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ABSTRACT
We study generalization for preserving privacy in publication of
sensitive data. The existing methods focus on a universal approach
that exerts the same amount of preservation for all persons, with-
out catering for their concrete needs. The consequence is that we
may be offering insufficient protection to a subset of people, while
applying excessive privacy control to another subset.

Motivated by this, we present a new generalization framework
based on the concept ofpersonalized anonymity. Our technique
performs the minimum generalization for satisfying everybody’s
requirements, and thus, retains the largest amount of information
from the microdata. We carry out a careful theoretical study that
leads to valuable insight into the behavior of alternative solutions.
In particular, our analysis mathematically reveals the circumstances
where the previous work fails to protect privacy, and establishes the
superiority of the proposed solutions. The theoretical findings are
verified with extensive experiments.

1. INTRODUCTION
It is often necessary to publish personal information for research

purposes. For example, a hospital may release patients’ diagnosis
records so that researchers can study the characteristics of various
diseases. The raw data, also calledmicrodata, contains the identi-
ties (e.g. names) of individuals, which are not released to protect
their privacy. However, there may exist other attributes that can
be used, in combination with an external database, to recover the
personal identities.

For example, assume that the hospital publishes the table in Fig-
ure 1a, which does not explicitly indicate the names of patients.
However, if an adversary has access to the voter registration list
in Figure 1b, s/he can easily discover the identities of all patients
by joining the two tables on{Age, Sex, Zipcode}. These three at-
tributes are, therefore, thequasi-identifier(QI) attributes.

Generalization[5, 7, 8, 9, 11, 13, 15, 17] is a common approach
to avoid the above problem, by transforming the QI values into
less specific forms so that they no longer uniquely represent indi-
viduals. In particular, a table isk-anonymous[13, 15] if the QI
values of each tuple are identical to those of at leastk − 1 other tu-
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ples. Figure 1c shows an example of 2-anonymous generalization
for Figure 1a. Even with the voter registration list, an adversary can
only infer that Andy may be the person involved in the first 2 tuples
of Figure 1c, or equivalently, the real disease of Andy is discovered
only with probability 50%. In general,k-anonymity guarantees
that an individual can be associated with her/his real tuple with a
probability at most1/k.

1.1 Motivation
k-anonymity has several drawbacks. First,a k-anonymous table

may allow an adversary to derive the sensitive information of an in-
dividual with 100% confidence.Assume that an adversary attempts
to infer the disease of Joe, knowing his age 12, sex, and zipcode
22000. From the published table in Figure 1c, s/he knows that Joe
may correspond to tuple 5 or 6 (the QI values of the other tuples do
not cover those of Joe). The diseases of both tuples arepneumonia;
hence, the adversary can declare (with 100% confidence) that Joe
must have contractedpneumonia. The phenomenon is caused by
the fact that,k-anonymity only prevents association between indi-
viduals and tuples, instead of association between individuals and
sensitive values. Unfortunately, it is the second type of association
that leads to privacy breach.

Second,ak-anonymous table may lose considerable information
from the microdata.Consider a researcher who wants to obtain,
from the table of Figure 1c, an estimate for the number of female
patients above the age of 30. It suffices to examine tuples 7-10,
because they are the only tuples that may qualify the query condi-
tion. Given only the fact that the original ages of the 4 tuples are in
[21, 60], the researcher derives the estimate by assuming a uniform
age distribution. This leads to an estimate of 4× 60−30

60−20
= 3, which

significantly deviates from the actual result 1 (see Figure 1a). The
serious error arises because Mary has a much larger age than the
other patients; hence, combining her age with another age incurs
substantial information loss. Observe that the same problem also
exists on attributeZipcodewith respect to tuple 7. Specifically,
Linda’s exceedingly-large zipcode decides the loose zipcode-range
[30000, 60000] for tuples 7-101.

Third, k-anonymity does not take into account personal
anonymity requirements.As mentioned earlier, from Figures 1b
and 1c, an adversary learns that Andy must have suffered from ei-
ther gastric-ulceror dyspepsia, which is acceptable according to

1Although the table of Figure 1c demands only 2-anonymity, it is
reasonable to make the QI values of tuples 7-10 identical. This
is because, by “single-dimension encoding” generalization [9], no
two intervals on the same attribute should intersect. For instance,
if tuples 7, 8 (in Figure 1a) and tuples 9, 10 are generalized to two
separate groups, then the zipcode-ranges of the two groups will
intersect. Similarly, combining tuples 7, 9 and tuples 8, 10 in two
groups respectively causes intersection onAge.



Age

5

Sex

M

Zipcode

12000

Disease

gastric ulcer

row #

1 (Andy)

guarding node

stomach disease

9 M 14000 dyspepsia2 (Bill) dyspepsia

6 M 18000 pneumonia3 (Ken) respiratory infection

8 M 19000 bronchitis4 (Nash) bronchitis

12 M 22000 pneumonia5 (Joe) pneumonia

19 M 24000 pneumonia6 (Sam) pneumonia

21 F 58000 flu7 (Linda) ø
26 F 36000 gastritis8 (Jame) gastritis

28 F 37000 pneumonia9 (Sarah) respiratory infection

56 F 33000 flu10 (Mary) flu
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7 M 17000Mike

Age

[1, 10]

Sex

M

Zipcode

[10001, 15000]

Disease

gastric ulcer

row #

1

[1, 10] M [10001, 15000] dyspepsia2

[1, 10] M [15001, 20000] pneumonia3

[1, 10] M [15001, 20000] bronchitis4

[11, 20] M [20001, 25000] pneumonia5

[11, 20] M [20001, 25000] pneumonia6

[21, 60] F [30000, 60000] flu7

[21, 60] F [30000, 60000] gastritis8

[21, 60] F [30000, 60000] pneumonia9

[21, 60] F [30000, 60000] flu10

(a) Microdata (b) Voter registration list (c) A 2-anonymous table
Figure 1: Microdata, external source, and quasi-identifier generalization

2-anonymity. However, Andy may not want anyone to think (with
high confidence) “Andy must have some stomach problem”; this
cannot be guaranteed in Figure 1c, since bothgastric-ulceranddys-
pepsiaare stomach diseases. On the other hand, it is possible that
Linda regardsflu as a common disease, and agrees to release her
true diagnosis result (to enhance the effectiveness of research). In
this case, it is not necessary to apply any generalization on tuple 7.
Such preference variations are not captured byk-anonymity.

1.2 Contributions
In this paper, we develop a novel privacy preserving technique

that overcomes the above problems. The core of our solutions is
the concept ofpersonalized anonymity, i.e., a person can specify
the degree of privacy protection for her/his sensitive values. To il-
lustrate the concept, consider Figure 2, which demonstrates a sim-
ple taxonomy on attributeDisease. The taxonomy is accessible
by the public, and organizes all diseases as leaves of a tree. An
intermediate node carries a name summarizing the diseases in its
subtree. Some part of the tree is omitted since it is not relevant to
our discussion.

A personal preference can be easily solicited from an individual
when s/he is supplying her/his data. In our approach, a preference
is formulated through a node in the taxonomy. As an example, for
tuple 1 in Figure 1a, Andy may specify nodestomach-disease(the
“guarding node” for his privacy, which will be formalized in the
next section). Thus, nobody should be able to infer, with signif-
icant confidence, that he suffered from any disease (i.e.,gastric-
ulcer, dyspepsia, or gastritis) in the subtree of the node. In other
words, in Andy’s opinion, allowing the public to associate him with
dyspepsiaor gastritis is as serious as revealing his true disease.

On the other hand, for tuple 7 in Figure 1a, Linda may specify
∅, which is an implicit node underneath all the leaves of the taxon-
omy. The empty-set preference implies that she is willing to release
her actual diagnosis resultflu; therefore, tuple 7 can be published
directly. In general,flu may not be “sensitive” for many people,
such that it is often not necessary to apply any privacy protection to
this value.

In fact, personalization is an inherent notion of privacy preserva-
tion whose objective is to protect the interests of individuals at the
first place. Somewhat surprisingly, so far the literature has focused
on a universal approach that exerts the same amount of privacy pre-
serving for all persons, without catering for their concrete needs.
The consequence is that we may be offering insufficient protection
to a subset of people (such as Andy in the above example), while
applying excessive privacy control to another subset (including, for
instance, Linda). Our method is more flexible, since it decides the
minimum amount of necessary generalization for satisfying every-
body’s needs, and hence, retains the maximum amount of informa-
tion from the microdata.

We present a careful study for the problem of personalized
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Figure 2: The taxonomy of attribute Disease

anonymity. First, we formalize the concepts that underlie a new
framework of computing privacy-conscious information taking into
account individual preferences. As opposed tok-anonymity, our
approach appliesdirect protection against the association between
individuals and their sensitive values.

As a second step, we analyze the theory behind our method-
ology, and derive formulae for quantifying privacy-breach likeli-
hood. These equations mathematically reveal the scenarios where
k-anonymity can/cannot ensure safe data publication. In particular,
we prove that, unlike our approach,k-anonymity (even its improved
version “l-diversity” [11]) cannot guarantee privacy protection if
an individual may correspond to multiple tuples in the microdata.
This is a serious defect due to the large amount of such data in
practice that requires privacy control. For example, the table of
Figure 1a may contain numerous records for a person if s/he has
been sick for several times.

Finally, we develop an algorithm for finding a generalized ta-
ble that preserves a large amount of information in the microdata
without violating any privacy constraint. Utilizing several inter-
esting problem characteristics, the algorithm optimizes the degrees
of generalization on QI- and sensitive attributes, respectively. Ex-
tensive experiments verify that the output tables of our algorithm
permit highly accurate data analysis.

The rest of the paper is organized as follows. Section 2 formal-
izes the general methodology of personalized anonymity. Section
3 provides its theoretical foundation, and reveals important insight
into the behavior of alternative approaches. Section 4 explains an
algorithm for deriving a generalized table. Section 5 experimen-
tally evaluates the effectiveness of our solutions. Section 6 surveys
the previous work related to ours, and Section 7 concludes the pa-
per with directions for future work.

2. PERSONALIZED ANONYMITY
Let T be a relation storing private information about a set of

individuals. The attributes inT are classified in 4 categories: (i)
an identifier attributeAi which uniquely identifies a person, and
must be removed whenT is released to the public, (ii) asensi-
tive attributeAs (e.g.,Diseasein Figure 1a), whose values may be
confidential for an individual (subject to her/his preferences), (iii)
d quasi-identifier(QI) attributesAqi

1 , ...,Aqi

d , whose values can be
published, but may reveal a personal identify with the aid of ex-



ternal information (Age, Sex, Zipcodein Figure 1a), and (iv) other
attributes that are not relevant to our discussion.

We require thatAs should be categorical, whereas the other at-
tributes can be either numerical or categorical. All the attributes
have finite domains. Following the previous work [5, 7, 8, 9, 11,
13, 15, 17], we assume that each categorical attributeA is accom-
panied by ataxonomy(as in Figure 2 forDisease), which indicates
the publicly-known hierarchy among the possible values ofA.

Our objective is to compute a generalized tableT ∗ such that (i)
it contains all the attributes ofT exceptAi, (ii) it has a generalized
tuple foreverytuple inT , (iii) it preserves as much information of
T as possible, and (iv) its publication does not cause any privacy
breach, as formulated in the next section.

2.1 Personal Privacy Requirements
We start by defining a subtree in the taxonomy ofAs.

DEFINITION 1 (As SUBTREE). For any nodex in the taxon-
omy ofAs, we represent itssubtreeasSUBTR(x), which includes
x itself, and the part of the taxonomy under it.

A tuple t ∈ T defines anassociationbetween an individualo
(identified byt.Ai) and a sensitive valuev = t.As. We denote the
association as{o, v}. To formulate her/his privacy preference,o
specifies aguarding nodeas follows:

DEFINITION 2 (GUARDING NODE). For a tuple t ∈ T , its
guarding nodet.GN is a node on the path from the root tot.As

in the taxonomy ofAs.

Throught.GN , o indicates that s/he does not want the public
to associate her/him with any leafAs value in SUBTR(t.GN ).
Specifically, assume that SUBTR(t.GN ) containsx leaf valuesv1,
v2, ..., vx. The privacy requirement oft.GN is breachedif an ad-
versary thinks that any of the associations{o, v1}, ...,{o, vx} exists
in T .

DEFINITION 3 (BREACH PROBABILITY ). For a tuplet ∈ T ,
its breach probability Pbreach(t) equals the probability that an
adversary can infer fromT ∗ that any of the associations{o, v1},
..., {o, vx} exists inT , wherev1, ..., vx are the leaf values in
SUBTR(t.GN ).

The published tableT ∗ should guarantee that, for allt ∈ T ,
Pbreach(t) is at mostpbreach, which is a system parameter speci-
fying the amount of confidentiality control.

Figure 1a demonstrates the guarding nodes selected by the in-
dividuals involved in the microdata. For example, lett be tu-
ple 3 (t.Ai = Ken and t.As = pneumonia). The guarding node
respiratory-infectionof t indicates that nobody can infer, with high
confidence, that Ken suffered from a disease underrespiratory-
infectionin the taxonomy of Figure 2.Pbreach(t) is the probability
that an adversary can infer thatanyof the following 3 associations
exists inT : {Ken,flu}, {Ken,pneumonia}, {Ken,bronchitis}.

On the other hand, Ken does not care if somebody conjec-
tures, with any probability, that he contractedgastric-ulcer(not in
SUBTR(t.GN )), since it is very different from his true diagnosis
result. In general, the highert.GN is in the taxonomy, the stronger
privacy must be guaranteed.

Guarding nodes depend entirely on personal preferences, and are
not determined by the sensitive values. For instance, Joe and Sam
(who, as with Ken, contractedpneumonia) set their guarding nodes
simply topneumonia(tuples 5, 6 in Figure 1a), implying that they
do not mind being associated withflu or bronchitis. Specially, if a
patient believes that disclosingt.As to the public does not violate
her/his privacy, s/he may simply sett.GN to ∅.

2.2 Generalization
We first clarify two fundamental concepts.

DEFINITION 4. (PARTITION / GENERAL DOMAIN ) If at-
tribute A is numeric, apartition is a continuous interval in the
domain ofA. Otherwise, apartition consists of all the leaves in
the subtree of a node in the taxonomy ofA. In any case, ageneral
domain of A is a set of disjointpartitionswhose union forms the
original domain ofA.

By a simple transformation, we can use the interval representa-
tion for the general domains of both numeric and categorical at-
tributes. Notice that, whenA is categorical, a general domain is
determined by a set of nodes in the taxonomy ofA, whose sub-
trees do not overlap, but cover all the leaves. (For instance, in
Figure 2, nodesrespiratory-system-problemanddigestion-system-
problemdecide a general domain ofDisease.) Clearly,A can be
converted to a numeric attribute by imposing a 1D ordering on the
leaves of its taxonomy: the left-most leaf is mapped to value 1,
its neighbor to 2, and so on. Thus, a partition ofA can be de-
noted as an interval. For example, the partition corresponding to
respiratory-system-problemin Figure 2 is an interval of[1, 6].

DEFINITION 5 (GENERALIZATION). A general domain of an
attributeA uniquely decides ageneralization function. Given a
valuev in the original domain ofA, the function returns the only
partition in the general domain that containsv. The partition is the
generalized valueof v.

Clearly,A can have many generalization functions, since its val-
ues can be partitioned into numerous general domains.

For each tuplet ∈ T , we uset∗ to represent its generalized tuple
in T ∗. The generalization is performed in two steps. The first step,
theQI-generalization, is identical to conventional generalization in
[5, 7, 8, 17]. Specifically, we choose a generalization function for
every QI attributeAqi

i (1 ≤ i ≤ d), and obtain the generalized
valuet∗.Aqi

i for all tuplest ∈ T (t∗ retains the sensitive value of
t at this step). Then, the generalized tuples are divided intoQI-
groups, defined as follows.

DEFINITION 6 (QI-GROUP). After QI-generalization, a QI-
group consists of the tuples with identical values on all the QI at-
tributes. The i-th QI-value (1 ≤ i ≤ d) of the QI-group equals
t.Aqi

i , wheret is an arbitrary tuple in the QI-group.

In the second step,SA-generalization(SA stands for “sensitive
attribute”), we consider each QI-group in turn, and select atai-
lored generalization function onAs. Note that, unlike the previ-
ous step where all tuples are processed with identical generaliza-
tion functions, SA-generalization uses adifferentfunction for each
group. This strategy achieves less information loss, by allowing
each group to decide the amount of necessary generalization.

Figure 3 shows a possible result of our entire generalization
scheme for Figure 1a. The table contains 5 QI-groups: the first
one includes tuples 1-4, the second involves tuples 5-6, the third
only tuple 7, the fourth tuples 8-9, and the fifth group consists of
the last tuple. Note that the sensitive valueflu of tuple 7 is re-
tained directly, while the same disease of tuple 10 is generalized to
respiratory-infection. This is legal because, as mentioned earlier,
SA-generalization may choose a different generalization function
for each QI-group.

None of the existing methods permits SA-generalization. In fact,
as demonstrated in Section 5, SA-generalization may produce a
table that allows more accurate analysis about the correlation be-
tween the sensitive attributeAs and other attributes. The reason



Age

[1, 10]

Sex

M

Zipcode

[10001, 20000]

Disease

gastric ulcer

row #

1 (Andy)

[1, 10] M [10001, 20000] dyspepsia2 (Bill)

[1, 10] M [10001, 20000] respiratory infection3 (Ken)

[1, 10] M [10001, 20000] respiratory infection4 (Nash)

[11, 20] M [20001, 25000] respiratory infection5 (Joe)

[11, 20] M [20001, 25000] respiratory infection6 (Sam)

21 F 58000 flu7 (Linda)

[26, 30] F [35001, 40000] gastritis8 (Jane)

[26, 30] F [35001, 40000] pneumonia9 (Sarah)

56 F 33000 respiratory infection10 (Mary)

Figure 3: A possible result of our generalization scheme

is that, although SA-generalization results in less precise values on
As, it retains more information on the QI attributes.

In Figure 1a, for example, considerableAge precision will be
lost by generalizing the QI values of Mary (tuple 10), as discussed
in Section 1.1. An alternative approach is to generalize her disease
flu to respiratory-infection, leaving the other QI values intact. As
shown in Figure 3, this leads to an age-interval[26, 30] for tuples
8-9 that is much tighter than their age representation[21, 60] in
Figure 1c. If we publish the table in Figure 3, an adversary can find
out thatflu is the real disease of Mary only with probability 1/3
(flu is the guarding node set by Mary), as explained in Section 2.3.
Intuitively, this is because 3 different diseases exist in the subtree
of respiratory-infection(the sensitive value of tuple 10 in Figure 3).

2.3 Combinatorial Process of Privacy Attack
Consider an adversary who attempts to infer the sensitive data of

an individualo fromT ∗. In the worst case, s/he has all the QI values
o.Aqi

1 , ..., o.Aqi

d of o. Therefore, s/he inspects only those tuples
t∗ ∈ T ∗ whose QI valuet∗.Aqi

i coverso.Aqi
i , for all i ∈ [1, d].

These tuples must form a QI-group. That is, ift∗ and t′∗ are
two such tuples, thent∗.Aqi

i = t′∗.Aqi
i for all i ∈ [1, d]. Actu-

ally, if, for instance,t∗.Aqi
1 6= t′∗.Aqi

1 , the two values are different
partitions in the general domain ofAqi

1 that both containo.Aqi
1 ,

violating the requirement that all partitions are disjoint.

DEFINITION 7. (ESSENTIAL QI-GROUP / Sreal). Given an
individual o, theessential QI-groupEG(o) is the only QI-group
in T ∗ whosei-th QI-value coverso.Aqi

i , for all i ∈ [1, d]. We use
Sreal(o) to refer to the set of individuals, who have tuples inT
generalized toEG(o).

Note thatSreal(o) is unknown to an adversary. To derive
Sreal(o), the adversary must resort to an external dataset, and re-
trieve a setSext(o) of persons that may be concerned inEG(o).
Sext(o) is defined as follows.

DEFINITION 8 (EXTERNAL INDIVIDUAL SET Sext). Given
an essential QI-groupEG(o), and an external databaseDBext,
Sext(o) consists of the peopleo′ ∈ DBext, such thato′.Aqi

i

(1 ≤ i ≤ d) is covered by thei-th QI-value ofEG(o).

To illustrate the above concepts, assume that an adversary tries
to infer the disease of Ken from Figure 3, having his age 6, sex, and
zipcode 18000. The essential QI-groupEG(Ken) consists of tuples
1-4, i.e.,Sreal(Ken) equals{Andy, Bill, Ken, Nash}. Attempting
to deriveSreal(Ken), the adversary consults the external database
in Figure 1b, and obtainsSext(Ken) = {Andy, Bill, Ken, Nash,
Mike}.

In general

Sreal(o) ⊆ Sext(o) (1)

This is a reasonable condition underlying all the previous work.
For instance, if Ken does not appear in the voter registration list,
his privacy is trivially preserved. In fact, under the circumstances
where an arbitrary number of individuals inT may be missing in
the external source, the adversary can infer little information, be-
cause all tuples of the essential QI-group may actually correspond
to the missing individuals.

Next, the adversary adopts a combinatorial approach to infer the
As value of individualo. We elaborate the approach by distin-
guishing two cases in Sections 2.3.1 and 2.3.2, respectively. The
subsequent discussion usesm, n to represent the sizes ofEG(o)
andSext(o), respectively. Also, we denote the tuples inEG(o) as
t∗1, ..., t∗m, whose original versions in the microdata aret1, ..., tm,
respectively.

2.3.1 Primary Case
We first consider the case whereT.Ai is the primary key ofT ,

i.e., each individual has at most one tuple inT . This is the only
scenario addressed in the previous work [5, 7, 8, 9, 11, 13, 15, 17].

DEFINITION 9. (PRIMARY POSSIBLE RECONSTRUCTION).
In the Primary Case, given an individualo, a possible reconstruc-
tion of the essential QI-groupEG(o) includes

• m distinct personso1, ..., om, who constitute a subset of
Sext(o), i.e.,oj (1 ≤ j ≤ m) is taken as the owner oftj ;

• m leaf sensitive valuesv1, ...,vm, such thatvj (1 ≤ j ≤ m)
is in SUBTR(t∗j .As), i.e., vj is taken as the real sensitive
value oftj .

EXAMPLE 1. We explain the definition by continuing our ex-
ample, where the adversary has derivedSext(Ken) = {Andy, Bill,
Ken, Nash, Mike}. As mentioned earlier,m = 4, n = 5, andt∗1, ...,
t∗4 are tuples 1-4 in Figure 3, respectively.

To obtain a possible reconstruction, the adversary first assigns
o1, ...,o4 to 4 different persons inSext(Ken). As a possible assign-
ment,o1 = Mike, o2 = Nash,o3 = Andy, ando4 = Ken. Then, the
adversary setsv1 to gastric-ulcer, which is the only potential value
of v1, becauset∗1.A

s = gastric-ulceris a leaf node in theDisease-
taxonomy. For the same reason,v2 must bedyspepsia. On the other
hand,v3 (v4) can be any of the 3 leaf diseases undert∗3.A

s (t∗4.A
s)

= respiratory-infection. The possible reconstruction is completed
by assuming, for instance,v3 = flu andv4 = bronchitis.

According to the reconstruction, the adversary thinks that Mike,
Nash, Andy, Ken contractedgastric-ulcer, dyspepsia, flu, andbron-
chitis, respectively. Note that a reconstruction most likely is not
equivalent to the microdata (where Mike does not even exist); in-
stead, it is only a conjecture by the adversary. Nevertheless, the
previous reconstruction violates the privacy requirement enforced
by the guarding node of tuple 3 in Figure 1a (i.e., Ken does not
want people to think that he had any respiratory infection). Inter-
estingly, the breach happens when Ken is associated with tuple 4,
instead of his original tuple 3in the microdata.

It is important to understand the probabilistic nature of possible
reconstructions. In fact,o1, ...,o4 can be decided in Permu(5, 4) =
120 ways2. For each decision, by the reasoning explained earlier,
v1 andv2 are fixed, but32 = 9 choices exist for settingv3 andv4.
Hence, there exist totally 120× 9 = 1080 possible reconstructions.

432 reconstructions breach the privacy requirement of tuple 3 in
Figure 1. Specifically, a reconstruction is breaching if and only if
eithero3 or o4 equals Ken. Ifo3 = Ken, then there are Permu(4, 3)

2Permu(x, y) equals the number of permutations by takingy ob-
jects out of a set ofx objects.



= 24 choices to formulateo1, o2, o4, and 9 possibilities to deter-
minev1, ...,v4, leading to 24× 9 = 216 reconstructions. Symmet-
rically, if o4 = Ken, there exist another 216 breaching reconstruc-
tions.

Without further information, the adversary assumes that each re-
construction happens with identical likelihood. Hence, the breach
probability of tuple 3 in the microdata equals 432/1080 = 2/5.

2.3.2 Non-primary Case
We proceed to analyze the case whereT.Ai is not the primary

key of T , namely, each individual can appear an arbitrary number
of times inT . No previous work has addressed this scenario before.

DEFINITION 10. (NONPRIMARY POSSIBLE RECONSTRUC-
TION). In the Non-primary Case, given an individualo, a possible
reconstruction of the essential QI-groupEG(o) includes

• a multi-set of individuals{o1, ..., om} (perhaps with du-
plicates), where the distinct elements constitute a subset of
Sext(o);

• m leaf sensitive valuesv1, ...,vm, such thatvj (1 ≤ j ≤ m)
is in SUBTR(t∗j .As).

EXAMPLE 2. Let us revisit the situation where the adversary has
obtainedSext(Ken) = {Andy, Bill, Ken, Nash, Mike}. The values
of m, n, t∗1, ..., andt∗4 are the same as in Example 1.

In a possible reconstruction, the adversary may set all ofo1, ...,
o4 to Ken (which is not allowed in the Primary Case). The way
thatv1, ..., v4 are decided is identical to that in Example 1; let us
again assumev1 = gastric-ulcer, v2 = dyspepsia, v3 = flu, andv4

= bronchitis. By this reconstruction, the adversary thinks that Ken
contracted all the 4 diseases. Evidently, the conjecture does not
correctly reflect the microdata, but it causes a privacy breach for
tuple 3 in Figure 1a.

Since each ofo1, ...,o4 can independently be any of{Andy, Bill,
Ken, Nash, Mike}, 54 = 625 choices exist for decidingo1, ..., o4.
Given each decision, due to the reasons presented in Example 1,
there are 9 ways to formulatev1, ...,v4. Therefore, the total number
of possible reconstructions equals 625× 9 = 5625.

A reconstruction breaches the privacy constraint of tuple 3 in the
microdata, if and only if Ken is assigned too3 or o4. If o3 = Ken,
o1, o2, o4 may be any person inSext(Ken), and hence, can be as-
signed in53 = 125 manners. Regardless of the assignment,v1, ...,
v4 may be set in 9 ways, resulting in 125× 9 = 1125 different re-
constructions. Similarly, another 1125 exist ifo4 = Ken, but some
of them (whereo3 = o4 = Ken) have been counted twice. Specifi-
cally, if o3 = o4 = Ken, there are 25 possibilities for determiningo1

ando2, whereas, for each possibility, 9 choices exist for deciding
v1, ..., v4. Hence, the number of double-counted reconstructions
equals 25× 9 = 225.

Therefore, totally1125 + 1125 − 225 = 2025 reconstructions
breach the privacy of tuple 3 in Figure 1a. Thus, the breach proba-
bility of the tuple equals 2025/5625 = 9/25.

Deriving a breach probability through the above procedures is
quite cumbersome. In the next section, we present closed formulae
that return the probability directly. Then, it will become simple
to verify that publishing the table of Figure 3 allows no tuple in
Figure 1a to be breached with a probability more than 50%.

3. THEORETICAL FOUNDATION
In this section, we solve the probabilityPbreach(ttar) formu-

lated in Definition 3, wherettar is an arbitrary tuple inT (the sub-
script means “target”). Obviously, if the guarding nodettar.GN of

ttar is ∅, Pbreach(ttar) = 0, i.e., no privacy control is required.
Next, we focus onttar.GN 6= ∅.

Section 3.1 first clarifies the notations and their properties,
which will be used in our derivation. Then, Section 3.2 solves
Pbreach(ttar) into closed formulae, based on which Section 3.3
points out the defects ofk-anonymity.

3.1 Notations and Basic Properties
Following the notations in Section 2.3, we useotar to denote the

person identified byttar.A
i, andt∗tar for the generalized tuple of

ttar. Furthermore, letm be the size of the corresponding essential
QI-groupEG(otar) (Definition 7), whose tuples are represented as
t∗1, ..., t∗m (one of which ist∗tar), respectively.Sreal(otar) refers
to the set of individuals whose records (in the microdataT ) are
generalized toEG(otar). Finally, we deployn for the cardinality
of Sext(otar) (Definition 8).

As a direct corollary of Formula 1, we have:

n ≥ |Sreal(otar)| (2)

In the Primary Case,|Sreal(otar)| always equalsm, since every tu-
ple inEG(otar) is owned by a distinct person. In the Non-primary
case, however,|Sreal(otar)| may be any value in[1, m]. Further-
more, regardless of the size ofEG(otar), |Sreal(otar)| can take
the minimum value 1, which happens if all the tuples inEG(otar)
belong to the same person.

We introduceb as the number of tuplest∗j (1 ≤ j ≤ m) in
EG(otar), such that SUBTR(t∗j .As) overlaps SUBTR(ttar.GN ).
For example, assume thatttar is tuple 1 of Figure 1a, i.e.,ttar.GN
= stomach-disease. Thus, in Figure 3,EG(otar) involves tuples 1-
4, andm = 4. Since SUBTR(ttar.GN ) overlaps the subtrees of the
As values of tuples 1 and 2 inEG(otar), we haveb = 2.

We define two functionsFsubsize andFpercent related to the
tuplest∗ ∈ T ∗. Specifically,Fsubsize(t

∗) equals the number of
leaf values in SUBTR(t∗.As) (e.g.,Fsubsize(t

∗) = 3 if t∗.As =
respiratory-infection). On the other hand:

• Fpercent(t
∗, ttar) equals thepercentageof the leaf values in

SUBTR(t∗.As) that are also in SUBTR(ttar.GN ).

Thus, it follows that:

• Fpercent(t
∗, ttar) = 1, if t∗.As is in SUBTR(ttar.GN );

• Fpercent(t
∗, ttar) = 0, if SUBTR(t∗.As) is disjoint with

SUBTR(ttar.GN ).

We illustrate Fpercent assuming ttar.GN = respiratory-
infection. If t∗.As = respiratory-system-problem, then
Fpercent(t

∗, ttar) = 50%, becauset∗.As has 6 leaf diseases,
and half of them lie in SUBTR(ttar.GN ). As another exam-
ple, if t∗.As is flu, which is in SUBTR(ttar.GN ); therefore,
Fpercent(t

∗, ttar) = 100%. Finally, givent∗.As = stomach-
disease (whose subtree is disjoint with SUBTR(ttar.GN )),
Fpercent(t

∗, ttar) = 0.

LEMMA 1. For all tuples t∗j (1 ≤ j ≤ m) in EG(otar),
Fpercent(t

∗
j , ttar) equals 0 or a constant.

PROOF. (Sketch) By symmetry, it suffices to prove the lemma
for j = 1. As mentioned earlier, if SUBTR(t∗1.A

s) does not overlap
SUBTR(ttar.GN ), Fpercent(t

∗
1, ttar) = 0. Otherwise, we distin-

guish two scenarios: (i)t∗1.A
s is an ancestor ofttar.GN , or (ii) it

is in SUBTR(ttar.GN ). Due to the space constraint, we discuss
only the first scenario.

Consider any other tuplet∗j (2 ≤ j ≤ m). If SUBTR(t∗j .As)
is disjoint with SUBTR(ttar.GN ), Fpercent(t

∗
j , ttar) = 0. If not,



we will show thatt∗j .As = t∗1.A
s, and therefore,Fpercent(t

∗
j , ttar)

= Fpercent(t
∗
1, ttar). Assume, on the contrary,t∗j .As 6= t∗1.A

s.
Recall that SUBTR(t∗1.A

s) covers the entire SUBTR(ttar.GN ).
Hence, if t∗j .As has a subtree overlapping SUBTR(ttar.GN ),
t∗j .As andt∗1.A

s become two intersecting partitions in the general
domain ofAs. This is not possible, because all the partitions must
be disjoint.

Therefore, in the sequel, we avoid the notation ofFpercent by
using c to represent the non-zero value ofFpercent(t

∗
1, ttar), ...,

Fpercent(t
∗
m, ttar).

3.2 Derivation of the Breach Probability
As clarified in Section 2.3, to infer theAs value ofotar, an ad-

versary reconstructsEG(otar) according to Definition 9 (or 10) in
the primal (or non-primal) scenario. In any case, we usenrecon to
capture the total number of possible reconstructions, andnbreach

for the number of reconstructions violating the privacy constraint
enforced byttar.GN . It follows that

Pbreach(ttar) = nbreach/nrecon (3)

The next two theorems solvePbreach(ttar) for the primal and non-
primary cases, respectively.

THEOREM 1. In the Primary Case,Pbreach(ttar) =
{

b/n if t∗tar.A
s is in SUBTR(ttar.GN )

b · c/n otherwise

PROOF. (Sketch) We focus on the scenario wheret∗tar.A
s is in

SUBTR(ttar.GN ), as the reasoning extends to the other scenario
as well. There are Permu(n, m) ways of settingo1, ...,om (defined
in Definition 9) tom persons inSext(otar), which has sizen. In-
dependently, there existFsubsize(t

∗
j ) choices for eachvj (1 ≤ j ≤

m). As a result,nrecon = Permu(n, m) ·
∏m

j=1
Fsubsize(t

∗
j ).

Let t∗1, ..., t∗b be all the tuples inEG(otar), such that the sub-
trees of theirAs values overlap SUBTR(ttar.GN ). In a possible
reconstruction violating the privacy requirement ofttar, otar must
be selected as one ofo1, ..., ob. For each selection, the other ele-
ments ofo1, ..., om can be set tom − 1 individuals inSext(otar)
in Permu(n − 1, m − 1) manners. Hence:

nbreach = b · Permu(n − 1, m − 1) ·
m
∏

j=1

Fsubsize(t
∗

j )

Then, Equation 3 can be solved asPbreach(ttar) = b/n.

EXAMPLE 3. We illustrate the theorem using Figures 1a, 1b,
and 3. Assumettar (or t∗tar) to be tuple 3 in Figure 1a (or Fig-
ure 3). Thus,t∗tar.A

s = ttar.GN = respiratory-infection, and
EG(otar) involves the first 4 tuples of Figure 3. According to
Figure 1b, Andy, Bill, Ken, Nash, Mike are potentially involved
in EG(otar), renderingn = 5. Furthermore,b = 2, because
the subtrees of theAs values in tuples 3, 4 (Figure 3) overlap
SUBTR(ttar.GN ). Since t∗tar.A

s is in SUBTR(ttar.GN ), by
Theorem 1,Pbreach(ttar) = b/n = 2/5, confirming the analysis
in Example 1.

To demonstrate the second case of the theorem, letttar (or
t∗tar) be tuple 5 in Figure 1a (or Figure 3). Namely,t∗tar.A

s =
respiratory-infection, ttar.GN = pneumonia, andEG(otar) con-
sists of tuples 5, 6 of Figure 3. Only Joe and Sam in Figure 1b can
be involved inEG(otar), leading ton = 2. Furthermore,b = 2,
because theAs values of both tuples inEG(otar) have subtrees
overlapping SUBTR(ttar.GN ). In particular, the subtree of the
sensitive value in tuple 5 (or 6) of Figure 3 has 3 leaf diseases,

one of which is in SUBTR(ttar.GN ). Hence,c equals 1/3. Since
t∗tar.A

s is not in SUBTR(ttar.GN ), Pbreach(ttar) = b · c/n =
1/3.

THEOREM 2. In the Non-primary Case,Pbreach(ttar) =
{

1−(1−1/n)b if t∗tar.A
s is in SUBTR(ttar.GN )

1−(1−c/n)b otherwise

PROOF. (Sketch) Again, we discuss only the case thatt∗tar.A
s is

in SUBTR(ttar.GN ). Since eachoj (1 ≤ j ≤ m) in Definition 10
can be set to any of then individuals inSext(otar), and indepen-
dently, there areFsubsize(t

∗
j ) choices for eachvj , the total number

of possible reconstructions isnrecon = nm ·
∏m

j=1
Fsubsize(t

∗
j ).

Let t∗1, ..., t∗b be all the tuples inEG(otar), such that the sub-
trees of theirAs values overlap SUBTR(ttar.GN ). Sincet∗.As is
in SUBTR(ttar.GN ), theAs values oft∗1, ..., t∗b must also be in
SUBTR(ttar.GN ), according to Lemma 1. In any reconstruction
that doesnotcause privacy breach onttar, otar mustnotbe any of
o1, ...,ob. In that case, each ofo1, ...,ob can be assigned to any of
the othern− 1 individuals inSext(otar), resulting in(n− 1)b dif-
ferent assignments. For each assignment,ob+1, ...,om can be set to
any person (includingotar) in Sext(otar) in nm−b ways. Hence:

nbreach = nrecon − (n − 1)b · nm−b ·
m
∏

j=1

Fsubsize(t
∗

j )

Combining the above analysis with Equation 3, we obtain
Pbreach(ttar) = 1 − (1 − 1/n)b.

EXAMPLE 4. Let ttar be tuple 3 of Figure 1a. As explained
in Example 3,n = 5, b = 2, andt∗tar.A

s is in SUBTR(ttar.GN ).
Theorem 2 shows thatPbreach(ttar) is 1 − (1 − 1/5)2 = 9 / 25,
which is consistent with the derivation in Example 2.

To demonstrate the second case, assumettar to be tuple 5 in
Figure 1a. As mentioned in Example 3,n = 2, b = 2, c = 1/3,
andt∗tar.A

s is not in SUBTR(ttar.GN ). Thus,Pbreach(ttar) is
1 − (1 − 1/(3 × 2))2 = 11/36.

3.3 Drawbacks of k-anonymity
A k-anonymous table is obtained only with QI-generalization,

i.e., all theAs values in the original tableT are directly retained.k-
anonymity does not consider personal privacy preferences, which is
equivalent to setting the guarding node of each tuplet ∈ T directly
to t.As. Hence,k-anonymity can be regarded as a special case of
our personalized technique.

All the above concepts (e.g., “essential QI-group” and “possi-
ble reconstructions”) extend tok-anonymity in a natural manner.
Therefore, Theorems 1 and 2 also capture the privacy protection
quality ofk-anonymity. In fact, only the first case (i.e.,t∗tar.A

s is in
SUBTR(ttar.GN )) of each theorem is necessary, becauset∗tar.A

s

= ttar.GN (= ttar.A
s) always holds. Furthermore,b has a simpler

interpretation: it is the number of tuples inEG(otar) that have the
sameAs value ast∗tar. Next, we use the theorems to explain when
and whyk-anonymity fails to guarantee safe publication,even in
the scenario with no personal preferences.

We start with the Primary Case.k-anonymity guarantees that
the sizem of each QI-group must be at leastk. Let us con-
sider the worst scenario, where the adversary has a “perfect” ex-
ternal database such thatSext(otar) = Sreal(otar), i.e., the exter-
nal source does not contain any person irrelevant to the microdata.
Thus, in Theorem 1,n equals|Sreal(otar)|, which (for the Primary
Case) is equivalent tom. Hence, the breach probability evaluates
to b/m. The value ofb, however, may reachm, if all the tuples in



EG(otar) have the sameAs value. When this happens, the breach
probability equals 100%, i.e., an adversary can infer the exact in-
formation ofotar with full confidence (as is the case explained in
Section 1.1 for Joe).

In fact, k-anonymity provides strong protection only if the ex-
ternal database consulted by an adversary may include many indi-
viduals that do not exist in the microdata, so thatn is by far larger
than |Sreal(otar)| = m. In particular, if the ratio betweenn and
m exceedsb, the breach probabilityb/n in Theorem 1 is at most
1/m, which, in turn, is at most1/k, i.e., the target protection level
of k-anonymity.

Machanavajjhala et al. [11] also observed the above problem,
and partially solved it with a new concept of “l-diversity”. The
essence ofl-diversity is to ensure that the sensitive values in each
QI-group are sufficiently diverse. Consider that we group the tuples
in the QI-group by their sensitive values, and call each resulting
group a “sub-group”. Assume thatp percent of the tuples in the
QI-group appear in the largest sub-group.l-diversity ensures that3

p is at mostpbreach, the highest permissible breach probability.
Theorem 1 theoretically confirms that the strategy ofl-diversity

indeed works. In fact, ifn equalsm, the breach probabilityb/n
is exactly the percentage of tuples inEG(otar) having the sensi-
tive valuet∗tar.A

s (in other words,l-diversity essentially guaran-
teesb/m ≤ p ≤ pbreach). Since, by Inequality 2,n is at least
|Sreal(otar)| (= m in the Primary Case),l-diversity ensures that
b/n is at mostpbreach for all tuples.

In the Non-primary Case, however,|Sreal(otar)| is no longer
m; instead, as mentioned in Section 3.1,|Sreal(otar)| does not de-
pend onm any more, and can always be 1 regardless ofm. As
a result,neither k-anonymity andl-diversity can guarantee low
breach probability. In the worst case, both techniques allow an
adversary to obtain the sensitive value ofotar with 100% probabil-
ity. This happens whenotar is the only person in bothSreal(otar)
andSext(otar), i.e., all the tuples inEG(otar) concernotar, and no
other individual in the external source can be involved inEG(otar).
As a result,n equals 1, and, by Theorem 2, the breach probability
is 1.

What is neglected byk-anonymity andl-diversity? The effect of
|Sreal(otar)|! As discussed earlier,k-anonymity ensuresm ≥ k,
andl-diversity guaranteesb/m ≤ pbreach, but neitherm nor b/m
is a component in deriving the breach probability (see Theorem 2).
In particular, a major componentn is not captured —n can be very
small, no matter how large (or small)m (or b/m) is.

4. GENERALIZATION ALGORITHM
Let v be a value in the domain of attributeA. We use

ILvalue(v
∗) to capture the (amount of) information loss in gen-

eralizingv to v∗, which is a partition in the corresponding general
domain ofA (Definition 5). Formally,

ILvalue(v
∗) =

(the number of values inv∗) − 1

the number of values in the domain ofA
(4)

For instance, if the domain ofAgeis [1, 60], generalizing age 5 to
[1, 10] has information lossILvalue([1, 10]) = (10− 1) / 60. Simi-
larly, since the taxonomy ofDiseasehas 12 leaves, generalizingflu
to respiratory-infectionresults inILvalue(respiratory-infection) =
(3 − 1)/12, where 3 is the number of leaves underrespiratory-
infection. Obviously, if v is not generalized (i.e.,v = v∗),
ILvalue(v

∗) equals 0, i.e., no information is lost.

3l-diversity has other requirements, if an adversary’s “background
knowledge” is taken into account [11]. We do not consider this
complication in this work.

Algorithm Greedy-Personalized-Generalization
Input: the microdataT , and the guarding nodes of all tuples
Output: the publishable relationT ∗

1. for every QI-attributeAqi
i (1 ≤ i ≤ d)

2. initialize a generalization functionfi with a single partition
covering the entire domain ofAqi

i (see Definitions 4 and 5)
3. T ∗ = the relation after applying QI-generalization onT

according toS = {f1, ...,fd}
4. G′ = the only QI-group inT ∗

5. SA-generalization(G′) //Figure 5
/* at this point,T ∗ becomes publishable */

6. while (true)
7. T ∗

best = T ∗; Sbest = S
8. for every possibleS′ = {f ′

1, ...,f ′
d} obtained fromS with a

“single split” (see the explanation in Section 4.1)
9. T ′∗ = the relation after applying QI-generalization onT

according toS′

10. for each QI-groupG′ ∈ T ′∗

11. SA-generalization(G′) //Figure 5
/* at this point,T ′∗ becomes publishable */

12. if ILtable(T
′∗) < ILtable(T

∗
best)

13. T ∗
best = T ′∗; Sbest = S′

14. if (T ∗
best = T ∗) then go to Line 17 //no next round

15. else
16. T ∗ = T ∗

best; S = Sbest //prepare for the next round
17. returnT ∗

best

Figure 4: Algorithm for computing personalized generalization

The overall information lossILtuple(t
∗) of a generalized tuple

t∗ equals

ws · ILvalue(t
∗.As) +

d
∑

i=1

wqi
i · ILvalue(t

∗.Aqi
i ) (5)

wherewqi
1 , ..., wqi

d , andws are positive system parameters, speci-
fying the penalty factor of sacrificing precision on each attribute.
Obviously, SA-generalization can be easily disabled by setting
ws = ∞, i.e., even the least generalization onAs entails infinite
information loss.

The total information lossILtable(T
∗) of the entire (general-

ized) relationT ∗ is given by

ILtable(T
∗) =

∑

∀t∗∈T∗

ILtuple(t
∗) (6)

Next, leveraging the findings of the previous section, we pro-
pose an algorithm for computing a generalized tableT ∗ with small
ILtable(T

∗) which guaranteesPbreach(t) ≤ pbreach for each
t ∈ T .

4.1 The Greedy Framework
As elaborated in Section 2.2, our generalization scheme includes

two steps. The first phase applies QI-generalization onT , using
a set of generalization functionsS = {f1, ..., fd} on thed QI-
attributes, respectively. Then, the second step produces the final
T ∗ by performing SA-generalization on the resulting QI-groups,
employing a specialized generalization function for each QI-group.
Hence, the quality ofT ∗ depends on (i) the choice ofS, and (ii)
the effectiveness of SA-generalization. We provide a solution for
settling the first issue in this subsection, and deal with (ii) in Sec-
tion 4.2.

A generalization functionfi (1 ≤ i ≤ d) is decided by a general
domain ofAqi

i (Definition 5), which, in turn, is determined by a set
of partitions in the original domain ofAqi

i (Definition 4). There-



fore, selectingS is equivalent to finding the appropriate partitions
of eachfi. Figure 4 presents a greedy algorithm for achieving this
purpose (the pseudocode also explains the framework of calculat-
ing T ∗).

At Lines 1-2, we obtain the simplestfi (1 ≤ i ≤ d), which con-
tains a single partition, covering the entire domain ofAqi

i . Using
suchf1, ..., fd, Line 3 carries out QI-generalization onT , which,
apparently, results in a single QI-group. Next, the algorithm in-
vokesSA-generalization(elaborated in the next section) on the QI-
group (Lines 4-5), which yields a publishableT ∗.

The subsequent execution proceeds inrounds. Specifically, each
round slightly refinesoneof f1, ...,fd, and leads to a newT ∗ with
lower information loss. Before explaining the details, we must clar-
ify the refinement of a function, e.g.,f1, without loss of generality.

Refining a generalization function. Refiningf1 means splitting
one of its partitions once. For instance, assume thatf1 is on a
numeric attributeAge with domain [1, 60], and is determined by
partitions [1, 30] and [31, 60]. Partition [1, 30] may be split into
[1, x] and[x+1, 30], for anyx ∈ [1, 29], i.e.,[1, 30] can be split in
29 ways. Similarly, there are also 29 options for splitting[31, 60].
Therefore, by a single split,f1 can be refined into 58 possible gen-
eralization functions.

The situation is different, iff1 concerns a categorical attribute,
e.g.,Disease(strictly speaking,Diseaseis not a QI-attribute in Fig-
ure 1c; but no confusion should be caused by borrowing it to illus-
trate the refinement off1). For example, suppose thatrespiratory-
system-problemis one of the partitions (in the taxonomy of Fig-
ure 2) decidingf1. Using the transformation stated in Section 2.2,
we can representrespiratory-system-problemwith an interval[1, 6]
(by converting the leaf nodes under the partition to values 1-6, re-
spectively). Note that, it is not possible to split the partition into,
for instance,[1, 2] and[3, 6]. As formulated in Definition 4, each
partition of a categorical attribute must be a node in the correspond-
ing taxonomy. Here,[1, 2] cannot be mapped to any node in Fig-
ure 2. In fact, there is only one possible split forrespiratory-system-
problem, i.e., breaking its interval[1, 6] to sub-intervals[1, 3] and
[4, 6].

In general, the number of possible refinements for a categori-
cal f1 equals exactly the number of non-leaf partitions off1. For
example, assuming thatf1 is determined byrespiratory-system-
problemanddigestive-system-problem, we can refine it into 2 dif-
ferent generalization functions with a single split.

A round of the greedy algorithm. We are ready to elaborate each
round of the algorithm in Figure 4. Before a round starts, the
algorithm has obtained a publishable tableT ∗, with a set of QI-
generalization functionsS = {f1, ..., fd}. At the beginning of the
round, we duplicateT ∗ andS into T ∗

best andSbest, respectively
(Line 7).

Next, the algorithm examines (Line 8) all possible sets of re-
fined functionsS′ = {f ′

1, ..., f
′
d}, obtained by performing one

split over a single function inS (i.e., S′ sharesd − 1 identical
functions withS). Given anS′, Lines 9-11 perform QI- and SA-
generalizations to calculate a publishableT ′∗, in the same manner
as Lines 3-5, except that multiple QI-groups may be produced after
the QI-generalization. IfT ′∗ incurs smaller information loss (com-
puted with Equation 6) than our current best solutionT ∗

best (Line
12),T ′∗ andS′ replaceT ∗

best andSbest respectively (Line 13).
We provide a heuristic to reduce computation time. SinceS′ dif-

fers fromS in only one element, the QI-generalization based on
S′ can be computed incrementally from that based onS (which is
available from the previous round). Furthermore, if the same QI-
group G results from both QI-generalizations, its SA-generation

does not need to be re-computed. Similarly, in deriving the infor-
mation lossILtable(T

′∗), the contribution of the tuples inG needs
not be re-calculated, either.

The round finishes, after allS′ has been considered. Line 14
checks if a better solution (compared to the one discovered prior
to this round) has been found. If not, the algorithm terminates by
returningT ∗

best. Otherwise, another round is executed, after setting
T ∗ (or S) to T ∗

best (or Sbest) at Line 16.

4.2 Optimal SA-generalization
Let G′ be an arbitrary QI-group output by performing QI-

generalization onT . Without loss of generality, assume thatG′

containsm tuplest′1, ..., t′m. We useG to denote the set of cor-
responding tuples{t1, ..., tm} in the microdataT . Specifically,
for eachj ∈ [1, m], t′j .A

s = tj .A
s, whereast′j .A

qi
i generalizes

tj .A
qi
i (1 ≤ i ≤ d).

We aim at applying SA-generation onG′ to deriveG∗ ={t∗1, ...,
t∗m}, which achieves two objectives. As discussed in Sections 2.2
and 3,Pbreach(tj) (1 ≤ j ≤ m) depends only onG∗ (which is
the essential QI-group of the individual thattj belongs to). Hence,
as the first objective,G∗ must ensurePbreach(tj) ≤ pbreach.

The second objective is to minimize

m
∑

j=1

ILvalue(t
∗

j .As) (7)

where ILvalue is given in Equation 4. Given the fact that
the QI-values oft∗1, ..., t∗m have been finalized (before the SA-
generalization), fulfilling the second objective essentially mini-
mizes

∑m

j=1
ILtuple(t

∗
j ), whereILtuple is defined in Equation 5.

Therefore, after carrying out SA-generalization on all the QI-
groups (produced by QI-generalization) in the same manner, the
resulting publishableT ∗ minimizesILtable(T

∗) of Equation 6.

LEMMA 2. For any tuplestx andty (1 ≤ x, y ≤ m), if tx.GN
is in SUBTR(ty.GN ), thenPbreach(tx) ≤ Pbreach(ty) regard-
less of the SA-generalization applied.

PROOF. Let bx (or by) be the number of tuplest∗j (1 ≤
j ≤ m) such that SUBTR(t∗j .As) overlaps SUBTR(tx.GN ) (or
SUBTR(ty.GN )). Sincetx.GN is in SUBTR(ty.GN ), bx ≤ by.
By Theorems 1 and 2, we havePbreach(tx) ≤ Pbreach(ty) (the
values ofc andn are equivalent in computing the two probabili-
ties).

Therefore, in searching for the optimal SA-generalization, we
can avoid checking the breach probabilities of the tuples liketx

in Lemma 2, because they must be adequately protected once the
privacy information of the other tuples is secured.

LEMMA 3. For any tupletj (1 ≤ j ≤ m), if Pbreach(tj) >
pbreach before SA-generalization, thent∗j .As must be an ancestor
of tj .GN after SA-generalization.

PROOF. (Sketch) Obviously,Pbreach(tj) must have decreased
after SA-generalization since it eventually drops belowpbreach.
Assume, on the contrary, that the finalt∗j .As is in SUBTR(tj .GN ).
Consider the values ofb, c, andn in calculatingPbreach(tj) with
Theorem 1 or 2. Bothc and n remain the same before and af-
ter the SA-generalization. Since SA-generalization never reduces
b, Pbreach(tj) cannot have decreased after the SA-generalization,
leading to a contradiction.

Based on the above properties, Figure 5 shows an algorithm
that finds the optimal SA-generalization for the given QI-groupG′.



Algorithm SA-generalization (G′)
Input: a QI-groupG′ with tuplest′1, ...,t′m after QI-generalization
Output: a setG∗ of tuplest∗1, ..., t∗m in the final publishableT ∗

1. G = the set of tuplest1, ...,tm in T generalized toG′;
G∗ = {t′1, ...,t′m}

2. Sprob = the set of tuplest ∈ G such thatt.GN is not in the
subtree of the guarding node of any other tuple inG

3. Sbad = the set of tuplest ∈ G satisfyingPbreach(t) > pbreach

/* In the Primary Case,Pbreach(t) is computed from Theorem 1,
replacingn with the size ofG. In the Non-primary Case, the
computation is based on Theorem 2, replacingn with the
number of distinct individuals involved inG. */

4. for each tuplet ∈ Sbad

5. t∗.As = the parent oft.GN
//t∗ is the tuple inG∗ corresponding tot

6. for each tuplet′∗ ∈ G∗ such thatt′∗ 6= t∗

7. if t′∗.As is in SUBTR(t∗.As)
8. t′∗.As = t∗.As

9. while there is a tuplet ∈ Sprob satisfyingPbreach(t) > pbreach

10. if t∗.As is the root of the taxonomy
11. return NULL //no possible SA-generalization
12. t∗.As = the parent oft∗.As

Lines 13-15 are identical to Lines 6-8

Figure 5: Algorithm for finding the optimal SA-generalization

Line 1 initializes two setsG andG∗. G collects all tuplest1, ...,tm

in T generalized toG′, while G∗ = G′. Line 2 creates a setSprob

as follows. For each tuplet ∈ G, if its guarding nodet.GN is not
in SUBTR(t′.GN ) of any other tuplet′ ∈ G, t is added toSprob.
By Lemma 2, once the privacy requirements of the tuples inSprob

are satisfied, the requirements of the other tuples are also fulfilled.
For each tuplet ∈ Sprob, the algorithm calculatesPbreach(t)

according to Theorem 1 or 2 (based on the current, non-
generalized,As values inG∗). If Pbreach(t) is larger thanpbreach,
t is placed in a setSbad (Line 3), that is,Sbad includes the tuples
in Sprob whose privacy constraints have not been satisfied after QI-
generalization.

Next, we consider each tuplet ∈ Sbad in turn (Line 4). Lett∗

be its corresponding tuple inG∗. According to Lemma 3, we can
immediately sett∗.As to the parent oft.GN (Line 5). After this,
t∗.As may become an ancestor oft′∗.As of another tuplet′∗ ∈ G∗.
This is not allowed because, otherwise,t∗.As andt′∗.As become
two overlapping partitions in the general domain ofAs. To remedy
this problem, we must also generalizet′∗.As to t∗.As (Lines 6-8).

The algorithm terminates (Line 9) ifPbreach(t) does not exceed
pbreach for any tuplet ∈ Sprob. Otherwise (Pbreach(t) > pbreach

for some tuplet), we must decreasePbreach(t) by generalizing
t∗.As further (t∗ is the tuple inG∗ corresponding tot). If t∗.As is
already the root of the taxonomy (Line 10), the algorithm returns,
reporting that no appropriate SA-generalization can be found (Line
11). In fact, in this case, theAs values of all tuples inG∗ have been
generalized to the root, so that no more generalization is possible.

If t∗.As is not the root, we raiset∗.As “one level up” in the
taxonomy, by replacing it with its parent (Line 12). After this, the
As values of some other tuples may also need to be raised, due to
the reasoning for Lines 6-8. These changes may increase the breach
probabilities of some tuples. Hence, the algorithm returns to Line
9 to check whether any probability is abovepbreach. If yes, the
above procedures are repeated.

The computation ofPbreach(t) deserves further clarification.
The value ofn in Theorems 1 and 2 is unavailable whenT ∗ is
being computed (i.e., we do not know which external database will
be consulted by an adversary). Hence, as a conservative approach,

we replacen with its lower bound|Sreal(otar)| (Inequality 2). If
the breach probability computed with this lower bound is at most
pbreach, then the actual breach probability derived by an adversary
will definitely be bounded bypbreach.

The following theorem proves that Figure 5 produces an SA-
generalization that minimizes Equation 7.

THEOREM 3. Let t∗1, ..., t∗m be the tuples returned by the al-
gorithm in Figure 5, andt′∗1 , ..., t′∗m be the tuples obtained by
any alternative SA-generalization that prevents privacy breach.
For any j ∈ [1, m], t∗j .As must be inSUBTR(t′∗j .As), namely,
ILvalue(t

∗
j .As) ≤ ILvalue(t

′∗
j .As).

PROOF. (Sketch) On the contrary, assume that there exists a hy-
pothetic SA-generalization that violates the theorem. That is, for
somej ∈ [1, m], t∗j .As is an ancestor oft′∗j .As. Consider the mo-
ment, during the algorithm of Figure 5, when theAs value oftj

is generalized for the first time. This generalization may happen
at Line 5, 8, or 15; in particular, if it is due to Line 8 or 15, the
generalization is caused by generalizing theAs value of another
tuple. Lett be tj in case of Line 5, or in case of Line 8 or 15, let
it be the tuple that causes the generalization oftj . Now consider
the path fromt∗j .As to t.As. It can be shown that, for any SA-
generalization that ensures privacy protection, none of the nodes
on this path can appear as the finalAs value of any tuple. This,
however, contradicts our assumption, becauset′∗j .As, obtained by
the hypothetic SA-generalization, lies on this path.

5. EXPERIMENTS
This section experimentally evaluates the effectiveness of our

technique using a popular dataset4 in the literature [5, 7, 8, 9, 11].
The dataset contains a relation with 100k tuples, each storing in-
formation of an American adult. The relation has 6 columns:Age,
Education, Gender, Marital-status, Occupation, andIncome. The
first two columns are numerical, whereasGender, Marital-status,
Occupationare categorical; these 5 columns are the QI attributes.

Incomeis the sensitive attribute, and its values fall in the range of
[0, 50k). We categorize the column as follows. First, the domain is
evenly divided into 50 ranges (i.e., each has a length of 1k), which
constitute the leaves of the taxonomy. Then, every 5 consecutive
leaves are grouped as the child of a level-2 node. Recursively, every
two level-2 nodes are grouped under a level-3 node. This results in
five level-3 nodes, which are the children of the root. Note that the
fanouts (5, 2, 5 at levels 2, 3, 4, respectively) are chosen simply
to create a balanced taxonomy; other fanouts may also be used,
without affecting the experiment results significantly.

We add a uniqueID to each tuple to obtain a “primary relation”
(each individual has exactly one record). Personal references are
generated in two ways, leading to datasetsPri-leaf andPri-mixed.
Specifically, inPri-leaf, the guarding node of each tuple is identi-
cal to its sensitive value (i.e., all guarding nodes are leaves of the
taxonomy), simulating the scenario where no personal privacy pref-
erence is allowed. InPri-mixed, tuples are randomly divided into
3 groups which account for 10%, 30%, and 60% of the relation,
respectively. For each tuple in the first (or second) group, its guard-
ing node is the parent of its sensitive value (or is∅). The guarding
nodes of the tuples in the last group are their sensitive values.

We also synthesize a “non-primary relation” as follows. First,
50k arbitrary persons are sampled from the primary relation, and
added to the non-primary relation. Then, among these 50k persons,
we extract three disjoint subsets, each containing50k/3 random
persons. For each persono in the first subset, we create a tuple in

4The dataset can be downloaded athttp://www.ipums.org.
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Figure 6: Tuple breach probabilities (no personalization)

the non-primary relation whoseID and QI values are equivalent to
those ofo, but its sensitive value is generated following the distri-
bution ofIncomein the primary relation. Hence,o corresponds to 2
tuples in the non-primary relation. Similarly, for each person in the
second subset, two tuples are created as described earlier, i.e., the
person corresponds to 3 tuples. The last subset is directly included
in the final relation, whose cardinality is, therefore, 100k. Based
on the non-primary relation, we generate personal preferences in
the same manner as inPri-leaf andPri-mixed, leading to datasets
Nonpri-leafandNonpri-mixed, respectively.

The maximum permissible breach probabilitypbreach is fixed
to 0.25. As mentioned in Section 4, our generalization algorithm
requires penalty factorswqi

1 , ..., wqi
5 (for the 5 QI attributes) and

ws. In all cases,wqi
1 , ..., wqi

5 equal 1. The value ofws will be
varied in different experiments. All the experiments are performed
using a Pentium IV CPU at 3.4Ghz.

5.1 Quality of Privacy Protection
In this section, we compare the quality of privacy protection of-

fered byk-anonymity,l-diversity (which improvesk-anonymity as
mentioned in Section 3.3), and ourpersonalizedapproach. The
value ofk for k-anonymity equals1/pbreach = 4. As withperson-
alized, l-diversity takes a single parameter5 pbreach = 0.25. The
value ofws is fixed to 1. In the following experiments, each breach
probability is computed from Theorem 1 or 2, replacingn with its
lower bound in Equation 2.

In the first experiment, we use the 3 methods to generalize
datasetPri-leaf, respectively. In each case, we compute the breach
probability of each original tuple with respect to the generalized
table. For each method, the probabilities of all tuples are sorted in
descending order, as demonstrated in Figure 6a. Since the 3 curves
differ primarily in the behavior of the tuples in the first 2.5% of the
corresponding sorted lists, Figure 6b plots the probabilities for only
these tuples.

k-anonymity cannot achieve the required level of protection,
because the breach probabilities of some tuples are significantly

5The parameterpbreach has the same functionality as the notation
c in [11]. Since we do not consider an adversary’s background
knowledge, the other parameters ofl-diversity are inapplicable.
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Figure 7: Tuple breach probabilities (with personalization)

higher thanpbreach = 0.25. As mentioned in Section 1,k-
anonymity prevents accurate association between individuals and
tuples, but does not provide direct protection against association
between individuals and sensitive values. Bothl-diversity andper-
sonalizedguarantee adequate preservation. Interestingly, the curve
of personalizedis above that ofl-diversity, which indicates that
personalizedperforms less generalization, i.e., just enough to meet
the privacy requirements. Indeed, the table output bypersonalized
has information loss 3123 (calculated with Equation 6), as opposed
to 184845 for thel-diverse table.

Figures 6c and 6d illustrate similar results for datasetNonpri-
leaf. As predicted in Section 3.3, neitherk-anonymity norl-
diversity can satisfy the privacy constraints of all tuples. In par-
ticular,k-anonymity (l-diversity) allows some tuples to be inferred
with a probability higher than 70% (40%), whereasPersonal-
izedstill guarantees that the breach probabilities of all tuples are
bounded bypbreach.

In the previous experiments, the guarding node of each tuple
equals its original sensitive value, i.e., the no-personalization sce-
nario assumed by the previous work. Next, we study personal-
ized scenarios, by repeating the same experiments on datasetsPri-
andNonpri-mixed, respectively. Fork-anonymity andl-diversity
(which are not aware of personal preferences), their generalizedta-
bles are identical to those forPri- andNonpri-leaf, respectively.

Figure 7 presents the results. Our technique is again the only
one that can achieve the required protection degree for an entire
dataset. Fork-anonymity andl-diversity, as expected, more tuples
have breach probabilities abovepbreach, compared to the results on
non-personalized datasets (Figure 6). In Figures 7a and 7c, for each
solution, 30% of the tuples have breach probability 0, because they
are the tuples whose guarding nodes are∅.

In summary, we showed that our solution guarantees privacy pre-
serving in all cases. We also confirmed the finding in Section 3.3
thatk-anonymity, as well as its improved versionl-diversity, fails
to satisfy the privacy requirements in most scenarios. Hence, the
two methods are omitted in the subsequent experiments.

5.2 Accuracy of Data Analysis
In this section, we aim at establishing the fact that SA-

generalization is beneficial since, compared to pure quasi-identifer
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Figure 8: Accuracy of aggregate queries

generalization, it results in generalized tables that permit more ac-
curate data analysis.

We consideraggregate reasoningas the goal of data analysis,
and examine two types of COUNT-queries related to the sensitive
attribute Income. A type-1 query retrieves the number of tuples
satisfyingik ≤ Income< (i + 5)k, wherei is a random integer
in [0, 45]. A type-2 query returns the number of tuples qualifying
two conditions simultaneously. The first condition isik ≤ Income
< (i + 10)k, for somei ∈ [0, 40]. The other condition concerns
a QI attributeA arbitrarily selected. IfA is numeric (i.e.,Ageor
Education), the condition is a range predicatex ≤ A ≤ y, where
[x, y] is a random interval covering 20% of the domain ofA. If A
is Genderor Marital-status, the condition is an equality predicate
A = x, wherex is an arbitrary value in the domain ofA. Finally,
if A is Occupation, the condition is alsoA = x, butx is a random
level-1 node in the taxonomy ofOccupation. The selectivities of
all queries are at least 1%.

Given a datasetT , we compute a generalized tableT ∗ with the
algorithm in Figure 4, use it to obtain estimated query results, and
examine their relative error. Specifically, ifest is an estimated re-
sult, its relative error equals|act − est|/act, whereact is the ac-
tual query result fromT . To deriveest, we compute, for each tuple
t∗ ∈ T ∗, the probabilityp that t∗ satisfies the query, after which
est is set to the sum of such probabilities of all tuples. Lett be the
original tuple inT of t∗. For a type-1 query,p equals the proba-
bility that the sensitive valuet.As of t falls in the query interval,
assuming thatt.As is uniformly distributed int∗.As. For a type-2
query, following the same idea, we first obtain the probabilities that
t satisfies the two query conditions respectively, using the uniform
assumption; then,p equals the product of the two probabilities.

Answering a type-1 query accurately requires retaining as much
information onAs as possible, while answering type-2 queries ac-
curately demands retaining sufficient information on all attributes.
SA-generalization reduces the precision of sensitive values, while
preserving more information on the other attributes; hence, it favors
type-2 queries. Pure QI-generalization, on the other hand, allows
type-1 queries to be precisely processed (i.e., no error), since it re-
tains complete information onAs. As a tradeoff, it applies much
more generalization on the QI attributes, and thus, cannot support
type-2 queries as well as SA-generalization.
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Figure 9: Cost of personalized generalization

Eachworkloadcontains 10000 queries. We vary the number of
queries of each type using a parameterr ∈ [0, 1]. Specifically,r
equals the percentage of type-1 queries in a workload. We inspect
two values 0.1 and 0.9 ofr; r = 0.1 (0.9) leads to a workload where
type-2 (-1) queries are significantly more frequent.

In the experiment of Figure 8a, we setr to 0.1, and deploy the
non-personalized datasetsPri-leaf andNonpri-leaf. We create gen-
eralized tables for a wide spectrum ofws from 1 to 100. Recall
that a largerws indicates a higher information-loss penalty of gen-
eralizing the sensitive attribute. We also create a generalized table
usingws = ∞, which is equivalent to disabling SA-generalization,
as mentioned in Section 4. In other words, the performance at
ws = ∞ represents the effectiveness of pure QI-generalization.

Figure 8a plots the average error of a workload as a function of
ws. For each average, we also demonstrate the sum of the average
and the standard deviation of the errors (in the workload). The sum,
depicted as the top of a vertical bar, equals approximately the 8500-
highest error. For bothPri-leaf andNonpri-leaf, the bestws equals
1, i.e., we should treat all the attributes equally in generalization.
Pure QI-generalization, on the other hand, does not permit robust
analysis since it leads to average error nearly 30% (5 times that of
ws = 1), and huge variance. This is expected because a workload
with r = 0.1 is populated mostly with type-2 queries, for which
pure QI-generalization has poor performance, due to the reasons
explained earlier.

Figure 8b shows the results of the same experiment forr = 0.9,
i.e., most queries in a workload are type-1 queries. All values ofws

result in average error below 5%. Although pure QI-generalization
has small average error, the accuracy of its estimated answers again
has significant variance. This phenomenon happens because the
generalized table computed byws = ∞ incurs huge error for type-
2 queries (even though type-1 queries can be perfectly processed).
On the other hand, the table computed byws = 1 performs reason-
ably well for both query types, leading to small average error and
variance.

Figures 8c and 8d illustrate the results of the above experi-
ments on the personalized datasetsPri-mixed and Nonpri-mixed
respectively. These results are consistent with those for the non-
personalized datasets. In both diagrams, the average error and vari-
ance are similar whenws varies between 40 and 100, because the
generalized tables obtained with these values are almost identical.

To summarize, we demonstrated that SA-generalization should
be considered in practice. Our experiments suggest that it is rea-
sonable to treat all attributes equally in generalization, which leads
to a more useful table for analysis than pure QI-generalization in
most cases.

5.3 Computation Cost
Finally, we evaluate the overhead of performing personalized

generalization. Figure 9 shows the execution time of our algorithm
(Figure 4) in producing the generalized tables used in the experi-



ments of Figure 8, as a function ofws. The algorithm terminates in
less than 4 minutes in all cases. Except for minor random irregular-
ities (ofPri-mixedin Figure 9b), the cost decreases asws increases.
This is because, the higherws, the less SA-generalization is possi-
ble such that the function of Figure 5 entails smaller overhead.

6. RELATED WORK
Since the introduction ofk-anonymity in [13, 15], numerous al-

gorithms [5, 7, 8, 9, 10, 13, 15, 17] have been proposed to obtaink-
anonymous tables. These algorithms can be divided into two cate-
gories, according to the constraints imposed on generalization. The
first category employs “full-domain generalization” [13], which as-
sumes a hierarchy on each QI attribute, and requires that all the par-
titions in a general domain should be at the same level of the hierar-
chy. For example, if the valuepneumoniain Figure 2 is generalized
to respiratory-infection, thengastric-ulcermust also be general-
ized tostomach-disease. Such a constraint is adopted by the binary
search algorithm in [13], the exhaustive search method [15], and
the apriori-like dynamic programming approach [9], all of which
minimize information loss based on various metrics.

The second category (i.e., “full-subtree recoding” as termed in
[9]) drops the same-level requirement mentioned earlier, since it
often leads to unnecessary information loss [8]. Following this
idea, Iyengar [8] develops a genetic algorithm, whereas greedy
algorithms are proposed in [7] and [17], based on top-down and
bottom-up generalization, respectively. These approaches, how-
ever, do not minimize information loss. Bayardo and Agrawal [5]
remedy the problem with the power-set search strategy. Our work
also belongs to this category, but significantly extends it to incor-
porate customized privacy needs.

Several other works investigate the characteristics ofk-
anonymity. For example, Aggarwal [2] discusses the curse of di-
mensionality related tok-anonymity. In particular, he shows that
it is not possible to create even a 2-anonymous table in high di-
mensional space without considerable information loss. Yao et al.
[18] propose a solution for checking whether a set of views vio-
latek-anonymity. Zhong et al. [19] devise a protocol for obtaining
k-anonymous tables in distributed environments.

Machanavajjhala et al. [11] observe the first drawback ofk-
anonymity discussed in Section 1. They proposel-diversity to en-
hance privacy protection. However, as analyzed in Section 3.3, for
the Non-primary Case, this approach may still allow an adversary
to discover sensitive data with full confidence.

Recently, Wang et al. [16] present a method which computes the
publishable information, by taking into account a set of “templates”
specified by data owners. These templates formulate individuals’
privacy constraints in the form of association rules. Focusing on the
Primary Case, the authors of [16] develop an algorithm that gener-
ates the releasable data using “suppression” [3, 12] (as opposed to
generalization in this paper).

Finally, it is worth mentioning that privacy preservation can also
be achieved using other methodologies, including data perturba-
tion [4], query result perturbation [6], and other earlier solutions
proposed in the area of statistics [1].

7. CONCLUSIONS
The existing generalization methods are inadequate because they

cannot guarantee privacy protection in all cases, and often incur un-
necessary information loss by performing excessive generalization.
In this paper, we propose the concept of personalized anonymity,
and develop a new generalization framework that takes into ac-
count customized privacy requirements. Our technique success-

fully prevents privacy intrusion even in scenarios where the exist-
ing approaches fail, and results in generalized tables that permit
accurate aggregate analysis.

This work also lays down a solid theoretical foundation for de-
veloping alternative generalization strategies. For instance, the
greedy algorithm presented in this paper is not optimal, in the sense
that it does not necessarily achieve the lowest information loss.
Finding the optimal solution is a challenging problem. As another
example, in practice, the recipients of the published data are of-
ten specialized users (e.g. scientists), who may explicitly specify
the analytical tasks (such as association rule mining [14]) required.
This information may be utilized to release a table that is highly
effective for those tasks, without breaching the privacy constraints
formulated by data owners.
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