

1−ε
, e2 to log(1 + ε), obtain maxsize(T ′).

Then, (ε, m)-anonymous generalization of T is possible, if
and only if m qualifies Theorem 1 on T ′.

ε Decided; Seek m. In this scenario, a publisher has de-
cided the length ε of a private neighborhood, and aims at
curbing proximity-breach risk under a bound 1/m that is as
low as possible. Minimization of 1/m is equivalent to max-
imization of m. This can also be accomplished with Theo-
rem 1. If absolute (ε, m)-anonymity is needed, the largest
possible m equals b|T |/maxsize(T )c, where maxsize(T ) is
computed with e1 = e2 = ε. For relative (ε, m)-anonymity,
the maximum m is b|T ′|/maxsize(T ′)c, where T ′ is reduced
from T , and maxsize(T ′) is obtained with e1 = log 1

1−ε
and

e2 = log(1 + ε).

m Decided; Seek ε. Sometimes the publisher is obliged
to ensure a certain upper bound 1/m on breach risk. In
this situation, it tries to elongate private neighborhoods as
much as possible, i.e., maximizing ε. For absolute (ε, m)-
anonymity, ε can be set arbitrarily close to the value emax

returned by the algorithm find-e-max in Figure 2. For rela-
tive (ε, m)-anonymity, ε can infinitely approach 1−1/2emax ,
where emax is returned by find-e-max on the T ′ reduced from
T .

5. GENERALIZATION ALGORITHM
The essence of computing a generalization T ∗ is to de-

cide a partition of T (c.f. Definition 1). As mentioned in
Definition 2, each bucket G in the partition determines a
QI-group in T ∗. The final generalized QI-values in G can be
obtained following different strategies. For example, on each
QI-attribute Ai (1 ≤ i ≤ d), the generalized value may sim-
ply be the minimum bounding interval of the Ai-values of all
the tuples in G [25]; alternatively, one may also require that
the generalized value should align with a pre-determined hi-
erarchy on Ai [7].

The quality of a generalization is gauged by a metric of
data loss, denoted as loss. Specifically, given a general-
ized tuple t∗ ∈ T ∗, loss(t∗) returns the amount of infor-
mation lost by t∗. The objective, therefore, is to minimize
loss(T ∗) =

∑
∀t∗∈T∗ loss(t∗), i.e., the total information loss

in generalizing all the tuples in T . Numerous metrics have
been proposed in the literature (see a summary in [22] and
the references therein). In the following subsections, we will
present an algorithm for finding a generalization T ∗ with
small loss(T ∗).

5.1 Non-Monotonicity and Predictability
All the privacy preserving principles surveyed in Section 3

have an important property: monotonicity. Specifically, this
property says that if (the QI-groups decided by) two disjoint
subsets G1 and G2 of T fulfill a principle, then the union
G1 ∪ G2 also satisfies the principle. Monotonicity is the
prerequisite of an efficient top-down pruning paradigm for
computing a generalization, which underlies nearly all the
existing generalization algorithms [7, 17, 24, 25].

Unfortunately, (ε, m)-anonymity does not possess this
property. We formally establish this fact with a lemma.

Lemma 4. Neither absolute nor relative (ε, m)-
anonymity is monotonic.

Proof. We prove only the absolute case, since the rel-
ative case can be established similarly. It suffices to find
a counter-example, where two subsets G1 and G2 of T are
(absolute) (ε, m)-anonymous, but their union is not. Here
is such an example: ε = 15, m = 2; G1 and G2 contain SA
values {40, 60} and {50, 80} respectively.

We propose a new concept, predictability, which is imper-
ative to designing a fast generalization algorithm for princi-
ples disobeying monotonicity.

Definition 12. An anonymization principle is linearly
predictable if, given any subset G of the microdata T , it is
possible to determine in O(|G|) time whether G is general-
izable, i.e, if any generalization of G fulfills that principle.

Linear predictability requires that we can quickly obtain
a yes-or-no answer about the “generalizability” of G, as op-
posed to its concrete generalization.



Lemma 5. Both absolute and relative (ε, m)-anonymity
are linearly predictable.

Proof. By the reduction in Section 4.1, establishment
of the lemma is equivalent to proving that (e1, e2, m)-
anonymity is linearly predictable. Note that Theorem 1
holds, even if we replace T with any subset G of T . Hence,
we can determine whether G has at least one (e1, e2, m)-
anonymous generalization, after computing maxsize(G) us-
ing the algorithm find-maxsize (Figure 1). The algorithm
terminates in O(|G|) time.

The above lemma makes a weak assumption: the tuples
in the given subset G (whose generalizability is being de-
termined) have been sorted in ascending order of their SA
values (as is demanded by find-maxsize). As will be elab-
orated in the next subsection, during the entire process of
computing an (ε, m)-anonymous generalization, we need to
perform sorting only once, even though the generalizability
of numerous subsets must be examined.

5.2 The Algorithm
This section elaborates how to obtain (absolute and rela-

tive) (ε, m)-anonymous generalizations of the microdata T .
In fact, it suffices to discuss only (e1, e2, m)-anonymity com-
putation, due to the reduction in Section 4.1.

After sorting the tuples in T in ascending order of their
SA values, our algorithm proceeds in two steps: splitting
and partitioning. The purpose of the splitting step is to
reduce the lengths of the generalized QI-values, whereas that
of the partitioning phase is to produce the final (e1, e2, m)-
anonymous partitions. Next, we discuss each phase in detail.

Splitting. This step is motivated by the Mondrian algo-
rithm in [25], and yields a partition of T . Each bucket
G of the partition, however, does not necessarily qualify
(e1, e2, m)-anonymity. Nevertheless, in case G does not, we
guarantee that there always exists a way to further parti-
tion G into smaller subsets, each of which fulfills (e1, e2, m)-
anonymity.

The splitting algorithm runs in iterations, and maintains
a set S of buckets. Initially, S contains a single bucket that
is simply T itself. Then, each partition divides a bucket
G ∈ S into two generalizable buckets (Definition 12) G1, G2,
removes G from S, and adds G1, G2 to S. The algorithm
stops when no more such G can be found.

Splitting a bucket G (into G1, G2) is performed based on a
QI-attribute A ∈ {A1, A2, ..., Ad}. Specifically, G1 (G2) in-
cludes all the tuples in G whose A-values are at most (strictly
larger than) v, where v is the median of the A-values of all
the tuples in G. Among all the QI-attributes, the splitting
dimension is the one that (i) leads to non-empty generaliz-
able G1 and G2, and (ii), among all dimensions qualifying
(i), minimizes the total information loss in generalizing G1

and G2 (measured by the metric loss presented at the be-
ginning of Section 5).

A bucket split can be accomplished in O(|G| · d + λ · d)
expected time, where λ is the cost of evaluating loss, and
is independent of the generalization algorithm. Specifically,
for each QI-dimension Ai (1 ≤ i ≤ d), we invoke the quick-
select algorithm [16] to obtain the median Ai-value v in G,
the cost of which is O(|G|) in expectation. Then, with a
single scan of G, we assign each tuple in G to G1 or G2,
by comparing its Ai-value to v. Since the order that tuples

Algorithm anonymity-check (G, e1, e2, m)
/* the tuples in G have been sorted in ascending order of
their SA values */
1. x = 1; i = 1; j = 2
2. while (j ≤ |G|)
3. if ti.S < tx.S − e1 then i++ and goto line 2
4. if tj .S ≤ tx.S + e2 then j++
5. if j > |G| or tj .S > tx.S + e2

6. Pbrh(tx) = (j − i)/|G|
7. if Pbrh(tx) > 1/m then return false

/* (e1, e2, m)-anonymity is violated */
8. else x++
9. return true

Figure 3: Checking (e1, e2, m)-anonymity

are inserted to G1 (G2) coincides with the order they are
scanned in G, they remain sorted in ascending order of their
SA values in G1 (G2) — recall that the initial bucket T is
sorted. Next, we determine the generalizability of G1 and
G2 in O(G) time (see Lemma 5). If both are generalizable,
the quality of generalizing G1 and G2 is calculated in O(λ)
time. After deciding the split dimension, another scan on G
is executed to produce the final G1 and G2.

Partitioning. Given any bucket G in the set S output
by the previous step, the partitioning phase converts it to
one or more subsets of T that fulfill (e1, e2, m)-anonymity.
Towards this purpose, we first check whether G itself satis-
fies (e1, e2, m)-anonymity. If yes, G is retained directly, and
no other subsets are created. The checking can be carried
out in O(|G|) time, using the algorithm anonymity-check in
Figure 3.

If G violates (e1, e2, m)-anonymity, we will partition it
into g smaller subsets G1, G2, ..., Gg, where g equals
maxsize(G), calculated in O(|G|) time by the algorithm
find-maxsize in Figure 2. The partitioning is achieved fol-
lowing the idea behind the second step in the proof of The-
orem 1. Specifically, we scan the tuples in G in ascending
order of their SA values, assign the i-th (1 ≤ i ≤ |G|) tu-
ple to Gj , where j = (i mod g) + 1. All of the resulting G1,
G2, ..., Gg are guaranteed to obey (e1, e2, m)-anonymity (see
the proof of Theorem 1). As no sorting is required to obtain
the scanning order, the entire assignment finishes in O(|G|)
time.

6. EXPERIMENTS
This section experimentally evaluates the effectiveness

and efficiency of the proposed technique. Our purposes are
twofold. First, we show that our generalization algorithm
(presented in Section 5) produces (ε, m)-anonymous tables
that permit accurate data analysis. Second, we verify that
the algorithm entails small computation cost. Our machine
runs a 3 GHz CPU, and has 1 gigabytes memory.

Our experimentation deploys a real database SAL2 com-
monly used in the literature. It contains 500k tuples, each
of which describes the personal information of an American.
SAL includes four integer attributes Age, Birthplace, Oc-
cupation, and Income, whose domains are [16, 93], [1, 710],
[1, 983] and [1k, 100k], respectively. We treat the first three

2Downloadable at http://ipums.org.
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Figure 4: Query accuracy vs. ε (m = 5, s = 0.1)

columns as QI-attributes, and Income as the sensitive at-
tribute.

As an implementation detail, the function loss(t∗) (for
quantifying the amount of information loss; see the begin-
ning of Section 5) employed by our algorithm is

3∑

i=1

|t∗.Ai|/|Ai|

where A1, A2, A3 denote the three QI-attributes in SAL, |Ai|
(1 ≤ i ≤ 3) is the domain size of Ai, and |t∗.Ai| equals the
number of Ai-values covered by the generalized value t∗.Ai.
We organize our results in two parts, which demonstrate
the utility of anonymization and the execution time of our
algorithm, respectively.

Utility of the Anonymized Data. As reviewed in Sec-
tion 3, currently the only existing method that can pro-
vide adequate protection against proximity attacks is per-
turbation, which is selected as the competitor of our (ε, m)-
anonymity technique. We compare the usefulness of the data
anonymized by the two approaches, under the same privacy
requirement. Recall that a crucial parameter of perturbation
is its retention probability (a higher retention probability of-
fers weaker anonymity protection but enhances data utility).
We maximize the utility of perturbation, by always using the
largest possible retention probability that ensures the degree
of privacy preservation mandated by (ε, m)-anonymity. In
particular, this largest retention probability is obtained in
the way as described in Section 3.2.

We measure the utility of a technique by the error
of answering count queries on the anonymized data it
produces. Each query has the form:

select count(*) from SAL
where A1 ∈ b1 and A2 ∈ b2 and ... and Aw ∈ bw.
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Figure 5: Query accuracy vs. m (s = 0.1)

Here, w is a parameter called the query dimensionality. A1,
..., Aw−1 are w − 1 arbitrary distinct QI-attributes in SAL,
but Aw is always Income, bi (1 ≤ i ≤ w) is a random in-
terval in the domain of Ai. The generation of b1, ..., bw is
governed by another parameter termed volume s, which is
a real number in [0, 1], and determines the length (in the

number of integers) of bi (1 ≤ i ≤ w) as b|Ai| · s1/wc. Ap-
parently, the query result becomes larger given a higher s.
A workload consists of 1k queries with the same w and s.

Given an (ε, m)-anonymous relation, we derive the esti-
mated answer of a query using the approach explained in
[25]. Given a perturbed relation, the estimated answer is
calculated according to the solution of [6]. For both meth-
ods, the accuracy of an estimate is gauged as its relative
error. Namely, let act and est be the actual and estimated
results respectively; the relative error equals |act− est|/act.

The first set of experiments studies the influence of ε (i.e.,
the length of a private neighborhood) on data utility. To-
wards this, we set m to 5, namely, the breach risk must be
bounded by 20%. We measure the average (per-query) error
of perturbation and (ε, m)-anonymity in answering a work-
load with s = 0.1. Concerning absolute (relative) (ε, 5)-
anonymity, Figure 4a (4b) plots the error as a function of ε.
Perturbation has no result for ε > 4k and 0.15 in Figures 4a
and 4b, respectively. This is because, in those cases, pertur-
bation simply cannot provide the privacy control guaranteed
by (ε, 5)-anonymity (i.e., even the lowest retention probabil-
ity 0 cannot fulfill the purpose, due to the reason elaborated
in Section 3.2).

Evidently, (ε, m)-anonymity produces significantly more
useful anonymized data than perturbation. Both techniques
incur higher error as ε increases. This is expected, since
a larger ε demands stricter privacy preservation, which
reduces data utility. Nevertheless, the error of (ε, m)-
anonymity is always below 15%. In contrast, the accu-
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Figure 6: Query accuracy vs. s (m = 5)

racy of perturbation deteriorates drastically as ε approaches
4k (0.15) in Figure 4a (4b). As mentioned earlier, the
anonymity requirement of ε = 4k (0.15) is already the limit
of the privacy control that can be offered by perturbation.
Thus, when ε moves close to 4k (0.15), perturbation must
adopt exceedingly low retention probability, rendering its
anonymized data useless for research. Since perturbation is
by far the worse method in the subsequent experiments, we
do not discuss it further.

Next, still using s = 0.1, we examine the utility of abso-
lute (4500, m)- and relative (0.125, m)-anonymous general-
izations with different m (i.e., adjusting the upper bound of
breach risk). For absolute (relative) anonymity, Figure 5a
(5b) presents the average error of 2D, 3D, and 4D workloads
as a function of m. The error grows with m because a larger
m demands tighter anonymity control. Nevertheless, even
for the greatest m, the data sanitized by our technique still
enjoys fairly good utility, incurring error no more than 20%
(8%) in the absolute (relative) case. To study the impact
of s (which decides the magnitude of query results), we fo-
cus on absolute (4500, 5)- and relative (0.125, 5)-anonymity.
Figure 6 plots the average workload error as s changes from
1% to 20%. The error decreases as s increases. This phe-
nomenon is consistent with the existing understanding that
generalization provides better support to count queries when
query results are larger [25]. The query error of our solution
remains small even for the lowest value of s.

Efficiency. Having verified the effectiveness of our tech-
nique, we proceed to test its efficiency. Using ε = 4500, Fig-
ure 7a demonstrates the cost of computing absolute (ε, m)-
anonymous generalization, when m varies from 2 to 7 (the
results on relative anonymity are omitted since they have
similar behavior). The cost drops as m grows. This is ex-
pected, because fewer qualified generalizations exist for a
greater m, allowing our algorithm to terminate earlier.
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Figure 7: Computation time

With m = 5, Figure 7b shows the computation cost as a
function of ε, in finding relative (ε, m)-anonymous general-
izations (the absolute case is analogous). Interestingly, as
ε increases, the cost initially becomes higher but then de-
creases monotonically. This phenomenon is due to a pair
of contradicting factors that push up and down the run-
ning time, respectively. First, as ε grows, the partitioning
phase entails larger overhead, as more buckets output by
the splitting phase need to be partitioned; this explains the
initial growth of the overall cost. On the other hand, when
ε escalates, there are fewer possible (ε, m)-anonymous gen-
eralizations, thus demanding less search time; this causes
the eventual cost descent. In all experiments, our algorithm
terminates within a minute.

7. RELATED WORK
The literature of privacy preserving publication has grown

considerably in the past few years. The previous works can
be loosely classified into two categories. The first one aims
at developing effective anonymization principles whose satis-
faction guarantees strong privacy protection. The objective
of the second category is to design algorithms for obtaining
generalized tables that obey an anonymization principle and
yet incur small information loss. Since we have discussed in
detail the known principles in Section 3, the following survey
concentrates on the second category, as well as works that
fit neither category nicely.

The existing generalization algorithms can be further di-
vided into heuristic and theoretical. The main advantage
of heuristic algorithms is that they are general, namely,
they can be applied to many anonymization principles.
Specifically, a genetic algorithm is developed in [20], and
the branch-and-bound paradigm is employed on a set-
enumeration tree in [7]. Top-down and bottom-up algo-
rithms are presented in [17, 43]. Incognito [24] borrows ideas



from frequent item set mining, while Mondrian [25] takes a
partitioning approach reminiscent of kd-trees. In [18], space
filling curves are leveraged to facilitate generalization, and
the work of [19] draws an analogy between spatial index-
ing and generalization. The above approaches minimize
a generic metric of information loss, whereas a workload-
aware method [23] uses a representative workload supplied
by users. Sequential publication is addressed in [38], and re-
publication is tacked in [42]. As shown in [39], the previous
algorithms may suffer from minimality attacks, which can
be avoided by introducing some randomization.

Heuristic algorithms work well on practical datasets, but
do not have attractive asymptotical performance in the
worst case. This motivates studies on theoretical algorithms.
Interestingly, all the know theoretical results focus on k-
anonymity. Meyerson and Williams [29] are the first to
prove the NP-hardness of optimal k-anonymous generaliza-
tion, and give an O(k log k)-approximation algorithm. Ag-
garwal et al. [3] reduce the approximation ratio to O(k),
which is further improved to O(log k) by Park and Shim
[32]. Unlike these solutions whose approximation ratios are
functions of k, Du et al. [13] present a method having a ratio
O(d), where d is the number of attributes in the QID. Ag-
garwal et al. [2] develop constant approximation algorithms.

So far we have focused on generalization, while
anonymized publication can also be achieved by other
methodologies. Kifer and Gehrke [22] develop marginal pub-
lication, which releases the anonymized versions of the pro-
jections of the microdata on different subsets of attributes.
Xiao and Tao [41] advocate anatomy that publishes the QI
and SA values directly in two different tables. Aggarwal and
Yu [1] design the condensation method, which releases only
selected statistics about each QI-group. Rastogi et al. [33]
employ perturbation, which has been explained in Section 3.

Finally, besides data publication, anonymity issues arise
in many other environments. Some examples include
anonymized surveying [5, 15], statistical databases [10, 14,
30], cryptographic computing [21, 34, 37], access control [4,
8, 9], and so on.

8. CONCLUSIONS
Although proximity breach is a natural privacy threat to

numerical sensitive data, it has not received dedicated at-
tention in the literature. We eliminate this threat with a
new anonymization principle called (ε, m)-anonymity. We
present a thorough theoretical analysis, which reveals nu-
merous important characteristics of this principle, and leads
to an efficient generalization algorithm. Extensive exper-
iments confirm that our technique produces anonymized
datasets that are highly useful in analyzing the original mi-
crodata.

This paper lays down a solid foundation for several direc-
tions towards further studies on protecting sensitive numeric
data. First, while this paper concentrates on microdata that
contains only a single sensitive attribute, it is interesting
to investigate how the proposed solutions can be extended
to support multiple attributes. Second, our discussion as-
sumes one-time publication of a static dataset, whereas it
remains open how to ensure (ε, m)-anonymity in multiple
re-publications of a dynamic dataset [11]. This is a challeng-
ing problem because an adversary may utilize the intricate
correlations among various published versions to increase
her/his chance of breaching the privacy of an individual.
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