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ABSTRACT
A statistical database (StatDB) retrieves only aggregate re-
sults, as opposed to individual tuples. This paper investi-
gates the construction of a privacy preserving StatDB that
can (i) accurately answer an infinite number of counting
queries, and (ii) effectively protect privacy against an ad-
versary that may have acquired all the previous query re-
sults. The core of our solutions is a novel technique called
dynamic anonymization. Specifically, given a query, we on
the fly compute a tailor-made anonymized version of the
microdata, which maximizes the precision of the query re-
sult. Privacy preservation is achieved by ensuring that the
combination of all the versions deployed to process the past
queries does not allow accurate inference of sensitive infor-
mation. Extensive experiments with real data confirm that
our technique enables highly effective data analysis, while
offering strong privacy guarantees.

ACM Categories and Subject Descriptors: H3.3 [In-
formation Search and Retrieval]: Retrieval Models.

General Terms: Algorithms, Theory

Keywords: Privacy, Statistical Database, Dynamic
Anonymization, m-invariance

1. INTRODUCTION
Privacy preservation has become a major issue in enabling

public access to datasets that contain personal information.
A bulk of research (see Section 2) in this area has been de-
voted to central publication. In that scenario, a publisher
aims at releasing an anonymized version T ¦ of a microdata
table T , so that researchers can use T ¦ to derive statistical
results about T , whereas no malicious user, called an ad-
versary, can infer the sensitive data of any individual from
T ¦.

As an example, consider the microdata T in Table 1a,
which contains three attributes Age, Zipcode, and Disease.
Each tuple corresponds to an individual (the column Name
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is not part of T ; we use it to facilitate tuple referencing).
Attribute Disease is sensitive; namely, no adversary should
be able to figure out the disease of any individual with high
confidence. For this purpose, the publisher releases T ∗

1 in
Table 1b. Here, anonymization is performed with general-
ization, which makes it impossible to uniquely pinpoint the
tuple owned by an individual from her/his non-sensitive val-
ues. For instance, assume that an adversary knows the age
20 and Zipcode 12000 of Alice. Given T ∗

1 , the adversary can
only find out that Alice is described by the first or second
tuple. Hence, with a random guess, the adversary can infer
her real disease flu only with 50% chance. Since the non-
sensitive columns can be used to identify an individual, they
are also called the quasi-identifier (QI) attributes.

The above process carried out by the adversary is known
as a linking attack [32, 33]. Such attacks are a major threat
of privacy that the database community tackles nowadays.
Besides generalization, this threat can also be prevented by
another anonymity framework named anatomy [38]. We will
explain the characteristics of both frameworks in Section 3.1.

1.1 Statistical Databases
This paper advocates a technique different from central

publication: statistical databases (StatDB), which retrieve
only aggregate results, as opposed to individual tuples. Pri-
vacy is protected by controlling the precision of the returned
answers. The existing approaches (see [1] for an excellent
survey) can be classified into three categories: query restric-
tion, output perturbation, and data modification.

Query restriction [17, 26] simply refuses to answer certain
queries whose results leak sensitive information. Since the
answers of multiple queries may be leveraged (sometimes,
in intricate ways) to infer privacy, the system must remem-
ber all the past queries, and examine them in deciding the
answerability of a new query. Therefore, as time evolves,
the space consumption (for the query-log) monotonically es-
calates, and the cost of judging answerability becomes in-
creasingly expensive. Output perturbation [7, 10, 9] works
as follows. Given a query, the system finds its exact answer,
adds certain noise to (i.e., perturbs) it, and then returns only
the perturbed value. Ideally, the noise should be small to
ensure the answer’s utility, and its generation should make it
extremely hard for an adversary to de-noise. This, however,
turns out to be difficult. Dinur and Nissim [9] prove that,
to safeguard privacy, the system is allowed to answer only a
finite number of queries, which is a function of the privacy
requirement and the target precision of query results.

Given a microdata table T , Data modification [4, 25] pre-
pares an adequately anonymized version T ¦ of T , such that



Name Age Zip. Disease
Alice 20 12000 flu
Bob 23 58000 gastritis

David 38 41000 flu
Helen 42 23000 gastritis
Jack 46 25000 flu
Ken 48 13000 gastritis

Linda 49 51000 flu
Mary 52 52000 insomnia
Paul 53 49000 gastritis
Ray 59 61000 flu
Tom 61 39000 gastritis

(a) Microdata T

Tuple ID Age Zip. Disease
1 (Alice) [20, 23] [12k, 58k] flu
2 (Bob) [20, 23] [12k, 58k] gastritis

3 (David) [38, 42] [23k, 41k] flu
4 (Helen) [38, 42] [23k, 41k] gastritis
5 (Jack) [46, 48] [13k, 25k] flu
6 (Ken) [46, 48] [13k, 25k] gastritis

7 (Linda) [49, 53] [49k, 52k] flu
8 (Mary) [49, 53] [49k, 52k] insomnia
9 (Paul) [49, 53] [49k, 52k] gastritis
10 (Ray) [59, 61] [39k, 61k] flu
11 (Tom) [59, 61] [39k, 61k] gastritis

(b) Generalization T ∗
1

Table 1: Microdata and its generalization

no privacy breach can occur, even if an adversary has the
entire T ¦. For each query, the system directly returns its ex-
act result on T ¦ (note: not on T ). Data modification avoids
the drawbacks of the previous two StatDB methodologies.
First, (unlike query restriction), it can answer any query,
and eliminates the need of auditing and retaining the his-
torical queries. Second, (unlike output perturbation), it is
able to process an infinite number of queries.

1.2 StatDB vs. Central Publication
A StatDB has at least two major advantages over central

publication. First, a StatDB allows us to build an online
server with a user-friendly interface, so that any user (in-
cluding those with limited scientific backgrounds) around
the world can easily query about the microdata. Specifi-
cally, the server receives the query parameters through the
interface, runs the underlying StatDB, and displays the re-
sult in the user’s web browser [12]. On the other hand, an
anonymized dataset released by central publication is more
difficult to analyze. For example, given Table 1b, a user still
needs to write a program to obtain a query result, which
would not be possible for “naive users” without knowledge
of programming. Second, given a query, a StatDB may pro-
duce a more accurate answer than can be derived from a
directly-published dataset, as will be clarified in the next
subsection.

Note that we do not imply that StatDB is superior to cen-
tral publication in all aspects. In fact, the latter clearly has
its own advantages too. An important one, for example, is
that, possessing an anonymized dataset, a real expert can
perform a large variety of studies, instead of being confined
to the functionalities provided by a server. Our intention, in-

Tuple ID Age Zip. Disease
1 (Alice) [20, 48] [12k, 13k] flu
2 (Ken) [20, 48] [12k, 13k] gastritis
3 (Jack) [42, 46] [23k, 25k] flu
4 (Helen) [42, 46] [23k, 25k] gastritis
5 (David) [38, 61] [39k, 41k] flu
6 (Tom) [38, 61] [39k, 41k] gastritis
7 (Linda) [49, 53] [49k, 52k] flu
8 (Mary) [49, 53] [49k, 52k] insomnia
9 (Paul) [49, 53] [49k, 52k] gastritis
10 (Ray) [23, 59] [58k, 61k] flu
11 (Bob) [23, 59] [58k, 61k] gastritis

Table 2: Another generalized version T ∗
2 of T

stead, is to establish StatDB as another feasible approach for
enabling public access to private data, which has its unique
merits.

1.3 Dynamic Anonymization
Our objective is to design a StatDB that achieves a stan-

dard of privacy preservation acceptable by the central pub-
lication literature (i.e., m-invariance [39], which is a stricter
version of l-diversity1 [22]). There exist alternative privacy
standards in other fields (e.g., security, surveying, etc.), and
they are not our focus. In any case, each standard has its
pros and cons. However, as long as a standard (such as
l-diversity) has been justified to be useful in many applica-
tions, a technique enforcing it has practical importance.

It is easy to come up with a straightforward solution.
Given a microdata table T , we can compute an l-diverse
table T ¦, and use it to process queries. This paper presents
a new technique, dynamic anonymization, which offers bet-
ter query answers, while ensuring strong privacy protection.
Specifically, given a query, we (on the fly) produce, among
all the possible anonymized versions of T , a good version,
which provides a highly accurate query result. Let Qi be
the i-th query, and T ¦

i the anonymized relation deployed
to answer Qi. We guarantee that, even if an adversary ac-
quires the entire set {T ¦

1 , T ¦
2 , ... }, s/he still cannot derive

any sensitive data with high confidence. Privacy protection
is thus ensured, noting that the most an adversary can get
from the result of Qi is T ¦

i . Furthermore, our technique
has an interesting feature: no information of T ¦

i needs to be
remembered after processing Qi.

Let us illustrate the benefits of dynamic anonymization
using the microdata T in Table 1a, again employing general-
ization as the anonymity approach. The first query received
by our StatDB is:

Q1: SELECT COUNT(*) FROM StatDB
WHERE Age ∈ [30, 50] AND Disease = flu

Suppose that the system chooses the generalized relation
T ∗

1 in Table 1b to process Q1. The returned result is an
interval [2, 3], which encloses the real answer 3 of Q1. In
particular, the result follows the fact that Tuples 3 and 5 in
Table 1b definitely satisfy Q1, Tuple 7 possibly satisfies Q1,
and the other tuples cannot satisfy Q1, judging from their
(generalized) ages and diseases. For instance, Tuple 7 may

1l-diversity requires that, in each QI-group, at most 1/l of its
tuples can have the same sensitive value. We will introduce
m-invariance later.



satisfy Q1 because, from a user’s perspective, the original
Age-value of this tuple may be anything between 49 and 53.

Consider another query:

Q2: SELECT COUNT(*) FROM StatDB
WHERE Zipcode ∈ [20k, 40k] AND Disease = flu

If T ∗
1 (i.e., Table 1b) is used to process Q2, by the earlier

reasoning, the result is a wide interval [0, 4], since no tuple
definitely satisfies Q2, and Tuples 1, 3, 5, 10 possibly satisfy.
Now we compute an alternative generalized version T ∗

2 of T ,
as shown in Table 2. Note that the tuple sequence in Table 2
differs from that in Table 1a (the correspondence between
the two sequences is indicated by people’s names). Answer-
ing Q2 with T ∗

2 produces a shorter interval [1, 2] (Tuples
3 and 5 definitely and possibly satisfy, respectively). This
result is more useful than that from T ∗

1 .
Even if an adversary has somehow deduced the entire T ∗

1

and T ∗
2 (from the query results), equipped with a victim

individual’s QI-values, s/he can correctly infer the victim’s
disease only with probability 50%. The secret is that the set
{T ∗

1 , T ∗
2 } obeys 2-invariance [39]. To explain this concept,

let us define (informally) a QI-group in a generalized table
as a maximal set of tuples with equivalent QI-values. 2-
invariance states that, given any tuple t in the microdata T ,
the two QI-groups in T ∗

1 and T ∗
2 containing the generalized

versions of t must (i) have an identical size, (ii) contain the
same set of Disease-values, and (iii) in each QI-group, no
Disease-value appears more than once. For example, if t
is the tuple of Alice in Table 1a, then the QI-group in T ∗

1

(T ∗
2 ), which t is generalized to, includes the first two rows of

Table 1b (Table 2). It can be easily verified that Conditions
(i)-(iii) are indeed fulfilled. In general, m-invariance ensures
that a linking attack can discover the sensitive value of an
individual with probability at most 1/m [39].

The previous examples also explain why StatDB promises
better data analysis than central publication. As mentioned
earlier, Table 1b leads to a good result for query Q1 but a
poor one for Q2. Interestingly, the reverse is true for Table 2:
although as shown earlier it yields a tight interval for Q2,
it produces a long interval [1, 5] for Q1 (Tuple 3 definitely
satisfies Q2 and Tuples 1, 5, 7, 9 may satisfy). Hence, the
two queries cannot be accurately processed simultaneously,
no matter which of Tables 1b and 2 is published.

1.4 Contributions and Paper Organization
This paper carries out a systematic study on building a

privacy preserving StatDB. First, we formalize a new type
of StatDB, based on the concepts of dynamic anonymiza-
tion and m-invariance. Our formalization applies to two
anonymization frameworks: generalization and anatomy. In
either case, our StatDB provides rigorous privacy guaran-
tees, against even the most persistent adversary that has
audited the results of all past queries.

As a second step, we analyze the algorithmic and the-
oretic issues arising from each anonymization framework.
Interestingly, when anatomy is deployed, for any query Q,
the optimal anonymized version of the microdata T (pro-
viding the most accurate answer to Q) can be computed by
scanning a fraction of T . Finding the optimal generalized
version, unfortunately, is NP-hard. Therefore, we develop a
fast heuristic algorithm that returns accurate answers.

Finally, we perform extensive experiments to verify the
effectiveness of the proposed techniques. Specifically, our

StatDB enables highly effective data analysis, while provid-
ing strong privacy guarantees. Furthermore, the StatDB is
both space- and time-economical. Specifically, it requires a
single hash structure with the same size as T (as mentioned
in Section 1.3, none of the anonymized versions employed
in history needs to be retained), and settles every query in
less than 0.05 seconds (when T is a real dataset with 600k
tuples).

The rest of the paper is organized as follows. Section 2
reviews the related work. Section 3 explains the concepts
of generalization, anatomy, and m-invariance. Section 4 for-
mally defines the problem, and overviews the proposed solu-
tions. Section 5 presents a technique to concisely capture all
the possible anonymized versions of the microdata that can
be used to answer a query without privacy breaches. Sec-
tion 6 clarifies the details of a StatDB adopting anatomy,
whereas Section 7 extends the discussion to generalization.
Section 8 explores alternative approaches to implement a
privacy preserving StatDB. Section 9 experimentally evalu-
ates the effectiveness of our techniques. Finally, Section 10
concludes the paper with directions for future work.

2. RELEVANCE TO PREVIOUS WORK
In the following, we focus on four topics in data

anonymization that are most relevant to our work, and ex-
plain the differences between the existing solutions and the
proposed technique.

Statistical Databases. A brief survey of StatDB has been
provided in Section 1.1, explaining the three main categories
of previous search. We focus on data modification because
(i) it encompasses our solutions, and (ii) the other categories
either cannot support arbitrary queries or can answer only
a limited number of them, as explained in Section 1.1.

There are three major methodologies of data modification:
random perturbation [4, 11], random noise [15, 25], and data
swapping [30]. We will elaborate on random perturbation
in Section 8 and adapt it to our scenario. Random-noise
offsets every value in the microdata by a certain extent, so
that the resulting dataset is different from and yet retains
the patterns in the original data. Data swapping, on the
other hand, distorts the dataset by exchanging the values
among tuples. For example, exchanges can be performed in
a way that preserves the “marginal statistics” [30] of the mi-
crodata. Methods of both random-noise and data-swapping
are often accompanied by theoretical privacy guarantees,
which, however, are valid in scenarios that do not involve
linking attacks. Hence, until specialized guarantees against
such attacks have been established, those methods remain
inapplicable to prevention of this type of privacy inferences.

Central Publication. This area primarily aims at pre-
venting linking attacks, as discussed earlier with Tables 1a
and 1b. Most solutions adopt generalization [3, 8, 16, 18, 21,
22, 23, 24, 28, 32, 33, 37, 39] or anatomy [13, 40, 38] as their
anonymity frameworks. Implementation of either framework
must be integrated with a privacy principle, for deciding if
anonymization fulfills the privacy needs. Several principles
have been proposed, and they offer various anonymity guar-
antees targeting different background knowledge of adver-
saries. Examples include k-anonymity [32, 33], l-diversity
[22], t-closeness [21], m-invariance [39], δ-presence [27], etc.
Perturbation has also been applied to central publication
[29].



LeFevre et al. [20] develop an interesting workload-aware
approach. This method assumes the availability of a “repre-
sentative query workload”, and publishes a generalized table
that maximizes the accuracy of the workload. Apparently,
the applicability of the method is limited when the query dis-
tribution is not known in advance. Our dynamic anonymiza-
tion technique remedies this problem, since it finds a tailor-
made anonymized relation for every query on the fly, without
having to acquire the query in advance.

Cryptographic Computing. An important topic in cryp-
tography is to develop a protocol of data exchange, such
that the amount of information exposed exceeds the amount
needed for performing an objective task by a provably small
threshold. Various protocols exist for tasks such as cluster-
ing [34], top-k search [35], etc. Cryptographic computing
is inherently different from StatDB (the focus of our pa-
per) in two ways. First, a cryptographic protocol deals with
multiple parties, and minimizes the information revealed by
each party. The issue does not exist in a StatDB, where
there is only one party holding the sensitive data (i.e., the
server). Alternatively, from the perspective of cryptography,
the “protocol” in a StatDB is trivial: given a query (a.k.a.,
a task), the server just returns the answer directly, which is
obviously the least information for settling the query. Note
that there exist cryptographic solutions [31] for secure de-
livery of secret contents from a single party to a recipient.
These solutions are also different from multi-party crypto-
graphic protocols, and are complement to StatDB for result
transmission.

Second, their privacy goals are different. Disseminating
the query result is intended in a cryptographic protocol (re-
call that the protocol tries to reduce the released information
outside the result), while this breaches privacy in a StatDB.
For example, consider the cryptographic protocol of [35] that
reports the top-k tuples in the union of the data in several
parties. These tuples are revealed directly, and it is not an
issue even if they contain sensitive information. In other
words, the protocol cares about exchanging no unnecessary
information among parties, rather than whether the data in
those objects is private . A StatDB prevents accurate in-
ference of any tuple, and prohibits direct publication of any
data. In particular, not only that a StatDB cannot release
the exact result of any query, but also it must ensure no
confident privacy inference through the correlation in the
results of all past queries. Hence, the security model of a
cryptographic protocol is no longer suitable in StatDB.

It is important to understand the differences between pri-
vacy principles (e.g., l-diversity) and cryptographic proto-
cols in privacy protection abilities. Unlike those applying
cryptographic protocols, an application (e.g., central publi-
cation and, in our paper, StatDB) enforcing a privacy prin-
ciple typically does not have a concrete query in mind, but
instead, targets generic ad-hoc analysis. A privacy princi-
ple assumes less powerful adversaries compared to a cryp-
tographic protocol. This is inevitable because anonymity
requirements need to be lowered to improve the utility of
anonymized data for broader purposes. However, this does
not affect the usefulness of privacy principles, as long as
their assumptions are acceptable in the underlying appli-
cation. Note that “acceptable” does not mean that these
assumptions hold against all adversaries (after all, no prin-

ciple, or even cryptographic protocol, can achieve this), but
rather, a significant number of them.

Access Control. In practice, various users have differ-
ent access permissions to different portions of a database.
When the number of users is exceedingly large, enforcing
those permissions effectively and efficiently becomes a seri-
ous challenge. There have been several solid works for tack-
ling this problem in different environments, e.g., relational
databases [36], XML documents [6], temporal databases [5],
and so on. Anonymity in StatDB, however, is different from
access control. In particular, each query has access to the
entire database, except that a fuzzy result (e.g., a range) is
returned for privacy preservation.

3. PRELIMINARIES
Let T be a microdata table that contains a sensitive at-

tribute As, and d quasi-identifier (QI) attributes Aq
1, ..., Aq

d.
Following a common assumption in the literature [22, 23,
38], As is categorical, while every Aq

i (1 ≤ i ≤ d) can be
either numerical or categorical. For each tuple t ∈ T , we
denote its value on an attribute A as t[A]. In the sequel, we
will first discuss generalization and anatomy in Section 3.1,
and then the m-invariance principle in Section 3.2.

3.1 Anonymization Frameworks
We target adversaries with the following background

knowledge.

Definition 1 (QI-conscious Adversary). A QI-
conscious adversary knows the identity of every individual
in T , and her/his QI values. ¤

Both generalization and anatomy are based on QI-groups:

Definition 2 (QI-Group / Partition). A QI-group
of T is a subset of the tuples in T . A partition of T is a
set of disjoint QI-groups whose union equals T . ¤

Next we define generalization via a bijection:

Definition 3 (Generalization [32, 33]). A general-
ization T ∗ has the same attributes as T , and is defined by a
partition P of T . There exists a bijection f from T to T ∗,
such that

1. For each t ∈ T and t∗ = f(t), t∗[Aq
i ] is an interval2

covering t[Aq
i ] (1 ≤ i ≤ d), and t∗[As] = t[As].

2. For any tuples t1 and t2 in a QI-group of P , f(t1) and
f(t2) have the same value on all Aq

i (1 ≤ i ≤ d). ¤

For any QI-group G ∈ P , we define G∗ = {t∗|t∗ = f(t), t ∈
G} as a QI-group in T ∗, and use G∗[Aq

i ] to denote the gen-
eralized Aq

i value of the tuples in G∗. For example, Table 1b
stems from the following partition of Table 1a:

P1 = {{Alice, Bob}, {David, Helen}, {Jack, Ken},
{Linda, Mary, Paul}, {Ray, Tom}}.

The bijection between the two tables is reflected by people’s
names. Similarly, Table 2 is created from another partition:

2If Aq
i is categorical, we impose on its values a total ordering,

which lists the leaves of its generalization hierarchy [18] from
left to right.



Tuple ID Age Zip. G. ID

1 (Alice) 20 12000 1
2 (Bob) 23 58000 1

3 (David) 38 41000 2
4 (Helen) 42 23000 2
5 (Jack) 46 25000 3
6 (Ken) 48 13000 3

7 (Linda) 49 51000 4
8 (Mary) 52 52000 4
9 (Paul) 53 49000 4
10 (Ray) 59 61000 5
11 (Tom) 61 39000 5

(a) The quasi-identifier table

G. ID Disease Count

1 flu 1
1 gastritis 1
2 flu 1
2 gastritis 1
3 flu 1
3 gastritis 1
4 flu 1
4 insomnia 1
4 gastritis 1
5 flu 1
5 gastritis 1

(b) The sensitive table

Table 3: The QIT and ST generated from the par-
tition underlying Table 1b

P2 = {{Alice, Ken}, {Jack, Helen}, {David, Tom},
{Linda, Mary, Paul}, {Ray, Bob}}.

Anatomy can also be formalized using a bijection:

Definition 4 (Anatomy [40, 38]). Given a partition
P of T with ng QI-groups, an anatomy of T includes a quasi-
identifier table (QIT) and a sensitive table (ST). The QIT
contains all the QI attributes in T and an attribute “Group-
ID”. There is a bijection f from T to the QIT, such that,

1. For any tuple t ∈ T and t′ = f(t), t[Aq
i ] = t′[Aq

i ] for
all i ∈ [1, d].

2. If t is in the j-th (1 ≤ j ≤ ng) QI-group of P , then
t′[Group-ID] equals j.

The ST has three attributes: “Group-ID”, As, and “Count”.
A tuple t in the ST indicates that the t[Group-ID]-th QI-
group of P has t[Count] tuples with sensitive value t[As].

¤

For instance, given partition P1 of Table 1a, the anatomy
contains the QIT and ST in Table 3. Again, the bijection
between Table 1a and the QIT is indicated by names.

As proved in [38], the two anonymization frameworks pro-
vide the same protection against QI-conscious adversaries
(Definition 1). However, anatomy allows more accurate data
analysis, since it enables users to obtain precisely the QI val-
ues within each QI-group (see a detailed discussion in [38]).
Nevertheless, sometimes disclosing QI values directly may
not be acceptable, if the presence of an individual in the
microdata is also considered confidential [27]. In this case,
generalization should be employed. Since generalization and
anatomy are useful in different applications, we consider
both frameworks in constructing a StatDB. For convenience,
the term anonymized version T ¦ of T will be used, no matter
whether T ¦ is obtained using generalization or anatomy.

3.2 m-Invariance
Recently, a new anonymization principle called m-

invariance is proposed in [39] to facilitate publication of mul-
tiple anonymized versions of the same microdata. The prin-
ciple is based on two concepts: signature and m-uniqueness.

Definition 5 (Signature). Let P be a partition of T ,
and t be a tuple in a QI-group G ∈ P . The signature of t in
P is the set of distinct sensitive values in G. ¤

For example, in Table 1b, Alice’s tuple belongs to a QI-
group with two distinct sensitive values: flu and gastritis.
Therefore, the signature of the tuple is {flu, gastritis}.

Definition 6 (m-Uniqueness). An anonymized ver-
sion T ¦ is m-unique, if T ¦ is generated from a partition,
where each QI-group contains at least m tuples, each with a
different sensitive value. Such a partition is also said to be
m-unique ¤

Both P1 and P2 in Section 3.1 are 2-unique. Now we are
ready to clarify m-invariance:

Definition 7 (m-Invariance). A set S of partitions
is m-invariant if:

1. Each partition in S is m-unique.

2. For any partitions P1, P2 ∈ S, and any tuple t ∈ T , t
has the same signature in P1 and P2.

A set of anonymized versions of T is m-invariant, if the
partitions underlying them constitute an m-invariant set.

¤

Since {P1, P2} is 2-invariant, so is {Table 1b, Table 2}.
The privacy guarantee of m-invariance is established by:

Lemma 1 ([39]). Given an m-invariant set of
anonymized versions of T , a QI-conscious adversary
has at most 1/m confidence in inferring the sensitive value
of any individual in T .

4. PRIVACY PRESERVING STAT. DB.
Our objective is to support counting queries of the form

SELECT COUNT(*) FROM StatDB
WHERE p(Aq

1) AND ... AND p(Aq

d) AND p(As)

where p(As) is any predicate on As, and p(Aq
i ) has the for-

mat

“Aq
i ∈ (−∞,∞)” or “Aq

i ∈ [xi, yi]”,

where xi and yi are two values in the domain of Aq
i . p(Aq

1),
..., p(Aq

d) are the QI predicates, and p(As) the sensitive pred-
icate. Consider, for example, the Q1 in Section 1.3, and the
microdata in Table 1a. Let Aq

1 be Age and Aq
2 be Zipcode.

Then, p(Aq
1) is Age ∈ [30, 50]. Since Q1 contains no condi-

tion on Zipcode, we set p(Aq
2) to Zipcode ∈ (−∞,∞). Finally,

p(As) is Disease = flu.
Given a counting query Q, the StatDB identifies an

anonymized version T ¦ of T , and uses it to answer Q. The
following concept is needed to define the answer.

Definition 8 (Possible Microdata Instance).
Given an anonymized version T ¦ of T , a table T ′ is a
possible microdata instance, if T ′ can be anonymized into
T ¦.

For example, imagine that the first two rows in Table 1a
are replaced with 〈20, 12000, gastritis〉 and 〈23, 58000, flu〉
respectively, the resulting table is a possible microdata in-
stance of Table 1b. From the perspective of a user, who can
access only (part of) T ¦ through queries, any possible mi-
crodata instance may be the actual microdata. Hence, the
answer of a query on T ¦ should be defined by taking into
account all the instances:



Definition 9 (Result Interval). Given a counting
query Q, and an anonymized version T ¦ of T , the result
interval of Q on T ¦ is [r`, ra], where r` (ra) is the smallest
(largest) answer for Q on any possible microdata instance of
T ¦. ¤

Interval [r`, ra] always contains the actual result of Q on
T , since T itself is a possible microdata instance. Appar-
ently, a shorter interval is more useful. In Section 1.3, we
exemplified how to obtain result intervals, while the next
lemma formalizes the computation for any generalized rela-
tion.

Lemma 2. Let [r`, ra] be the result interval of a query Q
on a generalization T ∗ of T . Given a QI-group G∗ in T ∗,
use s(G∗) to denote the number of tuples in G∗ satisfying
p(As). Then,

r` =
∑

G∗∈F`(T∗)

s(G∗), and ra =
∑

G∗∈Fa(T∗)

s(G∗),

where F`(T ∗) and Fa(T ∗) are sets of QI-groups in T ∗, such
that

1. For any G∗ ∈ F`(T ∗), every value in the interval
G∗[Aq

i ] satisfies p(Aq
i ) for all i ∈ [1, d].

2. For any G∗ ∈ Fa(T ∗), some values in G∗[Aq
i ] satisfy

p(Aq
i ) for all i ∈ [1, d], and not all the values in G∗[Aq

i ]
satisfy p(Aq

i ) for at least one i ∈ [1, d].

We omit the proofs from this paper due to the space con-
straint. To explain functions F`(.), Fa(.), and s(.), assume
that T ∗ is the T ∗

1 in Table 1b, and Q is the query Q1 in Sec-
tion 1.3. Let G∗

1 be the QI-group involving Tuples 3 and 4
in T ∗

1 . G∗
1 ∈ F`(T ∗

1 ), because all values in G∗
1[Age] = [38, 42]

and G∗
1[Zipcode] = [12k, 58k] satisfy p(Age) and p(Zipcode),

respectively. s(G∗
1) equals 1, as the Disease-value of only one

tuple in G∗
1 fulfills p(As). As another example, let G∗

2 be the
QI-group involving Tuples 7, 8 and 9. G∗

2 ∈ Fa(T ∗
1 ), because

although both G∗
2[Age] and G∗

2[Zipcode] satisfy p(Age) and
p(Zipcode) respectively, some values in G∗

2[Age] do not sat-
isfy p(Age).

Next, we provide a similar result for anatomy.

Lemma 3. Let [r`, ra] be the result interval of Q on a
pair of QIT and ST generated from a partition P of T . For
any QI-group G, use q(G) and s(G) for the numbers of tu-
ples in G satisfying the QI and sensitive predicates in Q,
respectively. We have

r` =
∑

G∈P

h`(G), and ra =
∑

G∈P

ha(G),

where h`(.) and ha(.) are two functions defined as follows:

h`(G) = max {0, q(G) + s(G) − |G|} , (1)

ha(G) = min {q(G), s(G)} . (2)

To clarify h`(.), ha(.), q(.), and s(.), imagine that Q is the
Q1 in Section 1.3, and P is the partition of the microdata
Table 1a defining the QIT and ST in Table 3. Let G be the
QI-group with Group-ID 4 in the QIT. Then, q(G) equals 1,
because only the tuple of Linda satisfies the QI predicates,
whereas s(G) is also 1, since, as shown in the ST, G has one
tuple whose Disease-value satisfies the sensitive predicate.
Therefore, h`(G) = max{0, 1 + 1 − 3} = 0 and ha(G) =
min{1, 1} = 1.

Definition 10 (StatDB). Given a microdata table T
and a parameter m, a privacy preserving statistical database
D satisfies the following conditions:

1. Given the i-th query Qi, D returns a result interval
derived from an anonymized version T ¦

i of T .

2. {T ¦
1 , T ¦

2 , T ¦
3 , ...} is m-invariant. ¤

Since our StatDB enforces m-invariance, by Lemma 1, we
know:

Corollary 1. A QI-conscious adversary has at most
1/m confidence in inferring the sensitive value of any in-
dividual in T , even if s/he is allowed to issue an infinite
number of counting queries to a privacy preserving statisti-
cal database.

Interestingly, to fulfill Condition 2 of Definition 10, it is
not necessary to check the m-invariance of a long sequence
of anonymized versions. Instead, we can check only two
versions at a time:

Lemma 4. {T ¦
1 , T ¦

2 , T ¦
3 , ...} is m-invariant if and only if

{T ¦
1 , T ¦

i } is m-invariant for all i ≥ 1.

At a high level, the StatDB D works as follows. Given the
first query Q1, D invokes a conventional algorithm (provided
in [39]) to obtain an m-unique (see Definition 6) anonymized
version T ¦

1 of T , and answers Q1 with T ¦
1 . The appearance

of T ¦
1 immediately determines a candidate pool S¦, which

includes all anonymized versions T ¦ of T such that {T ¦
1 , T ¦}

is m-invariant. To process any subsequent query Qi (i > 1),
D computes an anonymized version T ¦ from S¦ leading to
a short result interval for Qi. According to Lemma 4, all
the anonymized versions employed in history must form an
m-invariant sequence. It remains to solve two problems:

1. How to store the candidate pool S¦ with the minimum
space?

2. How to efficiently retrieve the best anonymized version
in S¦ to answer a query Qi?

In Section 5, we will address the first question with bucketi-
zation. Sections 6 and 7 provide two solutions to the second
problem, by adopting anatomy and generalization, respec-
tively.

5. THE BUCKETIZATION TECHNIQUE
Given T and T ¦

1 , S¦ typically contains an enormous num-
ber of anonymized versions, rendering the materialization
of S¦ impractical. To overcome this problem, we propose a
bucketization technique. This technique does not capture S¦

directly; instead, it allows fast derivation of any anonymized
version in S¦ from a space-efficient structure.

Definition 11 (Bucketization). Given T and T ¦
1 , a

bucket is a set of tuples in T whose signatures in T ¦
1 are

identical. The signature of a bucket B is the set of sensitive
values that appear in B. A bucketization U is a set of dis-
joint buckets, such that (i) no two buckets have the same
signature, and (ii) the union of all buckets equals T . ¤



Alice Bob
David Helen
Jack Ken
Ray Tom
flu gastritis

B1

Linda Mary Paul
flu insomnia gastritis

B2

Figure 1: A bucketization of the microdata Table 1a

The bucketization U is determined, once T ¦
1 is avail-

able. In particular, U can be obtained by simply hash-
ing the tuples in T to buckets, using their signatures in
T ¦

1 as the hash values. For example, Figure 1 illustrates
the bucketization, assuming that the microdata T is Ta-
ble 1a, and T ¦

1 is the generalized Table 1b. The first (sec-
ond) bucket contains eight (three) tuples, indicated with
their owners’ names, and has a signature {flu, gastritis}
({flu, insomnia, gastritis}). Lemma 5 clarifies an important
property of buckets:

Lemma 5. Given a bucket B ∈ U with a signature K, for
any sensitive value v ∈ K, there exist |B|/|K| tuples t ∈ B
with t[As] = v, where |B| is the number of tuples in B, and
|K| the number of sensitive values in K (by Definition 11,
|B|/|K| is always an integer).

For example, B1 in Figure 1 has a signature K with two
values flu and gastritis, and each value is possessed by
|B1|/|K| = 8/2 = 4 tuples in B1. A crucial implication
of Lemma 5 is that a bucket B can be split into |B|/|K|
groups, each containing |K| tuples with distinct sensitive
values. This is formally defined as follows.

Definition 12 (Decomposition). Let B be a bucket
with signature K. A decomposition of B contains |B|/|K|
disjoint QI-groups whose union is B, and all of them have
signature K. Given a bucketization U , a decomposition of U
is the set of QI-groups obtained by decomposing each bucket
in U . ¤

When |B|/|K| ≥ 2, B can be decomposed in multiple
ways. For example, we can divide the bucket B1 in Fig-
ure 1 into four QI-groups, {Alice, Bob}, {David, Helen},
{Jack, Ken}, and {Ray, Tom}, all of which have the same
signature {flu, gastritis} as B1. These QI-groups consti-
tute part of the underlying partition (P1 in Section 3.1) of
Table 1b. Alternatively, B1 can be split into another four
QI-groups, {David, Ken}, {Alice, Helen}, {Jack, Tom}, and
{Ray, Bob}, which also have the signature {flu, gastritis},
and are in the partition (P2) of Table 2.

Each decomposition of a bucketization U is essentially
a partition of the microdata T . Interestingly, there ex-
ists a bijection between the decompositions of U and the
anonymized tables in S¦:

Lemma 6. Let U be the bucketization of T decided by T ¦
1 .

Any decomposition of U is a partition of T underlying an
anonymized version in S¦. Conversely, for any anonymized
version T ¦ ∈ S¦, the partition of T that defines T ¦ is a
decomposition of U .

Recall that, for each query Qi to the statistical database
D, we aim at discovering the anonymized version T ¦

i ∈ S¦

that minimizes the result interval for Qi. By Lemma 6, it is

equivalent to identify the decomposition Pi of U that gen-
erates T ¦

i . In Section 6 (Section 7), we will develop efficient
algorithms for finding Pi, when anatomy (generalization) is
the adopted anonymization framework. It is worth mention-
ing that U is the only information stored in our StatDB. In
particular, no information about Pi needs to be remembered.
Since each tuple is stored in U exactly once, the space con-
sumption is the same as the microdata.

6. ANATOMY-BASED STAT. DB.
This section studies the following problem. We have a

privacy preserving StatDB D that anonymizes the microdata
T with anatomy. Given a query Q and a bucketization U
of T , find the optimal decomposition P of U (P is also a
partition of T , as shown in Lemma 6) such that P produces,
by Lemma 3, the shortest result interval of Q. In Section 6.1,
we first explain the characteristics of P . Then, Section 6.2
presents algorithms for computing P .

6.1 Optimal Result Intervals
We will need the notion of “a-interval” frequently:

Definition 13 (A-Interval). Given a query Q and a
decomposition L of a bucket B ∈ U , the a-interval of L is
[a`(L), aa(L)], such that

a`(L) =
∑

G∈L

h`(G), and aa(L) =
∑

G∈L

ha(G),

where functions h`(.) and ha(.) are defined in Lemma 3. ¤

Intuitively, the a-interval of L is the contribution of B to
the overall result interval of Q. To understand this, assume
that U has |U | buckets B1, B2, ..., B|U|, and P is the de-
composition of U used to answer Q. As P is the union of
the decompositions L1, ..., L|U| of all buckets B1, B2, ...,
B|U|, each QI-group in P appears in exactly one Li, for
some i ∈ [1, |U |]. Therefore, the result interval [r`, ra] of Q
from Lemma 3 can be re-written as:

r` =

|U|
∑

i=1





∑

G∈Li

h`(G)



 =

|U|
∑

i=1

a`(Li) (3)

ra =

|U|
∑

i=1





∑

G∈Li

ha(G)



 =

|U|
∑

i=1

aa(Li) (4)

Hence, the length ra − r` of the interval equals
∑|U|

i=1(aa(Li) − a`(Li)), i.e., the total length of the a-
intervals of all Li.

We say that a decomposition L of a bucket B ∈ U is a-
optimal for Q, if L achieves the shortest a-interval among all
possible decompositions of B. Therefore, a decomposition
P of U minimizes the result interval of Q, if and only if the
decomposition of each bucket B ∈ U is a-optimal. Note that
the optimality is on condition of U , i.e., the optimal result
may vary for different U .

6.2 Algorithms
In the sequel, we first provide a solution that finds the

optimal result interval, by obtaining the a-optimal decom-
position of each bucket in U . The solution motivates a faster
method, which derives the optimal result without extracting
any decomposition of U .



Algorithm A-Decompose (B, Q)
1. K = the signature of B; L = ∅
2. S1 = the set of tuples in B that satisfy all p(Aq

1), ...,
p(Aq

d) in Q
3. S2 = B − S1

4. for i = 1 to |B|/|K|
5. G = ∅
6. for j = 1 to |K|
7. v = the j-th sensitive value in K
8. if there exists a tuple t1 ∈ S1 with t1[A

s] = v
9. remove t1 from S1 and insert it into G
10. otherwise, find a tuple t2 ∈ S2 with t2[A

s] = v,
remove t2 from S2 and insert it into G

11. insert G into L
12. return L

Figure 2: The A-Decompose algorithm

A Materialization Approach. Figure 2 presents the A-
Decompose algorithm that, given a query Q and a bucket
B ∈ U , returns an a-optimal decomposition L of B. We
illustrate the algorithm, by setting Q to the query Q2 in
Section 1.3, and B to the bucket B1 in Figure 1 (B1 concerns
the microdata in Table 1a).

Example 1. A-Decompose begins by obtaining the sig-
nature K = {flu, gastritis} of B1, and initializing an empty
set L of QI-groups. Then, it creates (i) a set S1 that contains
the tuples in B1 satisfying all the QI predicates in Q2, and
(ii) a set S2 that includes the other tuples in B1. Here, S1

= {Helen, Jack, Tom}, and S2 = {Alice, Bob, David, Ken,
Ray}.

Next, A-Decompose populates L with |B1|/|K| = 8 / 2
= 4 QI-groups. Each group contains |K| = 2 tuples, each
carrying a different sensitive value in K. Whenever possible,
these tuples are selected from S1. If S1 runs out of tuples
having a required sensitive value, a tuple from S2 is chosen
instead.

Continuing our example, let us assume that the algorithm
picks {Jack, Tom} from S1 to spawn the first QI-group G1.
Then, these tuples are removed from S1, which becomes
{Helen}. In creating the second group G2, however, A-
Decompose sees that S1 contains no tuple with flu. Hence,
it selects a tuple, e.g., Alice, from S2 with that disease, and
adds Alice to G2. G2 still needs another tuple with gastritis.
Since S1 has such a tuple, i.e., Helen, it is chosen, complet-
ing G2 as {Alice, Helen}. After this, Alice and Helen are
removed from S1 and S2, respectively.

Now S1 becomes empty. Therefore, the last two QI-groups
G3 and G4 are formed entirely using the tuples in S2. A
possible result, for instance, is G3 = {David, Ken} and G4 =
{Ray, Bob}. ¤

Next, we prove that A-Decompose always produces an a-
optimal decomposition of any bucket B. Let S1 be the set
of tuples in B satisfying all the QI predicates of Q, and α
the number of sensitive values in K satisfying the sensitive
predicate. For the i-th value vi ∈ K, use βi to denote the
number of tuples in S1 with sensitive value vi. Assuming,
without loss of generality, β1 ≤ β2 ≤ ... ≤ β|K|, we have:

Algorithm A-Count (B, Q)
1. K = the signature of B
2. α = the number of values in K satisfying p(As) in Q
3. create an integer array β with |K| elements
4. for i = 1 to |K|
5. βi = the number of tuples t ∈ B, such that t satisfies

all the QI predicates in Q, and t[As] equals
the i-th value in K

6. sort the values in array β in ascending order

7. return [
∑α

i=1 βi,
∑|K|

i=|K|−α+1 βi]

Figure 3: The A-Count algorithm

Lemma 7. Given a query Q and a bucket B, A-
Decompose returns an a-optimal decomposition L of B for
Q, whose a-interval [a`(L), aa(L)] is given by

a`(L) =
α

∑

i=1

βi, and aa(L) =

|K|
∑

i=|K|−α+1

βi.

Equipped with A-Decompose, our StatDB D calculates
the optimal result interval [r`, ra] of Q as follows. For each
bucket Bi (1 ≤ i ≤ |U |) in U , D obtains an a-interval
[a`(Li), aa(Li)], where Li is the a-optimal decomposition
of Bi returned by A-Decompose. Then, the values of r` and
ra are derived with Equations 3 and 4, respectively.

A Non-Materialization Approach. The above analysis
points to an important observation. In Lemma 7, a`(L) and
aa(L) depend on only α and βi (1 ≤ i ≤ |K|), which can
be easily acquired without constructing the QI-groups in L!
Motivated by this, we propose an algorithm A-Count in Fig-
ure 3 that, given a bucket B and a query Q, returns directly
the a-interval [a`(L), aa(L)] of the a-optimal decomposition
L of B. Again, let us illustrate the algorithm by setting Q
to the query Q2 in Section 1.3 and B to the bucket B1 in
Figure 1.

Example 2. A-Count starts by obtaining the signature
K = {flu, gastritis} of B1. Then, it obtains the number α =
1 of sensitive values in K satisfying the sensitive predicate
of Q2 (only flu in K satisfies). Next, the algorithm creates
an integer array β with |K| = 2 elements, where β1 (β2)
equals the number 1 (2) of tuples in B1 that satisfy the QI-
predicates of Q2, and their Disease-values are flu (gastritis).
For instance, β1 = 1 because Jack is the only tuple in B1

that has a Zipcode in [20k, 40k], and carries the Disease-
value flu. Finally, α and array β are employed to compute
the a-interval with Lemma 7. ¤

Given a query Q, our StatDB answers it in the same way
as the materialization approach, except that A-Decompose
is replaced with A-Count.

Employing an Inverted Index. A-Count examines all
buckets in U to answer a query Q, but this can be easily
avoided by indexing the buckets’ signatures. Observe that,
a bucket does not need to be inspected, if no value in its
signature satisfies the sensitive predicate p(As) of Q. There-
fore, we may create an inverted index, which has an entry for
every sensitive value v, and the entry stores the addresses
of all the buckets whose signatures include v. To process
Q, we first collect the set S of all sensitive values satisfying
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Figure 4: Representation of Q3 and the QI-groups
in Table 2 in the query space defined by Q3

p(As). Then, the buckets containing some elements of S can
be efficiently retrieved using the inverted index.

7. GENERALIZATION-BASED STAT. DB.
This section tackles the same problem as Section 6, ex-

cept that anonymization is performed with generalization.
Specifically, given a query Q and a bucketization U of the
microdata T , find a decomposition P of U (P is also a par-
tition of T ) which produces a generalized version of T that
gives, by Lemma 2, the shortest result interval for Q. In Sec-
tion 7.1, we first clarify a transformation that provides an
intuitive interpretation of query answers. Then, Section 7.2
presents a hardness result about finding the optimal answer.
Finally, Section 7.3 elaborates a heuristic algorithm.

7.1 A Multidimensional Transformation
Given a query Q, we use λ to denote the number of its

QI predicates that have the form “Aq
i ∈ [xi, yi]”, where xi

(yi) is not ∞ (−∞). Without loss of generality, assume that
those λ predicates are the first λ QI attributes in T , i.e., Aq

1,
Aq

2, ..., Aq

λ. Let Q be a λ-dimensional space, where the i-th
(1 ≤ i ≤ λ) dimension is Aq

i . We refer to Q as the query
space decided by Q. We also define the query rectangle of
Q, as the rectangle Rq in Q whose projection on the i-th
(1 ≤ i ≤ λ) dimension equals [xi, yi].

For instance, assume that the microdata is Table 1a, and
the system receives a query:

Q3: SELECT COUNT(*) FROM StatDB
WHERE Age ∈ [40, 60] AND Zipcode ∈ [20000, 60000]

AND Disease = flu

Its query space involves two dimensions Age and Zipcode.
As illustrated in Figure 4, its query rectangle Rq has a pro-
jection [40, 60] ([20000, 60000]) on the Age (Zipcode) dimen-
sion. Any point in Rq satisfies the QI predicates p(Age) and
p(Zipcode) of Q3.

Following the way we formulate Rq, any QI-group G∗ in
a generalized table T ∗ can also be represented as a group
rectangle in Q, whose projection on the i-th (1 ≤ i ≤ λ)
dimension is G∗[Aq

i ]. As an example, Figure 4a shows five
group rectangles R1, ..., R5, where Ri (1 ≤ i ≤ 5) cor-
responds to the i-th (counting from the top) QI-group in
Table 1b.

By modeling queries and QI-groups as rectangles in Q,
we obtain a geometric interpretation of the sets F`(T ∗) and
Fa(T ∗) defined in Lemma 2. Specifically, Fa(T ∗) (F`(T ∗))
contains the QI-groups whose group rectangles intersect (are
entirely covered in) the query rectangle Rq. Obviously,

F`(T ∗) is a subset of Fa(T ∗). By Lemma 2, the result in-
terval of Q on T ∗ has a length

ra − r` =
∑

G∗∈Fa(T∗)−F`(T∗)

s(G∗). (5)

The length is determined by the set Fa(T ∗)−F`(T ∗), which
essentially includes the QI-groups in T ∗ whose group rectan-
gles partially intersect Rq.

7.2 Hardness of Computing Optimal Results
Given a QI-group G of the microdata T , there are multi-

ple ways to decide the generalized values in G. We consider
MBR-generalization [19], namely, G[Aq

i ] (1 ≤ i ≤ λ) is the
tightest interval enclosing the t[Aq

i ] of all tuples t ∈ G. Al-
ternatively, if each t is viewed as a point in the λ-dimensional
space Q (through the transformation in Section 7.1), then
the group rectangle of G is the minimum bounding rectan-
gle (MBR) of all the points converted from the tuples in
G. Hence, we will use the terms “group rectangle of G” and
“MBR of G” interchangeably.

Recall that the analysis of anatomy relies on the notion
of “a-interval”. Likewise, the study of generalization needs
a corresponding concept “g-interval”:

Definition 14 (G-Interval). For a query Q and a
decomposition L of a bucket B ∈ U , the g-interval of L
equals [g`(L), ga(L)] such that

g`(L) =
∑

G∈F`(L)

s(G), and ga(L) =
∑

G∈Fa(L)

s(G),

where s(G) is the number of tuples in G satisfying the p(As)
of Q, and Fa(L) (F`(L)) is the set of QI-groups in L whose
MBRs intersect (are contained in) the query rectangle of Q.

¤

As with an a-interval, the g-interval of L is the contribution
of B to the overall result interval of Q. Formally, assume
that U has buckets B1, ..., B|U|, and P is the decomposition
of U deployed to answer Q. The [r`, ra] in Lemma 2 can be
calculated as:

r` =

|U|
∑

i=1





∑

G∈F`(Li)

s(G)



 =

|U|
∑

i=1

g`(Li) (6)

ra =

|U|
∑

i=1





∑

G∈Fa(Li)

s(G)



 =

|U|
∑

i=1

ga(Li) (7)

Hence, the length of the result interval equals ra − r` =
∑|U|

i=1(ga(Li) − g`(Li)). Let us say that a decomposition L
of B is g-optimal, if among all the possible decompositions
of B, L has the shortest g-interval. Thus, a decomposition
P of U achieves the shortest g-interval of Q, if and only if
the decomposition of each bucket B ∈ U is g-optimal.

Now, we focus on a single bucket B ∈ U , and analyze its
g-optimal decomposition. Let K be the signature of B; any
decomposition L of B must contain only QI-groups whose
signatures are K. Therefore, all QI-groups G ∈ L have
the same s(G) (function s(.) is formulated in Definition 14),
which is the number α of sensitive values in K satisfying the
sensitive predicate p(As) of Q. It follows that:

g`(L) = |F`(L)| · α (8)

ga(L) = |Fa(L)| · α. (9)



Hence, the length of the g-interval of L equals ga(L) −
g`(L) = |Fa(L)−F`(L)|·α. Therefore, L is g-optimal for Q,
if and only if it minimizes the cardinality of Fa(L)−F`(L),
i.e., the number of QI-groups in L whose MBRs partially
intersect the query rectangle of Q. Unfortunately, when
|K| > 2, this is NP-hard:

Lemma 8. Given a query Q, and a bucket B with a sig-
nature K, identifying the g-optimal decomposition of B is
NP-hard when |K| > 2.

The above result is obtained through a reduction from the
k-dimensional matching problem, which is NP-hard when
k > 2 [14]. In the next section, we resort to heuristic ap-
proaches for choosing a good decomposition of B.

7.3 Algorithm
In Section 6.2, for anatomy, we developed two approaches,

which differ in whether the decomposition of a bucket is
materialized. Although the materialization approach was
used to motivate the non-materialized version, the latter is
always faster. Hence, for generalization, we discuss only the
non-materialization method.

Objective. The problem addressed in this subsection is as
follows. We have a query Q, and a bucket B with signature
K. The goal is to produce a short interval, which equals the
g-interval [g`(L4), ga(L4)] of a decomposition L4 of B,
without actually obtaining the concrete QI-groups in L4.
We give L4 the name phantom decomposition.

By the analysis of Section 7.2, L4 should lead to a small
|Fa(L4)−F`(L4)|. Let us divide the QI-groups in L4 into
three disjoint subsets:

1. F`(L4): the set of QI-groups whose MBRs are fully
contained in the query rectangle Rq of Q;

2. Fa(L4) − F`(L4): the set of QI-groups whose MBRs
partially intersect Rq;

3. L4 − Fa(L4): the set of QI-groups whose MBRs are
disjoint with Rq.

We refer to a QI-group in the i-th (1 ≤ i ≤ 3) subset
as a type-i QI-group. Since the number of all QI-groups
equals the the cardinality |B|/|K| of L4, minimization of
|Fa(L4) − F`(L4)| is equivalent to maximizing the num-
bers of type-1 and -3 groups.

Yield and Margin. We first introduce two concepts im-
perative to our solution. Given a subset S of B, we define
the yield of S, as the largest number of QI-groups with sig-
nature K (and sharing no tuple) that can be created from
S. The yield can be computed easily: it equals min{β1, β2,
..., β|K|}, where βi (1 ≤ i ≤ |K|) is the number of tuples
in S that carry the i-th sensitive value in K. For example,
assume that B is the bucket B1 in Figure 1, and S = {Ray,
Tom, Ken}. The signature K of B is {flu, gastritis}. There
is β1 = 1 tuple in S taking the sensitive value flu, whereas
β2 = 2 tuples have gastritis. Hence, the yield of S equals 1.

The second crucial concept is margin, which is a special
half-plane in Q. Recall that (as mentioned in Section 7.1)
query Q has a predicate Aq

i ∈ [xi, yi] for every i ∈ [1, λ],
where λ is the dimensionality of the query space Q defined by
Q. The lower (upper) margin along the i-th dimension of Q is
the half-plane satisfying the condition Aq

i < xi (Aq
i > yi). In
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Figure 5: Illustration of algorithm G-Count

this way, altogether 2λ margins are defined. As an example,
the left (right) shaded area in Figure 5a demonstrates the
lower (upper) margin of Q3 (in Section 7.1) along the Age
dimension.

G-Count. Figure 6 formally presents G-Count that,
given a query Q and a bucket B, returns the g-interval
[g`(L4), ga(L4)] of a phantom decomposition L4 of B. We
explain the algorithm by setting Q to the Q3 in Section 7.1
and B to the B1 in Figure 1. Let Rq be the query rectangle
of Q3 in its query space Q. Figure 5b demonstrates Rq and
the points converted from the tuples in B1. A dot (triangle)
represents a tuple with Disease-value flu (gastritis).

Example 3. G-Count sets off by acquiring the dimen-
sionality λ = 2 of Q, the signature K = {flu, gastritis} of
B1, and the number α = 1 of values in K satisfying the
sensitive predicate of Q3.

The algorithm proceeds to obtain the largest number n1

of type-1 QI-groups that can be inserted in L4. A QI-group
is type-1, if and only if all (the points converted from the)
tuples in the group are covered by Rq. Hence, G-Count
collects the set Sc of tuples in B1 that are contained in Rq,
i.e., Sc = {Helen, Jack}. The value of n1 equals the yield 1
of Sc, implying that one type-1 QI-group (including Helen
and Jack) can be extracted from Sc.

Now, for every sensitive value v ∈ K, G-Count removes
n1 tuples from B carrying v (i.e., totally n1 · |K| tuples
are discarded). In particular, all these tuples are chosen
from Sc. The removal reflects the fact that, once a tuple is
added to a type-1 QI-group in L4, it cannot appear in any
other QI-group. Continuing our example, Helen and Jack
are eliminated from B, which becomes {Alice, Bob, David,
Ken, Ray, Tom}.

Then, G-Count attempts to maximize the number n3 of
type-3 QI-groups that may be included in L4. A QI-group
is type-3, if and only if all tuples in the group fall in the same
margin of Rq. Following this observation, G-Count initial-
izes n3 to 0, and inspects each of the 2λ margins in turn,
trying to increase n3 after every inspection. Assume that it
first examines the lower margin of Rq on the Age dimension,
and collects the set Sm of tuples {Bob, David, Alice} there.
Since the yield y of Sm is 1, the algorithm increases n3 by
1, indicating that one type-3 QI-group (containing Bob and
David) can be spawned from Sm. Furthermore, for each sen-
sitive value v ∈ K, y tuples with value v are deleted from B.
Suppose that Bob and David are eliminated from B, which
thus changes to {Alice, Ken, Ray, Tom}.



Algorithm G-Count (B, Q)
1. λ = dimensionality of the query space Q defined by Q
2. K = the signature of B
3. α = the number of values in K satisfying the p(As) of Q

/* Lines 4-7 obtain the number of type-1 QI-groups in
the phantom decomposition L4 of B */

4. Sc = the set of tuples in B that satisfy all the QI
predicates in Q

5. n1 = the yield of Sc

6. for j = 1 to |K|
7. remove n1 tuples from B that have the j-th sensitive

value in K

/* Lines 8-14 obtain the number of type-3 QI-groups in
L4 */

8. n3 = 0
9. for i = 1 to λ
10. Sm = tuples of B in the lower margin on the i-th

dimension of Q

11. y = the yield of Sm; n3 = n3 + y
12. for j = 1 to |K|
13. remove y tuples from B that have the j-th sensitive

value in K
14. Repeat Lines 10-14 by using the upper margin on the

i-th dimension
15. return [n1 · α, (|B|/|K| − n3) · α]

Figure 6: The G-Count algorithm

Next, G-Count performs the same steps with respect to
the upper margin on the same dimension. This time, Sm

contains a single tuple {Tom}, since the other 3 tuples in B
do not fall in that margin. The yield of Sm equals 0; hence,
n3 remains the same. The algorithm now turns to the lower
margin of Zipcode, and retrieves Sm = {Alice, Ken}, whose
yield is 1. Accordingly, n3 is again increased by 1 (it equals 2
currently), after which both Alice and Ken are evicted from
B. leaving only two elements in B = {Ray, Tom}. Finally,
examination of the upper margin of Zipcode does not alter
n3 and B.

Finally, G-Count derives the g-interval [g`(L4), ga(L4)],
by Equations 8 and 9. As set F`(L4) includes only type-1
QI-groups, |F`(L4)| = n1 = 1. On the other hand, Fa(L4)
involves all the type-1 and -2 QI-groups; thus, |Fa(L4)| =
|L4| − n3 = |B|/|K| − n3 = 8/2 − 2 = 2. Therefore, the
interval returned is [|F`(L4)| · α, |Fa(L4)| · α] = [1 · 1, 2 · 1]
= [1, 2]. ¤

We close this section by elaborating how the StatDB
D computes the result interval [r`, ra] of a query Q us-
ing a bucketization U . For the i-th (1 ≤ i ≤ |U |)
bucket Bi in U , D applies G-Count to produce an interval
[g`(L4i), ga(L4i)]. Then, r` (ra) is calculated with Equa-
tion 6 (Equation 7), replacing g`(Li) (ga(Li)) with g`(L4i)
(ga(L4i)). Apparently, G-Count can also be accelerated by
deploying an inverted index, created in the same manner as
explained in Section 6.2.

8. PERTURBATION-BASED STAT. DB.
Recall that our objective is to build a StatDB that (i)

can answer any number of counting queries, and (ii) effec-
tively shield privacy from linking attacks. Although statisti-
cal databases have received considerable research attention

[1], most of the existing methods are developed in applica-
tions where the objective is not the prevention of linking
attacks. In particular, although some methods (e.g., [25,
30]) have interesting privacy guarantees, those guarantees
are specific to their own settings, and do not apply to link-
ing attacks. Random perturbation [4, 11], however, is an
exception.

Random perturbation falls in the “data modification” cat-
egory reviewed in Section 1.1. Namely, it transforms a mi-
crodata table T to an anonymized version T ¦. The trans-
formation takes a parameter p, called retention probability.
Initially, T ¦ is empty. For every tuple t ∈ T , a coin with
head probability p is tossed. If the coin heads, t is added
to T ¦ directly. Otherwise, t[As] is replaced with a random
value generated in the domain of As; the modified t is then
inserted into T ¦. Notice that, regardless of the tossing re-
sult, the QI values of t remain unchanged.

Given a counting query formalized in Section 4, T ¦ can
be used to provide an estimated result, whose derivation
is nicely explained in [4]. Agrawal et al. [4] prove several
privacy guarantees offered by random perturbation. Their
analysis is not directly applicable to linking attacks, due to
the difference in the modeling of an adversary’s background
knowledge. In the next lemma, we present the guarantee of
perturbation in our settings.

Lemma 9. Given a perturbed version T ¦ of T produced
with retention probability p, a QI-conscious adversary has
at most p+(1−p)/|As| confidence in inferring the sensitive
value of any individual in T , where |As| is the domain size
of As.

The lemma allows us to obtain the maximum p ensuring
the same privacy protection as m-invariance. Specifically,
by equating p + (1 − p)/|As| to 1/m (see Corollary 1), we
solve the maximum as

(|As| − m)/(m · (|As| − 1)). (10)

If a lower retention probability is used, the query answer
computed from T ¦ becomes more unreliable, since it has a
larger variance, or equivalently, a longer confidence interval.
In the experiments, we will show that, offering the same
amount of privacy protection, our technique gives shorter
result intervals.

It is worth mentioning that, as with anatomy, ran-
dom perturbation allows precise QI-values to appear in an
anonymized version T directly. Therefore, it cannot be used
in the applications supported by generalization, where QI-
values must be distorted to hide individuals’ presence in the
microdata [23].

9. EXPERIMENTS
This section experimentally evaluates the effectiveness of

the proposed solutions. We deploy a real dataset SAL down-
loadable at http://ipums.org. SAL includes 600k tuples,
each of which describes the personal information of an Amer-
ican adult. The dataset has a schema with 8 attributes: {
Age, Gender, Marital-status, Birth-place, Education, Occu-
pation, Race, Salary}, all of which have integer domains,
and their domain sizes are 79, 2, 6, 57, 17, 25, 8, and 50,
respectively.

From SAL, we generate microdata tables with various car-
dinalities n and numbers d of QI-attributes. Specifically, a



Parameter Tested Values
d 3, 4, 5, 6, 7
ql 2%, 4%, 6%, 8%, 10%
λ 1, 2, 3
n 100k, 200k, 300k, 400k, 500k, 600k

Table 4: Parameters examined and their values

dataset named n-SAL-d (i) takes the first d attributes in the
schema of SAL as its QI attributes, and Salary as its sensi-
tive attribute, and (ii) contains n tuples randomly sampled
from the projection of SAL on the d + 1 columns selected
earlier. For instance, 100k-SAL-3 has QI attributes Age,
Gender, Marital-status, and a sensitive attribute Salary; it
contains 100k tuples of SAL projected on those columns.

Each query conforms to the generic form in Section 4, and
has two parameters: an integer λ and a real value ql ∈ (0, 1].
On λ random QI attributes and the sensitive attribute of
the underlying microdata T , the query has a “non-trivial”
predicate. Specifically, let A be one of those λ+1 attributes;
the predicate on A has the form A ∈ [x, y], where the range
[x, y] is a random interval in the domain of A, and its length
y − x + 1 equals dql · |A|e, with |A| being the domain size
of A. On the other d − λ QI attributes A, the query has
a trivial predicate A ∈ (−∞,∞). A workload includes 2k
queries with the same parameters.

Given a microdata table T , we construct a StatDB using
the proposed dynamic anonymization technique, referred to
as dyn-ana or dyn-gen, depending on whether anatomy or
generalization is the anonymization framework. Both dyn-
ana and dyn-gen enforce 10-invariance, i.e., an adversary can
correctly infer the sensitive value of an individual only with
probability 1/10. We also implement the random perturba-
tion approach, denoted as ran-pert, discussed in Section 8.
The retention probability equals 4/49, as is given by For-
mula 10 (setting m to 10 and |As| to 50), to ensure the
same privacy protection as 10-invariance. As an additional
competitor, we include sta-ana (sta-gen), which is a StatDB
that uses only a single anatomized (generalized) version of T
to process all queries, which is obtained using the algorithm
in [38] ([19]). Here, the prefix “sta” stands for “static”.

We compare alternative methods by their effectiveness in
answering counting queries. Given a query, dyn-ana (dyn-
gen) invokes the algorithm A-Count (G-Count) in Figure 3
(Figure 6) to obtain a result interval. For sta-gen (sta-ana),
the result interval is acquired with Lemma 2 (Lemma 3). For
ran-pert, on the other hand, we calculate an 80% confidence
interval as the result interval, following the derivation in [4].
A method is more accurate, if its result interval is shorter.
Note that the performance of sta-ana and sta-gen essentially
represents the accuracy that would be obtained in central
publication.

The above five methods are classified into two groups.
The first group, called QI-revealing, includes dyn-ana, sta-
ana, and ran-pert, since they reveal the QI values directly in
an anonymized version. The second QI-concealing group in-
volves dyn-gen and sta-gen. Obviously, methods of different
groups are incomparable. QI-revealing approaches permit
derivation of more accurate results, at the risk of allowing
an adversary to infer the presence of an individual (see Sec-
tion 3.1).

Table 4 summarizes the parameters to be examined, as
well as their values tested. Unless otherwise stated, each
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Figure 7: Average result interval comparison (QI-
revealing)

parameter is set to its default value, as shown in bold in
the table. All the experiments are performed on a machine
running a Pentium IV CPU at 3 GHz.

Query Accuracy of QI-Revealing Methods. We first
use a workload with default parameters to compare the ac-
curacy of dyn-ana, sta-ana, and ran-pert on datasets 600k-
SAL-d, when d varies from 3 to 7. For every d, we mea-
sure the average actual result (AAR) of all the queries in
the workload, the average result interval (ARI), and length
standard deviation (LSD) of each method. Specifically, the
ARI is a range [r`, ra], where r` (ra) equals the average of
the lower (upper) bounds of the result intervals returned by
the corresponding method for all the queries in the work-
load. LSD is the standard deviation of the lengths of those
queries’ result intervals.

The curve in Figure 7a plots the AAR as a function of
d. At each d, there are three columns, indicating the ARIs
of the three methods, respectively. Particularly, the bottom
(top) of a column captures the lower (upper) bound of the
corresponding ARI. The ARIs of dyn-ana are significantly
shorter than those of the other methods, indicating that dyn-
ana provides the most accurate query answers. In particular,
the lower bound of each ARI of ran-pert (sta-ana) is useless,
since it equals (is close to) zero, which is a trivial lower
bound of any result interval. In general, the ARIs of all
methods become shorter, when the AAR decreases. For ran-
pert, this phenomenon is decided by the formula (in [4]) for
calculating its 80% confidence intervals. For dyn-ana and
sta-ana, the phenomenon is also expected, because a smaller
AAR implies that fewer QI-groups contribute to a query’s
result, and hence, to the error as well.

Focusing on the dataset 600k-SAL-7, Figure 7b (7c) illus-
trates the AARs and ARIs as a function of the query para-
meter ql (λ), as this parameter changes from 2% to 10% (1 to
3). Figure 7d inspects the influence of the dataset cardinal-
ity n, as it grows from 100k to 600k. Figure 8 demonstrates
the LSDs in the experiments of Figure 7, and smaller devi-
ations imply more stable quality of the query results. The
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proposed dyn-ana is the clear winner in all cases. In par-
ticular, it significantly outperforms sta-ana, confirming our
motivation in Section 1.3 that a StatDB promises more ef-
fective data analysis than central publication.

Query Accuracy of QI-Concealing Methods. Hav-
ing demonstrated the superiority of dyn-ana among the QI-
revealing solutions, we proceed to evaluate the QI-concealing
approaches. For this purpose, we repeat the same set of ex-
periments in Figures 7 and 8, with respect to dyn-gen and
sta-gen. The results are presented in Figures 9 and 10. As
expected, the proposed dyn-gen outperforms its competitor
considerably in query accuracy. Furthermore, the behavior
of dyn-gen (sta-gen) is analogous to that of dyn-ana (sta-
ana). The only exception is that, in Figure 9a, the ARI of
sta-gen grows longer as d increases, whereas the ARI of sta-
ana shrinks in this scenario (Figure 7a). This is because the
quality of generalization degrades severely as the number d
of QI attributes becomes larger [2], while, as shown in [38],
anatomy does not have such degradation.

10. CONCLUSIONS AND FUTURE WORK
This paper studies the construction of a privacy preserv-

ing statistical database (StatDB) using anatomy and gen-
eralization. We develop a new technique called dynamic
anonymization that, given a query, efficiently computes a
tailor-made anonymized version of the microdata. In this
way, better accuracy of the query result is achieved, com-
pared to conventional approaches that use a single version to
answer all queries. Privacy protection is guaranteed by en-
suring that all the anonymized versions employed in history
satisfy the m-invariance principle. As verified by extensive
experiments, our StatDB provides highly accurate results to
counting queries, and effectively protects data from privacy
attacks, even if an adversary has acquired the results of all
the past queries.

This work also motivates several directions for future re-
search. First, while in this paper we focus on counting

24k

20k

16k

12k

8k

4k

0
76543

d

average result interval
sta-gen

dyn-gen

35k
30k
25k
20k
15k
10k
5k
0

10%8%6%4%2%
ql

average result interval
sta-gen
dyn-gen

(a) Vs. d (b) Vs. ql

30k

25k

20k

15k

10k

5k

0
321

λ

average result interval
sta-gen

dyn-gen

21k
18k
15k
12k
9k
6k
3k
0

654321
n (× 100k)

average result interval
sta-gen
dyn-gen

(c) Vs. λ (d) Vs. n

Figure 9: Average result interval comparison (QI-
concealing)

queries, it is interesting to investigate the extension of the
proposed solutions to other aggregation operators such as
MIN, MAX, and SUM, when the sensitive attribute has a
numeric domain. Second, our discussion has concentrated on
static microdata, whereas it remains unclear how to tackle
data updates (i.e., existing/new tuples are removed/inserted
from/into the underlying dataset). Finally, it is a challeng-
ing yet exciting topic to explore other forms of statistical
databases in non-relational environments (e.g., spatial data-
bases), to address the needs of data analysis and privacy
protection there.
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