
Algorithmic Techniques for IndependentQuery Sampling
Yufei Tao

taoyf@cse.cuhk.edu.hk

Department of Computer Science and Engineering

Chinese University of Hong Kong

Hong Kong, China

ABSTRACT
Unlike a reporting query that returns all the elements satisfying

a predicate, query sampling returns only a sample set of those el-

ements and has long been recognized as an important method in

database systems. PODS’14 saw the introduction of independent
query sampling (IQS), which extends traditional query sampling

with the requirement that the sample outputs of all the queries be
mutually independent. The new requirement improves the precision

of query estimation, facilitates the execution of randomized algo-

rithms, and enhances the fairness and diversity of query answers.

IQS calls for new index structures because conventional indexes are

designed to report complete query answers and thus become too

expensive for extracting only a few random samples. The phenom-

enon has created an exciting opportunity to revisit the structure

for every reporting query known in computer science. There has

been considerable progress since 2014 in this direction. This paper

distills the existing solutions into several generic techniques that,

when put together, can be utilized to solve a great variety of IQS

problems with attractive performance guarantees.
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1 INTRODUCTION
The standard query mechanism in database systems returns all the

elements that satisfy a given predicate. It works well when the

number of result elements is small. In the big-data era, however,

along with the explosion in data volume comes the huge increase

in query output size. For example, while a query with selectivity
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1% returns only 10000 elements on a dataset of size a million, the

number surges to 10
10

when the data cardinality reaches a trillion

(this is roughly at the tera-byte level, which is only moderately “big”

by today’s metric). In the latter scenario, even just reporting the

query answer would take intolerably long, especially when disk

I/Os or network communication is involved.

A remedy of the situation is query sampling, an approach dating

back to the 1990s. The rationale is to return only a sample set of the

query result, rather than the result itself. The usefulness of such

samples has been long recognized even in the non-big-data days;

for example, Olken’s Ph.D. thesis [21], published in 1993, presents

a nice exposition on how query sampling benefits database sys-

tems. Indeed, in many applications, complete query results are not

compulsory and result samples already serve the purposes ade-

quately. Retrieving only the samples can dramatically reduce query

response time, a phenomenon that is increasingly conspicuous as

the database volume continues to escalate.

In PODS’14, Hu et al. [18] introduced the concept of independent
query sampling (IQS). The novelty was to guarantee that the result

sample returned for a query should be independent of those re-

turned for all previous queries. The guarantee must hold no matter

how the predicates of different queries correlate to each other. For

a better explanation, let us consider a specific IQS problem. Let 𝑆

be a set of 𝑛 elements from the real domain R. Given an interval

𝑞 := [𝑥,𝑦], a conventional range query reports 𝑆𝑞 := 𝑞 ∩ 𝑆 . The IQS

version, on the other hand, takes two parameters: 𝑞 (as before) and

an integer 𝑠 ≥ 1. Like traditional query sampling, the IQS query

outputs a set 𝑄 of 𝑠 elements, each independently taken from 𝑆𝑞
uniformly at random. In other words, Pr[𝑄 = Σ] is the same for

every Σ ∈ (𝑆𝑞)𝑠 .1. Unlike traditional query sampling, however, IQS

must also fulfill cross-query independence:

Pr[𝑄 = Σ | outputs of previous IQS queries] = 1

|𝑆𝑞 |𝑠
(1)

for every Σ ∈ (𝑆𝑞)𝑠 . It is worth pointing out that even if two IQS

queries coincide in 𝑞, their samples must still be independent. In

fact, one can repeatedly issue the same query to obtain more and

more samples of 𝑆𝑞 , all of which must be mutually independent.

The notion of IQS can be integrated — in a straightforward man-

ner — with every type of reporting queries known in database

research. It brings many benefits that cannot be offered by tradi-

tional, dependent, query sampling (some benefits will be discussed

in Section 2). IQS can take place in various forms. What is illus-

trated earlier is a variant of IQS under the with replacement (WR)

sampling scheme. The following are two other major variants.

1 (𝑆𝑞 )𝑠 := 𝑆𝑞 × 𝑆𝑞 × ... × 𝑆𝑞 , where there are 𝑠 − 1 cartesian products.
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• Sampling without replacement (WoR):𝑄 should have the same

chance to be any of the

( |𝑆𝑞 |
𝑠

)
size-𝑠 subsets of 𝑆𝑞 , assuming

𝑠 ≤ |𝑆𝑞 |.

• Weighted sampling: Each element 𝑒 ∈ 𝑆 carries a positive

weight 𝑤 (𝑒). 𝑄 is a set of 𝑠 elements, each independently

sampled from 𝑆𝑞 with probabilities proportional to weights,

namely, each element 𝑒 ∈ 𝑆𝑞 is sampled with probability

𝑤 (𝑒)/∑𝑒′∈𝑆𝑞 𝑤 (𝑒′).

In any case, 𝑄 must be independent of all the previous queries’

outputs.

IQS poses exciting research challenges. A naive solution is to

first retrieve the full query result — denoted by 𝑆𝑞 following the

notation in the above example — and then sample from it, but

this defeats the main purpose of query sampling, i.e., reducing

computation time. Instead, our objective should be to settle a query

in time significantly less than |𝑆𝑞 | in the typical situation where

𝑠 ≪ |𝑆𝑞 |. Achieving the goal demands organizing the input dataset

𝑆 in ways drastically different from the existing data structures

designed to report 𝑆𝑞 in its entirety. The topic, therefore, provides

a fresh perspective to revisit every reporting query that has ever

been studied in computer science.

There has been considerable progress towards understanding

IQS since the concept’s inception in 2014. This paper aims to distill

the currentmethods— primarily from papers [2, 3, 6–8, 17, 18, 20, 21,

24, 25, 27] — into generic techniques that allow us to tackle the IQS

counterparts of a great variety of reporting queries with attractive

performance guarantees. Many of the resulting data structures are

friendly to practical implementation and some of them have already

been implemented in the system community [27]. In spite of all

the development, the research on IQS is far from conclusive, with

numerous non-trivial questions still open, some of which will be

pointed out at the end of the paper.

2 INDEPENDENCE IS GOOD
Next, we give three benefits of IQS that cannot be provided without

enforcing cross-query independence.

It helps for the reader to get a solid idea of what would be a

conventional (dependent) query sampling structure. Consider again

the range query in Section 1 where the input dataset 𝑆 contains 𝑛

values in R. Let us discuss WoR sampling first: given an interval

𝑞 in R and a sample size 𝑠 between 1 and |𝑆𝑞 |, a query outputs a

random size-𝑠 subset 𝑄 of 𝑆𝑞 := 𝑞 ∩ 𝑆 . In preprocessing, we can

randomly permute the elements in 𝑆 and define the rank of each
element as its position in the permutation. Given 𝑞 and 𝑠 , a query

simply returns the set𝑄 ⊆ 𝑆𝑞 of 𝑠 elements having the lowest ranks

in 𝑆𝑞 . It is clear that 𝑄 is a random WoR sample set of 𝑆𝑞 . Equally

obvious is that the outputs of different queries are correlated; e.g.,

repeating the query with the same 𝑞 and 𝑠 always yields the same𝑄 .

The retrieval of 𝑄 can be accomplished in 𝑂 (log𝑛 + 𝑠) time [12].
2
.

A remark is in order before we proceed. The above approach can

be easily adapted for WR sampling: a WoR sample set of size 𝑠 can

2
This is an instance of so-called top-𝑘 range reporting, a systematic coverage about

which can be found in [22].

be converted to a WR sample set of the same size in𝑂 (𝑠) time [19].

The dependence issue persists, nevertheless. The reader may refer

to [7, 21, 26] for more (dependent) query sampling structures.

Benefit 1: Query Estimation and Randomized Algorithms.
Random sampling is a building brick for many estimation tasks.

For example, consider a relation 𝑅 with a real-valued attribute A
and an arbitrary attribute B. Fix a query interval 𝑞𝐴 in R and an

arbitrary predicate 𝑞𝐵 . Define 𝑅𝑞𝐴 := {𝑡 ∈ 𝑅 | 𝑡 .A ∈ 𝑞𝐴}; note that
𝑅𝑞𝐴 is the result of a range query. Suppose that we want to estimate

the percentage of tuples 𝑡 ∈ 𝑅𝑞𝐴 whose 𝑡 .B values satisfy 𝑞𝐵 . It is

folklore that, by sampling 𝑂 ( 1

𝜖2
log

1

𝛿
) elements from 𝑅𝑞𝐴 , we can

estimate the percentage up to an absolute error 𝜖 with probability

at least 1−𝛿 . As 1

𝜖2
log

2

1

𝛿
can be far less than |𝑅𝑞𝐴 |, retrieving only

the samples would be much faster than reporting 𝑅𝑞𝐴 .

Whether query sampling ensures independence makes a huge

difference on the number of correct estimates in the long run. As-

sume, for simplicity, that each estimate fails with probability 𝛿 .

After a period of time, if𝑚 estimates have been performed in total,

an IQS solution automatically guarantees that the number of erro-

neous estimates concentrates sharply around𝑚𝛿 . In contrast, query

sampling without independence can only guarantee the number to

be𝑚𝛿 in expectation, while little can be said about how likely the

number would significantly deviate from𝑚𝛿 . Such a difference has

a direct impact on the service quality for the underlying system.

The functionality of extracting random samples satisfying a pred-

icate is a prerequisite for many randomized algorithms. The func-

tionality becomes even more essential today as machine learning

attracts an unprecedented amount of attention (a learning algo-

rithm trains a model using random samples drawn from a selected

portion of a dataset). Just like how index structures facilitate query

answering in general, a query sampling structure is crucial for

achieving high efficiency for the aforementioned algorithms. Cross-

query independence is critical to guaranteeing excellent service

quality in the long run, for the reasons explained earlier.

Benefit 2: Fairness. Let 𝑆 be an input dataset and, given a query

predicate 𝑞, let 𝑆𝑞 be the set of elements in 𝑆 satisfying 𝑞. As men-

tioned in Section 1, 𝑆𝑞 can be excessively large to report in full. In

this case, which elements in 𝑆𝑞 should be returned? The question

has great implications in recommender systems; e.g., among the

set 𝑆𝑞 of product items meeting a user’s inqury, which ones should

we return if the user’s browser can display only a small number,

say 𝑠 , items?

Query sampling offers a simple and natural answer: 𝑠 random

items.
3
IQS, however, adds another layer of fairness: the random

items will be chosen afresh for every user inquiry. Several authors

[6–8, 17] have picked up this sense of fairness to define an inter-

esting problem called fair near neighbor search. There, 𝑆 is a set of

points in 𝑑-dimensional space R𝑑 . Let 𝑟 be a fixed positive value.

Given a point 𝑞 in R𝑑 , an 𝑟 -near query returns 𝑆𝑞 := {𝑒 ∈ 𝑆 |
dist (𝑞, 𝑒) ≤ 𝑟 } where dist (𝑞, 𝑒) is the distance between points 𝑞 and

𝑒 . The fair version — the fair 𝑟 -near neighbor query — returns a

3
When there is a clear notion of priority, the issue could be remedied by returning

the items having the highest priorities. Such a notion, however, does not always exist.

Furthermore, even if it does, the issue arises again when items tie in priorities.
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uniformly random point from 𝑆𝑞 , which must be independent of all

the past queries’ outputs; note that this is IQS with 𝑠 = 1. Fair near

neighbor search has numerous applications in practice as discussed

in [7].

Benefit 3: Representativeness (a.k.a. Diversity). There have

been considerable interests in studying how to reduce a query’s

output by returning only a few representatives that can illustrate

the diversity amid the elements satisfying the query (see [23] for an

excellent survey). For example, the inquiry “find restaurants in New

York” would return hundreds of restaurants. Suppose that we want

to return only 10 restaurants that are diverse in multiple criteria

simultaneously, e.g., cuisine, location, price, ambiance, etc. If there

is a prominent diversity metric, a system can achieve the purpose by

maximizing that metric. In the absence of such a metric, a plausible

solution is to return 10 random restaurants because intuitively they

would spread evenly in the “criteria space”. IQS ensures that the

10 random restaurants be picked anew for every query. This is

not merely for the sake of fairness but actually helps to exhibit

representativeness. To see why, note that the criteria space can

be so vast that 10 random elements would hardly be enough to

demonstrate all the interesting tradeoffs among the dimensions.

Cross-query independence presents an increasingly clear picture

of the diversity as more queries are answered over time.

3 BASIC METHODS
This section will explain two rudimentary techniques for IQS. The

first one, the alias method (Section 3.1), settles an IQS problem that is

the foundation of many other IQS problems. The second technique,

tree sampling (Section 3.2), is a simple way to adapt data structures

to IQS.

3.1 The Alias Method
In this subsection, we will consider:

Weighted Set Sampling. The input dataset 𝑆 has𝑛 elements

where each element 𝑒 ∈ 𝑆 carries a positive weight𝑤 (𝑒). Let
𝑊 :=

∑
𝑒∈𝑆 𝑤 (𝑒). A weighted sample from 𝑆 is a random

variable 𝑋 such that Pr[𝑋 = 𝑒] = 𝑤 (𝑒)/𝑊 for each 𝑒 ∈ 𝑆 .

W.l.o.g., our discussion will assume𝑊 = 1. The alias method,

proposed byWalker [25], gives a structure of𝑂 (𝑛) space that allows
a sample to be independently drawn in constant time. To explain

the method’s rationale, imagine that we have somehow produced

a set Υ of 𝑛 urns, where each urn Λ ∈ Υ contains either one or

two elements from 𝑆 (the urns do not need to be disjoint). For each

element 𝑒 in Λ, assign a positive value 𝑤 (Λ, 𝑒). The assignment

needs to satisfy two conditions:

(1) If an urn Λ ∈ Υ contains only one element 𝑒 , then𝑤 (Λ, 𝑒) =
1/𝑛. If Λ contains two elements 𝑒1 and 𝑒2, then 𝑤 (Λ, 𝑒1) +
𝑤 (Λ, 𝑒2) = 1/𝑛.

(2) For every 𝑒 ∈ 𝑆 , it holds that

𝑤 (𝑒) =
∑︁

Λ∈Υ:𝑒∈Λ
𝑤 (Λ, 𝑒) (2)

namely, the weight of 𝑒 has been spread into all the urns

where 𝑒 appears.

After the above preparation, we can perform weighted sampling

in constant time. First, pick an urn Λ from Υ uniformly at random. If

Λ has only a single element, we return it as the sample. Otherwise,

suppose that Λ has elements 𝑒1 and 𝑒2. We make a random choice

between them, which returns 𝑒𝑖 as the sample with probability

𝑤 (Λ, 𝑒𝑖 ) · 𝑛 for 𝑖 = 1 or 2. The algorithm ensures that each element

𝑒 ∈ 𝑆 be sampled with probability

∑
Λ∈Υ:𝑒∈Λ

𝑤 (Λ,𝑒 ) ·𝑛
𝑛 = 𝑤 (𝑒),

where the equality used (2), as desired.

It is possible to prepare the urns in𝑂 (𝑛) time with 𝑛 steps. Each

step produces a new urn, removes an element from 𝑆 , and adjusts the

weight of another element remaining in 𝑆 . As an invariant, before

Step 𝑖 ∈ [1, 𝑛], the weights of all the 𝑛−𝑖 +1 elements still in 𝑆 must

sum up to 1 − 𝑖−1
𝑛 . Specifically, Step 𝑖 first identifies an arbitrary

element 𝑒1 ∈ 𝑆 with 𝑤 (𝑒1) ≤ 1/𝑛 and another arbitrary element

𝑒2 ∈ 𝑆 with 𝑤 (𝑒2) ≥ 1/𝑛. If 𝑤 (𝑒1) = 1/𝑛, the step creates an urn

Λ containing just 𝑒1 and assigns 𝑤 (Λ, 𝑒1) = 𝑤 (𝑒1). Otherwise, it
creates an urn Λ containing 𝑒1 and 𝑒2, assigns𝑤 (Λ, 𝑒1) = 𝑤 (𝑒1) and
𝑤 (Λ, 𝑒2) = 1

𝑛 −𝑤 (𝑒1), and decreases𝑤 (𝑒2) by 1

𝑛 −𝑤 (𝑒1). In both

cases, 𝑒1 is removed from 𝑆 after the urn creation. It is rudimentary

to implement the above algorithm in 𝑂 (𝑛) time.

The theorem below summarizes the above discussion.

Theorem 1. For the weighted set sampling problem, there is a
structure of 𝑂 (𝑛) space that can be used to draw a weighted sample
in𝑂 (1) time. The sample is independent of all the samples previously
drawn. The structure can be built in 𝑂 (𝑛) time.

We will refer to the above structure as the alias structure.

3.2 Tree Sampling
Let us start by defining the tree sampling problem:

Tree Sampling. Let𝑇 be a tree with 𝑛 nodes where each leaf

𝑧 carries a positive weight𝑤 (𝑧). For each internal node𝑢 of𝑇 ,

define𝑤 (𝑢) as the total weight of all the leaves in the subtree
of 𝑢. For a node 𝑞 of𝑇 , a weighted sample from the subtree of

𝑞 is a random variable 𝑋 such that Pr[𝑋 = 𝑧] = 𝑤 (𝑧)/𝑤 (𝑞)
for each leaf 𝑧 in the subtree. Given a node 𝑞 and an integer

𝑠 ≥ 1, a query returns 𝑠 independent weighted samples from

the subtree of 𝑞. The query’s output must be independent of

those of the previous queries.

Given𝑞, we can draw one weighted sample from its subtree using

a top-down strategy. If 𝑞 is a leaf, return it directly. Otherwise, let

𝑣1, 𝑣2, ..., 𝑣 𝑓 be the child nodes of 𝑞, where 𝑓 ≥ 1 is the fanout of 𝑞
(𝑓 need not be a constant). Sample a node 𝑋 such that Pr[𝑋 = 𝑣𝑖 ] =
𝑤 (𝑣𝑖 )/𝑤 (𝑢) for each 𝑖 ∈ [1, 𝑓 ]. Then, we recursively sample a leaf

from the subtree of 𝑋 . To implement the strategy efficiently, we

build an alias structure at each internal node 𝑢 to perform the child

sampling described above in constant time. If 𝑢 has fanout 𝑓 , the

structure occupies 𝑂 (𝑓 ) space and can be built in 𝑂 (𝑓 ) time. This

implies that the alias structures of all the internal nodes consume

𝑂 (𝑛) total space and can be constructed in 𝑂 (𝑛) time in total. A

query can then be answered in time proportional to the height of

the subtree of 𝑞. To draw 𝑠 samples, simply repeat the procedure 𝑠

times.
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x y

Figure 1: The tree is a BST. The black nodes are the canonical nodes of the query interval 𝑞 := [𝑥,𝑦]. The shaded triangles
indicate the subtrees of the canonical nodes.

The above approach can be applied to convert many structures

originally designed for reporting queries to their IQS counterparts.

To illustrate, we will look at:

Weighted Range Sampling. The input dataset 𝑆 has 𝑛 el-

ements from R where each element 𝑒 ∈ 𝑆 carries a posi-

tive weight 𝑤 (𝑒). Given an interval 𝑞 in R and an integer

𝑠 ≥ 1, a query returns 𝑠 independent weighted samples from

𝑆𝑞 := 𝑞 ∩ 𝑆 . The outputs of all queries must be mutually

independent.

The reader may review Section 3.1 for the definition of “weighted

sample from a set”. If the goal is to report 𝑆𝑞 in full, one can create

a binary search tree (BST) T on 𝑆 , which permits the discovery of

𝑆𝑞 in𝑂 (log𝑛 + |𝑆𝑞 |) time for any 𝑞. For our discussion, we consider

T to obey the following conventions:

• T has height 𝑂 (log𝑛).
• T has 𝑛 leaves each storing a distinct value in 𝑆 as the key.
• Every internal node 𝑢 in T has two children. The leaf keys

in the left subtree of𝑢 are less than those in the right subtree.

The key of 𝑢 equals the smallest leaf key in the right subtree.

Next, we explain how to adapt T for IQS by resorting to tree sam-

pling. For each node 𝑢 in T , define𝑤 (𝑢) as the total weight of the
leaf keys in the subtree of 𝑢. As a well-known fact, for any 𝑞, we

can identify a set C of 𝑂 (log𝑛) canonical nodes in T such that

• the nodes in C have disjoint subtrees;

• the leaf keys in the subtrees of the nodes in C constitute 𝑆𝑞 .

See Figure 1 for an illustration. To draw a weighted sample of

𝑆𝑞 , we first sample a node 𝑋 from C such that Pr[𝑋 = 𝑢] =

𝑤 (𝑢)/∑𝑢′∈C 𝑤 (𝑢′) for each𝑢 ∈ C. Then, we perform tree sampling

to obtain a leaf 𝑧 from the subtree of 𝑋 , and the key of 𝑧 serves as a

weighted sample from 𝑆𝑞 . The above algorithm takes𝑂 (log𝑛) time

to draw a sample. Hence, 𝑠 samples can be obtained in 𝑂 (𝑠 log𝑛)
time. It is clear that all queries have independent outputs.

Remark. The above structure for weighted range sampling is close

to a structure described by Olken [21]. Recently, Martinez [20]

integrated tree sampling with the range tree [11, 15] to tackle:

Multi-dimensional Weighted Range Sampling. The in-
put dataset 𝑆 has𝑛 points fromR𝑑 where𝑑 is a fixed constant.

Given a rectangle𝑞 of the form [𝑥1, 𝑦1]×[𝑥2, 𝑦2]×...×[𝑥𝑑 , 𝑦𝑑 ]
and an integer 𝑠 ≥ 1, a query returns 𝑠 independent weighted

samples from 𝑆𝑞 := 𝑞 ∩ 𝑆 . All queries’ outputs must be mu-

tually independent.

The structure of [20] uses𝑂 (𝑛 log𝑑−1 𝑛) space and answers a query
in 𝑂 (log𝑑 𝑛 + 𝑠 log𝑛) time. Focusing on 2D space, Looz and Mey-

erhenke [24] applied tree sampling to the quadtree to obtain a

structure of 𝑂 (𝑛) space and 𝑂 ((
√
𝑛 + 𝑠) log𝑛) query time (under

certain assumptions on the data).

4 TECHNIQUE 1: ALIAS AUGMENTATION
Section 3.2 has given a structure for the weighted range sampling

problem that uses 𝑂 (𝑛) space and answers a query in 𝑂 (𝑠 log𝑛)
time. In this section, we will improve the query time to𝑂 (log𝑛 + 𝑠).
The new structure illustrates a technique we call alias augmentation.

4.1 A Structure of 𝑂 (𝑛 log𝑛) Space
Build a BST T on 𝑆 , obeying the conventions listed in Section 3.2.

For each node𝑢 in T , we use 𝑆 (𝑢) ⊆ 𝑆 to denote the set of elements

from 𝑆 that are stored at the leaves in the subtree of 𝑢. At each 𝑢,

we store 𝑤 (𝑢) :=
∑
𝑒∈𝑆 (𝑢 ) 𝑤 (𝑒) and create an alias structure 𝐴𝑢

(Theorem 1) on 𝑆 (𝑢). Because 𝐴𝑢 occupies 𝑂 ( |𝑆 (𝑢) |) space, the
alias structures of all the nodes at the same level of T together use

𝑂 (𝑛) space. The total space of the structure is therefore 𝑂 (𝑛 log𝑛).

Next, we explain how to answer a query with interval 𝑞 and

sample size 𝑠 . As in Section 3.2, we start by identifying a set C of

canonical nodes for 𝑞 (see Figure 1) in 𝑂 (log𝑛) time. Let the nodes

in C be 𝑢1, 𝑢2, ..., 𝑢𝑡 for some 𝑡 = 𝑂 (log𝑛). Remember that the sets

𝑆 (𝑢1), 𝑆 (𝑢2), ..., 𝑆 (𝑢𝑡 ) constitute a partition of 𝑆𝑞 := 𝑞 ∩ 𝑆 , namely,

they are mutually disjoint and their union is exactly 𝑆𝑞 .

The next step is to determine how many samples to take from

each 𝑆 (𝑢𝑖 ), 𝑖 ∈ [1, 𝑡]. Notice that this is an instance of weighted

set sampling (Section 3.1). Specifically, a weighted sample of 𝑆𝑞

should come from 𝑆 (𝑢𝑖 ) with probability 𝑤 (𝑢𝑖 )/
∑𝑡

𝑗=1𝑤 (𝑢 𝑗 ) for
each 𝑖 ∈ [1, 𝑡]. Let 𝑠𝑖 be the number of weighted samples to originate

from 𝑆 (𝑢𝑖 ), i.e., 𝑠1, ..., 𝑠𝑡 are random variables with sum 𝑠 . We can

generate these random variables in 𝑂 (𝑡 + 𝑠) = 𝑂 (log𝑛 + 𝑠) time
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Figure 2: Query processing with chunks

using Theorem 1. First, construct an alias structure on C in 𝑂 (𝑡)
time, by treating𝑤 (𝑢) as the weight for each 𝑢 ∈ C. Then, we draw
𝑠 weighted samples from C in 𝑂 (𝑠) time, after which 𝑠𝑖 (1 ≤ 𝑖 ≤ 𝑡 )

can be set to the number of occurrences of 𝑢𝑖 in those samples.

For each 𝑖 ∈ [1, 𝑡], we take 𝑠𝑖 weighted samples from 𝑆 (𝑢𝑖 ) using
the alias structure𝐴𝑢𝑖 in𝑂 (𝑠𝑖 ) time. The time of doing so for all 𝑖 is

𝑂 (∑𝑡
𝑖=1 𝑠𝑖 ) = 𝑂 (𝑠). The overall query time is therefore𝑂 (log𝑛 + 𝑠).

From the above, we can now claim:

Lemma 2. For the weighted range sampling problem, there is a
structure of 𝑂 (𝑛 log𝑛) space answering a query in 𝑂 (log𝑛 + 𝑠) time.

4.2 Reducing the Space to 𝑂 (𝑛)
We can improve the space of our structure with a chunking idea.

Divide R into interior-disjoint intervals 𝐼1, 𝐼2, ..., 𝐼𝑔 for some 𝑔 =

Θ(𝑛/log𝑛) satisfying the following conditions:

• If we define I𝑖 := 𝐼𝑖 ∩ 𝑆 for each 𝑖 ∈ [1, 𝑔], then I1,I2, ...,I𝑔
are mutually disjoint and their union is 𝑆 .

• |I𝑖 | = Θ(log𝑛) for each 𝑖 ∈ [1, 𝑔].

It is easy to obtain such intervals with sorting. We will refer to each

I𝑖 as a chunk and define𝑤 (I𝑖 ) :=
∑
𝑒∈I𝑖 𝑤 (𝑒).

We create a structure Tchunk to support weighted range sam-

pling at the chunk level. Specifically, the input dataset is I :=

{I1,I2, ...,I𝑔} where each I𝑖 (1 ≤ 𝑖 ≤ 𝑔) carries weight 𝑤 (I𝑖 ).
Given 𝑞chunk := [𝑎, 𝑏] — where 𝑎 and 𝑏 are integers in [1, 𝑔] — and

an integer 𝑠 ≥ 1, a query on Tchunk returns 𝑠 independent weighted
samples of I𝑞chunk := {I𝑖 | 𝑖 ∈ 𝑞chunk}. It should be noted that

each sample here is a chunk (rather than an element in 𝑆). We can

implement 𝑇chunk as a structure of Lemma 2. The space of 𝑇chunk is

𝑂 ( |I| log |I |) = 𝑂 ( 𝑛
log𝑛

log𝑛) = 𝑂 (𝑛).

We also build a range sum structure which allows us to calculate∑𝑏
𝑖=𝑎𝑤 (I𝑖 ) in𝑂 (log𝑛) time for any 𝑎 and 𝑏 satisfying 1 ≤ 𝑎 ≤ 𝑏 ≤

𝑔; such a structure can be a slightly augmented BST (see Chapter

14 of [14]), which uses 𝑂 (𝑔) = 𝑜 (𝑛) space. In addition, for each

𝑖 ∈ [1, 𝑔], we build an alias structure to support weighted range

sampling from chunk I𝑖 . The alias structures of all the chunks use
𝑂 (∑𝑔

𝑖=1
|I𝑖 |) = 𝑂 (𝑛) space in total. The overall space consumption

is therefore 𝑂 (𝑛).

Consider now a query with interval 𝑞 := [𝑥,𝑦] and sample

size 𝑠 . Let us first assume that the query is chunk aligned, namely,

𝑞 = 𝐼𝑎∪ 𝐼𝑎+1∪ ...∪ 𝐼𝑏 , for some 𝑎 and 𝑏 such that 1 ≤ 𝑎 ≤ 𝑏 ≤ 𝑔. The

values of 𝑎 and 𝑏 can be determined in 𝑂 (log𝑛) time with binary

search. Conceptually, a weighted sample from 𝑆𝑞 can be extracted

in a two-step manner. We first take a weighted sample I from the

set of chunks {I𝑎,I𝑎+1, ...,I𝑏 } and then acquire a weighted sample

𝑒 from I. The element 𝑒 , which is sampled with probability

𝑤 (I)∑𝑔

𝑗=1
𝑤 (I𝑗 )

· 𝑤 (𝑒)
𝑤 (I) =

𝑤 (𝑒)∑
𝑒′∈𝑆𝑞 𝑤 (𝑒′) ,

is thus a weighted sample of 𝑆𝑞 . Motivated by this, we answer

the query with the following two-level sampling strategy. First,

extract 𝑠 weighted samples from {I𝑎,I𝑎+1, ...,I𝑏 }, which can be

done in 𝑂 (log𝑛 + 𝑠) time using Tchunk . For each 𝑖 ∈ [𝑎, 𝑏], let 𝑠𝑖
be the number of occurrences of I𝑖 in those 𝑠 samples. Then, we

extract 𝑠𝑖 weighted samples from I𝑖 using the alias structure on I𝑖
in𝑂 (𝑠𝑖 ) time. The total query cost is therefore𝑂 (log𝑛 +∑𝑏

𝑖=𝑎 𝑠𝑖 ) =
𝑂 (log𝑛 + 𝑠).

It remains to discuss the scenario where 𝑞 := [𝑥,𝑦] can be an

arbitrary interval in R. Suppose that 𝑥 and𝑦 fall in 𝐼𝑎 and 𝐼𝑏 , respec-

tively, where 1 ≤ 𝑎 ≤ 𝑏 ≤ 𝑔. We can break 𝑞 into three intervals

𝑞1, 𝑞2 and 𝑞3 as follows:

• 𝑞1 is the portion of 𝑞 in the interior of 𝐼𝑎 ,

• 𝑞2 := 𝐼𝑎+1 ∪ 𝐼𝑎+2 ∪ ... ∪ 𝐼𝑏−1, and

• 𝑞3 is the remaining portion of 𝑞 after trimming 𝑞1 and 𝑞2 (it

must hold that 𝑞3 ⊆ 𝐼𝑏 ).

See Figure 2 for an illustration. Define 𝑆1 := 𝑆 ∩𝑞1, 𝑆2 := 𝑆 ∩𝑞2, and
𝑆3 := 𝑆 ∩ 𝑞3. For each 𝑗 ∈ [1, 3], define 𝑤 (𝑆 𝑗 ) :=

∑
𝑒∈𝑆 𝑗

𝑤 (𝑒). We

can obtain 𝑆1 and 𝑆3 in their entirety in 𝑂 (log𝑛) time by reading

the chunksI𝑎 andI𝑏 directly. For 𝑆2, we cannot afford to enumerate

its elements but can obtain𝑤 (𝑆2) in 𝑂 (log𝑛) time from the range

sum structure. To extract 𝑠 weighted samples from 𝑆𝑞 , we first

determine the number 𝑠 𝑗 of samples that will come from 𝑆 𝑗 for each

𝑗 = 1, 2, and 3 (this can be easily done in 𝑂 (𝑠) time). By resorting

to Theorem 1, the 𝑠1 and 𝑠3 samples from 𝑆1 and 𝑆3 can be fetched

in 𝑂 (log𝑛 + 𝑠1 + 𝑠3) time. Acquiring 𝑠2 samples from 𝑆2 requires

only a chunk-aligned query, which we already know how to solve

in𝑂 (log𝑛 + 𝑠2) time. We thus conclude that the overall query time

is 𝑂 (log𝑛 + 𝑠1 + 𝑠2 + 𝑠3) = 𝑂 (log𝑛 + 𝑠).

We have arrived at:

Theorem 3. For the weighted range sampling problem, there is a
structure of 𝑂 (𝑛) space answering a query in 𝑂 (log𝑛 + 𝑠) time.

4.3 Remarks
The above solution is close to a structure of Hu et al. [18], although

their discussion focused on the WR sampling scheme (a special case

of weighted sampling where all elements have the same weight).

Hu et al. [18] also showed that their structure (for WR sampling)

supports an insertion and deletion in 𝑂 (log𝑛) time. In contrast,

the structure in Section 4.2 cannot be easily modified to support

updates (because it is not easy to dynamize the alias structure).
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Afshani and Wei [3] considered weighted range sampling in the

scenario where all the elements of 𝑆 come from the integer domain

[1,𝑈 ]. They obtained a static structure of 𝑂 (𝑛) space whose query
time is𝑂 (log log𝑈 +𝑠). Their result can actually be stated in a more

general way, which we will clarify when proving Lemma 4 in the

next section.

5 TECHNIQUE 2: COVERAGE
Before introducing the next technique, let us first improve our

solution to the tree sampling problem in Section 3.2. Recall that we

gave a structure of𝑂 (𝑛) space that answers a query in𝑂 (𝑠 ·ℎ) time

where ℎ is the height of the tree. Next, we show how to achieve

query time 𝑂 (log𝑛 + 𝑠) using Theorem 3.

Perform a depth first traversal (DFT) of𝑇 . Let Π be the sequence

of leaves encountered in the traversal (note: although the traversal

visits internal nodes as well, Π concerns only the leaves). DFT

ensures a nice, rudimentary, property:

Proposition 1. For each node 𝑢 in 𝑇 , the leaves in the subtree of
𝑢 constitute a contiguous portion of Π.

Consider a tree sampling query with parameters 𝑞 and 𝑠 (the goal

is to draw 𝑠 independent weighted samples from the subtree of node

𝑞). The query can now be converted to weighted range sampling. By

Proposition 1, the leaves in the subtree of 𝑞 are the nodes in Π[𝑎 : 𝑏]
— for some 𝑎 and 𝑏 satisfying 1 ≤ 𝑎 ≤ 𝑏 ≤ 𝑛 — which represents

the subsequence of Π starting from the 𝑎-th position and ending

at the 𝑏-th position (both positions inclusive). In preprocessing,

we can store the values of 𝑎 and 𝑏 at 𝑞 using constant words so

that they can be obtained directly once 𝑞 is known. It is clear that

the query essentially extracts 𝑠 weighted samples from Π[𝑎 : 𝑏].
Theorem 3 thus implies a structure of 𝑂 (𝑛) space that answers a
query in 𝑂 (log𝑛 + 𝑠) time.

It turns out that we can do even better:

Lemma 4. There is a structure for the tree sampling problem that
uses 𝑂 (𝑛) space and answers a query in 𝑂 (1 + 𝑠) time.

Proof. Afshani and Wei [3] proved the following result on the

weighted range sampling problem defined in Section 3.2. Suppose

that the input dataset 𝑆 consists of 𝑛 distinct elements drawn from

the integer domain [1,𝑈 ] for some𝑈 ≥ 𝑛. Consider a query with

interval 𝑞 and sample size 𝑠 . If 𝑞 always has the form [𝑎, 𝑏] where
both 𝑎 and 𝑏 are elements from 𝑆 , then there is a structure of

𝑂 (𝑛) space that can answer a query in 𝑂 (1 + 𝑠) time. Combining

this result with the earlier discussion yields the lemma (for tree

sampling,𝑈 = 𝑛). □

The lemma enhances the power of tree sampling, which as men-

tioned in Section 3.2 serves as a generic technique to adapt a tra-

ditional reporting structure for IQS. Next, we will generalize the

discussion of Section 3.2 to a class of tree-based structures.

Let 𝑆 be the input dataset. A reporting query, in general, specifies

a predicate 𝑞 and returns 𝑆𝑞 := {𝑒 ∈ 𝑆 | 𝑒 satisfies 𝑞}. Consider a
structure designed for such queries. For our discussion, we assume

that the structure builds a tree T such that each element is stored

at a distinct leaf of T . For each node 𝑢 in T , define by 𝑆 (𝑢) the set

of elements stored in the subtree of 𝑢. Given a predicate 𝑞 and a set

C of nodes, we call C a cover of 𝑞 if

• the nodes in C have disjoint subtrees;

• 𝑆𝑞 =
⋃
𝑢∈C 𝑆 (𝑢).

A cover definitely exists because we can always form C by adding

every leaf that stores an element of 𝑆𝑞 . We assume that, given a 𝑞,

the structure is able to find a cover of 𝑞 of a small size; let us denote

that particular cover as C𝑞 .

Now, consider the query’s IQS version under weighted sampling.

Specifically, each element in 𝑆 carries a weight. Given a predicate 𝑞

and an integer 𝑠 ≥ 1, an IQS query returns 𝑠 independent weighted

samples from 𝑆𝑞 . The outputs of all queries must be mutually inde-

pendent. The next theorem gives a generic approach to convert T
into an IQS structure:

Theorem 5. Consider the tree-based structure as described earlier.
Let𝑚 be the number of nodes in T . With 𝑂 (𝑚) additional space, we
can obtain a structure that, given an IQS query (weighted sampling)
with predicate 𝑞 and sample size 𝑠 , answers the query in 𝑂 ( |C𝑞 | + 𝑠)
time, plus the time for finding C𝑞 .

Proof. In preprocessing, we store at each node 𝑢 of T the value

𝑤 (𝑢) := ∑
𝑒∈𝑆 (𝑢 ) 𝑤 (𝑒). Then, build a structure of Lemma 4 to sup-

port tree sampling on T , treating𝑤 (𝑧) as the weight of each leaf 𝑧.

The additional space consumption is 𝑂 (𝑚).

Now, consider a query with parameters 𝑞 and 𝑠 . We first instruct

the structure to find the cover C𝑞 . The rest of the algorithm is similar

to what was illustrated in Section 3.2. Specifically, use Theorem 1

to build an alias structure on C𝑞 on the fly in𝑂 ( |C𝑞 |) time, treating

𝑤 (𝑢) as the weight of each node 𝑢 ∈ C𝑞 . To obtain a weighted

sample from 𝑆𝑞 , we perform two steps. First, draw a weighted

sample𝑢 (i.e., a node) from C𝑞 , which needs𝑂 (1) time by Theorem 1.

Second, take a weighted sample 𝑒 from 𝑆𝑢 , which again needs

𝑂 (1) time (Lemma 4). The element 𝑒 is a weighted sample from 𝑆𝑞 .

Repeating the steps 𝑠 times produces 𝑠 samples. □

Many index structures in the database area are tree based, and

the theorem converts all of them into IQS structures. Section 3.2 has

explained that the BST always ensures a cover C𝑞 of size 𝑂 (log𝑛)
(i.e., containing the canonical nodes) for a range query with interval

𝑞. Hence, Theorem 5 indicates (once again) that there is a structure

for weighted range sampling that occupies 𝑂 (𝑛) space and has

𝑂 (log𝑛 + 𝑠) query time. We give two extra notable examples below.

• Let 𝑆 be a set of 𝑛 points in R𝑑 where 𝑑 is a constant. Given

a rectangle 𝑞 of the form [𝑥1, 𝑦1] × [𝑥2, 𝑦2] × ... × [𝑥𝑑 , 𝑦𝑑 ],
an orthogonal range query reports 𝑆𝑞 := 𝑆 ∩ 𝑞. A kd-tree

[10] on 𝑆 uses 𝑂 (𝑛) space and permits us to find a cover

C𝑞 of size 𝑂 (𝑛1−1/𝑑 ) for every 𝑞. Theorem 5 directly gives

an IQS structure of 𝑂 (𝑛) space and 𝑂 (𝑛1−1/𝑑 + 𝑠) query
time for the multi-dimensional weighted range sampling

problem (Section 3.2) (improving the structure of Looz and

Meyerhenke [24] mentioned in Section 3.2).

• Consider again orthogonal range queries on 𝑆 . A range tree

[11, 15] on 𝑆 uses𝑂 (𝑛 log𝑑−1 𝑛) space and permits us to find
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a cover C𝑞 of size 𝑂 (log𝑑 𝑛) for every 𝑞. Theorem 5 yields
4

a structure for multi-dimensional weighted range sampling

that uses 𝑂 (𝑛 log𝑑−1 𝑛) space and guarantees 𝑂 (log𝑑 𝑛 + 𝑠)
query time (improving the structure of Martinez [20] men-

tioned in Section 3.2).
5

Remarks. Lemma 4was first formally stated byAfshani and Phillips

[2]. Theorem 5 can be regarded as a generalization of a technique

deployed by Xie et al. [27] to derive the kd-tree-based IQS result

mentioned earlier.

6 TECHNIQUE 3: APPROXIMATE COVERAGE
Next, we will explain how to strength the coverage technique in the

previous section. To keep our discussion simple, let us focus on WR

sampling (or equivalently, weighted sampling where all elements

carry the same weight).

As in Section 5, let 𝑆 be a set of elements and define 𝑆𝑞 := {𝑒 ∈
𝑆 | 𝑒 satisfies 𝑞} for a predicate 𝑞. Let T be the tree built on 𝑆 by

a data structure in the context of Theorem 5. Define 𝑆 (𝑢) again as

the set of elements in the subtree of 𝑢. Given a predicate 𝑞 and a

set C of nodes in T , we call C an approximate cover of 𝑞 if

• the nodes in C have disjoint subtrees;

• 𝑆𝑞 ⊆ ⋃
𝑢∈C 𝑆 (𝑢);

• |𝑆𝑞 | = Ω( |⋃𝑢∈C 𝑆 (𝑢) |).

Note that we no longer require 𝑆𝑞 =
⋃
𝑢∈C 𝑆 (𝑢) (as was needed in

Section 5 for C to qualify as a cover). However, there is an extra

condition (3rd bullet), which says that at least a constant portion of

the elements in

⋃
𝑢∈C 𝑆 (𝑢) need to be in 𝑆𝑞 . Intuitively, this means

that if we sample WR an element from

⋃
𝑢∈C 𝑆 (𝑢), the element

falls in 𝑆𝑞 with constant probability. Hence, we expect to obtain a

WR sample from 𝑆𝑞 by repeating 𝑂 (1) times.

A cover of 𝑞 is definitely an approximate cover, but the opposite

may not be true. For the same 𝑞, an approximate cover can be even

smaller than the smallest cover. For example, consider a BST on

a set 𝑆 of 𝑛 real values, and each predicate 𝑞 as an interval in R
such that 𝑆𝑞 := 𝑆 ∩ 𝑞. There exist intervals 𝑞 for which any cover

must have a size Ω(log𝑛). In contrast, for any 𝑞, there is always an

approximate cover with size at most 2, as shown in [18].

Henceforth, we assume that, for each 𝑞, the data structure can

identify an approximate cover 𝐶𝑞 of a small size. The next result

echoes Theorem 5.

Theorem 6. Consider the tree-based structure described earlier.
Let𝑚 be the number of nodes in T . With 𝑂 (𝑚) additional space, we
can obtain a structure that answers an IQS query (weighted sampling)
in 𝑂 ( | ˜C𝑞 | + 𝑠) expected time, plus the time for finding ˜C𝑞 , where 𝑞 is
the query predicate and 𝑠 is the number of samples.

Proof. The preprocessing is the same as in the proof of Theo-

rem 5. To answer a query with parameters 𝑞 and 𝑠 , we instruct the

4
Strictly speaking, a range tree does not satisfy our requirement for T because the

same element can be stored at multiple leaves in a range tree. However, this is a minor

issue that can be easily remedied. We omit the details here.

5
We note that the query time can be further reduced to𝑂 (log𝑑−1 𝑛 + 𝑠 ) , by incorpo-

rating additional ideas based on fractional cascading [13].

structure to find
˜C𝑞 and apply Theorem 1 to build an alias structure

on
˜C𝑞 in 𝑂 ( | ˜C𝑞 |) time. To obtain a WR sample from 𝑆𝑞 , we first

draw a weighted sample 𝑢 from | ˜C𝑞 | in 𝑂 (1) time and then draw

a WR sample 𝑒 from 𝑆𝑢 also in 𝑂 (1) time (Lemma 4). If 𝑒 satisfies

𝑞, it is a WR sample from 𝑆𝑞 ; otherwise, discard 𝑒 and obtain an-

other sample by repeating the two steps. In expectation, a constant

number of repeats will churn out a sample from 𝑆𝑞 . The time to

produce 𝑠 samples is thus 𝑂 (𝑠) expected. □

Different predicates may share the same approximate cover, that

is,
˜C𝑞1 = ˜C𝑞2 even though 𝑞1 ≠ 𝑞2. Define

˜C =
{
˜C𝑞 | all predicates 𝑞

}
;

in other words,
˜C collects all the distinct approximate covers that

the data structure may identify for a predicate. The corollary below

explains a way to trade space usage for query efficiency.

Corollary 7. Consider the same tree-based structure in Theo-
rem 6. With 𝑂 (𝑚 + ∑

˜C∈ ˜C
| ˜C|) additional space, we can obtain a

structure that answers an IQS query (WR sampling) in 𝑂 (𝑠) expected
time, plus the time for finding ˜C𝑞 , where 𝑞 is the query predicate and
𝑠 ≥ 1 is the number of samples.

Proof. The | ˜C𝑞 | term in the query time of Theorem 6 comes

from constructing an alias structure on
˜C𝑞 . We can eliminate the

term by computing the structure in preprocessing. Storing such a

structure for each 𝐶 ∈ ˜C increases the space by 𝑂 (∑
˜C∈ ˜C

| ˜C|). □

The astute reader may wonder whether Theorem 5 would ad-

mit a corollary similar to the above. The answer is affirmative but

the usefulness of Corollary 7 is mainly due to approximate covers.
Specifically, approximate covers can be much easier to form com-

pared to their exact counterpart, because of which we can hope

to (approximately) cover all predicates with a relatively small
˜C.

Indeed, this is the key reason why Corollary 7 can yield interesting

IQS structures (see the remark below).

Remarks. Our discussion generalizes an approach developed by

Afshani and Wei [3] in tackling the IQS version of 3D halfspace
reporting [1] under WR sampling. Viewed through the lens of Corol-

lary 7, their solution serves as an excellent example of how to con-

struct a
˜C whose

∑
˜C∈ ˜C

| ˜C| is linear to the size of the input dataset.

Approximate coverage can be adapted to work for weighted sam-

pling by combining the above discussion with ideas from [2] where

Afshani and Phillips extended the halfspace IQS result of [3] to

weighted sampling.

Considering that the query time in Theorem 6 is expected, one

may wonder if it is possible to make it hold in the worst case.

Recently, Afshani and Phillips [3] established some hardness results

suggesting that such improvement would be unlikely.

7 TECHNIQUE 4: RANDOM PERMUTATION
Earlier in Section 2 we have seen how random permutation helps

to design a structure for query sampling, although that structure

did not guarantee cross-query independence. In this section, we

will show that random permutation is useful for IQS as well. For

this purpose, we will consider:
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Set Union Sampling. Let F be a collection of sets, namely,

each member of F is a set. The elements of the sets in F
originate from an identical domain (the domain’s details are

irrelevant). For any subset G ⊆ F , define

⋃G :=
⋃

𝑆∈G 𝑆 ,

namely, the union of the sets in G. Given a G ⊆ F , a query

returns an element sampled uniformly at random from

⋃G.

The outputs of all queries must be mutually independent.

The problem was introduced by Har-Peled and Mahabadi [17]

and stands at the core of all the known solutions [6–8, 17] to fair

near neighbor search introduced in Section 2.

Define 𝑛 :=
∑
𝑆∈F |𝑆 | and𝑈 := |⋃F |. Note the subtle difference

between 𝑛 and 𝑈 : the former is the total size of all the sets in F ,

whereas the latter is the total number of distinct elements in those

sets.

Consider a query with parameter G. We define 𝑔 := |G| and
𝑈G := |⋃G|. Denote by 𝑆1, 𝑆2, ..., 𝑆𝑔 the sets in G. The problem is

easy if those sets are mutually disjoint. In that case, we can first

choose a set 𝑋 from G randomly according to the rule Pr[𝑋 =

𝑆𝑖 ] = |𝑆𝑖 |/
∑𝑔

𝑗=1
|𝑆 𝑗 | and then return a random element from𝑋 . The

overall query cost is𝑂 (𝑔). The approach, however, no longer works
if the sets of 𝑈G may overlap with each other. Overcoming the

obstacle requires additional ideas, as explained next.

Structure. Perform a random permutation of the elements in

⋃F
and denote the permuted sequence as Π. Define the rank of each
element 𝑒 ∈ ⋃F as its position in Π. For each set 𝑆 ∈ F , we

build a range reporting structure to return the elements in 𝑆 whose

ranks fall in [𝑎, 𝑏], for any 𝑎 and 𝑏 satisfying 1 ≤ 𝑎 ≤ 𝑏 ≤ 𝑈 . The

structure can be a BST, which uses 𝑂 ( |𝑆 |) space and returns all the

qualifying elements in 𝑂 (log𝑛 + 𝑘) time, where 𝑘 is the number of

reported elements. The overall space consumption is 𝑂 (𝑛) and the

construction time is 𝑂 (𝑛 log𝑛).

Query. Next, we explain how to answer a query with parameter

G = {𝑆1, ..., 𝑆𝑔}. Let us first assume the availability of a value ˆ𝑈G
which satisfies 𝑈G/2 ≤ ˆ𝑈G ≤ 1.5𝑈G . The assumption will be

removed in the end.

Conceptually, cut the rank space [1,𝑈 ] into ˆ𝑈G disjoint intervals

𝐼1, 𝐼2, ..., 𝐼𝑈G
each with length 𝑈 / ˆ𝑈G . For each 𝑖 ∈ [1, 𝑔] and each

𝑗 ∈ [1, ˆ𝑈G], define
𝑆𝑖 (𝐼 𝑗 ) := {𝑒 ∈ 𝑆𝑖 | rank of 𝑒 is in 𝐼 𝑗 }.

Define for each 𝑗 ∈ [1, ˆ𝑈G]⋃
𝐼 𝑗 :=

𝑔⋃
𝑖=1

𝑆𝑖 (𝐼 𝑗 ) (3)

namely, the set of elements in

⋃G whose ranks are in 𝐼 𝑗 . As
⋃G

has𝑈G elements and Π is a random permutation, we expect to see

only 𝑈G/ ˆ𝑈G = Θ(1) elements in

⋃
𝐼 𝑗 . Let𝑚 := 𝑐 log

2
𝑛 where 𝑐 is

a sufficiently large constant to make following event occur with

probability at least 1 − 𝛿 = 1 − 1/𝑛3: it holds for every 𝑗 ∈ [1, ˆ𝑈G]
that ���⋃ 𝐼 𝑗

��� ≤ 𝑚. (4)

We will proceed by assuming the event’s occurrence.

The query algorithm runs as follows:

1. pick an interval 𝐼 uniformly at random from {𝐼1, ..., 𝐼𝑈G
}

2. retrieve 𝑆𝑖 (𝐼 ) for each 𝑖 ∈ [1, 𝑔]
3. toss a coin with heads probability |⋃ 𝐼 |/𝑚

/*

⋃
𝐼 :=

⋃𝑔

𝑖=1
𝑆𝑖 (𝐼 ), as defined in (3) */

4. if the coin comes up heads then
5. return a uniformly random element from

⋃
𝐼

The above algorithm returns nothing if the coin at Line 3 comes up

tails. In that case, we simply repeat the algorithm until a sample is

finally returned.

Let 𝑒 be an arbitrary element in

⋃G, and define 𝑗 ∈ [1, ˆ𝑈G] as
the integer such that 𝑒 ∈ ⋃

𝐼 𝑗 . We have:

Pr[Line 5 returns 𝑒] = 1

ˆ𝑈G
·
|⋃ 𝐼 𝑗 |
𝑚

· 1

|⋃ 𝐼 𝑗 |
=

1

ˆ𝑈G ·𝑚
. (5)

As the probability is the same for all 𝑒 ∈ ⋃G, we can assert

that the query outputs a uniformly random sample from

⋃G at

Line 5. Observe that the summation of (5) for all 𝑒 ∈ ⋃G equals

1

𝑚 · (𝑈G/ ˆ𝑈G) = Θ(1/𝑚). In other words, the algorithm returns a

sample with probability Θ(1/𝑚), meaning that we can get a sample

with Θ(𝑚) = Θ(log𝑛) repeats in expectation.

For each 𝑖 ∈ [1, 𝑔], the BST on 𝑆𝑖 allows us to find 𝑆𝑖 (𝐼 ) at Line 2
in𝑂 (log𝑛 + |𝑆𝑖 (𝐼 ) |) time which is at most𝑂 (log𝑛 +𝑚) = 𝑂 (log𝑛)
because of (4). It thus becomes clear that the query algorithm runs

in 𝑂 (𝑔 log𝑛) time. As we need 𝑂 (log𝑛) repeats in expectation, the

total running time is 𝑂 (𝑔 log2 𝑛) in expectation.

Deriving ˆ𝑈G .Deriving𝑈G precisely requires reading all the sets in

G, which incurs cost we cannot afford. However, it is much cheaper

to derive an estimate ˆ𝑈G meeting our requirement ˆ𝑈G/2 ≤ 𝑈G ≤
1.5 ˆ𝑈G by resorting to sketches.

In general, given a set 𝑆 of elements drawn from a domain of

size𝑚, we can compute a sketch of [9], which stores 𝑂 ( 1

𝜖2
log

1

𝛿
)

words, is constructible in 𝑂 ( |𝑆 | log 1

𝛿
) expected time, and can be

used to derive an estimate of |𝑆 | with relative error at most 𝜖 in

constant time. Furthermore, suppose that such a sketch is available

on sets 𝑆1 and 𝑆2, respectively (their elements are drawn from the

same domain of size𝑚). We can merge their sketches into a sketch

on 𝑆1 ∪ 𝑆2 in 𝑂 ( 1

𝜖2
log

1

𝛿
) expected time.

For our purposes, we parameterize𝑚 to𝑈 , 𝛿 to 1/𝑛3, and 𝜖 to 1/2.
In preprocessing, build a sketch for each 𝑆 ∈ F with |𝑆 | ≥ log

2
𝑛.

The sketch on 𝑆 requires 𝑂 (log 1

𝛿
) = 𝑂 (log𝑛) = 𝑂 ( |𝑆 |) words

and can be built in 𝑂 ( |𝑆 | log𝑛) time. The total space consumption

thus remains 𝑂 (𝑛) and the total reconstruction time is 𝑂 (𝑛 log𝑛)
expected.

Given a query with G (as before, define 𝑔 := |G|), we merge the

sketches of the sets in G to obtain a sketch on

⋃G. Note, however,

that a set 𝑆 ∈ Gmay not have a pre-built sketch. But in that case, the

size of 𝑆 must be at most log
2
𝑛 and we can build its sketch on the

fly in 𝑂 ( |𝑆 | log 1

𝛿
) = 𝑂 (log2 𝑛) expected time. Thus, in 𝑂 (𝑔 log2 𝑛)

expected time, we make sure that all the sets in G have sketches,

which can then be merged in 𝑂 (𝑔 log 1

𝛿
) = 𝑂 (𝑔 log𝑛) time. After
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that, with probability at least 1 − 1/𝑛3, we can derive in constant

time an estimate ˆ𝑈G of 𝑈G := |⋃G| with relative error at most

1/2. This ˆ𝑈G fulfills our purposes.

We thus have shown:

Theorem 8. For the set union sampling problem, there is a struc-
ture of 𝑂 (𝑛) space that can be built in 𝑂 (𝑛 log𝑛) expected time and
answers a query correctly with probability at least 1 − 2/𝑛3. The
query cost is 𝑂 (𝑔 log2 𝑛) expected where 𝑔 is the number of sets in
the query’s parameter G.

The above theorem, as stated in the way above, holds for one

query. However, by applying standard rebuilding techniques, we

can extend the result to hold on all queries. It suffices to rebuild the

structure after 𝑛 queries. The rebuilding cost 𝑂 (𝑛 log𝑛) expected
can be amortized over those queries, each of which bears 𝑂 (log𝑛)
expected. With probability at least 1 − Θ(1/𝑛2), all those 𝑛 queries

are answered correctly. The queries’ outputs are always mutually

independent.

Remarks. The above solution follows ideas due to Aumuller et

al. [8], which were later refined in [7]. The discussion of [7, 8],

however, did not touch upon space consumption. A straightforward

implementation would create a sketch on every set in F and end up

with 𝑂 (𝑛 log𝑛) space. The issue can be fixed by building sketches

only on sets of size at least log
2
𝑛 andmodifying the query algorithm

accordingly, as shown earlier.

8 EXTERNAL MEMORY
Our discussion has so far assumed the RAM computation model. In

database systems, the input dataset is often stored in the disk such

that a query needs to fetch data into memory via disk I/Os. In such

scenarios, RAM ceases to be a reasonable model because CPU time

is no longer the performance bottleneck. The predominant model

for studying I/O-efficient algorithms is the external memory (EM)

model introduced by Aggarwal and Vitter [4].

In EM, a machine has𝑀 words of memory and a disk that has an

unbounded size but has been formatted into blocks of size 𝐵 words.

𝑀 ≥ 2𝐵, namely, the memory can hold at least two blocks of data.

An I/O either reads a disk block of data into memory, or writes 𝐵

words in memory to a disk block. The cost of an algorithm is the

number of I/Os performed (CPU time is free), while the space of a
structure is the number of disk blocks occupied.

In RAM, an algorithm outputting 𝑘 elements needs Ω(𝑘) time to

just to read the elements from memory. In EM, however, the cost

of reading 𝑘 elements can be as low as ⌈𝑘/𝐵⌉ I/Os. This is why an

interesting EM algorithm usually has an output term𝑂 (𝑘/𝐵), rather
than 𝑂 (𝑘). For example, in RAM, the BST answers a range query

(see Section 1) in 𝑂 (log𝑛 + 𝑘) time, where 𝑛 is the size of the input

dataset. In EM, the BST’s cost becomes 𝑂 (log𝑛 + 𝑘) I/Os, which,
however, is not attractive at all. In contrast, the B-tree achieves the

purpose in 𝑂 (log𝐵 𝑛 + 𝑘/𝐵) I/Os.

Many IQS algorithms in RAM rely on random accesses to achieve

satisfactory efficiency and become prohibitively expensive in EM.

To illustrate, let us consider perhaps the simplest IQS problem:

Set Sampling. The input dataset 𝑆 has 𝑛 elements. Given

an integer 𝑠 ≥ 1, a query returns 𝑠 independent WR samples

from 𝑆 . The outputs of all queries must be mutually indepen-

dent.

In RAM, the problem can be easily settled as follows. Simply

store 𝑆 in an array and answer a query by returning 𝑠 uniformly

random elements from the array. The space consumption is 𝑂 (𝑛)
and the query time is 𝑂 (𝑠); both complexities are optimal in RAM.

In EM, the same approach uses 𝑂 (𝑛/𝐵) space and incurs 𝑂 (𝑠) I/Os
per query. The space complexity is optimal but the query cost is

terrible.

Naturally, one would seek a structure that can guarantee𝑂 (𝑠/𝐵)
query cost (which would “match” the RAM result). This turned out

to be impossible. A fundamental result, due to Hu et al. [18], is that,

when𝐵 ≤ 𝑠 ≤ 𝑛0.99, every structuremust spendΩ(min{𝑠, 𝑠
𝐵
log𝑀/𝐵

𝑛
𝐵
})

I/Os answering a query, regardless of how much space is used. In
fact, this is true even if the query cost is amortized. Indeed, for set

sampling, a sequence of 𝑡 queries with parameters 𝑠1, 𝑠2, ..., 𝑠𝑡 is

equivalent to a single query with parameter 𝑠 =
∑𝑡
𝑖=1 𝑠𝑖 . The total

cost of all those queries must be Ω(min{𝑠, 𝑠
𝐵
log𝑀/𝐵

𝑛
𝐵
}).

On the other hand, we can achieve𝑂 (min{𝑠, 𝑠
𝐵
log𝑀/𝐵

𝑛
𝐵
}) amor-

tized query cost with a linear-space structure (i.e., space 𝑂 (𝑛/𝐵)),
thus matching the aforementioned lower bound. We consider only

𝑠
𝐵
log𝑀/𝐵

𝑛
𝐵
≤ 𝑠 because otherwise it suffices to run the RAM so-

lution in EM directly. In preprocessing, store all the elements of

𝑆 in an array and, in addition, store 𝑛 samples WR from 𝑆 in a

separate array called the sample pool. With sorting, the samples

can be obtained in 𝑂 ( 𝑛
𝐵
log𝑀/𝐵

𝑛
𝐵
) I/Os [4]. When the structure is

newly built, all the samples are marked as clean. To answer a query
with parameter 𝑠 , we simply return the next 𝑠 clean samples from

the pool and mark them dirty. When the pool runs out of clean

samples, we rebuild the pool in 𝑂 ( 𝑛
𝐵
log𝑀/𝐵

𝑛
𝐵
) I/Os. The cost can

be amortized on the 𝑛 samples already returned, so that each of

them is charged only 𝑂 ( 1
𝐵
log𝑀/𝐵

𝑛
𝐵
) I/Os. The amortized query

cost is therefore 𝑂 ( 𝑠
𝐵
log𝑀/𝐵

𝑛
𝐵
). We can also achieve a worst-case

bound of 𝑂 (1 + 𝑠
𝐵
log𝑀/𝐵

𝑛
𝐵
) for every query with standard de-

amortization techniques [5].

Building upon the above idea, Hu et al. [18] presented two EM

structures for theweighted range sampling problem (see Section 3.2)

in EM, under the special scenario where all elements have equal

weights (i.e., WR sampling). Their structures achieve different space

and query tradeoffs. The first one uses 𝑂 ( 𝑛
𝐵
log

∗ 𝑛
𝐵
) space6 and an-

swers a query in𝑂 (log𝐵 𝑛 + 𝑠
𝐵
log𝑀/𝐵

𝑛
𝐵
) I/Os amortized. Note that

the term
𝑠
𝐵
log𝑀/𝐵

𝑛
𝐵
is necessary because weighted range sam-

pling generalizes set sampling. The second structure uses 𝑂 (𝑛/𝐵)
space and answers a query in𝑂 (log∗ 𝑛

𝐵
+ log𝐵 𝑛+ 𝑠

𝐵
log𝑀/𝐵

𝑛
𝐵
) I/Os

amortized.

9 CONCLUDING REMARKS
Today, the IQS literature [2, 3, 6–8, 17, 18, 20, 21, 24, 25, 27] harbors

a trove of interesting ideas, many of which, unfortunately, cannot be

included in this article. However, we are still far from understanding

6
The iterated logarithm log

∗ 𝑥 is the smallest 𝑡 such that log
2
log

2
... log

2︸              ︷︷              ︸
𝑡

𝑥 ≤ 2.
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IQS thoroughly. Next, we list several promising directions — beyond

what has been eluded earlier — for future investigation.

• Direction 1: Dynamization.With few exceptions [18], the

previous IQS research has focused on static data. In practice,

however, datasets are subject to frequent updates. Thus, it is

an urgent task to extend the existing structures to support

fast insertions and deletions. A fundamental problem is to

dynamize the alias method in Section 3.1, namely, how to

support fast insertions and deletions in the input set 𝑆 , while

still allowing independent sample extraction in constant time.

The reader may refer to [16] for an optimal solution when

the elements in 𝑆 have integer weights.

• Direction 2: EM. There has not been much progress on

IQS structures in EM since [18]. The EM model continues to

retain its practical importance: data volume has been increas-

ing at a faster pace than memory capacity. As explained in

Section 8, IQS in EM requires techniques drastically different

from those in RAM. Even weighted range sampling (which

has been well understood in RAM) remains open in EM: it is

a major challenge to design a structure of𝑂 (𝑛/𝐵) space and
𝑂 (log𝐵 𝑛 + 𝑠

𝐵
log𝑀/𝐵

𝑛
𝐵
) amortized query cost.

• Direction 3: Generic Reductions. In RAM, nearly every

known IQS structure “matches” the corresponding reporting

structure in terms of space and query complexities. For exam-

ple, the structure for weighted range sampling in Section 4

uses 𝑂 (𝑛) space and answers an IQS query in 𝑂 (log𝑛 + 𝑠)
time, “matching” the performance of the BST which uses

𝑂 (𝑛) space and resolves a range query in 𝑂 (log𝑛 + 𝑘) time.

Is all the correspondence we have witnessed merely a coin-

cidence? Or maybe there exists a reduction from IQS to the

counterpart “reporting query”?More generally, can we prove

that IQS is equivalent to solving a certain myriad of queries?

Some progress has been reported in [2] in this regard.

• Direction 4: Approximate IQS.Many estimation tasks can

be carried out with approximate sampling, namely, the sam-

ple probability of a possible outcome is allowed to slightly

deviate from its intended value. For example, while uniform

sampling is supposed to take each element from a set of

size 𝑛 with probability 1/𝑛, 𝜖-uniform sampling would take

each element with a probability between
1

(1+𝜖 )𝑛 and
1+𝜖
𝑛 .

How does the value 𝜖 affect the space and query (possibly

also update) complexities of IQS? Research on this topic has

emerged recently [7].
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