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ABSTRACT

Given two sets of entities X and Y , entity matching aims to decide

whether x and y represent the same entity for each pair (x ,y) ∈

X × Y . As the last resort, human experts can be called upon to

inspect every (x ,y), but this is expensive because the correct verdict

could not be determined without investigation efforts dedicated

specifically to the two entities x and y involved. It is therefore

important to design an algorithm that asks humans to look at only

some pairs, and renders the verdicts on the other pairs automatically

with good accuracy.

At the core ofmost (if not all) existing approaches is the following

classification problem. The input is a set P of points in Rd , each of

which carries a binary label: 0 or 1. A classifier F is a function from

R
d to {0, 1}. The objective is to find a classifier that captures the

labels of a large number of points in P .

In this paper, we cast the problem as an instance of active learning

where the goal is to learn a monotone classifier F , namely, F (p) ≥

F (q) holds whenever the coordinate of p is at least that of q on

all dimensions. In our formulation, the labels of all points in P are

hidden at the beginning. An algorithmA can invoke an oracle, which

discloses the label of a point p ∈ P chosen by A. The algorithm

may do so repetitively, until it has garnered enough information to

produce F . The cost of A is the number of times that the oracle is

called. The challenge is to strike a good balance between the cost

and the accuracy of the classifier produced.

We describe algorithms with non-trivial guarantees on the cost

and accuracy simultaneously. We also prove lower bounds that

establish the asymptotic optimality of our solutions for a wide

range of parameters.
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1 INTRODUCTION

Given two sets of entities X and Y , entity matching aims to de-

cide whether x and y represent the same entity for each pair

(x ,y) ∈ X × Y ; if so, they are said to form a match. For exam-

ple, X (or Y ) can be a set of advertisements placed at Amazon

(or eBay, resp.). Each advertisement has attributes like prod-name,

prod-description, year, price, and so on. The goal is to decide

whether advertisements x and y are about the same product, for all

(x ,y) ∈ X × Y .

What makes the problem a challenge is the fact that the decision

cannot be made through a simple comparison on the attributes of

x and y, because even a pair of matching x and y may still disagree

on the attribute values. This is obvious for prod-description

and price since x and y can introduce the same product in differ-

ent ways, and price it differently. In fact, x and y may not agree

even on “supposedly standardized” attributes like prod-name (e.g.,

x .prod-name = “MSWord” vs.y.prod-name = “Microsoft Word Pro-

cessor”), although it would be reasonable to expect x .year = y.year

(advertisements are required to be correct).

As the bottomline resort, human experts are called upon to in-

spect each (x ,y) ∈ X × Y . This is expensive because the inspection

demands manual efforts (e.g., reading both advertisements in detail).

It is therefore important to design an algorithm that asks humans

to look at only some pairs, and renders the verdicts on the other

pairs automatically, perhaps at the expense of a small number of

errors.

Towards the above purpose, a dominant methodology behind

existing approaches (e.g., [1, 3, 6, 7, 12, 14, 22, 24, 26]) is to transform

the task into a multidimensional classification problem with the

following preprocessing:

(1) First, shrink the set of all possible pairs to a subsetT ⊆ X ×Y ,

by eliminating the pairs that obviously cannot be matches.

This is known as blocking, which is carried out based on

application-dependent heuristics. This step is optional; if

skipped, then T = X × Y . In the Amazon-eBay example,

T may involve only those advertisement pairs (x ,y) with

x .year = y.year.

(2) For each remaining entity pair (x ,y) ∈ T , create a multidi-

mensional point p(x,y) using a number d of similarity func-

tions

sim1, sim2, ..., simd ,

each evaluated on a certain feature. The i-th coordinate of

p(x,y) equals simi (x ,y): a higher valuemeans that x andy are
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more similar on the i-th feature. This creates ad-dimensional

point set P = {p(x,y) | (x ,y) ∈ T }.

In our example, from a numerical attribute such as price,

one may extract a feature that equals −|x .price − y.price|

(the negation is just to be consistent with “larger means

more similar”). From a text attribute (such as prod-name and

prod-description) one may extract a feature by evaluat-

ing the similarity between the corresponding texts of x and

y using an appropriate metric (e.g., edit distance for short

texts, and cosine similarity for long texts). Multiple feature

dimensions may be derived even on the same attribute; e.g.,

one can extract two features by computing the edit-distance

and jaccard-distance of x .prod-name and y.prod-name sep-

arately.

Every point p(x,y) ∈ P carries a label, which is 1 if (x ,y) is a

match, or 0 otherwise. The original entity matching task on X ,Y

is thus converted to inferring the labels of the points in P . Still,

human inspection is the last resort for revealing the label of each

p(x,y) with no errors.

1.1 Problem Definitions

In this paper, we study two problems that are at the core of the

aforementioned framework of entity matching. Both problems have

considerable connections to active learning, as will be clarified later.

Let P be a set of n points in Rd . Each point p ∈ P carries a label—

denote as label(p)—that equals either 0 or 1. The point labels need

not follow any geometric patterns, namely, label(p) can be 0 or 1

regardless of the labels of the other points.

All the labels are hidden at the beginning. There is an oracle

which an algorithm can call to disclose the label of a point p ∈ P

selected by the algorithm. When this happens, we say that p is

probed. The algorithm’s cost is defined as the number of points

probed.

A classifier is a function F : Rd → {0, 1}. Its error on P is the

number of points mis-labeled, namely:

error(F , P) = |{p ∈ P | F (p) , label(p)}|.

F is monotone if F (p) ≥ F (q) for any points p,q ∈ P satisfying

p[i] ≥ q[i] on all i ∈ [1,d], where p[i] is the i-th coordinate of p.

The set Cmono of monotone classifiers is infinite.

The first problem we consider is:

Problem 1 (Active Monotone Classification without Ex-

ceptions): Find a monotone classifier F of small error(F , P)

by paying a low probing cost.

One can trivially minimize the error by probing all points of P ,

and then taking all the time needed to fit the labels of P with the

best F in Cmono (we do not explicitly constrain CPU computation).

Note that the minimum error need not be zero because the labels of

P may not—actually most likely do not—fully obey monotonicity.

The above approach ensures the smallest error(F , P), but has a

terrible probing cost of n. An interesting question is whether one

can achieve the smallest error (perhaps asymptotically) with fewer

probes.

The second problem is similar, but differs in the error targeted:

Problem 2 (Active Monotone Classification with Excep-

tions): Probe a small set Z of points in P to find a monotone

classifier F of small error(F , P \ Z ).

Note that the set Z of points is exempted from error calcula-

tion. That is, we do not care whether these points are mis-labeled

by F (their labels have been revealed anyway). It is once again

possible to minimize error by probing the entire P , making Z = P

and error(F , P \ Z ) = 0. An interesting question is whether one

can choose Z strategically to strike a better tradeoff between

error(F , P \ Z ) and |Z |.

The above definitions extend in a natural way to a randomized

algorithmAran. If F is the monotone classifierAran returns andZ is

the set of points it probes, both F and Z are random variables. For

Problem 1, the expected error of Aran is defined as E[error(F , P)],

and its expected probing cost as E[|Z |]. Likewise, for Problem 2, the

expected error of Aran is defined as E[error(F , P \ Z )], while its

expected probing cost still as E[|Z |]. In all cases, expectation is over

the random choices made by the algorithm.

Remarks. The input P to both problems corresponds to the set of

points obtained fromT in the entity matching framework explained

earlier. Problems 1 and 2 are designed for two scenarios that arise

frequently in practice:

• Scenario 1: the entity sets X and Y are “training sets” that

represent the distributions DX and DY of entities to be en-

countered from two sources, respectively. The purpose of

finding a classifier F is to apply it on new (x̃ , ỹ) < X × Y to

be received online where x̃ (or ỹ) follows DX (or DY , resp.).

That F is accurate on P (a.k.a. T ) implies that F should

also work statistically well on (x̃ , ỹ). This is the application

backdrop of Problem 1.

• Scenario 2: unlike the previous scenario, here X and Y are

already the “ground sets”. In other words, there are no future

pairs (such as (x̃ , ỹ) in Scenario 1) to be cared for; and it

suffices to match only the elements of X and Y . Thus, the

“overall accuracy” of F on all the points in P is of no concern

to us: if a point already has its label revealed, it need not be

guessed by F , and thus, should be excluded from accuracy

calculation. This is the application backdrop behind Problem

2.

The rationale behindmonotonicity is that, ifx andy form amatch

according to the features picked, then any pair (x ′,y′)more similar

than (x ,y) on every feature should also be regarded as a match,

unless explicit manual inspection (i.e., a probe on p(x ′,y′)) reveals

otherwise. Indeed, the classifiers output by all existing methods are

inherently monotone. In fact, any classifier that defies monotonicity

is awkward because it indicates that at least some of the features

have been selected inappropriately.

It should be emphasized that, finding a monotone classifier is

different from assuming that the point labels fully obey monotonic-

ity. That assumption is rarely true, which is why even the best

monotone classifier can incur an error above 0.

1.2 Related Work

Our discussion of previous research first aims to give a self-

contained introduction to the key findings of active learning. This
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would be useful because active learning does not seem to have

been introduced in the database community to the same level of

details. In fact, some of those findings constitute the state of the art

on Problems 1 and 2. Then, we will also review methods from the

database area on entity matching.

Active Learning. Classification is a fundamental topic in machine

learning. Let U be a (finite or infinite) set of points in Rd . The

input is an infinite stream of pairs (p, label(p)) where p is a point

fromU , and label(p) its label which is 0 or 1. Each pair is sampled

independently from an unknown distribution D on U × {0, 1}. A

classifier is a function F : U → {0, 1}; its error probability is

calculated as

Pr[(p, label(p)) ∼ D | F (p) , label(p)],

namely, the probability of wrongly predicting the label of a point

p drawn from D. Let C be a candidate class of classifiers, and ν

be the smallest error probability of all the classifiers in C. The

learning objective is stated in the probabilistically approximately

correct (PAC) style:

With probability at least 1 − δ , find a classifier F from C

with error probability at most ν + ϵ for some small ϵ > 0.

In the traditional passive setup, label(p) is directly disclosed in

every pair (p, label(p)), where the efficiency goal is to minimize

the sample cost, which equals the number of stream pairs that an

algorithm needs to see before ensuring the aforementioned PAC

guarantee. In practice, (as mentioned before) deciding the label of

a point can be so expensive that its cost far dominates the cost of

learning. This motivated active learning, where point labels are

all hidden originally. Given an incoming point p, an algorithm can

choose whether to probe p (pay a unit cost to an oracle for revealing

label(p)). The primary efficiency goal is to perform the least number

of probes (efforts should still be made to avoid a high sample cost,

although this now becomes a secondary goal).

Active learning has been extensively studied (see excellent sur-

veys [16, 25]). The main challenge is to identify the intrinsic param-

eters that determine the label complexity, i.e., the number of probes

mandatory to ensure the PAC guarantee. Considerable progress has

been made in various scenarios [4, 8, 15]. Our subsequent discus-

sion will concentrate on agnostic active learning, where (i) ν > 0,

meaning that even the best classifier in C cannot perfectly separate

points of the two labels, that is, D has “noise”, and (ii) no assump-

tions are made on the noise. This is the branch of active learning

most relevant to our work.

The state-of-the-art understanding on agnostic learning is based

on two intrinsic parameters:

• VC dimension λ of C on U : Let S ⊆ U be a set of

points {p1,p2, ...,p |S |}. S is shattered by C if, for any

(l1, l2, ..., l |S |) ∈ {0, 1} |S | , C has a classifier F satisfying

F (pi ) = li for all i ∈ [1, |S |]. The VC dimension λ is the size

of the largest S that can be shattered by C.

• Disagreement coefficient θ : This parameter is directly related

to how many labels are needed to distinguish an optimal

classifier F ∗ in C from other classifiers similar to F ∗ under

the distribution D. We defer its precise definition (which is

slightly involved) to Appendix A. Until then, it suffices to

understand that a higher θ indicates the necessity of more

labels.

The dominant solution to agnostic active learning is an algorithm

named A2. Its initial ideas were developed by Balcan et al. [2], and

have been substantially improved/extended subsequently [4, 9, 16].

As shown in [16], the algorithm achieves the PAC guarantee with

a probing cost of

Õ

(
θ · λ ·

ν2

ϵ2

)
(1)

where Õ(.) hides factors polylogarithmic to θ , 1/ϵ , and 1/δ . On the

lower bound side, extending an earlier result of Kaariainen [18],

Beygelzimer et al. [4] proved that the probing cost needs to be:

Ω

(
ν2

ϵ2
·

(
λ + log

1

δ

))
. (2)

There is a gap of θ between the upper and lower bounds. When

this parameter isO(1), the two bounds match up to polylog factors.

Indeed, most success stories in the literature are based on candidate

classes C with small θ (e.g., see [8, 10, 13, 27]). Unfortunately, this

is not true for the class Cmono of monotone classifiers. We will

prove that its disagreement coefficient θ can be very large. Not

coincidentally, Cmono has very large VC dimension λ, too. The

consequences are two-fold:

• The θ gap between (1) and (2) becomes significant. This

means that agnostic active learning has not been well under-

stood on monotone classifiers.

• With both θ and λ being large, the A2 algorithm incurs

expensive probing costs on Cmono , and may no longer be

attractive.

Problem 1 can be reduced to agnostic active learning. For this

purpose, we setU (in active learning) to P (in Problem 1), and gen-

erate an input stream (for active learning) by repeatedly sampling

P . This makes A2 a viable solution to Problem 1. We will discuss

its performance guarantees in relation to our results in the next

subsection.

Entity Matching. There is a rich literature on entity matching;

see [1, 3, 5–7, 12, 14, 19–22, 24, 26] and the references therein. Most

of these works focused on designing heuristics that perform well in

practice, instead of establishing theoretical bounds. The papers [1, 3]

are exceptions. In [1], Arasu et al. observed that entity matching

can be cast as active learning. They presented algorithms to solve

(with guarantees) some subproblems that arose in their framework.

Unfortunately, their overall solutions do not have attractive bounds

for Problem 1 or 2. In [3], Bellare et al. showed that if one can solve

Problem 1 (which minimizes the so-called 0-1 error), the algorithm

can be utilized to attain small errors of other types (e.g., those based

on recalls and precisions), under certain assumptions.

1.3 Our Results

An Intrinsic Parameter. Recall that Problems 1 and 2 are defined

on a set P of n points in Rd . Given two points p,q ∈ P , we say that

p dominates q if p[i] ≥ q[i] holds on all i ∈ [1,d]. Notice that a point

dominates itself by this definition. The dominance relation

R = {(p,q) ∈ P × P | p dominates q}
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(a) A point set of width 1 (b) A point set of width n

Figure 1: Illustration of dominance width

is a poset (partially ordered set).

It turns out that an intrinsic parameter characterizing the hard-

ness of both problems is the widthw of R. Formally,w is the size of

the largest S ⊆ P such that no two different points in S dominate

each other; we will sometime refer to it as the dominance width

of P . Any one-dimensional P has w = 1. When d ≥ 2, w can be

anywhere between 1 and n; see Figure 1 for two extreme examples.

Problem 1. Denote by F ∗ an optimal monotone classifier on P ,

namely, this is a classifier F in Cmono with the smallest error(F , P).

We will use k to denote error(F ∗, P), and refer to k as theminimum

monotone error of P . Remember that k can be greater than 0 because

the labels of the points in P may not follow monotonicity perfectly.

Our first main result is obtained through competitive analysis:

Theorem 1. For Problem 1:

• there is a randomized algorithm that has expected error at

most 2k , and probes O(w(1 + log n
w )) points in expectation;

• there exists a constant c such that, whenw ≥ 2 and k ≤ cn/w ,

any algorithm with expected errorO(k)must have an expected

probing cost of Ω(w log n
(k+1)w

).

Several observations can be made. First, when k = 0—the noise-

free scenario where the label-1 points of P can be perfectly separated

from the label-0 ones by a monotone classifier—our algorithm (the

first bullet) always returns such a classifier. Second, whenw = Ω(n),

our lower bound (the second bullet) evaluates to Ω(n), meaning that

the naive solution of probing all points in P is already optimal. Third,

active learning improves the naive solution as long as w = o(n):

observe that, forw = o(n), the upper bound in the first bullet is o(n).

Fourth, our upper and lower bounds nearly match each other for

k = O(n/w). Remember that no algorithms can have an expected

error less than k . Therefore, under k = O(n/w), our solution is

asymptotically optimal in both expected error and expected probing

cost.

As explained in Section 1.2, one can apply the A2 algorithm of

agnostic active learning to solve Problem 1 by repeatedly sampling

from P . To see its performance, let us fit in the appropriate values for

ν , ϵ, λ, and θ , as are defined in Section 1.2. First, ν = k/n, according

to the definition of error(F ∗, P). Second, to match our expected

error 2k , ϵ should be no more than ν = k/n; setting ϵ to this value

makes ν2/ϵ2 = 1. On the other hand, when k = O(n/w), both θ and

λ can reach w even in 2D space (see Appendix A). By (1), A2 has

expected probing cost Õ(w2), worse than our bound by a factor of

Õ(w).

Note that (2) does not give a lower bound on Problem 1. Recall

that (2) applies to agnostic active learning which is just one possible

way to approach Problem 1.

Problem 2. If an algorithm returns a monotone classifier F by

probing a set Z of points, it always holds that error(F , P \ Z ) ≤

error(F , P). Hence, if an algorithm ensures an error at most, say

x , on Problem 1, the same algorithm must also achieve an error at

most x on Problem 2. Theorem 1 implies:

Corollary 1. For Problem 2, there is a randomized algorithm

that has expected error at most 2k , and expected probing costO(w(1+

log n
w )).

What is intriguing is the opposite: can we substantially reduce

the error of Problem 2 without significantly increasing the probing

cost? This, subtly, is a question on the usefulness of Z . The intended

purpose of Z is to push error(F , P \ Z ) below k (in Problem 1, the

problem definition determines that the best error is k , no matter

what). Unfortunately, we prove:

Theorem 2. Fix any integers k and n such that k ≥ 1, and n/k is

an integer at least 2. There is a set S of 1D (d = 1) inputs to Problem

2 with the same n and k such that, any algorithm guaranteeing an

expected error at most k/2 on every input in S must entail an expected

probing cost of Ω(n/k) on at least one input in S .

Corollary 1 and Theorem 2 together point out a somewhat sur-

prising fact. If we are satisfied with an expected error of 2k , the

expected probing cost is no more than O(w(1 + log n
w )) “univer-

sally” for all values of k . Even better, in the context of Theorem 2

where d = 1, w equals 1, making O(w(1 + log n
w )) = O(logn).

However, if we demand an expected error of k/2, the expected

probing cost surges to Ω(n/k), which is worse than O(logn) for

any k = o(n/logn).

Theorem 2 also implies that, for k ≤ n/(w log2
n
w ), the expected

error must be at least Ω(k) if the expected probing cost has to

be O(w log(n/w)). Thus, on those values of k , our algorithm in

Corollary 1 is already asymptotically optimal. Phrased differently,

subject to O(w log n
w ) expected probing cost, the hardness of the

problem comes from guessing the labels of points that have not

been probed, such that excluding Z from error calculation makes

little difference.

Finally, it is worth mentioning that all our algorithms can be

implemented in O(n polylogn) CPU time under any fixed dimen-

sionality d .

2 WARM UP: NOISE-FREE INPUTS

In this section, we study Problem 1 by assuming a noise-free input

P , i.e., k = 0. In other words, there exists a perfect classifier F ∗ in

Cmono with error(F ∗, P) = 0. Our objective is to discover such a

perfect monotone classifier with the least number of probes. Note

that a noise-free input P definitely obeys monotonicity: label(p)

≥ label(q) if point p ∈ P dominates another point q ∈ P .

Starting with the noise-free version has two main benefits. First,

it permits us to bring out the intrinsic parameter w (dominance

width of P ) naturally (Section 2.1). Second, it simplifies the explana-

tion of some key ideas (Sections 2.2 and 2.3). Grasping these ideas

at an early stage will be helpful in later sections.
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Figure 2: A noise-free 2D input (black and white points have

label 1 and 0, respectively)

2.1 The First Algorithm

We will first explain a simple method that finds a perfect monotone

classifier with O(w(1 + log n
w )) probes. Let C be a subset of P . We

call C:

• A chain, if it is possible to linearize the points of C into

a sequence p1,p2, ...,p |C | such that pi+1 dominates pi for

every i ∈ [1, |C | − 1]. We will refer to the sequence as the

ascending order of C .

• An anti-chain, if none of the points inC dominate each other.

Figure 2 shows a noise-free input where the black (or white)

points carry label 1 (or 0, resp.). Subset {p6,p8,p10}, for instance, is

a chain, whereas {p4, p12, p13, p14} is an anti-chain.

When P is noise-free, the points p1,p2, ...,p |C | of a chain C in

ascending order exhibit a step-wise pattern: the label-0 points must

precede all the label-1 ones. This allows us to correctly decide the

labels of all the points of C in O(1 + log |C |) probes with binary

search. Specifically, probe p ⌈ |C |/2⌉ . If its label is 1, the points after

it must also carry this label, so that we can focus recursively on the

first half of C . The case where p ⌈ |C |/2⌉ has label 0 is symmetric.

This observation is what directed our attention to chain decom-

positions, each being a collection of disjoint chains C1, C2, ..., Ct
(for some t ≥ 1) whose union equals P . Once a chain decomposi-

tion is available, the labels of all points can be correctly decided

in O(t(1 + log n
t )) probes by performing binary search on every

chain separately1. How to minimize the number t of chains is a

fundamental result in order theory:

Dilworth’s Theorem: Consider any poset; let w be the

largest size of all anti-chains. Then, (i) there is a chain de-

composition that containsw chains, and (ii) no chain decom-

positions can have less thanw chains.

For instance, the input set P of Figure 2 can be divided into 6 chains:

C1 = {p1,p2,p3,p4,p10},C2 = {p11},C3 = {p5,p9,p12},C4 = {p16},

C5 = {p13}, and C6 = {p6,p7, p8,p14,p15}. This is a smallest chain

decomposition due to the anti-chain {p10,p11,p12,p16,p13,p14}.

Hence, the dominance widthw of P is 6.

We have obtained an algorithm that performsO(w log n
w ) probes,

but the algorithm has two defects:

1∑t
i=1O (1 + log |Ci |) is maximized when |C1 | = |C2 | = ... = |Ct | = n/t .

• First, the idea of binary search no longer works on a “noisy”

P , because in that scenario the 0- and 1-labels can arbitrarily

interleave with each other on a chain.

• Second, finding a smallest chain decomposition for P is com-

putationally expensive. The fastest algorithmwe are aware of

requiresO(wn2) CPU time [17] for d ≥ 3. While CPU time is

not explicitly constrained in Problems 1 and 2, O(wn2) CPU

calculation is unlikely to be appealing in practice.

Next, we describe another algorithm that remedies the above defects

with drastically different ideas.

2.2 A Randomized Algorithm

Our second algorithm—called random probe with elimination (RPE)—

can be described in 6 lines:

Algorithm RPE(P )

1. while P , ∅

2. pick a point p from P uniformly at random

3. probe p

4. if label(p) = 1 then

5. discard from P the points dominating p

else

6. discard from P the points that p dominates

If Z is the set of points probed, we produce a monotone classifier

F as:

F (p) =

{
1 if p dominates a label-1 point in Z

0 otherwise
(3)

Lemma 1. On a noise-free P , the above F produced from RPE is

monotone, and satisfies error(F , P) = 0.

Proof. Let p be an arbitrary point p ∈ P . Consider first

label(p) = 1. If p ∈ Z , then clearly F (p) = 1. Otherwise, p must

have been discarded at Step 5 when RPE probed another label-1 p′;

but then this means p′ ∈ Z , ensuring F (p) = 1. On the other hand,

if label(p) = 0, then F (p)must be 0 because p cannot dominate any

label-1 points in Z . �

Next, we will prove the algorithm’s probing cost:

Lemma 2. When P noise-free, RPE probes O(w(1 + log n
w )) points

in expectation.

An Attrition-and-Elimination Game. Let us take a detour to

discuss a relevant problem first. Consider the following game be-

tween two players Alice and Bob. At the beginning, Alice is given

the set S = {1, 2, ..., s} for some integer s ≥ 1. The game goes in

rounds. In each round:

• Bob performs “attrition” first, by either doing nothing or

arbitrarily deleting some elements from S ;

• Alice then performs “elimination” by picking a number p ∈ S

uniformly at random, and deleting from S all the numbers

larger than or equal to p.

The game ends when S becomes empty. The number of rounds is a

random variable depending on Bob’s strategy. The question is how

Bob should play to maximize the variable’s expectation.

It is fairly intuitive that Bob should do nothing at all in every

round. To prove this, denote by function f (s) the smallest real
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number such that, Bob has a strategy to make the expected number

of rounds equal f (s). Consider the first attrition of Bob. Clearly,

what matters is the number x of elements that Bob decides to

remove (by symmetry, what those elements are does not matter). If

x < s , the game continues for Alice to work on a set S of size s − x .

After her elimination, S has i elements—for each i ∈ [0, s−x−1]—left

with probability 1/(s − x). Therefore:

f (s) ≤ 1 +
s−1
max
x=0

{
1

s − x

s−x−1∑
i=0

f (i)

}
.

As the base case, f (0) = 0. Solving the recurrence gives f (s) =

O(1 + log s) for s ≥ 1.

Proof of Lemma 2. Let {C1,C2, ...,Cw } be an arbitrary smallest

chain decomposition (which is not known to RPE). We will prove

that in expectation RPE probes O(1 + log |Ci |) points in Ci for all

i ∈ [1,w]. It will then follow that the total expected number of

probes is O(
∑w
i=1(1 + log |Ci |)), which peaks at O(w(1 + log n

w ))

when all the chains have the same size n/w .

Without loss of generality, let us focus on C1. Break C1 into (i)

the set Ctrue
1 of points with label 1, and (ii) the set C

false
1 of points

with label 0. Due to symmetry, it suffices to prove that RPE probes

O(1 + log |Ctrue
1 |) points from Ctrue

1 in expectation.

Set s = |Ctrue
1 |. List the points of Ctrue

1 in ascending order p1,p2,

...,ps . The operations that RPE performs on this chain can be

captured as an attrition-and-elimination game on an initial input

S = {p1,p2, ...,ps }:

• Bob formulates his strategy by observing the execution of

RPE. Suppose that the algorithm probes a point p < Ctrue
1 ,

and shrinks P at Step 5 or 6. Bob deletes from S all those

points of Ctrue
1 that are discarded in the shrinking.

• When RPE probes a point p ∈ Ctrue
1 , Bob finishes his attrition

in this round, and passes S to Alice. Conditioned on p ∈ Ctrue
1 ,

p was chosen uniformly at random from the current S , i.e.,

the set of points fromCtrue
1 that are still in P . Hence, p can be

regarded as the choice of Alice. When RPE shrinks P at Step

5, Alice discards p, as well as all the points behind p, from

S . This finishes a round of the game. The control is passed

back to Bob to start the next round.

By our earlier analysis on the attrition-and-elimination game,

RPE probesO(1 + log s) points fromCtrue
1 in expectation, thus com-

pleting the proof of Lemma 2.

Remark on CPU Time. RPE does not produce any chains at all

(let alone a chain decomposition), and neither is it aware of the

widthw of the dominance relation R. This allows the algorithm to

be implemented in O(n polylogn) time for fixed dimensionality d .

By maintaining P in a binary search tree, a random point p ∈ P

can be drawn at Step 2 inO(logn) time, such that in total we spend

O(n logn) time on this step. By maintaining a range tree [11] on P ,

Steps 5 and 6 can be implemented in O(x logd n) time, if x points

are eliminated from P . Each point contributes to the x-term exactly

once (it can be deleted only once). Hence, the total CPU time spent

on these two steps is bounded by O(n logd n).

. . .

. .
.

. .
.

. .
.

. .
.

Figure 3: A hard input for Problem 1:w boxes, eachwithn/w

points

2.3 A Lower Bound

We finish the section by proving the optimality of RPE in the noise-

free scenario. Given a rectangle in 2D space, we define its main

diagonal as the segment connecting the bottom-left and top-right

corners, and call the other diagonal as the anti-diagonal (where the

term “anti” reflects anti-chain).

Our lower bound is based on hard inputs constructed in 2D space

as follows. Fix any integersw and n such that 1 ≤ w ≤ n and n/w

is an integer. Divide the data space into aw ×w grid. Place points

only in the w cells along the anti-diagonal of the data space (see

Figure 3), with n/w points per cell. In each cell, the n/w points are

positioned evenly on the cell’s main diagonal, but make sure that

no points are at the cell corners. The set P of n points thus obtained

clearly has widthw . An adversary sets the labels of different cells

independently. For each cell, there are 1 + n
w different ways to do

so: for each i ∈ [0, nw ], assign label 0 to the lowest i points, and 1 to

the rest. This gives a collectionH(n,w) of (1+ n
w )w labeled inputs.

Let Adet be a deterministic algorithm operating on H(n,w). We

can thus model Adet as a binary decision tree T . At an internal

node of T , Adet probes a point p of P , and branches left (or right) if

label(p) = 0 (or 1, resp.). At a leaf ofT ,Adet must output a monotone

classifier.

Suppose that Adet guarantees returning a monotone classifier

with error 0. Adet must distinguish all the inputs in H(n,w), by

outputting a distinct classifier at each leaf of its decision tree. Define

the average cost of Adet as the average of its probing costs on all

the inputs in H(n,w). This is equivalent to the “average depth”

of the leaves in T . A binary tree with (1 + n
w )w leaves must have

an average depth of Ω(w log(1 + n
w )). Hence, Adet must have an

average cost Ω(w(1 + log n
w )).

We model a randomized algorithm as a procedure that consults

an infinite sequence of random bits, and behaves as a deterministic

algorithm when the bit sequence is fixed. Alternatively, one can

regard a randomized algorithm as a function that maps a random-bit

sequence to a binary decision tree. Combining our earlier argument

with Yao’s minimax theorem [23], any randomized algorithmwhich

outputs a perfect monotone classifier must entail Ω(w(1 + log n
w ))

expected cost on at least one input ofH(n,w).

3 THE NOISY CASE—PROBLEM 1

This section attacks Problem 1 in the general scenario where P is

noisy, namely, even an optimal classifier F ∗ in Cmono has error

k = error(F ∗, P) > 0. We will establish Theorem 1 by proving its

first bullet in Sections 3.1-3.3, and its second bullet in Section 3.4.
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3.1 Algorithm

Our solution is simply to run RPE directly on (noisy) P anyway,

and still return the classifier F in (3).

To illustrate, consider the input in Figure 4. Here, k = 3: an

optimal classifier captures the labels of all points but p1, p11, and

p15. Assume that RPE happens to probe (at Step 2) p1 first, after

which it eliminates the entire P except p6,p7, and p8. Suppose also

that the algorithm then chooses to probe p8, which removes all the

remaining points in P . With Z = {p1,p8}, the monotone classifier

of (3) has an error 5 because it incorrectly maps p2,p3,p5,p11, and

p15 to 1.

Let us give two basic properties of running RPE on a noisy input.

First, its output is always legal:

Proposition 1. RPE returns a monotone classifier F even when

P is noisy.

Proof. See Appendix B. �

The second property, together with (3), indicates symmetry be-

tween the points mapped to 0 and 1 by F .

Proposition 2. For any p ∈ P , F (p) = 0 if and only if p is

dominated by a label-0 point in Z .

Proof. See Appendix C. �

3.2 Bounding the Error

We now proceed to analyze the error of RPE. Fix an arbitrary opti-

mal monotone classifier F ∗, i.e., k = error(F ∗, P). Call a point p ∈ P

good if F ∗(p) = label(p); otherwise, p is a noise point. Divide the

set of good points into:

G∗
1 = {p ∈ P | label(p) = 1 and p is good}, and

G∗
0 = {p ∈ P | label(p) = 0 and p is good}.

Let F be the classifier output by RPE. Since P is the union of G∗
1 ,

G∗
0 , and the set of k noise points, we know:

error(F , P) ≤ error(F ,G∗
1) + error(F ,G

∗
0) + k . (4)

Let k0 be the number of label-0 noise points, that is, points p

satisfying label(p) = 0 but F ∗(p) = 1. The rest of Section 3.2 serves

as a proof of:

Lemma 3. E[error(F ,G∗
1)] is at most k0.

Due to the symmetry manifested in Proposition 2, the above

lemma implies that E[error(F ,G∗
0)] is at most the number k1 of

label-1 noise points. (4) then gives E[error(F , P)] ≤ k0+k1+k = 2k ,

as claimed in the first bullet of Theorem 1.

3.2.1 RPE by Permutation. To analyze error(F ,G∗
1), it will be

convenient to consider an alternative implementation of RPE:

1 2 3 4 5 6 7 8 9 10 11 12

2

3

4

5

6

7

8

9

10

11

12

1

p1

p2

p3

p4

p5

p6 p7

p8

p9

p10

p11

p12

p13

p14

p15

p16

Figure 4: A noisy input where k = 3; black and white points

have label 1 and 0, respectively.

Algorithm RPE-perm(P )

1. randomly permute the points of P

/* if a point p ∈ P is the i-th (i ∈ [1,n]) in the

permutation, define its rank r (p) to be i */

2. while P , ∅

3. pick the point p ∈ P with the smallest rank

4. probe p

5. if label(p) = 1 then

6. discard from P the points dominating p

else

7. discard from P the points that p dominates

Compared to RPE, RPE-perm differs only in how randomization

is injected: this is now done by randomly permuting P . The two im-

plementations have the same expected error and expected probing

cost, as proved in Appendix D.

3.2.2 Influence of Noise Points. Let us first gain some intuition

on why error(F ,G∗
1) is small in expectation. Consider the example

in Figure 4, where G∗
1 consists of all the black points except p1.

The bad news is that, if noise point p15 is probed first, F will map

p9,p13,p14 to 0 incorrectly (see Proposition 2), causing an increase

of 3 to error(F ,G∗
1). The good news is that, if p15 is probed after

any of the good points p9,p13,p14, then p15 will be discarded and

can do no harms. Under a random permutation, p15 has only 1/4

probability to rank before all of p9,p13,p14, which seems to suggest

that p15 could trigger an increase of only 3/4 to error(F ,G∗
1) in

expectation.

Unfortunately, the analysis is not as simple as this, due to the

presence of noise point p11, which complicates the conditions for

p15 to be probed. For example, observe that, if p11 did not exist, p15
can never be probed when p9 ranks before p15. This is no longer

true with the presence of p11. To see this, imagine that p11 ranks

before p9, which in turn ranks before p15. The probing of p11 evicts

p9 from P . On the other hand, p15 remains in P , and hence, gets a

chance to be probed later.

The above issue arises because p9 is dominated—and thereby

is “influenced”—by both noise points p11 and p15. Separating and

quantifying the influence of each noise point turns out to be the

most crucial idea behind our analysis. Let N0 be the set of label-0

noise points, i.e., k0 = |N0 |. Next, we will describe a way to calculate
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the “exclusive influence” I (q) of each point q ∈ N0. In particular,

we will do so incrementally by observing how RPE-perm executes.

At the beginning, initialize I (q) = 0 for every q ∈ N0. Whenever

RPE-perm is about to probe a point q ∈ N0, capture the set P(q) of

points that are still in P at this moment. Then, finalize I (q) as:

I (q) =
the number of points in P(q) ∩G∗

1 that are

dominated by q.

At the end of RPE-perm, if a point q ∈ N0 is never probed, define

P(q) = ∅ and finalize its I (q) to be 0.

The next lemma explains why the set {I (q) | q ∈ N0} computed

separates and quantifies the influence of the noise points in N0.

Lemma 4.
∑
q∈N0

I (q) = error(F ,G∗
1).

Proof. Consider an arbitrary q ∈ N0 that was probed by RPE-

perm. Let p be any point in P(q) ∩G∗
1 that is dominated by q. By

Proposition 2, F (p) = 0 because of q. Thus, p contributes 1 to

error(F ,G∗
1). Hence,

∑
q∈N0

I (q) ≤ error(F ,G∗
1).

Conversely, let p be a point contributing 1 to error(F ,G∗
1), that

is, label(p) = 1 but F (p) = 0. Let S by the set of label-0 points in

Z that dominate p. By Proposition 2, |S | ≥ 1. Define q to be point

in S that was probed the earliest. Because p is a good point with

label 1 dominated by q, q must be a noise point, i.e., q ∈ N0. Next,

we argue that p must be in P(q), meaning that p contributes 1 to

I (q). Therefore, error(F ,G∗
1) ≤

∑
q∈N0

I (q).

On the contrary, suppose that p < P(q). Thus, p had already

disappeared when RPE-perm was about to probe q. By definition

of q, this implies that RPE-perm had probed a label-1 point dom-

inated by p; but doing so should have got q discarded, giving a

contradiction. �

3.2.3 Proof of Lemma 3. Let us denote the points of N0 as

q1,q2, ...,qk0 (in an arbitrary order), and set random variable

X =

k0∑
i=1

I (qi ).

We will show E[X ] ≤ |N0 | = k0, which proves Lemma 3 by way of

Lemma 4. Given a subset S of P and any point q ∈ P , define:

DS (q) = {p ∈ S | q dominates p}.

Our proof of E[X ] ≤ k0 is inductive on k0.

Base Case k0 = 1. That is, N0 = {q1}.

Lemma 5. I (q1) > 0 only if q1 has a smaller rank than all the

points in DG∗
1
(q1).

Proof. Suppose that DG∗
1
(q1) has a point p that ranks before q1

in the permutation. We argue that RPE-perm will not probe q1.

Suppose that RPE-perm probes q1. Consider the moment right

before the probing happens. Point p must have disappeared from P

(otherwise, RPE-perm cannot have chosen to probe q since the rank

of p is smaller). Could it have been discarded due to the probing of

a label-0 point p′ , q1? No, because otherwise, p ∈ G∗
1 asserts that

p′ must also be a label-0 noise point, contradicting k0 = 1. Thus, p

must have been discarded due to the probing of a label-1 point that

p dominates. But this should have evicted q1 as well, also giving a

contradiction. �

Hence, I (q1) > 0 with a probability at most 1/(1 + |DG∗
1
(q1)|).

Since I (q1) obviously cannot exceed |DG∗
1
(q1)|, we have:

E[I (q1)] ≤
|DG∗

1
(q1)|

1 + |DG∗
1
(q1)|

< 1.

Inductive Case. Assuming E[X ] ≤ k0 when k0 = t − 1 for some

integer t ≥ 2, we will prove that the same holds also for k0 = t .

Define J (i) (i ∈ [1, t]) as the event that qi has the largest permu-

tation rank among q1,q2, ...,qt . It suffices to prove:

E[X | J (t)] ≤ t . (5)

By symmetry, this means

E[X ] =

t∑
i=1

E[X | J (i)] · Pr[J (i)] ≤

t∑
i=1

t ·
1

t
= t

as desired. The subsequent discussion is conditioned on J (t).

RPE-perm probes points in ascending order of rank. Define the

watershed moment as:

• The moment right before RPE-perm probes the first point

with a larger rank than all of q1,q2, ..., qt−1;

• End of RPE-perm, if it does not probe any point that ranks

after q1,q2, ..., qt−1.

At the watershed moment, I (q1), ..., I (qt−1) have been finalized. Set

Y =
∑t−1
i=1 I (qi ). Denote by Pwater the content of P at this instant.

The inductive assumption implies that E[Y ] ≤ t − 1! To under-

stand why, imagine deleting qt from P , after which the input set P ′

has t − 1 label-0 noise points, but the same G∗
1 . The permutation

after removing qt is a random permutation of P ′. Thus, Y is exactly

the value of error(F ,G∗
1) on P ′.

The remainder of the proof shows E[I (qt ) | J (t)] ≤ 1. This will

establish (5) because

E[X | J (t)] = E[Y ] + E[I (qt ) | J (t)].

I (qt ) = 0 when qt is not in Pwater (and hence, will not be probed).

Hence, it suffices to prove

E[I (qt ) | J (t),qt ∈ Pwater ] ≤ 1.

Towards the purpose, we expand the left hand side over all possible

setsW that Pwater may be equal to:

E[I (qt ) | J (t),qt ∈ Pwater ]

=

∑
W

E[I (qt ) | J (t),qt ∈ Pwater =W ] · Pr[W ]. (6)

We will concentrate on proving that

E[I (qt ) | J (t),qt ∈ Pwater =W ] ≤ 1

regardless ofW , with which (6) can be bounded from above by∑
W Pr[W ] = 1.

Subject to the joint event “J (t) and qt ∈ Pwater = W ”, the ele-

ments ofW are symmetric with respect to their relative ordering in

the permutation: any of the |W |! orderings can take place with an

equal probability. The analysis of E[I (qt )] under that joint event is

essentially the same as the base case. By the same argument as in

the proof of Lemma 5, we assert that I (qt ) > 0 only if qt ranks be-

fore all the points in DW ∩G∗
1
(qt ), which happens with a probability

of 1/(1+ |DW ∩G∗
1
(qt )|). As I (qt ) cannot exceed |DW ∩G∗

1
(qt )| under
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Figure 5: Adding dummy points for a Las Vegas lower bound

the joint event, we conclude that E[I (qt ) | J (t),qt ∈ Pwater =W ] is

no more than
|DW ∩G∗

1
(qt ) |

1+ |DW ∩G∗
1
(qt ) |

≤ 1.

3.3 Bounding the Probing Cost

Interestingly, the proof of Lemma 2 still holds verbatim even when

P is noisy. Indeed, the probing behavior of RPE is captured by the

attrition-and-elimination game regardless of whether noise exists

in P . We have finished proving the first bullet of Theorem 1.

3.4 Lower Bound

We will generalize the argument of Section 2.3 to prove the second

bullet of Theorem 1 for minimum monotone error k ≥ 1.

Algorithms with Guessing Power. We first extend the model in

Section 2.3 to strengthen the power of a deterministic algorithm

Adet . As before, Adet is described by a binary decision treeT where

each leaf returns a monotone classifier. However, there are two

types of internal nodes:

• Probe node: At such a node, Adet probes a point p of P , and

branches left (or right) if label(p) = 0 (or 1, resp.). This was

the only type of internal nodes allowed in Section 2.3.

• Guess node: At such a node, Adet proposes a mono-

tone classifier Fguess , and asks an almighty guru whether

error(Fguess, P) ≤ K where K an arbitrary value fixed at this

node. On a “yes” answer from the guru, Adet descends to the

left child, which must be a leaf returning Fguess . On a “no”

answer, Adet branches right and continues.

We charge one unit of cost to every probe and guess node. A random-

ized algorithm is still modeled as a function that maps a random-bit

sequence to a deterministic algorithm.

An almighty guru may not exist in reality. However, for proving

lower bounds, we can increase the power of an algorithm at will.

Any lower bounds on such “strong” algorithms must also hold on

the algorithms that do not use guess nodes.

The argument in Section 2.3 essentially proved that, any deter-

ministic algorithm of a binary decision tree must incur Ω(w(1 +

log n
w )) average cost over the setH(n,w) of noise-free hard inputs

(review Section 2.3 for the definition of “average cost”, and the

construction ofH(n,w)). Hence, this is also true for a deterministic

algorithm with guess nodes. By Yao’s minimax theorem, any ran-

domized algorithm with guess nodes must entail Ω(w(1 + log n
w ))

expected cost on at least one input ofH(n,w). This holds for any

integersw,n such that n is a multiple ofw .

A Las Vegas Lower Bound. Suppose that Aran is a randomized

algorithm (with guessing) having the following guarantee: for any

input P of n points, dominance widthw , and minimum monotone

error k , Aran must (i) return a monotone classifier with error at

most ck for some constant c > 0, and (ii) probe no more than

д(n,w) points in expectation. We will show that д(n,w) = Ω(w(1 +

log n
kw

)).

We can leverage Aran to solve a (noise-free) input P ′ from

H(n′,w ′) by constructing a set P of size n = O(n′k) as follows.

Recall that the points of P ′ are placed inw ′ cells, each with n′/w ′

points, as shown in Figure 3. Duplicate P ′ to P . For each cell, add

(to P ) a dummy point with label 0 (or 1) infinitesimally close to

the bottom-left (or upper-right, resp.) corner. Now, list out the

points p1,p2, ...,p2+ n′

w′
in the cell, sorted in ascending order of y-

coordinate. For every i ∈ [1, 1+ n′

w ′ ], place 2ck dummy points evenly

on the cell’s main diagonal between pi and pi+1, and decide their

labels as follows:

• If label(pi ) = label(pi+1), set the labels of all 2ck dummy

points to label(pi ).

• Otherwise (label(pi ) = 0 and label(pi+1) = 1), set the labels

of the lowest (or highest) ck dummy points to 0 (or 1, resp.);

see Figure 5a.

The set P designed so far does not have minimum monotone

error k (in fact, its minimum monotone error is 0). To fix this,

add another dummy cell to P making sure that no point in the

dummy cell can dominate any existing point in P , and vice versa

(see Figure 5b). Add 2k dummy points on the main diagonal of the

dummy cell, setting the labels of the k lowest (or highest) points

to 1 (or 0), respectively. Now P has minimum monotone error k

because (i) any monotone classifier must mis-label at least k points

in the dummy cell, and (ii) obviously there is a monotone classifier

F ∗ with error k (F ∗ correctly captures the labels of all the points

in non-dummy cells, and simply maps all the points in the dummy

cell to 1). Note also that P has dominance widthw ′
+ 1.

Suppose that Aran returns a monotone classifier F on P . We

argue that F cannot mis-label any non-dummy point p (i.e., p orig-

inated from P ′). Otherwise, suppose that label(p) = 0 but F (p) = 1.

By our construction, there are at least ck label-0 points that (i) are

in the same cell as p, and (ii) dominate p. As F maps all these points
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incorrectly to 1, implying that error(F , P) ≥ ck + 1, contradicting

the guarantee of Aran. A symmetric argument shows the impos-

sibility of label(p) = 0 but F (p) = 1. We can thus return F as a

perfect classifier for P ′.

It follows from our earlier lower bound onH(n,w) that:

д(O(n′k),w ′
+ 1) = Ω

(
w ′

(
1 + log

n′

w ′

))
.

Therefore, for д(n,w) must be Ω(w(1 + log n
kw

)) whenw ≥ 2 and

n ≥ c1kw for a sufficiently large constant c1 > 0.

A Monte-Carlo Lower Bound. Let Aran be a randomized algo-

rithm with a guarantee of the form: on any noisy input P of n

points, dominance widthw , and minimum monotone error k , Aran

has (i) expected error at most ck for some constant c > 0, and

(ii) expected probing cost f (n,w). We will prove that f (n,w) =

Ω(w(1 + log n
kw

)).

On such an input P , with probability at least 1/2, Aran must (i)

return a monotone classifier that has error at most 4ck , and (ii)

probes at most 4f (n,w) points. Otherwise, one of the following

holds with at least 1/4 probability: either Aran has error more than

4ck , orAran probes more than 4f (n,w) points. However, this means

that Aran either has expected error higher than ck , or expected

probing cost higher than f (n,w), contradicting its guarantee.

We can deploy Aran as a black box to design a randomized algo-

rithm that always returns a monotone classifier of error at most 4ck ,

and probes O(f (n,w)) points in expectation. For this purpose, run

Aran until either it returns a monotone classifier F , or has probed

4f (n,w) points. In the former situation, we ask the almighty guru

whether error(F , P) ≤ 4ck . If so, return F . In all other situations

(i.e., the guru answers “no” or Aran did not terminate after 4f (n,w)

probes), we declare “failure”, and start all over again. If, however,

we have failed ⌈log2 n⌉ times, we simply probe the entire P , and

return an optimal monotone classifier with error k . Clearly, we

always return a classifier with error at most 4ck . Since each time

we fail with probability at most 1/2, the expected probing cost is

bounded by

©­«
⌈log2 n ⌉∑
i=0

4f (n,w) · (i + 1)

(
1

2

)iª®¬
+

1

n
· n = O(f (n,w))

where the term 1/n on the left hand side bounds from above the

probability of failing ⌈log2 n⌉ times.

From our Las Vegas lower bound, we have that f (n,w) = Ω(w

(1 + log n
kw

)) whenw ≥ 2 and n ≥ c2kw for some constant c2 > 0.

This proves the second bullet of Theorem 1.

4 THE NOISY CASE—PROBLEM 2

The core of Problem 2 is to understand to what extent the exception

set Z would help. Our study will concentrate on the lower bound

side (for upper bounds, see Corollary 1). We will prove Theorem 2,

which says that one cannot reduce the expected error of Corollary 1

by more than a constant factor without increasing the probing cost

substantially.

We will focus on 1D space (d = 1). Remember that, at this

dimensionality, every set P of points has dominance widthw = 1;

hence, this parameter is not relevant in the subsequent discussion.

Deterministic and randomized algorithms are modeled as explained

in Section 2.3 (i.e., no guess nodes).

4.1 Lower Bounds for k = 1

Given an integer n ≥ 2, we define a set Sn of inputs as follows. Let

P be the set {1, 2, ...,n}. Choose a seed integer σ ∈ [2,n], and set

label(σ ) = 0. For every other point p ∈ P \ {σ }, set label(p) = 1. Sn
collects all the n − 1 inputs with different seeds.

Notice that every P ∈ Sn has minimum monotone error k = 1.

Indeed, label(1) = 1 and label(σ ) = 0 rule out the existence of a

perfect monotone classifier with error 0. On the other hand, there

exist monotone classifiers that achieve error 1, e.g., the all-true

classifier:

Ftrue(p) = 1 for all p ∈ R.

Fix a (deterministic or randomized) algorithm A. Given an input

P ∈ Sn , let FP and ZP represent the monotone classifier and ex-

ception set returned by A, respectively. We define the total error of

A on Sn as:

totalerrn (A) =

∑
P ∈Sn

error(FP ,ZP )

and the total cost of P on Sn as:

totalcostn (A) =

∑
P ∈Sn

|ZP |.

Note that, when A is randomized, FP , ZP , error(FP ,ZP ),

totalerrn (A), and totalcostn (A) are all random variables.

Deterministic Algorithms. We will establish a tradeoff between

totalerrn (Adet ) and totalcostn (Adet ) for any deterministic algorithm

Adet . Let us first see two extremes of the tradeoff. On one ex-

treme, the “probe-all” algorithm, which simply probes the entire P ,

achieves a total error of 0 but has a total cost of n(n−1). At the other

extreme, the “lazy” algorithm, which directly returns the all-true

classifier Ftrue with no probing at all, has a total cost of 0 but a total

error of n − 1. The following lemma states that, interestingly, Ω(n2)

total cost is necessary even just to do slightly better than the lazy

algorithm in total error:

Lemma 6. If totalerrn (Adet ) ≤ cn for an arbitrary constant c < 1,

then totalcostn (Adet ) = Ω(n2).

Proof of Lemma 6. As before, a deterministic algorithm Adet can

be modeled as a decision tree T . We say that Adet is canonical if all

the conditions below hold:

• T is a “right-deep” tree, namely, the left child of every internal

node is a leaf.

• The first point probed by Adet is point 1.

• At termination, Adet always outputs Ftrue .

The lemma below shows that canonical algorithms cannot be im-

proved much:

Lemma 7. For every non-canonical (deterministic) algorithm A,

there is a canonical algorithmA′ with totalerrn (A
′) ≤ totalerr(A)+1,

and totalcostn (A
′) ≤ totalcost(A) + n − 1.

Proof. If A returns monotone classifier F and exception set

Z on an input P , we will refer to error(F ,Z ) conveniently as the

“error of A on P”.
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We will convert A gradually into a desired A′. Let T be the

decision tree of A. First, if T does not probe point 1 at the root, add

a new root that does so, and has the original root as the right child.

This increases the total cost of A by n − 1 (since one more probe is

needed for every input of Sn ), but cannot increase its total error.

Now, let us move to the original root of T .

Suppose that, in general, we are standing at an internal node u

of T which probes a point p ∈ P . Recall that A branches into the

left child v1 of u if label(p) = 0, or the right child v2 otherwise. If

p = 1, delete u and its left subtree (effectively, replace the subtree

of u with that of v2). Consider now p , 1. If v1 is not a leaf, make it

so by deleting its subtree and setting Ftrue as its output. Obviously,

this does not increase the total cost. Furthermore, the total error

is not increased, either. To see why, recall that every input P ∈ Sn
has only one label-0 point σ . Once σ is probed, A achieves 0 error

on P by returning Ftrue , making any extra probes redundant.

Repetitively doing the above modifies T into a right-deep tree,

and takes us to the rightmost leaf z of T . Let F be the classifier

that A returns at z, with the general form: F (p) = 1 if p ≥ x for

some constant x ∈ R, and 0, otherwise. We change this by asking z

to output Ftrue instead. The remainder of the proof will show that

the change can increase the total error of A by at most 1. This will

complete the proof because the current T is the decision tree of a

canonical algorithm.

Suppose thatA has probed Z = {p1,p2, ...,ph } to reach z. Define

Z̄ = {1, 2, ...,n} \ Z , i.e., Z̄ is the set of points that have not been

probed. Let S be the set of inputs P ∈ Sn with seeds σ ∈ Z̄ . We

will consider only the inputs in S , because A ensures error 0 on any

P < S no matter it outputs F or Ftrue at z. Clearly, Ftrue allows A

to achieve total error of |S | = |Z̄ | = n − h, because Ftrue mis-labels

the only label-0 point of every P ∈ S .

It remains to prove that A has total error at least n − h − 1 if it

outputs F at z. Denote by pmin the smallest point in Z̄ . If x ≤ pmin,

F always maps the entire Z̄ to 1, and hence, also gives total error

n − h. On the other hand, if x > pmin, then F gives total error at

least n − h − 1 because, for every P ∈ S with seed σ , pmin, F

mis-labels at least the label-1 point pmin. There are n − h − 1 such

inputs P . �

Consider a canonical algorithm Adet whose decision tree T has

h internal nodes. Let p1,p2, ...,ph be the sequence of points probed

at those nodes in top-down order (p1 = 1). As explained in the

above proof, totalerrn (Adet ) = n − h. To calculate its total cost,

observe that when the input P has seed σ = pi for i ∈ [2,h], Adet

performs i probes, while for each of the other n − h inputs P with

σ < {p2, ...,ph }, Adet probes h points. Therefore:

totalcostn (Adet ) = (n − h)h +

h∑
i=2

i >
nh

2
− 1

If the total error n − h needs to be at most cn, then h must be at

least (1 − c)n, rendering totalcostn (Adet ) = Ω(n2).

Combining this with Lemma 7 shows that, to ensure total error

at most cn, any non-canonical algorithms must also incur total cost

Ω(n2). This completes the proof of Lemma 6.

Randomized Algorithms. Lemma 6 implies the following lower

bound for randomized algorithms:

Corollary 2. For any randomized algorithm Aran, if

E[totalerrn (Aran)] ≤ n/2, then Aran has Ω(n) expected prob-

ing cost on at least one input of Sn .

Proof. It suffices to prove that E[totalcostn (Aran)] = Ω(n2). Re-

call that Aran can be regarded as a random variable that is drawn

from a setW (Aran) deterministic algorithms. We say that an al-

gorithm Adet ∈ W (Aran) is accurate if totalerrn (Adet ) ≤ 3n/4.

DefineWacc as the set of accurate algorithms inW (Aran). Then,

Pr[Aran ∈Wacc] must be at least 1/3. Otherwise, with probability

at least 2/3, Aran has a total error greater than 3n/4, thus forcing

E[totalerrn (Aran)] to be over n/2 and giving a contradiction. By

Lemma 6, however, every accurate algorithm must have a total

cost of Ω(n2). Therefore, E[totalcostn (Aran)] ≥ Ω(n2) · Pr[Aran ∈

Wacc] = Ω(n2). �

The above corollary proves Theorem 2 for k = 1 because if Aran

guarantees expected error at most 1/2 on every input, it ensures

E[totalerrn (Aran)] ≤ n/2.

4.2 A Randomized Lower Bound for k ≥ 2

In this subsection, we will prove:

Lemma 8. For Problem 2, let Aran be a randomized algorithm

which, given an input set of size n and minimum monotone error

k ≥ 2, guarantees expected error at most k/2 and expected probing

cost at most f (n,k). Then, for Sn (as defined in Section 4.1), there

exists a randomized algorithm which has expected total error at most

n/2 and expected total cost at most f (nk,k).

Putting together the above lemma with Corollary 2 shows that

f (nk,k) = Ω(n). This leads to f (n,k) = Ω(n/k), as claimed in

Theorem 2.

Hard Inputs. To prove Lemma 8, we generate a set Sk
n of inputs

which can be regarded as the cartesian product of k copies of Sn .

Specifically, for every (P1, P2, ..., Pk ) ∈ (Sn )
k , create a set P of

nk points by concatenating—in ascending order of i ∈ [1,k]—the

sequence of n points in Pi . Each point p ∈ Pi retains its label in P .

This spawns (n − 1)k different input sets for P , which constitute

Sk
n .

Lemma 9. Each input set P ∈ Sk
n has a minimum monotone error

k .

Proof. No monotone classifier F can ensure error(F , P) < k .

Otherwise, there exists at least one i ∈ [1,k] such that F does not

mis-label any point in Pi . This, however, contradicts the fact that

Pi has minimum monotone error 1. On the other hand, the all-true

classifier (i.e., Ftrue(p) = 1 for all p ∈ R) achieves error(Ftrue, P) =

k . �

Aran Accurate on At Least One of P1, ..., Pk . Fix an input P =

(P1, P2, ..., Pk ) of S
k
n . Denote by FP and ZP the monotone classifier

and exception set thatAran (the randomized algorithm in Lemma 8)

returns on P , respectively. For each i ∈ [1,k], define Xi (P1, ..., Pk )

as the number of mis-labeled points from Pi , or formally:

Xi (P1, ..., Pk )

= |{p ∈ Pi | p < ZP and F (p) , label(p)}|.
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Clearly,
∑k
i=1 Xi (P1, ..., Pk ) = error(FP , P \ZP ). Since Aran guaran-

tees E[error(FP , P \ ZP )] ≤ k/2, we know:

k∑
i=1

E[Xi (P1, ..., Pk )] ≤ k/2

⇒
∑

(P1, ...,Pk )∈S
k
n

k∑
i=1

E[Xi (P1, ..., Pk )] ≤
k

2
|Sk
n | (7)

For each i ∈ [1,k], define:

Yi =

∑
Pi ∈Sn

∑
(P1, ...,Pi−1,Pi+1, ...,Pk )∈(Sn )k−1

Xi (P1, ..., Pk ).

From (7), we have:

k∑
i=1

E[Yi ] ≤
k

2
|Sk
n |.

Therefore, there must be at least one i ∈ [1,k] satisfying E[Yi ] ≤

|Sk
n |/2. Henceforth, wewill use j to denote this value of i . Intuitively,

this means that Aran does not mis-label too many points from Pj
overall.

Designing a Good Algorithm for Sn . We now deploy Aran to

design an algorithm that achieves expected total error at most n/2

on Sn with expected probing cost at most f (nk,n).

Given an input P ′ of Sn , we construct an input P = (P1, ..., Pk )

in Sk
n by (i) setting Pj = P , and (ii) independently choosing Pi

uniformly at random from Sn for every i ∈ [1,k] \ {j}. Then, run

Aran on P . Every time it asks to probe a point p ∈ Pi for i , j,

we reveal label(p) directly on behalf of the oracle. Only when Aran

asks to probe a point p ∈ Pj will we relay the request to the oracle.

Suppose that Aran returns a monotone classifier F and exception

setZ , we return F andZ∩Pj . It is clear that our algorithm—referred

to asA′
ran henceforth—probes at most as many points on P ′ asAran.

Thus, the expected probing cost of A′
ran is at most f (nk,n).

It remains to prove that A′
ran achieves an expected total error of

at most n/2 on Sn , that is, E[totalerrn (A
′
ran)] ≤ n/2. Observe that:

E[error(F , P ′ \ Z )]

=

1

(n − 1)k−1
·
( ∑
(P1, ...,Pj−1,Pj+1, ...,Pk )∈(Sn )k−1

E[X j (P1, ..., Pj−1, P
′
, Pj+1, ...Pk )]

)
.

Thus, E[totalerrn (A
′
ran)], which sums up E[error(F , P ′ \ Z )] for all

P ′ ∈ Sn , equals∑
Pj ∈Sn

∑
(P1, ...,Pj−1,Pj+1, ...,Pk )∈(Sn )k−1

E[X j (P1, ..., Pk )]

(n − 1)k−1

=

E[Yj ]

(n − 1)k−1
.

By definition of j , the above is at most 1
2
|Skn |/(n− 1)k−1 = (n− 1)/2.

This completes the proof of Lemma 8, and hence, the proof of

Theorem 2.

5 CONCLUSIONS

This paper has studied active learning problems that model the core

of entity matching in two important scenarios (the first: the input

set represents the distribution of entity pairs to be classified; and

the second: the input set already includes all the entity pairs to be

classified). We have designed new algorithms that are able to strike

a non-trivial balance between the probing cost and the accuracy

of matching. We have also proved hardness results showing that

our algorithms are asymptotically optimal in a variety of parameter

ranges.

Interestingly, our solutions manage to improve the state of the

art (i.e., the A2 algorithm) for agnostic active learning. For fairness,

this should be taken with a grain of salt: the proposed algorithms

focus on one type of classifiers (i.e., monotone classifiers), while

A2 aims to support arbitrary types of classifiers. Nevertheless, our

analysis—upper and lower bounds combined—indicates that dis-

agreement coefficient and VC dimension are not suitable parameters

for characterizing the hardness of learning monotone classifiers.

The phenomenon is intriguing: does it mean that monotone classi-

fiers fall into an unknown generic class of learning problems that

has escaped the literature of active learning? If so, what is that class,

and what are its intrinsic hardness-defining parameters?
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A: VC DIMENSION AND DISAGREEMENT
COEFFICIENT OF MONOTONE CLASSIFIERS

Let U be an arbitrary set of n points in R2 with dominance width

w . We will show that the class Cmono of monotone classifiers has

a VC dimension w on U (review Section 1.2 for the definition of

VC dimension). In fact, simply take an arbitrary anti-chain S ofU

with size w . For any (l1, l2, ..., lw ) ∈ {0, 1}w , assign label li to the

i-th point in S . Then, construct a classifier F as follows. First, for

each point p ∈ S , F (p) equals the label just assigned. Second, for

any point p′ ∈ R2 outside S , F (p′) = 1 if p′ dominates a label-1

point in S , or 0 otherwise. F is indeed monotone. Therefore, S can

be shattered by Cmono .

We now switch our attention to disagreement coefficient. The

purpose is to compare Theorem 1 to the upper bound of the A2

algorithm given in (1). Hence, our discussion will concentrate on

the context where Problem 1 with input set P is reduced to agnostic

active learning with U = P in the way described in Section 1.2. As

explained in Section 1.3, ν and ϵ are both set to k/n in order to

match of error bound in Theorem 1.

Given a set X ⊆ U , denote by Pr[X ] = |X |/n the probability

that a point drawn uniformly at random from U falls in S . Given

a set C ⊆ Cmono of monotone classifiers. The disagreement region

of C—denoted as DIS(C)—as the set of points p in U such that

F1(p) , F2(p) for some F1,F2 in C. Note that Pr[DIS(C)] gives the

probability that, not all the classifiers in C agree on the label of a

point p taken uniformly at random fromU .

Let F ∗ be an arbitrary monotone classifier attaining the smallest

error, namely, error(F ∗, P) = k > 0. Let r be a real value in the

range (2k/n, 1]. Define the ball B(F ∗, r ) as the set of all classifiers

F ∈ Cmono such that Pr[F ∗(p) , F (p)] ≤ r when p is drawn

uniformly at random fromU . The disagreement coefficient θ [16] is

defined as:

θ = max



sup
r> 2k

n

Pr[DIS(B(F ∗, r ))]

r
, 1



. (8)

We will show that θ ≥ max{Ω(w/k), 1} holds for any P (later, we

will prove a much worse result for specific inputs). For this purpose,

it suffices to look at a value of r that is infinitesimally larger than

2k/n. Let S be an arbitrary anti-chain of sizew . There is a classifier

F ∈ Cmono that agrees with F ∗ on the labels of all points in P ,

except for one point p ∈ S , regardless of how p is chosen. It thus fol-

lows that DIS(B(F ∗, r )) ≥ w , and hence, Pr[DIS(B(F ∗, r ))] ≥ w/n.

This fulfills our purpose because Pr[DIS(B(F ∗, r ))]/r is infinitesi-

mally close to
w/n
2k/n

= w/(2k).

Finally, we will construct a bad input P to force θ = Ω(w). Fix

values of n′,w ′,k such that 2k ≤ n′/w ′. First, decide the locations

of n′ points in P according to Figure 5, where the number of cells is

w ′, and each cell has n′/w ′ points. Set the labels of all these points

to be 1. Finally, add a dummy cell in the way illustrated in Figure 5b.

Add to P 2k points that are placed on the main diagonal of that cell,

with the labels of the k highest (or lowest) points set to 0 (or 1),

respectively. It is easy to verify that P has minimummonotone error

k . Indeed, the best F ∗ simply maps all points to 1. Furthermore, P

has size n = n′ + 2k , and dominance widthw = w ′
+ 1.

We will show that DIS(B(F ∗, r )) ≥ 2w ′k . Again, set r to be

infinitesimally larger than 2k/n. Pick an arbitrary non-dummy

cell. There is obviously a classifier F ∈ Cmono that agrees with

F ∗ on the labels of all points, except the 2k lowest ones in the

selected cell. This means that every non-dummy cell contributes

2k points to DIS(B(F ∗, r )), which thus has a size of at least 2w ′k .

Therefore, Pr[DIS(B(F ∗, r ))]/r is infinitesimally close to
2w ′k/n
2k/n

=

w ′
= Ω(w).

B: PROOF OF PROPOSITION 1

We will first prove that Z (the set of points probed by RPE) obeys

monotonicity (even though P does not): for any p,q ∈ Z , if p domi-

nates q, then label(p) ≥ label(q).

Assume, on the contrary, that this is not true, meaning that

label(p) = 0 and label(q) = 1. But which point was probed earlier by

RPE? If it was p, then q must have been discarded after discovering

that p is label-0. Likewise, probing q first would have discarded p.

Therefore, it is impossible that both p and q were probed.

Z satisfying monotonicity implies that F must be monotone.

Otherwise, there exist p,q such that p dominates q, but F (p) = 0,

F (q) = 1. By (3), F (q) = 1 means that Z has a label-1 point that is

dominated by q, and hence, also dominated by p. This contradicts

the fact that F (p) is 0.

C: PROOF OF PROPOSITION 2

We prove first the “if” direction. If p is dominated by a label-0

point in Z , p cannot dominate any label-1 point in Z , due to the

monotonicity of Z (see the proof of Proposition 1). Hence, F (p) = 0.

It remains to prove the “only-if” direction. By (3), F (p) = 0 means

that p does not dominate any label-1 point in Z . Hence, the disap-

pearance of p from P must be because p is dominated by a label-0

point that was probed (remember that a point dominates itself).

D: EQUIVALENCE OF RPE AND RPE-PERM

We will prove:

Lemma 10. RPE and RPE-perm have the same expected error and

expected probing cost on every input P .

Both RPE and RPE-perm can be described as a randomized deci-

sion tree T defined as follows. Each node u of T is associated with
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a subset of P , denoted as u(P). If u is the root, u(P) = P , whereas

if u is a leaf, u(P) = ∅. An internal node u has |u(P)| child nodes.

Each directed edge (u,v) fromu to a childv stores a point—denoted

as point(u,v)—of u(P). Every point of u(P) is stored on one and

exactly one outgoing edge of u. For each child v , the set v(P) is

determined as:

• If label(p) = 0, v(P) is the set of points in u(P) that are

not dominated by point(u,v) (recall that a point dominates

itself).

• If label(p) = 1, v(P) is the set of points in u(P) that do not

dominate point(u,v).

Each root-to-leaf path π represents a possible probing sequence of

RPE or RPE-perm. Specifically, for each nodeu on π ,u(P) represents

the content of P after the algorithm probes the points stored on

(the edges of) the root-to-u path.

We will prove that, for every leaf z of T , RPE and RPE-perm

reach zwith exactly the same probability. This establishes Lemma 10

because both error and probing cost are determined by the sequence

of points probed.

Let u1,u2, ...,uℓ the nodes on the root-to-z path (u1 is the root

and z = uℓ ). Obviously, RPE reaches z with probability Πℓ−1
i=1

1
|ui (P ) |

.

It remains to show that this is also true for RPE-perm.

The execution of RPE-perm is a function of the permutation of P—

denoted as Pperm—obtained at Step 1. For each node u of T , denote

by S(u) the set of all possible Pperm that will bring the execution to

u. When u is the root, S(u) is the set of all n! permutations.

Lemma 11. For i ∈ [2, ℓ], S(ui ) is the set of permutations π ∈

S(ui−1) such that point(ui−1,ui ) has the smallest rank in π among

all the points in P(ui−1).

Proof. We prove the claim by induction. It holds for i = 2

because RPE-perm descends from u1 (the root) to u2 only when

point(u1,u2) is the first point of Pperm. Inductively, assume that the

claim is true for i = j−1. Asmentioned before, P(uj−1) is the content

of P after RPE-perm probes the points stored on the root-to-uj−1
path. Hence, the algorithm branches to uj only if point(uj−1,uj ) is

the next to pick in Pperm among the points in P(uj−1). So the claim

holds also for i = j. �

The lemma indicates that |S(ui )| = |S(ui−1)|/|ui−1(P)|. Hence,

|S(uℓ)| = |S(u1)| · Π
ℓ−1
i=1

1
|ui (P ) |

. The probability that RPE-perm

reaches uℓ equals |S(uℓ)|/n! which is simply Π
ℓ−1
i=1

1
|ui (P ) |

.


