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Abstract

We present a structure in external memory for top-k range reporting, which uses linear space,
answers a query in O(lggn + k/B) 1/0s, and supports an update in O(lgz n) amortized 1/Os,
where n is the input size, and B is the block size. This improves the state of the art which
incurs O(lg% n) amortized 1/Os per update.

*This paper supersedes an earlier version on arXiv with the title “On Top-k Search and Range Reporting”.



1 Introduction

In the top-k range reporting problem, the input is a set S of n points in R, where each point e € S
carries a distinct! real-valued score, denoted as score(e). Given an interval ¢ = [z1, 73] and an
integer k, a query returns the k& points in S(q) = SN ¢ with the highest scores. If |S(q)| < k, the
entire S(¢) should be returned. The goal is to store S in a structure so that queries can be answered
efficiently.

Motivation. Top-k search in general is widely acknowledged as an important operation in a large
variety of information systems (see an excellent survey [9]). It plays a central role in applications
where an end user wants only a small number of elements with the best competitive quality, as
opposed to all the elements satisfying a query predicate. Top-k range reporting—being an extension
of classic range reporting—is one of the most fundamental forms of top-k search. A representative
query on a hotel database is “find the 10 best-rated hotels whose prices are between 100 and 200
dollars per night”. Here, each point e € S represents the price of a hotel, with score(e) corresponding
to the hotel’s user rating. In fact, queries like the above are so popular that database systems
nowadays strive to make them first-class citizens with direct algorithm support. This calls for a
space-economic structure that can guarantee attractive query and update efficiency.

Computation Model. We study the problem in the external memory (EM) model [2]. A machine
is equipped with M words of memory, and a disk of unbounded size that has been formatted into
blocks of size B words. An I/O either reads a block of data from the disk to memory, or conversely,
writes B words in memory to a disk block. The space of a structure is the number of blocks it
occupies, whereas the time of an algorithm is the number of I/Os it performs. CPU calculation is
for free. A word has Q(lgn) bits, where n > B is the input size of the problem at hand. The values
of M and B satisfy the condition M = Q(B).?

Throughout this paper, a space/time complexity holds in the worst case by default. A logarithm
lg, x is defined as max{1,log, z}, and b = 2 if omitted. Linear cost should be understood as O(n/B)
whereas logarithmic cost as O(Iggn).

1.1 Previous Work

Top-k range reporting was first studied by Afshani, Brodal and Zeh [1], who gave a static structure
of O(n/B) space that answers a query in O(lggn + k/B) I1/Os. The query cost is optimal, as
can be shown via a reduction from predecessor search [12]. They also analyzed the space-query
tradeoff for an ordered variant of the problem, where the top-k elements need to be sorted by
score. Their result suggests that when the space usage is linear, one can achieve nearly the best
query efficiency by simply solving the unordered version in O(lgzn + k/B) I/Os, and then sorting
the retrieved elements (see [14] for more details). For the unordered version, Sheng and Tao [14]
proposed a dynamic structure that has the same space and query cost as [1], but supports an
update in O(lg% n) amortized 1/Os.

In internal memory, by combining a priority search tree [10] and Frederickson’s selection algo-
rithm [7] on heaps, one can obtain a pointer-machine structure that uses O(n) words, answers a

This is a standard assumption [1, 14] to guarantee the uniqueness of a top-k result. See [14] for two semantic
extensions to remove the assumption, and how to reduce those extensions to the standard top-k problem with distinct
weights.

2M can be as small as 2B in the model defined in [2]. However, any algorithm that works on M = ¢B with
constant ¢ > 2 can be adapted to work on M = 2B with only a constant blowup in space and time. Therefore, one
might as well consider that M = Q(B).



query in O(lgn + k) time, and supports an update in O(lgn) time. In RAM, Brodal, Fagerberg,
Greve and Lopez-Ortiz [5] considered a special instance of the problem where the input points of
S are from the domain [1,n]. They gave a linear-size structure with O(1 + k) query time (which
holds also for the ordered version).

It is worth mentioning that top-k search has received considerable attention in many other
contexts. We refer the interested readers to recent works [11, 13] for entry points into the literature.

1.2 Our Results

We improve the state of the art [14] by presenting a new structure with logarithmic update cost:

Theorem 1. For top-k range reporting, there is a structure of O(n/B) space that answers a query
in O(lggn+ k/B) 1/0s, and supports an insertion and a deletion in O(lggn) I/Os amortized.

We achieve logarithmic updates by combining three methods. The first one adapts the aforemen-
tioned pointer machine structure—which combines a priority search tree with Frederickson’s heap
selection algorithm—to external memory. This gives a linear-size structure that can be updated in
O(lgg n) amortized 1/0s, but answers a query in O(lgn + k/B) 1/Os (note that the log base is 2).
We use the structure to handle £ > Blgn in which case its query cost is O(lgn + k/B) = O(k/B).

The second method applies directly the structure of [14]. Looking at their analysis carefully,
one sees that their amortized update cost is in fact O(lggn + % lggn). In other words, when
lgn < BY/6_ the structure already achieves logarithmic update cost.

The most difficult case arises when lgn > BY/6, or equivalently, B < lg%n. We observe that,
since k > Blgn has already been taken care of, it remains to target k < Blgn < lg’ n. Motivated
by this, we develop a linear-size structure that can be updated in O(lggn) I/Os, and answers a
query with £ = O(polylgn) in O(lggn + k/B) I/Os. The most crucial idea behind this structure
is to use a suite of “RAM-reminiscent” techniques to unleash the power of manipulating individual
bits.

Theorem 1 can now be established by putting together the above three structures using standard
global rebuilding techniques.

2 A Structure for k£ = Q(Blgn)

In this section, we will prove:

Lemma 1. For top-k range reporting, there is a structure of O(n/B) space that answers a query
in O(lgn + k/B) I/0s, and supports an insertion and a deletion in O(1ggn) 1/Os amortized.

Top-k range reporting has a geometric interpretation. We can convert S to a set P of points,
by mapping each element e € S to a 2d point (e, score(e)). Then, a top-k query with ¢ = [z1, 2]
equivalently reports the k& highest points of P in the vertical slab ¢ x (—00,00). This is the
perspective we will take to prove Lemma 1.

Our structure is essentially an external priority search tree [3] on P with a constant fanout.
However, we make two contributions. First, we develop an algorithm using this structure to answer
top-k range queries. Second, we explain how to update the structure in O(lggn) I/Os. Note that
an update by the standard algorithm of [3] requires O(lgn) I/Os.

Structure. Let T be a weight balanced B-tree (WBB-tree) [4] on the x-coordinates of the points
in P. The leaf capacity and branching parameter of T are both set to B. We number the levels
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Figure 1: Concatenating secondary binary trees

of T bottom up, with the leaves at level 0. For each node u in T, we use P(u) to denote the set
of points whose x-coordinates are stored in the subtree of u. As a property of the WBB-tree, if u
is at level 4, then |P(u)| falls between Bi*!/4 and B™*!; if |P(u)| is outside this range, u becomes
unbalanced and needs to be remedied.

Each node u naturally corresponds to a vertical slab o(u) with P(u) = o(u) N P.3 Let u,u’ be
child nodes of the same parent. We say that v’ is a right sibling of u if o(u’) is to the right of o(u).
Otherwise, v is a left sibling of u. Note that a node can have multiple left/right siblings, or none
(if it is already the left/right most child).

Consider now u as an internal node with child nodes w1, ...,uy where f = O(B) (we always
follow the left-to-right order in listing out child nodes). We associate v with a binary search tree
T(u) of f leaves, which correspond to o(uy),...,0(uys), respectively. Let v be an internal node in

T(u). We define o(v) = U?ijla(uj), where o(uj,),0(tj,41),...,0(uj,) are the leaves of T(u) below
v, and accordingly, define P(v) = o(v)N P.

Notice that we can view 7' insteads as one big tree T' that concatenates the secondary binary
trees of all the nodes in T'. Specifically, if v’ is a child of u in T, the concatenation makes the root
of T(u') the only child of the leaf o(u) of T(u). See Figure 1. T is almost a binary tree except that
some internal nodes have only one child which is an internal node itself. However, this is only a
minor oddity because any path in T' of 3 nodes must contain at least one node with two children.
The height of T is O(lgn).

Each node v in T is associated with a set—denoted as pilot(v)—of pilot points satisfying two
conditions:

e The points of pilot(v) are the highest among all points p € P(v) that are not stored in any
pilot(v), where © is a proper ancestor of v in T'.

e If less than B/2 points satisfy the above condition, pilot(v) includes all of them. Otherwise,
B/2 < |pilot(v)| < 2B. In any case, pilot(v) is stored in O(1) blocks.

The lowest point in pilot(v) is called the representative of pilot(v).

Finally, for each internal node u in 7', we collect the representatives of the pilot sets of all the
nodes in T(u), and store these O(B) representatives in O(1) blocks—referred to as the representative
blocks of w.

Query. Given a top-k query with range ¢ = [z1, 22|, we descend two root-to-leaf paths 7; and

3Precisely, the slab of a leaf node u is [z, 2’) x (—o0, 00) where x is the smallest x-coordinate stored at u, and z’
is the smallest x-coordinate in the leaf node v’ succeeding u. If u’ does not exist, ' = co. The slab of an internal
node unions those of all its child nodes.
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Figure 2: The gray nodes in Figure (a) constitute set II. Each number is a node’s sorting key in
the heap rooted at that node. Figure (b) shows H after heap concatenation.

mo in T to reach the leaf nodes z; and zo whose slabs’ x-ranges cover z; and x2, respectively. In
O(lgn) I/0s, we retrieve all the O(Blgn) pilot points of the nodes on 7; U g, and eliminate those
outside ¢ x (—00,00). Let Q1 be the set of remaining points.

Let v* be the least common ancestor of z; and z3. Define 7} (7)) as the path from v* to z; (z2).
Let II be the set of nodes v satisfying two conditions:

(i) v ¢ 7} Unh, but the parent of v is in 7} U 7h;

(ii) The x-range of o(v) is covered by gq.

For every such v, we can regard its subtree as a max-heap H(v) as follows. First, H(v) includes
all the nodes v' in the subtree of v (in T') with non-empty pilot sets. Second, the sorting key of
v is the y-coordinate of the representative of pilot(v'). In this way, we have identified at most |II|
non-empty max-heaps, each rooted at a distinct node in II. Concatenate these heaps into one, by
organizing their roots into a binary max-heap based on the sorting keys of those roots. This can
be done in O(Ign) I/Os*. Denote by H the resulting max-heap after concatenation. See Figure 2.

Set ¢ to a sufficiently large constant. We now invoke Frederickson’s algorithm to extract the set
R of ¢ (Ign+ k/B) representatives in H with the largest y-coordinates; this entails O(lgn + k/B)
I/Os. Let Sk be the set of nodes whose representatives are collected in R. Gather all the pilot
points of the nodes of Sg into a set Q.

Define a set S}, of nodes as follows. For each node v € Sg, we first add to S}, all such siblings
v of v (in T) that (i) v' ¢ Sg, and (ii) the x-range of o(v') is contained in g. Second, if v is an
internal node, add all its child nodes in T to S},. Note that |S}| = O(|Sgr|) = O(Ign + k/B). We
now collect the pilot points of all the nodes of S}, into a set Q3.

At this moment, we have collected three sets 1, Q2, @3 with a total size of O(Blogn + k). We
can now report the k highest points in Q1 U Q2 U Q3 in O(lgn + k/B) 1/Os. The query algorithm
performs O(lgn + k/B) 1/0s in total. Its correctness is ensured by the fact below:

Lemma 2. Setting ¢ = 16 ensures that Q1 U Q2U Q3 includes the k highest points in q X (—o0, 00).

Proof. We will focus on the scenario that the heap H has at least ¢ - (lgn + k/B) representatives.
Otherwise, P has O(Blgn+k) points in ¢ X (—00, 00), and all of them are in Q1 UQ2 (Q3 is empty).

We will first show that [Q1UQ2| > k. This is very intuitive because 1 UQ3 collects the contents
of Q(lgn + k/B) pilot sets. However, a formal proof requires some effort because the pilot set of a

“Using a linear-time “make-heap” algorithm; see [6].



node v can have arbitrarily few points (in this case all the nodes in the proper subtree of v must
have empty pilot sets). We need a careful argument to address this issue.

We say that a representative in R is poor if its pilot set has less than B/8 points; otherwise, it
is rich. Consider a poor representative r in R; and suppose that it is a pilot point of node v, and
its x-coordinate is stored in leaf node z. Note that z stores the x-coordinates of at least B/4 points,
all of which fall in ¢q. By the fact that r represents less than B/8 points, we know that at least B/8
points (with x-coordinates) in z are pilot points of some proper ancestors of v in T', and therefore,
appear in either Q1 or Q2. We associate those B/8 points with . On the other hand, we associate
each rich representative with the at least B/8 points in its pilot set.

Thus, the ¢ - (Ign + k/B) representatives in R are associated with at least (¢/8)(Blgn + k)
points in @1 U Q2. Each point p € Q1 U @2, on the other hand, can be associated with at most 2
representatives: the representative of the node where p is a pilot point, and a poor representative
whose x-coordinate is stored in the same leaf as p.> This implies |Q1 U Q2| > (¢/16)(Blgn + k).
Hence, ¢ = 16 ensures |Q1 U Q2| > k.

Finally, the inclusion of Q3 ensures that no pilot point in g X (—00, 00) but outside Q1 UQ2U Q3
can be higher than the lowest point in Q1 U 2. The lemma then follows. O

Insertion. To insert a point p, first update the B-tree T by inserting the x-coordinate of p. Let
us assume for the time being that no rebalancing in T is required. Then, we identify the node v
in T whose pilot set should incorporate p. This can be achieved in O(lgz n) I/Os by descending a
single root-to-leaf path in 7' (note: not T'), and inspect the representative blocks of the nodes on
the path. We add p to pilot(v).

We say that a pilot set overflows if it has more than 2B points. If pilot(v) overflows, we carry
out a push-down operation at v, which moves the |pilot(v)| — B lowest points of pilot(v) to the pilot
sets of its at most 2 child nodes in T'. The resulting pilot(v) has size B. If the pilot set of a child v/
now overflows, we treat it in the same manner by performing a push-down at v’. We will analyze
the cost of push-downs later.

Deletion. To delete a point p, we identify the node v in T' whose pilot set contains p. This can be
done in O(lgg n) I/Os by inspecting the representative blocks. We then remove p from pilot(v).

We say that a pilot set underflows if it has less than B/2 points, and yet, one of its child nodes
has a non-empty pilot set. To remedy this, we define a pull-up operation at node v’ in T as one
that moves the min{B/2, B — |pilot(v")|} highest points from

U pilot (v") (1)

child v"" of v/ in T

to pilot(v'). If (1) has less than the requested number of points, the pull-up moves all the points of
(1) into pilot(v), after which all proper descendants of v" have empty subsets; we call such a pull-up
a draining one.

In general, if the pilot set of a node v underflows, we carry out at most two pull-ups at v’ until
either |pilot(v')| = B, or a draining pull-up has been performed. After the first pull-up, if the pilot
set at a child node of v' underflows, we should remedy that first (in the same manner recursively)
before continuing with the second pull-up at v’. We will analyze the cost of pull-ups later.

It is worth mentioning that we do not remove the x-coordinate of p from the base tree T'. This
does not create a problem because we will rebuild the whole T" periodically, as clarified later.

5No two poor representatives can have their x-coordinates stored in the same leaf.



Rebalancing. It remains to clarify how to rebalance T. Let u* be the highest node in T that
becomes unbalanced after inserting p. Let @ be the parent of ©*. We rebuild the whole subtree of u
in T, and the corresponding portion in T'. Let [ be the level of @ in 7. Our goal is to complete the
reconstruction in O(B') I/Os. A standard argument with the WBB-tree shows that every insertion
accounts for O(lgg n) I/O0s of all the reconstructions.

Let 9 be the root of T(%). Essentially, we need to rebuild the subtree of © in T', which has O(B')
nodes. The first step of our algorithm is to distribute all the pilot points stored in the subtree of ¢
down to the leaves where their x-coordinates are stored, respectively. For this purpose, we simply
push down all the pilot points of ¢ to its child nodes in T', and do so recursively at each child. We
call this a pilot grounding process.

We now reconstruct the subtrees of 4 and v. First, it is standard to create all the nodes of T’
in the subtree of @, and all the nodes of T in the subtree of % in O(B') I/Os. What remains to do
is to fill in the pilot sets. We do so in a bottom up manner. Suppose that we are to fill in the pilot
set of v, knowing that the pilot sets of all the proper descendants of v (in T') have been computed
properly. We populate pilot(v) using the same algorithm as treating a pilot set underflow at v.

Next, we prove that the whole reconstruction takes O(B') 1/Os. Let us first analyze the pilot
grounding process. We say that a demotion event occurs when a point moves from the pilot set of
a parent node to that of a child. If Ny represents the number of such events, we can bound the
total cost of pilot grounding as O(B! + Ny/B).

To bound Ny, first consider a level-1 node w in 7. A node at level j > 1 of T(u) triggers
O(jB) demotion events. Hence, the number of demotion events triggered by all the nodes of T(u)
is Zjoz(llg B) O(B/27) - O(jB) = O(B?). As the subtree of @ has O(B'™1) level-1 nodes, they trigger
O(B?- B'') = O(B'*!) demotion events in total.

Now consider u as a level-i node of T" with ¢ > 2. Each of the B nodes in T(u) can trigger
O(iBlg B) demotion events, resulting in a total event count of O(iB?1lg B) for u. Since there are
O(B'™) nodes at level 4, the number of demotion events due to the nodes from level 2 to level [ is
at most

l
> O(B")-0(iB*1gB) = O(B'lg B).
=2

Therefore, Ny = O(B"*! + Bllg B) = O(B'*!). Tt follows that the pilot grounding process requires
O(B'+ N4/B) = O(B") 1/0s.

The cost of filling pilot sets can be analyzed in the same fashion, by looking at promotion
events—namely, a point moves from the pilot set of a child to that of the parent. If IV, represents
the number of such events, we can bound the cost of pilot set filling as O(B' + N,/B). By an
argument analogous to the one on Ny, one can derive that IV, = O(B"1).

Push-Downs and Pull-Ups. Next, we will prove that each update accounts for only O(% lgn)
I/Os incurred by push-downs and pull-ups. At first glance, this is quite intuitive: inserting a point
into a pilot set may “edge out” an existing point there to the next level of T', which may then create
a cascading effect every level down. Viewed this way, an insertion creates O(lgn) demotion events,
and reversely, a deletion creates O(lgn) promotion events. As Q(B) such events are handled by a
push-down or pull-up using O(1) I/Os, the cost amortized on an update should be O(% lgn). What
complicates things, however, is the fact that pilot points may bounce up and down across different
levels. Below we give an argument to account for this complication.

We imagine some conceptual tokens that can be passed by a node to a child in T, but never
the opposite direction. Specifically, the rules for creating, passing, and deleting tokens are:



1. When a point p is being inserted into T', we give v an insertion token if p is placed in pilot(v).
2. When a point p is deleted from T, we give v a deletion token if p is removed from pilot(v).

3. In a push-down, when a point p is moved from pilot(v) to pilot(v') (where v is a child of v),
we take away an insertion token from v, and give it to v'. We will prove shortly that v always
has enough tokens to make this possible.

4. In a pull-up, when a point p is moved from pilot(v') to pilot(v) (where v is a child of v), we
take away a deletion token from v, and give it to v’. Again, we will prove shortly that this is
always do-able.

5. When an insertion/deletion token reaches a leaf node, it disappears.

6. After a draining pull-up is performed at v, all the tokens in the subtree of v disappear.

7. When the subtree of a node v is reconstructed, all the tokens in the subtree disappear.
Lemma 3. Our update algorithms enforce two invariants at all times:

e Invariant 1: every internal node v in T has at least |pilot(v)| — B insertion tokens.

e Invariant 2: every internal node v in T has at least B — |pilot(v)| deletion tokens, unless all
proper descendants of v in T have empty pilot sets.

Notice that, by Invariant 1, a node v with |pilot(v)| < B is not required to hold any insertion
tokens; likewise, by Invariant 2, a node v with |pilot(v)| > B is not required to hold any deletion
tokens. Furthermore, the two invariants ensure that the token passing described in Rules 3 and 4
is always do-able.

Proof of Lemma 3. Both invariants hold on v right after the subtree of v has been reconstructed
because at this moment either (i) |pilot(v)| = B, or (ii) |pilot(v)| < B and meanwhile all proper
descendants of v in T have empty pilot sets.

Inductively, assuming that the invariants are valid currently, next we will prove that they remain
valid after applying our update algorithms.

e Putting a newly inserted point p into pilot(v) gives v a new insertion token, which accounts
for the increment of |pilot(v)| — B. Hence, Invariant 1 still holds. Invariant 2 also holds
because B — |pilot(v)| has decreased.

e Physically deleting a point p € pilot(v) from T gives v a new deletion token, which accounts
for the increment of B — |pilot(v)|. Hence, Invariant 2 still holds. Invariant 1 also holds
because |pilot(v)| — B has decreased.

e Consider a push-down at node v. After the push-down, |pilot(v)| = B; thus, Invariants 1 and
2 trivially hold on v. Let v' be a child of v. Invariant 1 still holds on v’ because v’ gains as
many insertion tokens as the increase of |pilot(v')| — B. Invariant 2 also continues to hold on
v' because the value of B — |pilot(v')| has decreased.

e Consider a pull-up at node v. After the pull-up, |pilot(v)| < Bj; hence, Invariant 1 trivially
holds on ». Invariant 2 also holds on v because v loses as many deletion tokens as the decrease
of B — |pilot(v)|. Let v’ be a child of v. Invariant 1 continues to hold on v' because the value
of |pilot(v")| — B has decreased. Invariant 2 also holds on v" because v’ gains as many deletion
tokens as the increase of B — |pilot(v')].
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Recall that a push-down is necessitated at a node v only if pilot(v) > 2B. Therefore, by
Invariant 1, after the operation |pilot(v)| — B = Q(|pilot(v)|) insertion tokens must have descended
to the next level of T'. The operation itself takes O(|pilot(v)|/B) 1/Os; after amortization, each of
those insertion tokens bears only O(1/B) 1/Os of that cost.

Now consider the moment when a pilot set underflow happens at v. By Invariant 2, v must be
holding at least B/2 deletion tokens at this time. Our algorithm performs one or two pull-ups at
v using O(1) I/Os. We account for such cost as follows. If neither of the two pull-ups is a draining
one, at least B/2 deletion tokens must have descended to the next level; we charge the cost on
those tokens, each of which bears O(1/B) 1/Os. On the other hand, if a draining pull-up occurred,
at least B/2 deletion tokens must have disappeared; each of them is asked to bear O(1/B) I/Os.

In summary, each token before its disappearance is charged O(% lgn) I/Os in total. Since an
update creates only one token, the amortized update cost only needs to increase by O(% lgn) to
cover the cost of push-downs and pull-ups.

Remark. The above analysis has assumed that the height of 7' remains ©(lgn). This assumption
can be removed by the standard technique of global rebuilding. With this, we have completed the
proof of Lemma, 1.

3 A Structure for k = O(polylgn)
In this section, we will prove:

Lemma 4. For top-k range reporting with k = O(polylgn), there is a structure of O(n/B) space
that answers a query in O(lggn+k/B) 1/0s, and supports an insertion and a deletion in O(lggn)
I/Os amortized.

As explained in Section 1.2, Theorem 1 follows from the combination of Lemmas 1 and 4, and
a structure of [14]. To prove Lemma 4, we will first introduce two relevant problems in Sections 3.1
and 3.2. Our final structure—presented in Section 3.3—is built upon solutions to those problems.

3.1 Approximate Union-Rank Selection

Let L be a set of real values. Given a real value e, we define its rank in L as [{¢/ € L | ¢/ > e}|.
Note that the largest element of L has rank 1.

In approzimate union-rank selection (AURS), we are given m disjoint sets Ly, ..., L, of real
values, such that each L; (1 <1i <m) can be accessed only by the following operators:

e Max: Returns the largest element of L; in costyq, 1/0s.

e RANK: Given a real-valued parameter p € [1, é|LZ|] where ¢; > 2 is a constant, this operator
returns in cost,qur 1/Os an element e € L; whose rank in L; falls in [p, ¢1p).

Given an integer k satisfying
1<k<(1/cr) min{|L1]|, ..., |Lm|}, (2)

a query returns an element e € |J~; L; whose rank in (J", L; falls in [k, k], where ¢ > 1 is a
constant dependent only on ¢;.



AURS is reminiscent of a rank selection problem defined by Frederickson and Johnson [8].
However, their algorithm assumes a more powerful RANK operator that returns an element in L;
with a precise rank. In the appendix, we show how to adapt their algorithm to obtain the result
below:

Lemma 5. Fach query in the AURS problem can be answered in O(m(costmar + coStrank)) 1/0s.

3.2 Approximate (f,l)-Group k-Selection

Given integers f and [, we define an (f,[)-group G as a sequence of f disjoint sets Gy, ..., G ¢, where
each G; (1 <i < f) is a set of at most [ real values. Let N > fI be an integer such that a word
has Q(lg N) bits.

In the approximate (f,1)-group k-selection problem—henceforth, the (f,1)-problem for short—
the input is an (f,l)-group G, where the values of f,l, N, and B (block size) satisfy all of the
following:

o [ = O(polylg N)

e f <\/Blg® N where € is a constant satisfying 0 < e < 1.
A query is given:

e an interval ¢ = [, an] with 1 < oy < ag < f,

e and a real value k € [1, |, Gill;

1€q
it returns a real value  whose rank in (J;., G; falls in [k, cok), where co > 2 is a constant. It is
required that o should be either —oc or an element in (J;c, Gi.

The following lemma is a crucial result that stands at the core of our final structure. Its proof
is non-trivial and delegated to Section 4.

Lemma 6. For the (f,l)-problem, we can store G in a structure of O(fl/B) space that answers a
query in O(lgg(f1)) 1/0s, and supports an insertion and deletion in O(lgg(f1)) I/Os amortized.

3.3 Proof of Lemma 4

We are now ready to elaborate on the structure claimed in Lemma 4. It suffices to focus on the
approximate range k-selection problem:

The input is the same set S of points as in top-k range reporting. Given an interval
q = [r1, 2] and an integer k satisfying 1 < k < |SNg|, a query returns a point e € SNgq
such that between k and O(k) points in S N ¢ have scores at least score(e).

Suppose that there is a structure solving the above problem with query time t, and amortized
update time t,,. Then, we immediately obtain a structure of asymptotically the same space for top-
k range reporting with query time O(t, +lggn + k/B) and amortized update time O(t, + lgg n)
(see [14]). A structure with t, = lggn and ¢, = lgh n was given in [14].

Fix an integer | = O(polylgn). Next, assuming k < [, we describe a linear-size structure with
ty =ty = O(Igg n), which therefore yields a structure of Lemma 4.

Structure. We build a WBB-tree T on S with branching parameter f = /B lgn, and leaf capacity
b = flB. Each node u naturally corresponds to an x-range in R. If u is an internal node with



child nodes uy, ..., uy, define a multi-slab to be the union of the x-ranges of w;, u;;1,...,u; for some
meaningful 1, j.

Given an (internal/leaf) node u, let S, be the set of elements stored in the subtree of u. Define
G, as the set of ¢yl highest scores of the elements in S,,, where ¢y is the constant mentioned in the
definition of the (f,[)-problem in Section 3.2.

For each leaf node u, maintain a structure of [14] to support approximate range k-selection on
Sy. Consider now v as an internal node with child nodes uy,...,us. We

e maintain an (f, cal)-structure of Lemma 6 on the (f, cal)-group Gy = (Guy, -, Guy ), With N
fixed to some integer in [n,4n] (this will be guaranteed by our update algorithms).

e store Gy, U... UGy, in a (slightly augmented) B-tree so that, for any 1 < ay < ay < f, the
maximum score in | J | Gy, can be found in O(lgp(f1)) 1/Os.

1€]ar,00

There are O(n/(fb)) internal nodes, each of which occupies O(fl/B) blocks. Hence, all the
n [l

internal nodes use altogether O(ﬁ -45) = o(n/B) space. The overall space cost is therefore O(n/B).
Query. Given a query with parameters ¢ = [x1, 23] and k, search T in a standard way to identify a
minimum set C of O(lg #n) disjoint canonical ranges whose union covers g, such that each canonical
range is either the x-range of a leaf node or a multi-slab.

Define S,, = mN S for each multi-slab m € C. Perform AURS with parameter k on {S,, | m €
C'}. At each internal node u on which a multi-slab m € C'is defined, the (f, cal)-structure of u and
the B-tree on G, allow us to implement the RANK and MAX operators on S, in O(lgg(f1)) 1/0Os,
respectively. Therefore, by Lemma 5°, the AURS finishes in O(lg;n - lgp(f1)) = O(lggn) 1/Os.
Denote by e the element returned’.

For each leaf node z whose x-range is in C, perform approximate range k-selection on S, using
g in O(lggb) = O(lggn) I/Os. There are at most two such leaf nodes; let e1,e2 be the results of
approximate range k-selection on them, respectively. We return max{e, e, ez} as the final answer.

Update. The update algorithm (which is relatively standard) can be found in the appendix.

4 Solving the (#,1)-PROBLEM

We devote this section to proving Lemma 6. Henceforth, by “query”, we refer to a query in the
(f,1)-problem. When no ambiguity can arise, we use G to denote also the union of Gy, ... Gy.

4.1 A Static Structure

We will need a tool called the logarithmic sketch—henceforth, sketch—developed in [14]. Let L be
a set of [ real values. Its sketch ¥ is an array of size [lgl] + 1, where the j-th (1 < j < |lgl| + 1)
entry Y[j]-—called a pivot—is an element in L whose rank in L falls in [2/71,27); any such element
can be used as X[j].

Lemma 7 ([14]). Let Ly, ..., Ly, be m disjoint sets of real values. Given their sketches and a real
value k satisfying 1 < k < |J:~, Li|, we can find in O(m) 1/Os a real value x whose rank in \J;~ | L;

5The constant ¢; in the RANK operator’s definition (see Section 3.1) equals ¢z here, as is guaranteed by the (f, c2l)-
structures. Given that we focus on k <[ while each G, has size ca2l, we know that the condition stated in (2) always
holds.

"The AURS returns only the score of e, but it is easy to fetch e by the score in O(lgg n) 1/Os.
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is between k and csk (where c3 > 2 is a constant). Furthermore, x is either —oo or an element in
Uiz Li-

Create a sketch ¥; for each G; (1 <4 < f). Call the set {¥1,...,2X¢} a sketch set. We store a
compressed form of the sketch set as follows. Describe each pivot e € 3; by its global rank in G
using lg(f1) bits, and by its local rank in G; using lgl bits. Hence, each ¥; requires lgl - 21g(f1)
bits. A compressed sketch set occupies flgl-21g(fl) = VB -1g° N - O((lglg N)?) bits, and thus fits
in a block (which has B - Q(lg N) bits).

Given a query, we first spend an I/O reading the compressed sketched set, and then run the
algorithm of Lemma 7 on it in memory. Suppose that this algorithm outputs z. If x = —o0, we
simply return —oo as our final answer. Otherwise, x is equal to the global rank of an element in
G. To convert the global rank to an actual element, we index all the elements of G with a B-tree,
which supports such a conversion in O(lgg(f1)) I/Os. The overall space is O(fl/B) (due to the
B-tree); and the query cost is O(lgg(f1)). Notice that the constant ¢z in Section 3.2 equals the
constant c3 stated in Lemma 7.

4.2 Supporting Insertions

To facilitate updates, we store the elements of each G; (1 < i < f) in a B-tree that allows us to
obtain the element of any specific local rank in O(lgg () I/Os. In addition, we also maintain a
structure of the following lemma, whose proof is deferred to Section 4.4:

Lemma 8. We can store an (f,l)-group G = (G1,...,Gy) in a structure of O(fl/B) space such
that, in one I/0, we can read into memory a single block, from which we can obtain for free the
global rank of the element with local rank r in Gy, for every r € [1,v/Blgg(f1)] and every i € [1, f].
The structure supports an insertion and a deletion in O(lgg(f1)) 1/0s.

Suppose that an element e,,¢,, is to be inserted in G; for some i € [1, f]. Let 7, be the rank
of epew in G. We observe that, except perhaps a single pivot, the new compressed sketch set (after
the update) can be deduced from: the current compressed sketch set, ry,¢, and i. To understand
this, consider first a compressed sketch ¥;; where ¢/ # i. Each pivot whose global rank is at least
Tnew NOW has its global rank increased by 1 (its local rank is unaffected). Regarding the compressed
¥, the same is true, but additionally every such pivot should also have its local rank increased by
1. Furthermore, a new pivot is needed in ¥; if |G;| reaches a power of 2 after the insertion—in
such a case we say that Y; expands; the new pivot is the only one in the compressed sketch set that
cannot be deduced (because its global rank is unknown).

Motivated by this observation, to insert e, in G;, we first obtain 7., from the B-tree of G
in O(lgg(f1)) I/Os, and then update the new compressed sketch set as described earlier in 1 I/0O.
Next, epeq is inserted in the B-trees of G and G; using O(lgg(f1)) I/O0s. If now |G;| is a power of 2,
we retrieve the global rank of the smallest element in G; in O(lgg(f1)) I/Os, and add the element
to >; in memory.

Recall that, the j-th (1 < j < |lgl] 4+ 1) pivot of ¥; should have its local rank confined to
[27-1 27). If this is not true, we say that it is invalidated. The insertion may have invalidated
one or more pivots, (all of which can be found with no I/O because ¥; in memory). Upon the
invalidation of ¥;[j], we replace it as the element e € G; with local rank |2 - 2971| so that Q(27)
updates in G; are needed to invalidate 3;[j] again. For the replacement to proceed, it remains to
obtain the global rank of e. We do so by distinguishing two cases:

o Case 2 > /Blgg(fl). We simply fetch e from the B-tree on G;, and obtain its global rank
from the B-tree on G. We can now update ¥;[j] in memory.

11



In total, the invalidated pivot is fixed with O(lgz(f1)) = O(27 /v B) I/Os. Since Q(27) updates
must have occurred in G; to trigger the invalidity of ¥;[j], each of those updates accounts
for O(1/v/B) 1/Os of the pivot recomputation. As an update can be charged at most O(lg!)
times this way (i.e., once for every j > v/Blgg(fl)), its amortized cost is increased by only
O(% lgl) = O(lgg ).

e Case 20 < /Blgg(fl). There are O(lg(v/Blgg(fl1)) such invalidated pivots in ;. We can
recompute all of them together in O(1) I/Os using Lemma 8.

Overall, an insertion requires O(lgg(f1)) I/Os amortized.

4.3 Supporting Deletions

Suppose that an element eyq is to be deleted from G; for some i € [1, f]. Let r,4 be the rank of
eolqd In G. Except possibly for only one pivot, the new compressed sketch set can be deduced based
only on the current compressed sketch set, r, and i. To see this, consider first 3; where i’ # 1.
Fach pivot whose global rank is larger than 7,y now needs to have its global rank decreased by
1. Regarding ¥;, the same is true, and every such pivot should also have its local rank decreased
by 1. Furthermore, the last pivot of ¥; should be discarded if |G;| was a power of 2 before the
deletion: in such a case, we say that X; shrinks. Finally, if e,;q happens to be a pivot of ¥;, a new
pivot needs to be computed to replace it—this is the only pivot that cannot be deduced; we call it
a dangling pivot.

The concrete steps of deleting e,q are as follows. After fetching its global rank ryq in O(lgz(f1))
I/0s, we update the compressed sketch set in memory according to the above discussion. If ¥;
shrinks, we delete the last pivot ¥; in memory. If e,q was a pivot (say, the j-th one for some j), we
retrieve the element e with local rank |2 -277!| in G;, and obtain its global rank using O(lgp(f1))
I/Os. We then replace the dangling pivot X;[j] with e in memory.

Finally, recompute the invalidated pivots (if any) in the same way as in an insertion. As analyzed
in Section 4.2, such recomputation increases the amortized update cost by only O(lgg ).

4.4 Proof of Lemma 8

Let us define the list of the v/ Blggz(f1) largest elements of G; (1 <4 < f) as the prefiz of G;, and
denote it as P;. Let P be the union of Py, .., Py; we refer to P as a prefiz set. P contains at most
fVBlgg(fl) points.

We compress P by describing each element e (say, e € P; for some i) in P using its global rank
in G and its local rank in Gj, for which purpose O(lg(f1)) bits suffice. Hence, P can be described
by f-vBlgg(fl)-O(g(fl)) = VBlg N-v/B-0((1glg N)?) = B-1g° N-0((Iglg N)?) bits, which fit
in a block. After loading this block into memory, we can obtain the global rank of the r-th largest
element of G; for free, regardless of r € [1,v/Blgg(f1)] and i.

Besides the aforementioned block, we also maintain a B-tree on each G; (1 < i < f) and a
B-tree on G. The space consumed is O(fl/B).

Insertion. Suppose that we need to insert an element e, into G;. First, we update the B-trees
of G; and G in O(lgz(f1)) I/Os. With the same cost, we can also decide whether e;,.,, should enter
P;. If not, the insertion is complete.

Otherwise, we find the global rank 7,c, of €pe and its local rank r),.,, in G; with O(lgg(f1))
I/Os. Load the compressed prefix set P into memory with 1 I/O. Then, the new compressed

prefix set can be determined for free based on P, i, ryew, and 7),.,,. To see this, first consider a
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compressed prefix Py with i/ # i: if an element has global rank at least r,.,, it should have its
global rank increased by 1. Regarding the compressed prefix P;, the same is true; furthermore, all
such elements in P; should also have their local ranks increased by 1. Finally, we add e, into P;;
if P; has a size over v Blgg(fl), we discard its smallest element.

Deletion. Suppose that we need to delete an element e,y from G;. Using the B-tree on G, we
find its global rank r,4 in O(lgg(f1)) I/Os. Then, e, is removed from the B-trees of G; and G in
O(lgp(f1)) 1/Os.

If eyq ¢ P;, the deletion is done. Otherwise, we load the compressed prefix set in 1 /0O, and
then update it, except for a single element, in memory. Specifically, in a compressed prefix Py with
i # 14, if an element has global rank at least 7,4, it should have its global rank decreased by 1.
Regarding the compressed prefix P;, the same is true; furthermore, all such elements in P; should
also have their local ranks decreased by 1.

The last element of P; is the only one that cannot be inferred directly at this point. But it can
be filled in simply by retrieving the element with local rank v Blgg(fI1) in G, and then its global
rank in G, all in O(lgg(f1)) I/Os.
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Appendix

Proof of Lemma 5

In this proof, set ¢ = ¢; and L = U, L;. Given an element e € L; (1 < i < m), we refer to its rank
in L; as its local rank, and its rank in L as its global rank.

Case k > m. Our algorithm executes in [lg,m| rounds. In the j-th round (1 < j < [lg.m]),
[m/c?~Y] sets among L, ..., L, are active, while the others are inactive. At the beginning,
L, ..., L, are all active.

In round j € [1, [lg,m]], we execute RANK on each active set L; with parameter p = ¢/k/m.
Remember that the operator can return any element whose local rank falls in [¢/k/m, ¢/ T1k/m).®
Let P’ be the set of elements fetched. We call each element in P’ a marker, and assign it a weight
equal to

o [ck/m]ifj=1;
o [Jk/m] — [~ k/m] if j > 1.

The [m/c’] largest markers in P’ are taken as pivots, among which the smallest is the cutoff pivot
of this round. An active set remains active in the next round if its marker is a pivot, whereas the
other active sets become inactive.

Denote by P; the set of pivots taken in the j-th round (1 < j < [lg.m]]), and by P the union

of P1, Py, ..., Plg, - 1t is clear that [P| = Y% [m/ci] = O(m).

Consider a pivot p € P;, and suppose that it comes from L; for some ¢ € [1,m]. Define the local
prefiz weight of p as the sum of the weights of the first j pivots fetched from L;. By how we define
weights, it is easy to verify that the local prefix weight of p is [¢/k/m]. For each pivot p € P, define

its prefix weight as the total weight of all the pivots that are larger than or equal to p.
Observation 1. Every cutoff pivot has a prefiz weight at least k.

Proof. Consider the cutoff pivot p* of round j € [1, [lg.m]]. Let P/ be the set of [m/ ¢/ pivots
of P; greater than or equal to p*. The prefix weight of p* is at least the sum of the local prefix
weights of all the pivots in P}, which is at least [m/ d[k/m] > k. O

8Such an element definitely exists because ¢/k/m < ck < |L|.
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We perform a weighted selection to find the largest pivot v € P whose prefix weight is at least
k (v definitely exists by the previous observation). The algorithm terminates by returning v.

The algorithm performs in O(m - cost,qnx) 1/Os because the j-th round takes O((m/c'~1) -
coStrank) 1/O0s (i.e., geometrically decreasing with j), while the weighted selection needs only
O(m/B) 1/Os. Next, we prove that the algorithm is correct, namely, the global rank of v is
in [k, k] for some constant ¢’ dependent only on c.

Observation 2. The prefiz weight of v is at most (1 + 2c)k.

Proof. We define v’ as the smallest pivot in P that is larger than v. By definition, we know that
the prefix weight of v is smaller than k. Define p} as the smallest pivot in L; that is larger than or
equal to v'; p; = nil if no such pivot exists. Defining the local prefix weight of a nil point to be 0,
we have:

prefix weight of v/ = Z local prefix weight of p}
i=1
< k. (3)

Clearly, it also holds that

prefix weight of v = prefix weight of v" + weight of v
< k4 weight of v (4)

Let ¢* be such that v € L;. We distinguish two cases:

Case 1: p,. = nil. This means that v was taken in the first round of our algorithm; hence, its
weight is [ck/m] < 2ck (recall that ¢ > 2). Therefore, by (4) the prefix weight of v is less than
k 4+ 2ck.

Case 2: pl. # nil. Then, the weight of v is less than 2c¢ times the local prefix weight of pl..
Together with (3), this implies that the weight of v is less than 2ck. Therefore, once again, (4) tells
us that the prefix weight of v is less than k + 2ck. O

By Observation 1 and the definition of v, all cutoff pivots are smaller than or equal to v. Hence,
every L; has at least one marker smaller than or equal to v. We will refer to the largest such marker
as the succeeding marker of L;, and denote it as e;. Note that e; is not necessarily a pivot.

Let p; be the smallest pivot of L; that is larger than or equal to v. If p; exists, we say that L;
is pivotal; otherwise, L; is non-pivotal. For a pivotal L;, define:

e 1; = the local prefix weight of p;.

e S; = the set of elements in L; that are larger than or equal to v.

e S! = the set of elements in L; that are larger than or equal to p;.
Observation 3. r; < [S!| < |Si| < 2 - ;.

Proof. Let j be such that p; was taken in the j-th round of our algorithm. |S!| is exactly the local
rank of p;, which must fall in [¢/k/m, /T k/m). Hence, it follows that |S!| > [¢/k/m] = r;.

As e; was taken in the (j + 1)-st round, its local rank is less than ¢/*2k/m. Since the local rank
e; is an upper bound of |S;, it follows that |[S;| < ¢/2k/m < ¢?r;. O
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In the pivotal sets, the total number of elements larger than or equal to v equals:

Z |Si| < 2 Z 7

i s.t. L; is pivotal i s.t. L; is pivotal
= % (prefix weight of v)
(by Observation 2) < (1 + 2¢)k.

Each non-pivotal set L; has less than c¢?k/m elements larger than or equal to v. It thus follows that
the global rank of v is less than (c2k/m)m + c2(1 + 2¢)k = c*(2 + 2¢)k.
On the lower side, the global rank of v is at least

Z |Si| > Z T

i s.t. L; is pivotal i s.t. L; is pivotal
= prefix weight of v
> k.

Case k < m. From each L;, we use MAX to request the largest element in L;. Let P’ be the set
of elements fetched (i.e., one from each L;). Obtain the k-th largest element v in P’. Make set L;
inactive if its largest element is smaller than v’; otherwise, L; is active. Run the above algorithm
on the k active sets. Suppose that the algorithm outputs v. We then return max{v, v’} as the final
answer. It is easy to prove that the algorithm is correct, and runs in O(m(cost,ank + €OStmaz))

I/Os.

The Update Algorithm in Section 3.3

To support updates, for each internal node u, build a B-tree on the scores in G,. For each leaf
node z, build a B-tree on the scores of the elements in S,. Refer to these B-trees as score B-trees.
Denote by parent(u) the parent of w.

To insert a point e in S, first descend a root-to-leaf path 7 to the leaf node z whose x-range covers
e. At z, update all its secondary structures in O(lg% b) = O((Igp lgn)?) = O(lgg n) amortized 1/Os.
Next, we fix the secondary structures of the nodes along 7 in a bottom up manner. If score(e) enters
G., at parent(z), delete the lowest score in G, and then insert score(e) in G,. The secondary
structures of parent(z) are then updated accordingly. In general, after updating an internal node
u, we check using the score B-tree of u whether score(e) should enter G,,. If so, at parent(u), delete
the lowest score in G, insert score(e) in G,, and update the secondary structures of parent(u).
By Lemma 6, we spend O(lgz(f1)) amortized I/Os at each node, and hence, O(lgg n) amortized
I/Os in total along the whole 7.

We now explain how to handle node splits. Suppose that a leaf node z splits into 21, zo. First,
build the secondary structures of z; and zy in O(blgh b) 1/Os. At v = parent(z), destroy G, and
include G, and G, into G,,. Rebuild all the secondary structures at v in O(fl-1gg(fl)) = O(blgp b)
I/Os (Lemma 6). This cost can be amortized over the Q(b) updates that must have taken place in
z, such that each update is charged only O(lg% b) = O(lgg n) I/Os.

A split at an internal level can be handled in a similar way. Suppose that an internal node u
splits into uy,ug. Divide G,, into Gy, and G, in O(fl/B) I/Os, and then rebuild the secondary
structures of uy,ug in O(f1-1gg(f1)) I/Os. After discarding G,, but including G, , G,,, we rebuild
the secondary structures of parent(u) in O(fI-1gg(f1)) I/Os. On the other hand, Q(fI) updates
must have taken place in the subtree of u (recall that the base tree is a WBB-tree). Hence, each of
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those updates bears O(lgg(f1)) I/Os for the split cost. As an update bears such cost for at most
one node per level, the amortized update cost increases by only O(lgg n).

An analogous algorithm can be used to handle a deletion in O(lgg n) amortized I/Os. After n
has doubled or halved, we destroy the entire structure, reset N to 2n, and rebuild everything in
O(nlggn) I/0s. The amortized update cost is therefore O(lgg n).
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