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ABSTRACT

We study generalization for preserving privacy in publication of
sensitive data. The existing methods focus on a universal approac

that exerts the same amount of preservation for all persons, with- ©f Figure 1c, or equivalently,
out catering for their concrete needs. The consequence is that we

may be offering insufficient protection to a subset of people, while
applying excessive privacy control to another subset.

Motivated by this, we present a new generalization framework
based on the concept pkrsonalized anonymityOur technique
performs the minimum generalization for satisfying everybody’s

requirements, and thus, retains the largest amount of information

from the microdata. We carry out a careful theoretical study that
leads to valuable insight into the behavior of alternative solutions.

In particular, our analysis mathematically reveals the circumstances
where the previous work fails to protect privacy, and establishes the

superiority of the proposed solutions. The theoretical findings are
verified with extensive experiments.

1. INTRODUCTION

ples. Figure 1c shows an example of 2-anonymous generalization
for Figure 1a. Even with the voter registration list, an adversary can

honly infer that Andy may be the person involved in the first 2 tuples

the real disease of Andy is discovered
only with probability 50%. In generali-anonymity guarantees
that an individual can be associated with her/his real tuple with a
probability at most /k.

1.1 Motivation

k-anonymity has several drawbacks. Fiesk-anonymous table
may allow an adversary to derive the sensitive information of an in-
dividual with 100% confidencéssume that an adversary attempts
to infer the disease of Joe, knowing his age 12, sex, and zipcode
22000. From the published table in Figure 1c, s/he knows that Joe
may correspond to tuple 5 or 6 (the QI values of the other tuples do
not cover those of Joe). The diseases of both tuplegrazemonia
hence, the adversary can declare (with 100% confidence) that Joe
must have contractegneumonia The phenomenon is caused by
the fact thatk-anonymity only prevents association between indi-
viduals and tuples, instead of association between individuals and

Itis often necessary to publish personal information for research S€nsitive valuesUnfortunately, it is the second type of association
purposes. For example, a hospital may release patients’ diagnosi¢hat leads to privacy breach.

records so that researchers can study the characteristics of various

diseases. The raw data, also calfeitrodata contains the identi-

Seconda k-anonymous table may lose considerable information
from the microdata.Consider a researcher who wants to obtain,

ties (e.g. names) of individuals, which are not released to protect from the table of Figure 1c, an estimate for the number of female

their privacy. However, there may exist other attributes that can

patients above the age of 30. It suffices to examine tuples 7-10,

be used, in combination with an external database, to recover thePecause they are the only tuples that may qualify the query condi-

personal identities.

For example, assume that the hospital publishes the table in Fig-

ure la, which does not explicitly indicate the names of patients.
However, if an adversary has access to the voter registration lis
in Figure 1b, s/he can easily discover the identities of all patients
by joining the two tables ojAge Sex Zipcodg. These three at-
tributes are, therefore, tlgpiasi-identifie(QI) attributes.
Generalization5, 7, 8, 9, 11, 13, 15, 17] is a common approach
to avoid the above problem, by transforming the QI values into
less specific forms so that they no longer uniquely represent indi-
viduals. In particular, a table is-anonymoug13, 15] if the QI
values of each tuple are identical to those of at Iéastl other tu-
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tion. Given only the fact that the original ages of the 4 tuples are in
[21, 60], the researcher derives the estimate by assuming a uniform

age distribution. This leads to an estimate of =23 = 3, which

t significantly deviates from the actual result 1 (see Figure 1a). The

serious error arises because Mary has a much larger age than the
other patients; hence, combining her age with another age incurs
substantial information loss. Observe that the same problem also
exists on attribut&Zipcodewith respect to tuple 7. Specifically,
Linda’s exceedingly-large zipcode decides the loose zipcode-range
[30000, 60000] for tuples 7-16.

Third, k-anonymity does not take into account personal
anonymity requirementsAs mentioned earlier, from Figures 1b
and 1c, an adversary learns that Andy must have suffered from ei-
ther gastric-ulceror dyspepsiawhich is acceptable according to

Although the table of Figure 1c demands only 2-anonymity, it is
reasonable to make the QI values of tuples 7-10 identical. This
is because, by “single-dimension encoding” generalization [9], no
two intervals on the same attribute should intersect. For instance,
if tuples 7, 8 (in Figure 1a) and tuples 9, 10 are generalized to two
separate groups, then the zipcode-ranges of the two groups will
intersect. Similarly, combining tuples 7, 9 and tuples 8, 10 in two
groups respectively causes intersectiorAge



row # |Age|Sex |Zipcode| Disease guarding node l/\im;ne A;ge S]\e/[x leg (c)gge row #| Age |Sex Zipcode Disease
1 (Andy)| 5 | M | 12000 |gastric ulcer| stomach disease E?ﬂly o ™M | 12000 1 [1,10] | M |[10001, 15000] |gastric ulcer
2(Bill) | 9 | M | 14000 | dyspepsia dyspepsia Ken | 6 1M 1 18000 2 |[1,10] ]| M [[10001, 15000]| dyspepsia
3(Ken) | 6 | M | 18000 | pneumonia | respiratory infection Nash | 8 M | 19000 3 [1,10]| M |[15001,20000] | pneumonia
4 (Nash) | 8 | M | 19000 | bronchitis bronchitis Mike | 7 1 ar 17000 4 [1,10]| M |[15001, 20000]| bronchitis
5 (Joe) 12 | M | 22000 | pneumonia pneumonia Joe 112 1M | 22000 5 |[11,20]] M [[20001, 25000] | pneumonia
6 (Sam) | 19 | M | 24000 | pneumonia pneumonia Sam 119 M | 24000 6 |[11,20]] M |[20001, 25000] | pneumonia
7 (Linda)| 21 | F | 58000 flu g Linda |21 T F | 58000 7 |[21,60]] F |[30000, 60000] flu
8 (Jame) | 26 | F | 36000 | gastritis gastritis Tane 126 | F 1 36000 8 |[21,60]] F |[30000,60000]| gastritis
9 (Sarah)| 28 | F | 37000 | pneumonia | respiratory infection Sarah 128 T F 137000 9 |[21,60]] F |[30000,60000] | pneumonia
10 (Mary)| 56 | F | 33000 flu Sflu Mary | 56 | F | 33000 10 |[21,60]| F |[30000,60000] flu
(a) Microdata (b) Voter registration list (c) A 2-anonymous table
Figure 1: Microdata, external source, and quasi-identifier genealization
2-anonymity. However, Andy may not want anyone to think (with any illness
high confidence) “Andy must have some stomach problem”; this . | N
o i : : respiratory system problem digestive system problem
cannot be guaranteed in Figure 1c, since lgat$tric-ulceranddys-
pepsiaare stomach diseases. On the other hand, it is possible that respiram;v infection O stomach disease O

1 T +— 1 —
[ gastric dyspepsia gastritis [] [] [
ulcer

Figure 2: The taxonomy of attribute Disease

Linda regarddlu as a common disease, and agrees to release her ——— —
true diagnosis result (to enhance the effectiveness of research). | flu pneumonia bronchitis [J [
this case, it is not necessary to apply any generalization on tuple 7.
Such preference variations are not captured-{anonymity.

1.2 Contributions anonymity. First, we formgllze the cqncepts that gnderllg a new
. ) . . framework of computing privacy-conscious information taking into
In this paper, we develop a novel privacy preserving technique account individual preferences. As opposed:tanonymity, our
that overcomes the above problems. The core of our solutions is 3nnr0ach appliedirect protection against the association between
the concept opersonalized anonymity.e., a person can specify  indgividuals and their sensitive values
the degree of privacy protection for her/his sensitive values. Toil-  aq 5 second step, we analyze the theory behind our method-
lustrate the concept, consider Figure 2, which demonstrates a sim-4|5gy, and derive formulae for quantifying privacy-breach likeli-
ple taxonomy on attribut®isease The taxonomy is accessible  pood. These equations mathematically reveal the scenarios where
by the public, and organizes all diseases as leaves of a tree. An_anonymity can/cannot ensure safe data publication. In particular,
intermediate node carries a name summarizing the diseases in ity prove that, unlike our approadianonymity (even its improved
subtrge. So_me part of the tree is omitted since it is not relevant to yersion “I-diversity” [11]) cannot guarantee privacy protection if
our discussion. o o an individual may correspond to multiple tuples in the microdata
A person_al prefer_ence can be easily solicited from an individual This is a serious defect due to the large amount of such data in
when s/he is supplying her/his data. In our approach, a preferencepactice that requires privacy control. For example, the table of
is formulated through a node in the taxonomy. As an example, for rigure 1a may contain numerous records for a person if s/he has

tuple 1 in Figure 1a, Andy may specify node®mach-diseasghe been sick for several times.

“guarding node” for his privacy, which will be fo_rmalized in 'the_ Finally, we develop an algorithm for finding a generalized ta-
next section). Thus, nobody should be able to infer, with signif- pje that preserves a large amount of information in the microdata
icant confidence, that he suffered from any disease (jastric- without violating any privacy constraint. Utilizing several inter-

ulcer, dyspepsiaor gastritis) in the subtree of the node. In other  ggting problem characteristics, the algorithm optimizes the degrees
words, in Andy’s opinion, allowing the public to associate himwith ¢ generalization on QI- and sensitive attributes, respectively. Ex-
dyspepsiar gastritisis as serious as revealing his true disease.  tensjve experiments verify that the output tables of our algorithm
On the other hand, for tuple 7 in Figure 1a, Linda may specify permit highly accurate data analysis.
@, which is an implicit node underneath all the leaves of the taxon- ~ The rest of the paper is organized as follows. Section 2 formal-
omy. The empty-set preference implies that she is willing to release jze5 the general methodology of personalized anonymity. Section
her actual diagnosis result; therefore, tuple 7 can be published 3 hovides its theoretical foundation, and reveals important insight
directly. In generalflu may not be “sensitive” for many people, jntg the behavior of alternative approaches. Section 4 explains an
such that it is often not necessary to apply any privacy protection to 4iqorithm for deriving a generalized table. Section 5 experimen-
this value. tally evaluates the effectiveness of our solutions. Section 6 surveys

_ Infact, personalization is an inherent notion of privacy preserva- the previous work related to ours, and Section 7 concludes the pa-
tion whose objective is to protect the interests of individuals at the per with directions for future work.

first place. Somewhat surprisingly, so far the literature has focused

on a universal approach that exerts the same amount of privaey pr

serving for all persons, without catering for their concrete needs. 2. PERSONALIZED ANONYMITY

The consequence is that we may be offering insufficient protection Let 7" be a relation storing private information about a set of

to a subset of people (such as Andy in the above example), while individuals. The attributes ifi" are classified in 4 categories: (i)

applying excessive privacy control to another subset (including, fo an identifier attribute.4° which uniquely identifies a person, and

instance, Linda). Our method is more flexible, since it decides the must be removed whef is released to the public, (ii) sensi-

minimum amount of necessary generalization for satisfying every- tive attribute A° (e.g.,Diseasen Figure 1a), whose values may be

body’s needs, and hence, retains the maximum amount of informa-confidential for an individual (subject to her/his preferences), (iii)

tion from the microdata. d quasi-identifie(Ql) attributes A{", ..., A%, whose values can be
We present a careful study for the problem of personalized published, but may reveal a personal identify with the aid of ex-



ternal information Age Sex Zipcodein Figure 1a), and (iv) other
attributes that are not relevant to our discussion.

We require thatd® should be categorical, whereas the other at-
tributes can be either numerical or categorical. All the attributes
have finite domains. Following the previous work [5, 7, 8, 9, 11,
13, 15, 17], we assume that each categorical attriduiteaccom-
panied by aaxonomyas in Figure 2 foDiseasg, which indicates
the publicly-known hierarchy among the possible valued of

Our objective is to compute a generalized tablesuch that (i)
it contains all the attributes & exceptA’, (i) it has a generalized
tuple foreverytuple inT, (iii) it preserves as much information of
T as possible, and (iv) its publication does not cause any privacy
breach, as formulated in the next section.

2.1 Personal Privacy Requirements
We start by defining a subtree in the taxonomy4st

DEFINITION 1 (A® SUBTREE). For any noder in the taxon-
omy ofA°, we represent itsubtreeasSUBTR(z), which includes
z itself, and the part of the taxonomy under it.

A tuple ¢t € T defines arassociationbetween an individuad
(identified byt..A*) and a sensitive value = ¢..A°. We denote the
association ago, v}. To formulate her/his privacy preference,
specifies guarding nodeas follows:

DEFINITION 2 (GUARDING NODE). For a tuplet € T, its
guarding nodet.GN is a node on the path from the root t04°
in the taxonomy ofd°.

Throught.GN, o indicates that s/he does not want the public
to associate her/him with any leat® value in SUBTRt.GN).
Specifically, assume that SUBTRGAN) containsr leaf valuesy,
va, ..., Uz. The privacy requirement aftGN is breachedf an ad-
versary thinks that any of the associatidosv: }, ..., {0, v } exists
inT.

DEFINITION 3 (BREACH PROBABILITY). Foratuplet € T,
its breach probability Peyreacr (t) €quals the probability that an
adversary can infer fronT™* that any of the association®, v1 },
.y {0, v} exists inT, wherevs, ..., v, are the leaf values in
SUBTR(t.GN).

The published tabl@™ should guarantee that, for alle T,
Pireack (t) is at MoSsreach, Which is a system parameter speci-
fying the amount of confidentiality control.

Figure la demonstrates the guarding nodes selected by the in-

dividuals involved in the microdata. For example, iebe tu-
ple 3 ¢.A° = Kenandt..A° = pneumoni® The guarding node
respiratory-infectiorof ¢ indicates that nobody can infer, with high
confidence, that Ken suffered from a disease undspiratory-
infectionin the taxonomy of Figure ZPy,cqcx(t) is the probability
that an adversary can infer theaty of the following 3 associations
exists inT": {Ken,flu}, {Ken, pneumonia, {Ken, bronchitis}.

On the other hand, Ken does not care if somebody conjec-
tures, with any probability, that he contractgaistric-ulcer(not in
SUBTR(t.GN)), since it is very different from his true diagnosis
result. In general, the higheig A is in the taxonomy, the stronger
privacy must be guaranteed.

2.2 Generalization
We first clarify two fundamental concepts.

DEFINITION 4. (PARTITION / GENERAL DOMAIN) If at-
tribute A is numeric, apartition is a continuous interval in the
domain ofA. Otherwise, gpartition consists of all the leaves in
the subtree of a node in the taxonomy4fin any case, general
domain of A is a set of disjoinpartitionswhose union forms the
original domain ofA.

By a simple transformation, we can use the interval representa-
tion for the general domains of both numeric and categorical at-
tributes. Notice that, whenl is categorical, a general domain is
determined by a set of nodes in the taxonomy4fwhose sub-
trees do not overlap, but cover all the leaves. (For instance, in
Figure 2, nodesespiratory-system-problemnddigestion-system-
problemdecide a general domain &fisease) Clearly, A can be
converted to a numeric attribute by imposing a 1D ordering on the
leaves of its taxonomy: the left-most leaf is mapped to value 1,
its neighbor to 2, and so on. Thus, a partition.éfcan be de-
noted as an interval. For example, the partition corresponding to
respiratory-system-problem Figure 2 is an interval off, 6].

DEFINITION 5 (GENERALIZATION). A general domain of an
attribute A uniquely decides generalization function. Given a
valuew in the original domain of4, the function returns the only
partition in the general domain that contains The partition is the
generalized valueof v.

Clearly, A can have many generalization functions, since its val-
ues can be partitioned into numerous general domains.

For each tuple € T', we use™ to represent its generalized tuple
in T™. The generalization is performed in two steps. The first step,
theQl-generalizationis identical to conventional generalization in
[5, 7, 8, 17]. Specifically, we choose a generalization function for
every QI attribute4?* (1 < ¢ < d), and obtain the generalized
vaIuet*.A‘l?i for all tuplest € T (t* retains the sensitive value of
t at this step). Then, the generalized tuples are divided @ito
groups defined as follows.

DEFINITION 6 (QI-GROUP). After Ql-generalizationa QI-
group consists of the tuples with identical values on all the QI at-
tributes. The i-th Ql-value (1 < ¢ < d) of the Ql-group equals
t.A?", wheret is an arbitrary tuple in the QI-group.

In the second stefBA-generalizatioffSA stands for “sensitive
attribute”), we consider each QI-group in turn, and seletiia
lored generalization function otd®. Note that, unlike the previ-
ous step where all tuples are processed with identical generaliza-
tion functions, SA-generalization useslifferentfunction for each
group. This strategy achieves less information loss, by allowing
each group to decide the amount of necessary generalization.
Figure 3 shows a possible result of our entire generalization
scheme for Figure 1a. The table contains 5 QI-groups: the first
one includes tuples 1-4, the second involves tuples 5-6, the third
only tuple 7, the fourth tuples 8-9, and the fifth group consists of
the last tuple. Note that the sensitive valiie of tuple 7 is re-
tained directly, while the same disease of tuple 10 is generalized to

Guarding nodes depend entirely on personal preferences, and argespiratory-infection This is legal because, as mentioned earlier,
not determined by the sensitive values. For instance, Joe and SanSA-generalization may choose a different generalization function

(who, as with Ken, contractgztheumoniaset their guarding nodes
simply topneumonigtuples 5, 6 in Figure 1a), implying that they
do not mind being associated witllu or bronchitis Specially, if a
patient believes that disclosingA® to the public does not violate
her/his privacy, s/he may simply seg\ to ().

for each QI-group.

None of the existing methods permits SA-generalization. In fact,
as demonstrated in Section 5, SA-generalization may produce a
table that allows more accurate analysis about the correlation be-
tween the sensitive attributd® and other attributes. The reason



row# | Age |Sex Zipcode Disease
1 (Andy) | [1,10] | M [[10001, 20000] gastric ulcer
2 (Bill) |[1,10]| M |[10001, 20000] dyspepsia
3 (Ken) |[1,10]| M |[10001, 20000] | respiratory infection
4 (Nash) | [1,10] | M |[10001, 20000] | respiratory infection
5Joe) |[11,20]| M |[20001, 25000] | respiratory infection
6 (Sam) |[11,20]| M |[20001, 25000] | respiratory infection
7 (Linda)| 21 F 58000 flu
8 (Jane) [[26,30]| F |[35001, 40000] gastritis
9 (Sarah)|[26, 30]| F |[35001, 40000] pneumonia
10 (Mary)| 56 F 33000 respiratory infection

Figure 3: A possible result of our generalization scheme

is that, although SA-generalization results in less precise values on
A?, it retains more information on the QI attributes.

In Figure la, for example, consideratAge precision will be
lost by generalizing the QI values of Mary (tuple 10), as discussed

in Section 1.1. An alternative approach is to generalize her disease,

flu to respiratory-infection leaving the other QI values intact. As
shown in Figure 3, this leads to an age-interia, 30] for tuples

8-9 that is much tighter than their age representafzin60] in
Figure 1c. If we publish the table in Figure 3, an adversary can find
out thatflu is the real disease of Mary only with probability 1/3
(fluis the guarding node set by Mary), as explained in Section 2.3.
Intuitively, this is because 3 different diseases exist in the subtree
of respiratory-infectior(the sensitive value of tuple 10 in Figure 3).

2.3 Combinatorial Process of Privacy Attack

Consider an adversary who attempts to infer the sensitive data of
anindividualo from 7. In the worst case, s/he has all the QI values
0. AL, ..., 0. A% of o. Therefore, s/he inspects only those tuples
t* € T* whose QI valug*..A? coverso. A, foralli € [1,d].

These tuples must form a QI-group. That is¢ifandt™ are
two such tuples, theri*. A" = t"*. A" for all i € [1,d]. Actu-
ally, if, for instancet*.. A%" # t'*. A%, the two values are different
partitions in the general domain of?’ that both contairv. A%,
violating the requirement that all partitions are disjoint.

DEFINITION 7. (ESSENTIAL QI-GROUP/ S;cai). Given an
individual o, the essential Ql-group£G (o) is the only Ql-group
in T whosei-th Ql-value covers.A!*, for all i € [1,d]. We use
Sreat(0) to refer to the set of individuals, who have tuplesZin
generalized t&€G (o).

Note thatS,cq:(0) is unknown to an adversary. To derive
Sreal(0), the adversary must resort to an external dataset, and re-
trieve a setS..: (o) of persons that may be concerneddg (o).
Sext(0) is defined as follows.

DEFINITION 8 (EXTERNAL INDIVIDUAL SET Sezt). Given
an essential Ql-grouigG (o), and an external databas® Be,:,
Sext(0) consists of the people’ € DB.,:, such thato'.A?
(1 < i < d)is covered by the-th Ql-value of€G (o).

This is a reasonable condition underlying all the previous work.

For instance, if Ken does not appear in the voter registration list,
his privacy is trivially preserved. In fact, under the circumstances

where an arbitrary number of individuals Th may be missing in

the external source, the adversary can infer little information, be-
cause all tuples of the essential Ql-group may actually correspond
to the missing individuals.

Next, the adversary adopts a combinatorial approach to infer the
A? value of individualo. We elaborate the approach by distin-
guishing two cases in Sections 2.3.1 and 2.3.2, respectively. The
subsequent discussion uses n to represent the sizes 6iG (o)
andS..: (o), respectively. Also, we denote the tupletii(o) as
t1, ..., ty,, Whose original versions in the microdata age..., t,,
respectively.

2.3.1 Primary Case

We first consider the case whefeA’ is the primary key ofl’,
i.e., each individual has at most one tupleZin This is the only
scenario addressed in the previous work [5, 7, 8, 9, 11, 13, 15, 17]

DEFINITION 9. (PRIMARY POSSIBLE RECONSTRUCTION.
In the Primary Case, given an individua) a possible reconstruc-
tion of the essential QIl-grougG (o) includes

e m distinct personss, ..., o,, Who constitute a subset of
Sext(0),1.€.,0; (1 < j < m)is taken as the owner of;

e m |eaf sensitive values, ..., v, such thaw; (1 < j < m)
is in SUBTR(t;.A%), i.e., v; is taken as the real sensitive
value oft;.

ExAMPLE 1. We explain the definition by continuing our ex-
ample, where the adversary has derikd; (Ken) = {Andy, Bill,
Ken, Nash, Miké. As mentioned earliern = 4,n =5, andt7, ...,
t; are tuples 1-4 in Figure 3, respectively.

To obtain a possible reconstruction, the adversary first assigns
o1, ...,04 t0 4 different persons i§..: (Ken). As a possible assign-
ment,o; = Mike, o2 = Nash,os = Andy, andos = Ken. Then, the
adversary sets; to gastric-ulcer which is the only potential value
of vy, because’.A° = gastric-ulceris a leaf node in th®isease
taxonomy. For the same reasen must bedyspepsiaOn the other
hand,vs (v4) can be any of the 3 leaf diseases unded”® (t;..4°)
= respiratory-infection The possible reconstruction is completed
by assuming, for instancez = flu andv, = bronchitis

According to the reconstruction, the adversary thinks that Mike,
Nash, Andy, Ken contracteghstric-ulcer dyspepsiaflu, andbron-
chitis, respectively. Note that a reconstruction most likely is not
equivalent to the microdata (where Mike does not even exist); in-
stead, it is only a conjecture by the adversary. Nevertheless, the
previous reconstruction violates the privacy requirement enforced
by the guarding node of tuple 3 in Figure 1a (i.e., Ken does not
want people to think that he had any respiratory infection). Inter-
estingly, the breach happens when Ken is associated with tuple 4,
instead of his original tuple & the microdata.

It is important to understand the probabilistic nature of possible

To illustrate the above concepts, assume that an adversary trieseconstructions. In facty, ..., 04 can be decided in Perrfiy 4) =

to infer the disease of Ken from Figure 3, having his age 6, sex, and
zipcode 18000. The essential QI-grafig(Ken) consists of tuples
1-4, i.e.,Srcq1(Ken) equals{Andy, Bill, Ken, Nash}. Attempting
to deriveS,.q:(Ken), the adversary consults the external database
in Figure 1b, and obtain§.,:(Ken) = {Andy, Bill, Ken, Nash,
Mike}.

In general

S’real (O) g Sezt(o) (1)

120 way$. For each decision, by the reasoning explained earlier,
v1 andw, are fixed, buB? = 9 choices exist for settings andva.
Hence, there exist totally 120 9 = 1080 possible reconstructions.
432 reconstructions breach the privacy requirement of tuple 3 in
Figure 1. Specifically, a reconstruction is breaching if and only if
eitheros or o4 equals Ken. lbs = Ken, then there are Perrf 3)

2Permuz, y) equals the number of permutations by takingb-
jects out of a set af objects.



= 24 choices to formulate;, o2, o4, and 9 possibilities to deter-
minews, ...,v4, leading to 24x 9 = 216 reconstructions. Symmet-
rically, if o4 = Ken, there exist another 216 breaching reconstruc-
tions.

Without further information, the adversary assumes that each re-

tear 1S 0, Poreacn(tiar) = 0, i.., N0 privacy control is required.
Next, we focus omt;q..GN # 0.
Section 3.1 first clarifies the notations and their properties,

which will be used in our derivation. Then, Section 3.2 solves

Pireach (tiar) into closed formulae, based on which Section 3.3

construction happens with identical likelihood. Hence, the breach points out the defects df-anonymity.

probability of tuple 3 in the microdata equals 432/1080 = 2/9.]

2.3.2 Non-primary Case
We proceed to analyze the case wh&rgl® is not the primary

3.1 Notations and Basic Properties

Following the notations in Section 2.3, we usg. to denote the
person identified by:...A", andt;,, for the generalized tuple of
tiar. Furthermore, letn be the size of the corresponding essential

key of T, namely, each individual can appear an arbitrary number QI-group€g (o:ar) (Definition 7), whose tuples are represented as

of times inT'. No previous work has addressed this scenario before.

DEFINITION 10. (NONPRIMARY POSSIBLE RECONSTRUG
TION). In the Non-primary Case, given an individuala possible
reconstruction of the essential QI-grougG (o) includes

e a multi-set of individuals{o, ..., o} (perhaps with du-

plicates), where the distinct elements constitute a subset of

Seat (0):

e m leaf sensitive values,, ..., v, such thaw; (1 < j < m)
is in SUBTR(t;..A%).

EXAMPLE 2. Let us revisit the situation where the adversary has
obtainedS..:(Ken) = {Andy, Bill, Ken, Nash, Mikg. The values
of m, n, t1, ..., andt; are the same as in Example 1.

In a possible reconstruction, the adversary may set all pf..,
04 to Ken (which is not allowed in the Primary Case). The way
thatvy, ..., v4 are decided is identical to that in Example 1; let us
again assume; = gastric-ulcer v, = dyspepsiavs = flu, andv,
= bronchitis By this reconstruction, the adversary thinks that Ken

t1, ..., t, (one of which ist},,.), respectively.S,eqi(0tar) refers
to the set of individuals whose records (in the microd&jaare
generalized t€G(o¢qr). Finally, we deployn for the cardinality
Of Sext(0tar) (Definition 8).

As a direct corollary of Formula 1, we have:

n 2 |S’r-eul (Otar) |

@)

In the Primary CasesS; ... (0t )| @lways equals, since every tu-
ple in £G (o) is owned by a distinct person. In the Non-primary
case, howevelS, .. (0tar)| may be any value ifil, m]. Further-
more, regardless of the size 68 (0tar), |Sreai(0tar)| can take
the minimum value 1, which happens if all the tuple€@(o+q.)
belong to the same person.

We introduceb as the number of tupleg (1 < j < m)in
€G(0tar), such that SUBTR;..A%) overlaps SUBTRta,.GN).
For example, assume tht, is tuple 1 of Figure 1a, i.et;,.GN
= stomach-diseaselhus, in Figure 3£G (0.4, ) involves tuples 1-
4, andm = 4. Since SUBTR¢:.-.GN) overlaps the subtrees of the
A?® values of tuples 1 and 2 ifiG (044 ), We haveb = 2.

contracted all the 4 diseases. Evidently, the conjecture does not We define two functionsFsupsize and Fpercent related to the
correctly reflect the microdata, but it causes a privacy breach for tuplest* ¢ T*. Specifically, Foypsize (t*) equals the number of

tuple 3 in Figure la.
Since each oé1, ...,04 can independently be any éAndy, Bill,
Ken, Nash, Miké, 5* = 625 choices exist for deciding, ..., 04.

Given each decision, due to the reasons presented in Example 1,

there are 9 ways to formulate, ...,v4. Therefore, the total number
of possible reconstructions equals 62% = 5625.

A reconstruction breaches the privacy constraint of tuple 3 in the

microdata, if and only if Ken is assigned &g or o4. If o3 = Ken,

o1, 02, 04 May be any person i§..:(Ken), and hence, can be as-
signed in5® = 125 manners. Regardless of the assignmant,..,

vs May be set in 9 ways, resulting in 1359 = 1125 different re-
constructions. Similarly, another 1125 exisbif = Ken, but some

of them (wherens = 04 = Ken) have been counted twice. Specifi-
cally, if o3 = 04 = Ken, there are 25 possibilities for determining
ando», whereas, for each possibility, 9 choices exist for deciding

leaf values in SUBTR™..A%) (€.9., Fsubsize(t™) = 3 if t*.A° =
respiratory-infectiof. On the other hand:

o Fpercent(t™, tiar) €quals thepercentagef the leaf values in
SUBTR(t*..A%) that are also in SUBTR:ar.GN).

Thus, it follows that:
(] percent(t*y ttar) =1, if t*. A% isin SUBTRtmTQN),

o Fpercent(t™, tiar) = 0, if SUBTR(t*..A%) is disjoint with
SUBTR(ttar.GN).

We illustrate Fpercent assuming tq-.GN = respiratory-
infection If t*.A° = respiratory-system-problem then
Frpercent(t*,tiar) = 50%, because™.A° has 6 leaf diseases,
and half of them lie in SUBTR:.-.GN). As another exam-

v1, ..., va. Hence, the number of double-counted reconstructions pje jf t*. 4 is flu, which is in SUBTRta,.GN); therefore,

equals 25x 9 = 225.
Therefore, totallyl 125 + 1125 — 225 = 2025 reconstructions

Frpercent(t*,tiar) = 100%. Finally, givent*.A° = stomach-
disease (whose subtree is disjoint with SUBTR.-.GN)),

breach the privacy of tuple 3 in Figure 1la. Thus, the breach proba- Fercent (£, tar) = 0.

bility of the tuple equals 2025/5625 = 9/25. ]

Deriving a breach probability through the above procedures is

LEMMA 1. For all tuplest; (1 < j < m) in £G(0tar),

quite cumbersome. In the next section, we present closed formulaeFpercent (t], tiar) €quals 0 or a constant.

that return the probability directly. Then, it will become simple
to verify that publishing the table of Figure 3 allows no tuple in
Figure 1la to be breached with a probability more than 50%.

3. THEORETICAL FOUNDATION

In this section, we solve the probabiliByrcach (ttar) formu-
lated in Definition 3, where.,.. is an arbitrary tuple iff” (the sub-
script means “target”). Obviously, if the guarding nagg..GN of

PROOF. (Sketch) By symmetry, it suffices to prove the lemma
for 7 = 1. As mentioned earlier, if SUBTR; ..A°) does not overlap
SUBTR(ttar-GN), Fpercent(t1, trar) = 0. Otherwise, we distin-
guish two scenarios: (i);..A° is an ancestor of;.,-.GN, or (ii) it
is in SUBTRt14-.GN'). Due to the space constraint, we discuss
only the first scenario.

Consider any other tuplg (2 < j < m). If SUBTR(¢}.A%)
is disjoint with SUBTRtar.GN), Fpercent(t], ttar) = 0. If NOL,



we will show thatt}. A® =t7..A°, and thereforeF,crcent (], tar)

= Fpercent (t1,tiar). Assume, on the contrary; . A° # t7.A°.
Recall that SUBTR:..A%) covers the entire SUBTR;q..GN).
Hence, if¢;.A° has a subtree overlapping SUBER...GN),
t;. A% andti..A® become two intersecting partitions in the general
domain of A°. This is not possible, because all the partitions must
be disjoint. [

Therefore, in the sequel, we avoid the notationf@t,cc.: by
using c to represent the non-zero value Bfercent (t1; trar), -
fpe'rcent (t:n, ttar)-

3.2 Derivation of the Breach Probability

As clarified in Section 2.3, to infer thd® value ofo;,,-, an ad-
versary reconstructSg(o:.r) according to Definition 9 (or 10) in
the primal (or non-primal) scenario. In any case, wemsg,, to
capture the total number of possible reconstructions,rang..»
for the number of reconstructions violating the privacy constraint
enforced byt,...GN. It follows that

®)

The next two theorems SOy, cch, (t1q-) fOr the primal and non-
primary cases, respectively.

PbTeach (tta,'r) = Nbreach /nrecon

THEOREM 1. In the Primary Cas€Psreach (ttar) =
{ b/n if 54 A% is in SUBTR(t4-.GN)

b-c/n otherwise

PROOF (Sketch) We focus on the scenario wheéjg.. A° is in
SUBTR(t:.-.GN), as the reasoning extends to the other scenario
as well. There are Perrw, m) ways of setting:, ...,om (defined
in Definition 9) tom persons inSe+(0tar ), Which has sizer. In-
dependently, there exiffs.s:- (t] ) choices for each; (1 < j <
m). As aresultyirecon = Permun, m) - [T7L, Foubsize ().

Let t1, ..., t; be all the tuples ir€G(otqr), such that the sub-
trees of theird® values overlap SUBTR..GN). In a possible
reconstruction violating the privacy requirementgf., oo must
be selected as one of, ..., 0,. For each selection, the other ele-
ments ofoy, ..., 0., €an be set ton — 1 individuals inSezt(0tqr)
in Permyn — 1, m — 1) manners. Hence:

m
Nbreach = b- Permu:n - la m — 1) : H fsubsize(t;)
j=1

Then, Equation 3 can be solvedBS:cach (ttar) =b/n. [

ExampPLE 3. We illustrate the theorem using Figures 1a, 1b,
and 3. Assumé,,, (or t;,,) to be tuple 3 in Figure la (or Fig-
ure 3). Thus,t},,..A° = tir.GN = respiratory-infection and
EG(0tar) involves the first 4 tuples of Figure 3. According to
Figure 1b, Andy, Bill, Ken, Nash, Mike are potentially involved
in £G(otar), renderingn = 5. Furthermoreb = 2, because
the subtrees of thed® values in tuples 3, 4 (Figure 3) overlap
SUBTR(ttar.GN). Sincety,,.A° is in SUBTRttqr.GN), by
Theorem 1 Pyreach(tiar) = b/n = 2/5, confirming the analysis
in Example 1.

To demonstrate the second case of the theorem¢.Jet (or
ti.r) be tuple 5 in Figure la (or Figure 3). Namety,,.A°
respiratory-infection ¢.,..GN = pneumoniaand £G(otqr) CON-

one of which is in SUBTR:.-.GN). Hence,c equals 1/3. Since
t:aT..AS iS not in SUBTRtt(zrgN)x Pbreach(ttar) = b ° C/Tl =
3. O

THEOREM 2. In the Non-primary Cas&vrcach (ttar) =

{ 1—(1=1/n)" if t;,,.A" is in SUBTR(trar.GN)

1—(1—¢/n)® otherwise

PROOF (Sketch) Again, we discuss only the case thigt. A° is
in SUBTR(t4q,-.GN). Since each; (1 < j < m) in Definition 10
can be set to any of the individuals inSez:(0+ar), and indepen-
dently, there aréF,.ps:-. (t; ) choices for eachy;, the total number
of possible reconstructionsig.ccon = n'™ - H;.“zl Foubsize(t]).

Let ¢1, ..., t; be all the tuples ir€G(otqr), such that the sub-
trees of theitd® values overlap SUBTR:.-.GN). Sincet*..A° is
in SUBTR(t4,-.GN), the A® values oft}, ..., t; must also be in
SUBTR(ttar.GN), according to Lemma 1. In any reconstruction
that doesiot cause privacy breach @g,, o:.- mustnotbe any of
o1, --.,0p. In that case, each @f, ..., 0, can be assigned to any of
the othem — 1 individuals inSe.¢ (0tar), resulting in(n — 1)® dif-
ferent assignments. For each assignmant;, ...,on,, can be setto
any person (including:,,) iN Scat(0tar) iIN n™~° ways. Hence:

m

Nbreach = Nrecon — (n— 1) - n™ 0. H Fiubsize(t])
j=1

Combining the above analysis with Equation 3, we obtain
Pbreach(ttar) =1- (1 — 1/n)b. [l

EXAMPLE 4. Lett,, be tuple 3 of Figure 1la. As explained
in Example 3,n = 5, b = 2, andt},,..A® is in SUBTRttq,.GN).
Theorem 2 shows th@p,cach (trar) is 1 — (1 — 1/5)% =9/ 25,
which is consistent with the derivation in Example 2.

To demonstrate the second case, asstymeto be tuple 5 in
Figure 1a. As mentioned in Example 8,= 2, b = 2, ¢ = 1/3,
andtf,,.A° is not in SUBTRtar.GN). Thus,Pyrcach (ttar) iS
1-(1-1/(3x2)*=1136. O

3.3 Drawbacks of k-anonymity

A k-anonymous table is obtained only with QI-generalization,
i.e., alltheA® values in the original tabl€ are directly retainedk-
anonymity does not consider personal privacy preferenceshisic
equivalent to setting the guarding node of each tugeT” directly
to t..A°. Hence k-anonymity can be regarded as a special case of
our personalized technique.

All the above concepts (e.g., “essential Ql-group” and “possi-
ble reconstructions”) extend tle-anonymity in a natural manner.
Therefore, Theorems 1 and 2 also capture the privacy protection
quality of k-anonymity. In fact, only the first case (i.€;,,...A° isin
SUBTR(t:q-.GN)) of each theorem is necessary, becatise.A®
= tiar.-GN (= tiar.A%) always holds. Furthermoréhas a simpler
interpretation: it is the number of tuples it (o) that have the
sameA’ value ag;,,.. Next, we use the theorems to explain when
and whyk-anonymity fails to guarantee safe publicatieven in
the scenario with no personal preferences

We start with the Primary Casek-anonymity guarantees that
the sizem of each QIl-group must be at leakt Let us con-
sider the worst scenario, where the adversary has a “perfect” ex-

sists of tuples 5, 6 of Figure 3. Only Joe and Sam in Figure 1b can ternal database such th&i,:(otar) = Sreai(0tar), i.€., the exter-

be involved in€G(0qr), leading ton = 2. Furthermorep = 2,
because thed® values of both tuples i€G(o:q,) have subtrees
overlapping SUBTR:.-.GA). In particular, the subtree of the

sensitive value in tuple 5 (or 6) of Figure 3 has 3 leaf diseases,

nal source does not contain any person irrelevant to the microdata.
Thus, in Theorem Ip equalgSreai(0tar)|, Which (for the Primary
Case) is equivalent tov. Hence, the breach probability evaluates
to b/m. The value ob, however, may reach, if all the tuples in



EG(0tar) have the samegl® value. When this happens, the breach
probability equals 100%, i.e., an adversary can infer the exact in-
formation of ;. With full confidence (as is the case explained in
Section 1.1 for Joe).

In fact, k-anonymity provides strong protection only if the ex-

ternal database consulted by an adversary may include many indi-

viduals that do not exist in the microdata, so thas by far larger
than |Srcai(0tar)| = m. In particular, if the ratio between and
m exceedd, the breach probability/n in Theorem 1 is at most
1/m, which, in turn, is at most /k, i.e., the target protection level
of k-anonymity.

Machanavajjhala et al. [11] also observed the above problem,
and partially solved it with a new concept of-diversity”. The
essence of-diversity is to ensure that the sensitive values in each
QI-group are sufficiently diverse. Consider that we group the tuples
in the QIl-group by their sensitive values, and call each resulting
group a “sub-group”. Assume thatpercent of the tuples in the
Ql-group appear in the largest sub-grouygliversity ensures thit
p is at moSiyrcach, the highest permissible breach probability.

Theorem 1 theoretically confirms that the strategy-diversity
indeed works. In fact, if» equalsm, the breach probability/n
is exactly the percentage of tuples§@(o:.) having the sensi-
tive valuet;,,..A° (in other words,-diversity essentially guaran-
teesb/m < p < pureacn). Since, by Inequality 2n is at least
|Sreai(0tar)| (= m in the Primary Case)-diversity ensures that
b/n is at MOSipyreacn for all tuples.

In the Non-primary Case, howevdS,¢q:(0tr)| is NO longer
m; instead, as mentioned in Section 3d,cq:(0tqr)| does not de-
pend onm any more, and can always be 1 regardlessnof As
a result, neither k-anonymity and-diversity can guarantee low
breach probability In the worst case, both techniques allow an
adversary to obtain the sensitive valuegf,. with 100% probabil-
ity. This happens wheb, is the only person in bot,cq:(0tar)
andSez¢(otar), i.€., all the tuples i€ G (014, ) CONCEIMDL4,, @and NO
other individual in the external source can be involvef@d(o+a-).

As aresult,n equals 1, and, by Theorem 2, the breach probability
is 1.

What is neglected bk-anonymity and-diversity? The effect of
|Sreat(0tar)|! As discussed earliek-anonymity ensuresy > k,
and!-diversity guarantees/m < ppreach, but neitherm norb/m
is a component in deriving the breach probability (see Theorem 2).
In particular, a major componentis not captured —» can be very
small, no matter how large (or smatt) (or b/m) is.

4. GENERALIZATION ALGORITHM

Let v be a value in the domain of attributd. We use
ILyaiue(v*) to capture the (amount of) information loss in gen-
eralizingwv to v*, which is a partition in the corresponding general
domain of A (Definition 5). Formally,

(the number of values in*) — 1

LLvatue (V") = the number of values in the domain 4f

4

For instance, if the domain éfgeis [1, 60], generalizing age 5 to
[1,10] has information 10S§ L aiue([1, 10]) = (10— 1) / 60. Simi-
larly, since the taxonomy dbiseasehas 12 leaves, generalizifig
to respiratory-infectiorresults inZ £, 1. (respiratory-infection =
(3 — 1)/12, where 3 is the number of leaves undespiratory-
infection Obviously, if v is not generalized (i.e.y v*),
ILyaiue(v*) €quals 0, i.e., no information is lost.

3I-diversity has other requirements, if an adversary’s “background
knowledge” is taken into account [11]. We do not consider this
complication in this work.

Algorithm Greedy-Personalized-Generalization

Input: the microdatd”, and the guarding nodes of all tuples
Output: the publishable relatich*

1. for every Ql-attributed?" (1 < i < d)

2. initialize a generalization functiofy with a single partition
covering the entire domain oA (see Definitions 4 and 5)
3. T* =the relation after applying Ql-generalization dn

according taS = { f1, ..., fa}

G’ =the only QI-group irfl™
SA-generalizatiofG’) //Figure 5

[* at this point, 7" becomes publishable */

4.
5.

6. while (true)
7. Tyest =T7; Spest =S
8. for every possible’ = {1, ..., f;} obtained fromS with a
“single split” (see the explanation in Section 4.1)
9. T'* = the relation after applying QI-generalization®n
according taS’
10. for each Ql-groug:’ € T"*
11. SA-generalizatioiG’) //Figure 5
/* at this point,7"* becomes publishable */
12. ifIﬁt,,,ble(T’*) < I‘Ctable(Tb*est)
13. Toose =T Spest = S’
14. if (Ty.,, = T™) then go to Line 17 //no next round
15. else
16. T" = Tpyoss S = Shest llprepare for the next round

17. returnTy. .,

Figure 4: Algorithm for computing personalized generalization
The overall information 10SE L. (t*) of a generalized tuple

t* equals

d
w® - TLyarue(t"A%) + Y wi - TLuyarue (. AL)

i=1

®)

wherew‘l”', ...,wgi, andw?® are positive system parameters, speci-
fying the penalty factor of sacrificing precision on each attribute.
Obviously, SA-generalization can be easily disabled by setting
w® = oo, i.e., even the least generalization dfi entails infinite
information loss.

The total information los€ L1 (1) of the entire (general-
ized) relationT™ is given by

ILiavie(T™)

Z Iﬁtuple (t*)

Vt*eT*

(6)

Next, leveraging the findings of the previous section, we pro-
pose an algorithm for computing a generalized tailevith small
ILtapie(T*) which guarantee®yrcach(t) < poreacn for each
teT.

4.1 The Greedy Framework

As elaborated in Section 2.2, our generalization scheme includes
two steps. The first phase applies Ql-generalizatio'pmising
a set of generalization function$ = {f1, ..., fa} on thed QI-
attributes, respectively. Then, the second step produces the final
T* by performing SA-generalization on the resulting Ql-groups,
employing a specialized generalization function for each QI-group.
Hence, the quality of™* depends on (i) the choice &, and (ii)
the effectiveness of SA-generalization. We provide a solution for
settling the first issue in this subsection, and deal with (ii) in Sec-
tion 4.2.

A generalization functiorf; (1 < ¢ < d) is decided by a general
domain of AY" (Definition 5), which, in turn, is determined by a set
of partitions in the original domain Qﬂfi (Definition 4). There-



fore, selectingS is equivalent to finding the appropriate partitions
of eachf;. Figure 4 presents a greedy algorithm for achieving this

purpose (the pseudocode also explains the framework of calculat-

ing 7).

At Lines 1-2, we obtain the simplegf (1 < ¢ < d), which con-
tains a single partition, covering the entire domain4jf. Using
suchfi, ..., f4, Line 3 carries out Ql-generalization @n which,
apparently, results in a single QI-group. Next, the algorithm in-
vokesSA-generalizatiofelaborated in the next section) on the QI-
group (Lines 4-5), which yields a publishal¥.

The subsequent execution proceed®imds Specifically, each
round slightly refinesneof f1, ..., f4, and leads to a ne@™ with
lower information loss. Before explaining the details, we must clar-
ify the refinement of a function, e.gf;, without loss of generality.

Refining a generalization function. Refining f1 means splitting
one of its partitions once. For instance, assume fhas on a
numeric attributeAge with domain[1, 60], and is determined by
partitions[1, 30] and [31,60]. Partition[1,30] may be split into
[1,z] and[z + 1, 30], for anyz € [1,29], i.e.,[1, 30] can be splitin
29 ways. Similarly, there are also 29 options for splittjag, 60].
Therefore, by a single splif; can be refined into 58 possible gen-
eralization functions.

The situation is different, iff; concerns a categorical attribute,
e.g.,Diseasgstrictly speakingDPiseases not a Ql-attribute in Fig-
ure 1c; but no confusion should be caused by borrowing it to illus-
trate the refinement of,). For example, suppose thaspiratory-
system-problenis one of the partitions (in the taxonomy of Fig-
ure 2) decidingf:. Using the transformation stated in Section 2.2,
we can represeméspiratory-system-problemith an interval[1, 6]

(by converting the leaf nodes under the partition to values 1-6, re-
spectively). Note that, it is not possible to split the partition into,
for instance|1, 2] and[3, 6]. As formulated in Definition 4, each

partition of a categorical attribute must be a node in the correspond-

ing taxonomy. Here[l, 2] cannot be mapped to any node in Fig-
ure 2. Infact, there is only one possible splitfespiratory-system-
problem i.e., breaking its intervdll, 6] to sub-intervalg1, 3] and
[4,6].

In general, the number of possible refinements for a categori-
cal f1 equals exactly the number of non-leaf partitionsfof For
example, assuming thagt is determined byrespiratory-system-
problemanddigestive-system-problemwe can refine it into 2 dif-
ferent generalization functions with a single split.

A round of the greedy algorithm. We are ready to elaborate each
round of the algorithm in Figure 4. Before a round starts, the
algorithm has obtained a publishable tafflé, with a set of QI-
generalization functions' = { f1, ..., fa}. At the beginning of the
round, we duplicatd™ and .S into Ty, and Seest, respectively
(Line 7).

Next, the algorithm examines (Line 8) all possible sets of re-
fined functionsS’ = {fi,..., f;}, obtained by performing one
split over a single function ir§ (i.e., S’ sharesd — 1 identical
functions with.S). Given anS’, Lines 9-11 perform QI- and SA-
generalizations to calculate a publishablé, in the same manner

does not need to be re-computed. Similarly, in deriving the infor-
mation l0ssZ L:qu. (T7*), the contribution of the tuples i@ needs
not be re-calculated, either.

The round finishes, after a’ has been considered. Line 14
checks if a better solution (compared to the one discovered prior
to this round) has been found. If not, the algorithm terminates by
returningTy. .. Otherwise, another round is executed, after setting
T* (or S) to Ty, (Or Spest) at Line 16.

4.2 Optimal SA-generalization

Let G’ be an arbitrary QIl-group output by performing QI-
generalization or". Without loss of generality, assume that
containsm tuplest}, ..., t,,. We useG to denote the set of cor-
responding tuplegti, ..., t,»} in the microdatel’. Specifically,
for eachj € [1,m], t;.A° = ;. A°, whereas’. A" generalizes
;. A% (1 < i < d).

We aim at applying SA-generation @ to deriveG* ={t], ...,
tm. }, which achieves two objectives. As discussed in Sections 2.2
and 3,Pyreach(t;) (1 < j < m) depends only oiiz* (which is
the essential QI-group of the individual thatbelongs to). Hence,
as the first objectiveiy* must ensur@®y,cach (t;) < Poreach-

The second objective is to minimize

> ILoarue(t] . A%)

j=1

@)

where ZL,q1ue iS given in Equation 4. Given the fact that
the Ql-values oft}, ..., t;,, have been finalized (before the SA-
generalization), fulfilling the second objective essentially mini-
mizesZ;”:1 ZLyupie(t]), whereZ L,y is defined in Equation 5.
Therefore, after carrying out SA-generalization on all the QI-
groups (produced by Ql-generalization) in the same manner, the
resulting publishabl@™ minimizesZ L. (17™) of Equation 6.

LEMMA 2. For any tuples, andt, (1 < z,y < m), if t,.GN
is in SUBTR(t,.GN), thenPycach (tz) < Phreacn(ty,) regard-
less of the SA-generalization applied.

PROOF. Let b, (or b,) be the number of tupleg; (1 <
J < m) such that SUBTR;..A%) overlaps SUBTRt..GN) (or
SUBTR(t,.GN)). Sincet,;.GN is in SUBTRt,.GN), b, < by.
By Theorems 1 and 2, we ha®,,cqch (tz) < Pireach(ty) (the
values ofc andn are equivalent in computing the two probabili-
ties). [

Therefore, in searching for the optimal SA-generalization, we
can avoid checking the breach probabilities of the tuples dike
in Lemma 2, because they must be adequately protected once the
privacy information of the other tuples is secured.

LEmMMA 3. For any tuplet; (1 < 5 < m), if Pyreacn(t;) >
Doreach DEfOre SA-generalization, theéh..A® must be an ancestor
of t;.GN after SA-generalization.

PROOF (Sketch) ObviouslyPy,cqcr (t;) must have decreased

as Lines 3-5, except that multiple QI-groups may be produced after after SA-generalization since it eventually drops belaweq.r.

the Ql-generalization. B* incurs smaller information loss (com-
puted with Equation 6) than our current best solutiGp,, (Line
12), 7" and.S’ replaceT}.,, andSy.,: respectively (Line 13).

We provide a heuristic to reduce computation time. Siffcdif-
fers from S in only one element, the Ql-generalization based on
S’ can be computed incrementally from that basedsdvhich is
available from the previous round). Furthermore, if the same QI-
group G results from both Ql-generalizations, its SA-generation

Assume, on the contrary, that the fin&lA°® is in SUBTR(t;.GN).
Consider the values @f ¢, andn in calculatingP,cqcr (t;) with
Theorem 1 or 2. Botle andn remain the same before and af-
ter the SA-generalization. Since SA-generalization never reduces
b, Pyreach (t;) cannot have decreased after the SA-generalization,
leading to a contradiction. (]

Based on the above properties, Figure 5 shows an algorithm
that finds the optimal SA-generalization for the given QI-gréiip



Algorithm SA-generalization (G")
Input: a Ql-groupG” with tuplest’, ..., t,, after Ql-generalization
Output: a seG* of tuplesty, ..., t;, in the final publishabl@™
1. G =the setof tuples,, ...,t., in T generalized t@’;
G* ={th, ....,trn}
Sprob = the set of tuples € G such that.GA is not in the
subtree of the guarding node of any other tuplé&in
Svad = the set of tuples € G satisfyingPurcach (t) > Doreach
* In the Primary CaseP yrcqcn (t) is computed from Theorem 1,
replacingn with the size ofGG. In the Non-primary Case, the
computation is based on Theorem 2, replacingith the
number of distinct individuals involved i@'. */
for each tuplé € Sy

t*.A° = the parent of.GN/

/It* is the tuple inG™ corresponding te

2.

3.

o

6. foreachtuple’ € G* such that'™ # t*

7. if £*.A° is in SUBTR(t*..A*)

8. A=t A°

9. while there is a tupleé € S0 satisfyingPorcach (t) > Doreach
10. ift*..A% is the root of the taxonomy

11. return NULL //no possible SA-generalization
12. t*.A° =the parent of*..A°
Lines 13-15 are identical to Lines 6-8

Figure 5: Algorithm for finding the optimal SA-generalization

Line 1 initializes two sets? andG™. G collects all tuplesg, ...,tm
in T generalized td&’, while G* = G'. Line 2 creates a s&,ob
as follows. For each tuplec G, if its guarding node.GN is not
in SUBTR(#'.GN) of any other tupleg’ € G, t is added taS,,.op-
By Lemma 2, once the privacy requirements of the tupleS;ine
are satisfied, the requirements of the other tuples are also fulfilled.
For each tuplg € Sp.0s, the algorithm calculateP yrcacn (t)
according to Theorem 1 or 2 (based on the current, non-
generalizedA® values inG*). If Pyreqcn (t) is larger thamyreach,
t is placed in a sefy.q (Line 3), that is,S.4 includes the tuples
in Sprob Whose privacy constraints have not been satisfied after QI-
generalization.
Next, we consider each tuplec Spq.q in turn (Line 4). Lett™
be its corresponding tuple i&*. According to Lemma 3, we can
immediately set*..A° to the parent of.GN (Line 5). After this,
t*..A°* may become an ancestort6f..A4° of another tuple’™ € G*.
This is not allowed because, otherwisé, A4° andt'*..A* become
two overlapping partitions in the general domain4f. To remedy
this problem, we must also generaliZé..A° to t*..A® (Lines 6-8).
The algorithm terminates (Line 9)By,...cx (t) does not exceed
Dbreack fOr any tuplet € Sy,05. Otherwise Pyreach (t) > Poreach
for some tuplet), we must decreasPy,cqcx(t) by generalizing
t*.A° further ¢* is the tuple inG™ corresponding to). If ¢t*.. A% is
already the root of the taxonomy (Line 10), the algorithm returns,
reporting that no appropriate SA-generalization can be found (Line
11). Infact, in this case, thd® values of all tuples iiz* have been
generalized to the root, so that no more generalization is possible.
If t*..A° is not the root, we raisé¢*..A° “one level up” in the
taxonomy, by replacing it with its parent (Line 12). After this, the

A? values of some other tuples may also need to be raised, due to,
the reasoning for Lines 6-8. These changes may increase the breac

probabilities of some tuples. Hence, the algorithm returns to Line
9 to check whether any probability is aboyg.cqcn. If yes, the
above procedures are repeated.

The computation ofPy,.qcx(t) deserves further clarification.
The value ofn in Theorems 1 and 2 is unavailable whéfi is
being computed (i.e., we do not know which external database will
be consulted by an adversary). Hence, as a conservative approac

we replacen with its lower bound S;.cai(otar)| (INnequality 2). If
the breach probability computed with this lower bound is at most
DPoreach, then the actual breach probability derived by an adversary
will definitely be bounded by cach.

The following theorem proves that Figure 5 produces an SA-
generalization that minimizes Equation 7.

THEOREM 3. Lett], ..., t;, be the tuples returned by the al-
gorithm in Figure 5, andtf*, ..., t; be the tuples obtained by
any alternative SA-generalization that prevents privacy breach.
For anyj € [1,m], t;.A° must be iINSUBTR(¢;"..A%), namely,

T Lyatue(t; . A°) < TLuatue(t . A®).

PROOF (Sketch) On the contrary, assume that there exists a hy-
pothetic SA-generalization that violates the theorem. That is, for
somej € [1,m], t;.A® is an ancestor of;*..A°. Consider the mo-
ment, during the algorithm of Figure 5, when th€ value oft;
is generalized for the first time. This generalization may happen
at Line 5, 8, or 15; in particular, if it is due to Line 8 or 15, the
generalization is caused by generalizing #eé value of another
tuple. Lett bet; in case of Line 5, or in case of Line 8 or 15, let
it be the tuple that causes the generalization;ofNow consider
the path fromt;..A° to t..A°. It can be shown that, for any SA-
generalization that ensures privacy protection, none of the nodes
on this path can appear as the fipdl value of any tuple. This,
however, contradicts our assumption, becaaj%eéts, obtained by
the hypothetic SA-generalization, lies on this pathl

5. EXPERIMENTS

This section experimentally evaluates the effectiveness of our
technique using a popular datdsiet the literature [5, 7, 8, 9, 11].
The dataset contains a relation with 100k tuples, each storing in-
formation of an American adult. The relation has 6 columhge
Education Gender Marital-status Occupation andincome The
first two columns are numerical, where@gnder Marital-status
Occupationare categorical; these 5 columns are the QI attributes.

Incomeis the sensitive attribute, and its values fall in the range of
[0, 50Kk). We categorize the column as follows. First, the domain is
evenly divided into 50 ranges (i.e., each has a length of 1k), which
constitute the leaves of the taxonomy. Then, every 5 consecutive
leaves are grouped as the child of a level-2 node. Recursively, every
two level-2 nodes are grouped under a level-3 node. This results in
five level-3 nodes, which are the children of the root. Note that the
fanouts (5, 2, 5 at levels 2, 3, 4, respectively) are chosen simply
to create a balanced taxonomy; other fanouts may also be used,
without affecting the experiment results significantly.

We add a uniquédD to each tuple to obtain a “primary relation”
(each individual has exactly one record). Personal refererees a
generated in two ways, leading to datagefisleaf andPri-mixed
Specifically, inPri-leaf, the guarding node of each tuple is identi-
cal to its sensitive value (i.e., all guarding nodes are leaves of the
taxonomy), simulating the scenario where no personal privacy pref-
erence is allowed. IPri-mixed tuples are randomly divided into
3 groups which account for 10%, 30%, and 60% of the relation,
respectively. For each tuple in the first (or second) group, its guard-
hng node is the parent of its sensitive value (of)s The guarding

odes of the tuples in the last group are their sensitive values.

We also synthesize a “non-primary relation” as follows. First,
50k arbitrary persons are sampled from the primary relation, and
added to the non-primary relation. Then, among these 50k persons,
we extract three disjoint subsets, each contairiifg/3 random
persons. For each persorin the first subset, we create a tuple in

“The dataset can be downloadedhtip://www.ipums.org
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Figure 7: Tuple breach probabilities (with personalization)
the non-primary relation whod® and QI values are equivalentto  higher thanpercacn = 0.25.  As mentioned in Section k-
those ofo, but its sensitive value is generated following the distri- anonymity prevents accurate association between individuals and
bution ofincomein the primary relation. Hence,correspondsto2  tuples, but does not provide direct protection against association
tuples in the non-primary relation. Similarly, for each person in the between individuals and sensitive values. Bbthversity andper-
second subset, two tuples are created as described earlier, i.e., théonalizedguarantee adequate preservation. Interestingly, the curve
person corresponds to 3 tuples. The last subset is directly includedof personalizeds above that of-diversity, which indicates that
in the final relation, whose cardinality is, therefore, 100k. Based Personalizegperforms less generalization, i.e., just enough to meet
on the non-primary relation, we generate personal preferences inthe privacy requirements. Indeed, the table outpupénsonalized
the same manner as Rri-leaf and Pri-mixed leading to datasets has information loss 3123 (calculated with Equation 6), as opposed
Nonpri-leafandNonpri-mixed respectively. to 184845 for the-diverse table.

The maximum permissible breach probabilify.cacs is fixed Figures 6¢ and 6d illustrate similar results for datds$enpri-
to 0.25. As mentioned in Section 4, our generalization algorithm leaf.  As predicted in Section 3.3, neithéranonymity nori-
requires penalty factore?’, ..., wg’ (for the 5 QI attributes) and ~ diversity can satisfy the privacy constraints of all tuples. In par-
w*. In all caseswili, wgi equal 1. The value ofu® will be tlgular, k-anony_mlty (_-dlversny) allows some tuples to be inferred
varied in different experiments. All the experiments are performed With @ probability higher than 70% (40%), whereRsrsonal-
using a Pentium IV CPU at 3.4Ghz. ized still guarantees that the breach probabilities of all tuples are
bounded bypyrcach.

In the previous experiments, the guarding node of each tuple
equals its original sensitive value, i.e., the no-personalization sce-
nario assumed by the previous work. Next, we study personal-
ized scenarios, by repeating the same experiments on dafasets
and Nonpri-mixed respectively. Fok-anonymity and-diversity
(which are not aware of personal preferences), their generaézed
bles are identical to those f&ri- andNonpri-leaf respectively.

Figure 7 presents the results. Our technique is again the only
one that can achieve the required protection degree for an entire
dataset. Fok-anonymity and-diversity, as expected, more tuples
have breach probabilities abopg-c..r, compared to the results on
non-personalized datasets (Figure 6). In Figures 7a and 7c, for eac

probability of each original tuple with respect to the generalized - o o
table. For each method, the probabilities of all tuples are sorted in solution, 30% of the tuples have breach probability 0, because they
are the tuples whose guarding nodesfare

descending order, as demonstrated in Figure 6a. Since the 3 curves . .
) SO . . : In summary, we showed that our solution guarantees privacy pre-
differ primarily in the behavior of the tuples in the first 2.5% of the S . o .
. - . - serving in all cases. We also confirmed the finding in Section 3.3
corresponding sorted lists, Figure 6b plots the probabilities for only : g o . .
that k-anonymity, as well as its improved versibiliversity, fails

these tuples. . . . . )
. . . . to satisfy the privacy requirements in most scenarios. Hence, the
k-anonymity cannot achieve the required level of protection, . - .
two methods are omitted in the subsequent experiments.

because the breach probabilities of some tuples are significantly

5.1 Quality of Privacy Protection

In this section, we compare the quality of privacy protection of-
fered byk-anonymity,l-diversity (which improveg-anonymity as
mentioned in Section 3.3), and opersonalizedapproach. The
value ofk for k-anonymity equalg /pyreacr = 4. As withperson-
alized [-diversity takes a single paramet@fy cqcr = 0.25. The
value ofw? is fixed to 1. In the following experiments, each breach
probability is computed from Theorem 1 or 2, replacingith its
lower bound in Equation 2.

In the first experiment, we use the 3 methods to generalize
datasePri-leaf, respectively. In each case, we compute the breach

5.2 Accuracy of Data Analysis

In this section, we aim at establishing the fact that SA-
generalization is beneficial since, compared to pure quasi-identifer

5The parametepy-.qcr has the same functionality as the notation
¢ in [11]. Since we do not consider an adversary’s background
knowledge, the other parameterd afiversity are inapplicable.
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generalization, it results in generalized tables that permit more ac- as mentioned in Section 4.

curate data analysis.

We consideraggregate reasonings the goal of data analysis,
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Eachworkloadcontains 10000 queries. We vary the number of
queries of each type using a parametet [0, 1]. Specifically,r
equals the percentage of type-1 queries in a workload. We inspect
two values 0.1 and 0.9 of » = 0.1 (0.9) leads to a workload where
type-2 (-1) queries are significantly more frequent.

In the experiment of Figure 8a, we seto 0.1, and deploy the
non-personalized datasés-leaf andNonpri-leaf We create gen-
eralized tables for a wide spectrum @f from 1 to 100. Recall
that a largerw® indicates a higher information-loss penalty of gen-
eralizing the sensitive attribute. We also create a generalized table
usingw® = oo, which is equivalent to disabling SA-generalization,

In other words, the performance at
w® = oo represents the effectiveness of pure Ql-generalization.

Figure 8a plots the average error of a workload as a function of

and examine two types of COUNT-queries related to the sensitive w®. For each average, we also demonstrate the sum of the average
attributeIncome A type-1 query retrieves the number of tuples and the standard deviation of the errors (in the workload). The sum,

satisfyingik < Income< (i + 5)k, where: is a random integer

in [0, 45]. A type-2 query returns the number of tuples qualifying

two conditions simultaneously. The first conditioriis< Income
< (i + 10)k, for somei € [0,40]. The other condition concerns
a QI attribute A arbitrarily selected. 1f4 is numeric (i.e.Ageor
Education), the condition is a range predicate< A < y, where
[x,y] is a random interval covering 20% of the domain4fIf A

is Genderor Marital-status the condition is an equality predicate

A = z, wherez is an arbitrary value in the domain gf. Finally,
if A is Occupationthe condition is alsod = z, butz is a random
level-1 node in the taxonomy d@ccupation The selectivities of
all queries are at least 1%.

Given a datasel’, we compute a generalized talfi& with the

depicted as the top of a vertical bar, equals approximately the 8500-
highest error. For botRri-leaf andNonpri-leaf the best® equals
1, i.e., we should treat all the attributes equally in generalization.
Pure Ql-generalization, on the other hand, does not permit robust
analysis since it leads to average error nearly 30% (5 times that of
w® = 1), and huge variance. This is expected because a workload
with » = 0.1 is populated mostly with type-2 queries, for which
pure Ql-generalization has poor performance, due to the reasons
explained earlier.

Figure 8b shows the results of the same experiment fo0.9,
i.e., most queries in a workload are type-1 queries. All values’of
result in average error below 5%. Although pure Ql-generalization
has small average error, the accuracy of its estimated answers again

algorithm in Figure 4, use it to obtain estimated query results, and has significant variance. This phenomenon happens because the

examine their relative error. Specifically,dft is an estimated re-
sult, its relative error equalsct — est|/act, whereact is the ac-
tual query result fronT". To deriveest, we compute, for each tuple
t* € T, the probabilityp thatt™ satisfies the query, after which
est is set to the sum of such probabilities of all tuples. Lbe the
original tuple inT of t*. For a type-1 queryy equals the proba-
bility that the sensitive value.A® of ¢ falls in the query interval,
assuming that..A° is uniformly distributed in.*..A°. For a type-2

query, following the same idea, we first obtain the probabilities that
t satisfies the two query conditions respectively, using the uniform

assumption; therp equals the product of the two probabilities.

generalized table computed by = oo incurs huge error for type-

2 queries (even though type-1 queries can be perfectly processed).
On the other hand, the table computedidy= 1 performs reason-
ably well for both query types, leading to small average error and
variance.

Figures 8c and 8d illustrate the results of the above experi-
ments on the personalized datasetsmixed and Nonpri-mixed
respectively. These results are consistent with those for the non-
personalized datasets. In both diagrams, the average error and vari-
ance are similar when?® varies between 40 and 100, because the
generalized tables obtained with these values are almost identical.

Answering a type-1 query accurately requires retaining as much  To summarize, we demonstrated that SA-generalization should
information onA*® as possible, while answering type-2 queries ac- be considered in practice. Our experiments suggest that it is rea-
curately demands retaining sufficient information on all attributes. sonable to treat all attributes equally in generalization, which leads
SA-generalization reduces the precision of sensitive values, while to a more useful table for analysis than pure Ql-generalization in
preserving more information on the other attributes; hence, it favors most cases.

type-2 queries. Pure Ql-generalization, on the other hand, allows
type-1 queries to be precisely processed (i.e., ho error), since it re

tains complete information ol®. As a tradeoff, it applies much

5.3 Computation Cost
Finally, we evaluate the overhead of performing personalized

more generalization on the QI attributes, and thus, cannot supportgeneralization. Figure 9 shows the execution time of our algorithm

type-2 queries as well as SA-generalization.

(Figure 4) in producing the generalized tables used in the experi-



ments of Figure 8, as a function @f . The algorithm terminatesin  fully prevents privacy intrusion even in scenarios where the exist-
less than 4 minutes in all cases. Except for minor random irregular- ing approaches fail, and results in generalized tables that permit

ities (of Pri-mixedin Figure 9b), the cost decreasesdsncreases. accurate aggregate analysis.

This is because, the higher’, the less SA-generalization is possi- This work also lays down a solid theoretical foundation for de-

ble such that the function of Figure 5 entails smaller overhead. veloping alternative generalization strategies. For instance, the
greedy algorithm presented in this paper is not optimal, in the sense
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