
Indexability of 2D Range Search with Constant Redundancy∗

Yufei Tao

Department of Computer Science and Engineering

Chinese University of Hong Kong

Hong Kong

taoyf@cse.cuhk.edu.hk

August 25, 2014

Abstract

We consider the 2D orthogonal range search problem defined as follows. Let P be a set of 2D
points where each point p ∈ P carries an arbitrary information field. The goal is to store P in a
data structure so that, given any axis-parallel query rectangle q, we can report the information
fields of all the points in P ∩ q efficiently. For every constant integer r ≥ 1, we prove a lower
bound on the query cost of any external memory structure that stores an information field r
times on average. Our lower bounds do not require that information fields be stored as atoms.
Instead, a structure is free to store the bits of an information field in different blocks, and/or
store some bits more often than others. We also describe structures whose query efficiency
matches the lower bounds.

∗A preliminary version of this paper appeared in PODS’12.

1 Introduction

We consider the 2D orthogonal range search problem defined as follows. The input is a set P of N
points in R

2, where each point p ∈ P carries an arbitrary information field—denoted as info(p)—of
length L ≥ 1 words, where L is a parameter (not necessarily a constant). Given an axis-parallel
rectangle q, a range query returns the information fields of all the points in P ∩ q. The goal is to
store P in a structure so that range queries can be answered efficiently in the worst case.

Our discussion will focus on the standard external memory (EM) model [1]. In this model, a
computer is equipped with M words of memory and a disk that has been formatted into blocks of
size B words. It holds that M ≥ 2B. An I/O reads a block of data from the disk into memory, or
conversely, writes B words from memory into a disk block. The cost of an algorithm is measured
as the number of I/Os performed, whereas the space of a structure is measured as the number of
disk blocks occupied. We will denote by w the number of bits in a machine word.

1.1 Weakly Indivisible Structures

A primary goal of this paper is to derive lower bounds on the best achievable query cost of a class
of structures. In this section, we will give the definition of this class, and clarify several relevant
concepts.

For lower bound analysis, we will be concerned only with the way that information fields are
stored and retrieved by a structure. Let us refer to each bit in the info(p) of a point p as an
information bit. We will regard a structure simply as a set of blocks, each of which contains up to
wB information bits. Note that even though all the information bits may appear in the disk just
as either 0 or 1, each of them is uniquely characterized by (i) the point p that the bit belongs to,
and (ii) the position of the bit in info(p).

To answer a range query with rectangle q, the structure is required to do the following for every
point p ∈ P ∩ q and every information bit of info(p): access at least a block where the bit is stored.
In other words, if K = |P ∩ q|, then in total wKL information bits must be read from the disk.

We say that a structure modeled as above is weakly indivisible. The modeling is less stringent
than the conventional indivisibility assumption [9, 12] where every information field (usually, the
coordinates of a point) is always stored as an atom within the same block—we call such a structure
strongly indivisible. Notice that a weakly indivisible structure is allowed two functionalities beyond
strong indivisibility: (i) chop up an information field, and store the resulting pieces in different
blocks, and (ii) store some bits of an information field more often than the other bits.

It should be noted that our modeling of structures is nonetheless still captured by the indivisi-
bility assumption (albeit in a weaker way), whose removal should allow the information bits to be
computed. As mentioned earlier, we do not allow a structure to be this powerful: every informa-
tion bit reported must be loaded from the disk. In EM, efforts towards genuinely removing the
indivisibility assumption have been reported in [11, 19, 20] on, however, problems different from
ours.

Given an integer r ≥ 1, a structure is r-redundant if it stores at most r ·N ·wL information bits.
In particular, a 1-redundant structure is called non-replicating because apparently all information
fields must be stored at least once.

1.2 Motivation

Redundancy vs. Query Efficiency. Most practical structures for orthogonal range search are
non-replicating. Several well-known examples are the kd-tree [5, 14], the R-tree [4, 8], the O-tree [12],

1

and the cross-tree [7]. The main reason [12] behind their popularity is that, the input cardinality
N in practice can be so huge that each information field should be stored only once in order to
meet a tight space budget.

Today, while linear-size structures are still mandatory to cope with the vast data scale in
many applications, constraining each information field to be stored exactly once appears excessively
stringent. After all, the dollar-per-byte price of hard disks has been dropping continuously, making
it realistic to replicate an information field a small number of times. In this paper, we are interested
in r-redundant structures where r is a constant. It is well-known that duplicating information
fields brings polynomial improvement to query efficiency. Consider, for example, L = O(1). Any
1-redundant strongly-indivisible structure must entail Ω(

√

N/B+K/B) I/Os in answering a query
reporting K information fields [9, 12]. However, when constant r is sufficiently large, it is possible
to guarantee query cost O((N/B)ǫ +K/B) for arbitrarily small constant ǫ > 0 using a structure of
O(N/B) space [17].

What the previous research has not shown is precisely how much benefit can be gained by in-
vesting additional space. For example, what is the best query cost possible for r = 2? Conversely,
if we aim at query cost, say, O((N/B)1/10+K/B) for L = O(1), how many times must an informa-
tion field be stored? At a higher level, if one looks at the query complexity as a function of r, the
previous research has resolved the function at two extremes: r = 1, and r being an arbitrarily large
constant. The tradeoff within the intermediate range (i.e., from r = 2 and onwards) still remains
elusive.

Information Fields. No previous lower-bound study of orthogonal range search (surveyed in
Section 2) explicitly considered information fields. Storing a point was implicitly understood as
storing its coordinates, namely, L = 2. In such a case, the notion of “r-redundancy” with r = O(1)
appears unjustified when an arbitrarily large hidden constant is permitted in the space complexity
O(N/B). This is most obvious for non-replicating structures: why force r = 1 while allowing the
structure to use cN/B blocks for some constant c ≫ 1? One can harvest polynomial improvement
in query cost by setting r = 2 and in the meantime, perhaps with some clever tricks, still maintain
the space to be at most cN/B.

The introduction of information fields removes the above oddity by making certain r-redundant
structures especially appealing: those consuming O(N/B) + rNL/B blocks—note that the second
term is outside the big-O. Intuitively, in addition to the storage of information fields, such a
structure is permitted to use only O(N/B) extra blocks, which prevents “cheating tricks” of keeping
O(NL/B) blocks of search-guiding data that have nothing to do with information fields. It should
be clear that the separation of good r-redundant structures from cheating ones owes to the fact that
L can be ω(1). Conventionally, with L = O(1), O(N/B) + rNL/B is hardly any more meaningful
than simply O(N/B).

As a note for practice, information fields do make sense in many applications. A user is seldom
interested in the coordinates of a point p; usually, it is the details of the entity represented by p
that have triggered the query in the first place. Let the entity be a hotel, for example; then info(p)
may be its concrete description (e.g., rating, prices, amenities, etc.). The size of info(p) may not
necessarily be treated as a constant.

Weak vs. Strong Indivisibility. As reviewed in Section 2, existing lower bounds on orthogonal
range search are unanimously based on the strong indivisibility assumption. An intriguing question
is whether a structure gains any extra power by being weakly indivisible.

2

1.3 Our Results

Our first main result is:

Theorem 1. Consider w = Θ(log n) and L = Bµ, where µ is any constant satisfying 0 ≤ µ < 1.
Let r ≥ 2 be a constant integer, and ǫ any value satisfying 0 < ǫ ≤ 1/r. To ensure worst-case query
cost

O

(

(

NL

B

)
1
r
−ǫ

+
KL

B

)

a weakly-indivisible structure must store at least rNwL · (1− o(1)) information bits.

Note that ǫ does not need to be a constant in the above statement. The theorem implies:

Corollary 1. Consider w = Θ(log n) and L = Bµ, where µ is any constant satisfying 0 ≤ µ < 1.
For any constant integer r ≥ 1, no r-redundant weakly-indivisible structure can guarantee worst-case

query cost O((NL/B)
1

r+1
−ǫ +KL/B), no matter how small ǫ > 0 is.

To understand why, notice by Theorem 1 that a structure must store (r + 1) · NwL · (1 −
o(1)) information bits to achieve query cost O((NL/B)

1
r+1

−ǫ +KL/B). However, an r-redundant
structure stores no more than rNwL such bits.

To obtain the above result, we applied the analytical framework behind the redundancy theorem
in [9]. Several new ideas, however, are needed to overcome two obstacles. First, the original
framework makes the strong indivisibility assumption, and hence, needs to be extended to work
with weak indivisibility. Second, while the framework is good for establishing asymptotic lower
bounds, it is not powerful enough to argue for constant-revealed lower bounds. More specifically,
the techniques of [9] can be used to show that at least r

12NL/B blocks are needed to achieve the
query cost in Theorem 1, far less than our target of (nearly) rNL/B.

Our second main result is:

Theorem 2. For any constant integer r ≥ 1, there is an r-redundant strongly-indivisible structure

that uses rNL/B+O(N/B) space, and answers a query in O((NL/B)
1

r+1 +KL/B) I/Os. Further-
more, for L = Ω(B), there is a 1-redundant strongly-indivisible structure that uses NL/B+O(N/B)
space, and answers a query in O((N/B)ǫ +KL/B) I/Os, where ǫ > 0 can be an arbitrarily small
constant.

Note the terms outside big-O in the space complexities. Two interesting observations can be
made by combining Theorems 1 and 2. First, weakly-indivisible structures carry no extra power
beyond strongly-indivisible ones as far as orthogonal range search is concerned. Second, the length
L of information bits has an important role in the problem’s hardness: the problem becomes
significantly harder as soon as L drops from B to Bµ for any positive constant µ < 1.

2 Related Work

We now proceed with a review of existing results on orthogonal range search in the EM model.
Focus will be placed on worst-case query efficient structures using linear space O(NL/B), as they
are the main subject of this paper.

Structures. 1-redundant (strongly-indivisible) structures have been well studied for L = O(1).
The best query cost possible is O(

√

N/B + K/B) (see Section 1.3). This can be achieved by a

3

slightly modified version [14, 15] of Bentley’s kd-tree [5], ensuring that each leaf node should contain
Θ(B) information fields. The O-tree of Kanth and Singh [12] also guarantees the optimal query
cost, and has the advantage of being fully dynamic: each insertion and deletion can be supported in
O(logB N) I/Os amortized. The same can also be achieved by the cross-tree of Grossi and Italiano
[7].

We are not aware of any specific studies on r-redundant structures with r > 1. Somewhat
related is a result mentioned in [9]. For L = O(1), when the data points are aligned as a B × B

grid (i.e., N = B2), there is an r-redundant structure that solves a query in O((N/B)
1
2r +K/B)

I/Os. No structure was given for general inputs in [9]. Our Theorem 1 implies that a B × B grid
is not the hardest input for this problem.

Lower Bounds under Strong Indivisibility. Various models of EM structures exist for proving
lower bounds. The simplest one is perhaps the comparison-based model, where it is easy to show that
the query cost must be Ω(logB N), regardless of the space consumption. This bound is excessively
loose because we are aiming at query cost polynomial to N/B. Progress has been made in the past
15 years towards that goal. Our discussion below concentrates on L = O(1) which was assumed in
the derivation of all the bounds known.

The model of Kanth and Singh [12] can be thought of as the EM-equivalent of a pointer machine
in internal memory. It represents a data structure as a tree such that, to visit a node of the tree,
a query algorithm must first access all its ancestors, and follow their pointers leading to the node.
Kanth and Singh showed that any 1-redundant structure in this model must incur Ω(

√

N/B+K/B)
I/Os solving a query in the worst case. Due to the model’s limitations, their proof does not work
for structures that cannot be viewed as a tree, or query algorithms that can jump directly to a
node without fetching its ancestors.

To date, the most general model of EM structures (for orthogonal range search) is due to
Hellerstein et al. [9]. Their model imposes no constraint on how a query algorithm may choose
the next disk block to access—it can be any block regardless of the I/Os that have already been
performed. They developed the redundancy theorem which is a powerful tool for analyzing the
tradeoff between space and query efficiency, and generalizes earlier results [10, 13, 16] under the
same model. For 2D orthogonal range search, the theorem leads to the following fact for N = B2:
an r-redundant structure must satisfy

r ≥ logB

12 logA
(1)

if the cost of processing a query with K = B has to be O(A) where A can be any positive value at
most

√
B/4. The fact implies that any linear-size structure must incur query cost Ω((N/B)c+K/B)

in the worst case for some constant c > 0. To see this, notice that when r = O(1), (1) indicates
logB
logA = O(1). This, in turn, means that logA ≥ c · logB, leading to A ≥ Bc, where c is some
positive constant. Given the choice of N , this translates to A ≥ (N/B)c.

The analysis of [9] relies on the strong indivisibility assumption. More specifically, the reliance
is on the notion of flake (see Definition 5.2 in [9]), which is a subset of points whose information
fields are stored in a common block. This notion is central to proving the redundancy theorem.

Others. Better query cost is possible if super-linear space can be afforded. For L = O(1), the
external range search tree [2] uses O((N/B) logN/ log logB N) space, and answers a range query
in O(logB N + K/B) I/Os. The lower bounds of [2, 9, 18] show that this is already optimal in
various models of EM structures. If, on the other hand, all query rectangles are 3-sided (having

4

the form (−∞, x]× [y1, y2]), a query can be solved in O(logB N +K/B) I/Os for constant L using
the external priority search tree [2], which consumes only linear space.

3 Indexability Theorem for r = 3

In this section, we will prove Theorem 1 in the special case of r = 3. This allows us to explain the
core of our techniques without the extra mathematical subtleties as are needed for general r (the
general proof will be given in the next section).

Our discussion concentrates on a set P of points forming an n × n grid, namely, N = n2. We
choose n such that the query cost stated in the theorem becomes O(nL/B) whenK = n information
fields are reported. For this purpose, we solve n from:

(

n2L

B

)
1
3
−ǫ

=
nL

B
(2)

⇔ n =

(

B

L

)
ǫ+2/3
2ǫ+1/3

= B
(ǫ+2/3)(1−µ)

2ǫ+1/3 . (3)

Given ǫ ∈ (0, 1/3], it holds that 1 ≤ ǫ+2/3
2ǫ+1/3 < 2. This, together with µ < 1, indicates that n is

always greater 1. For simplicity, let us assume that
√
n is an integer (see the end of this section for

the removal of the assumption).
From now on, we will consider only queries with output size K = n. Each such query must

report nwL information bits. Given the choice of n in (3), the query is answered in

O

(

(

n2L

B

)
1
3
−ǫ

+
nL

B

)

= O(nL/B)

I/Os (note from (2) and ǫ ∈ (0, 1/3] that nL/B ≥ 1). Hence, we can assume that its cost is at most
αnL/B for some constant α > 0.

Next, we define a notion called bit-flake to replace the concept of flake in [9].

Definition 1. Consider a query with rectangle q. A bit-flake of the query is a non-empty set f of
information bits satisfying two conditions:

• All the bits in f are stored in the same block accessed by the query.

• Each bit in f is in the info(p) of some point p covered by q.

To illustrate the definition in another way, consider a block b accessed by the query. Let X be
the set of all information bits in b that belong to points inside q. Then, any non-empty subset of
X is a bit-flake.

Lemma 1. A query with output size n has at least

nwL

s
− αnL

B

pair-wise disjoint bit-flakes of size s > 0.

5

(a) Row queries (b) Column queries (c) Square queries

Figure 1: Hard input and queries on a 16× 16 grid

Proof. We use the following algorithm to collect a number of bit-flakes needed to prove the lemma.
Assume that the query accessed z ≤ αnL/B blocks, denoted as b1, ..., bz , respectively (ordering
does not matter). For each i ∈ [1, z], let Xi be the set of information bits in bi that (i) belong to
points covered by q, and (ii) are absent from the preceding blocks b1, ..., bi−1. Clearly, X1, ...,Xz

are pair-wise disjoint. Furthermore,
∑z

i=1 |Xi| = nwL because each information bit of every point
in q is in exactly one Xi.

From Xi, we form ⌊|Xi|/s⌋ pair-wise disjoint bit-flakes, by dividing arbitrarily the bits of Xi

into groups of size s, leaving out at most s− 1 bits. The bit-flakes thus created from X1, ...,Xz are
mutually disjoint. The number of those bit-flakes equals

z
∑

i=1

⌊ |Xi|
s

⌋

>

z
∑

i=1

(|Xi|
s

− 1

)

=
nwL

s
− z ≥ nwL

s
− αnL

B

as claimed.

We construct 3n queries as follows. Recall that the points of P form an n × n grid. Each row
or column of the grid is taken as a query, referred to as a row query or column query, respectively.
This has defined 2n queries. Each of the remaining n queries is a

√
n×√

n square, and is therefore
called a square query. Specifically, the square touches

√
n consecutive rows and columns of the

grid, respectively. All the n square queries are mutually disjoint, and together cover the entire P .
Figure 1 illustrates these queries for n = 16.

By Lemma 1, the 3n queries define in total at least 3n(nwL
s − αnL

B) bit-flakes of size s (we will
decide the value of s later), such that the bit-flakes from the same query are pair-wise disjoint.
Refer to all these bit-flakes as canonical bit-flakes. Recall that the bits of a bit-flake f are in a
common block b. We say that b contains f .

Lemma 2. Let b be a block, and t the number of information bits in b that appear in at least one
canonical bit-flake. Then, b can contain at most

t

s
+

3L
√
n ·B2w3

s3

canonical bit-flakes.

6

Proof. Let Frow be the set of canonical bit-flakes that are contained in b, and are defined from
row queries. Define Fcol and Fsqr similarly with respect to column and square queries. The total
number of information bits covered by at least one bit-flake in Frow ∪ Fcol ∪ Fsqr is t. Note that
the bit-flakes in Frow are mutually disjoint because no two row queries retrieve a common point.
The same is true for Fcol and Fsqr, respectively. Hence, it holds from the set inclusion-exclusion
principle that:

∑

f∈Frow∪Fcol∪Fsqr

|f |

−
∑

frow∈Frow,fcol∈Fcol

|frow ∩ fcol| −
∑

frow∈Frow,fsqr∈Fsqr

|frow ∩ fsqr| −
∑

fcol∈Fcol,fsqr∈Fsqr

|fcol ∩ fsqr|

≤

∣

∣

∣

∣

∣

∣

⋃

f∈Frow∪Fcol∪Fsqr

f

∣

∣

∣

∣

∣

∣

= t. (4)

Consider any bit-flakes frow, fcol and fsqr that are from Frow, Fcol and Fsqr, respectively. There
are at most wL bits in frow ∩ fcol since a row query and a column query share exactly 1 point in
their results (notice that the bits in frow ∩ fcol must belong to the information field of that point).
On the other hand, a row query and a square query share at most

√
n points in their results. It

follows that |frow ∩ fsqr| ≤ wL
√
n. Similarly, it holds that |fcol ∩ fsqr| ≤ wL

√
n.

As the bit-flakes in Frow are pair-wise disjoint, we have |Frow| ≤ t/s, which is at most Bw/s
because a block has Bw bits. Likewise, the sizes of Fcol and Fsqr are both at most Bw/s. Hence:

∑

frow∈Frow,fcol∈Fcol

|frow ∩ fcol| ≤ wL

(

Bw

s

)2

∑

frow∈Frow,fsqr∈Fsqr

|frow ∩ fsqr| ≤ wL
√
n

(

Bw

s

)2

∑

fcol∈Fcol,fsqr∈Fsqr

|fcol ∩ fsqr| ≤ wL
√
n

(

Bw

s

)2

.

Plugging the above inequalities into (4) gives:

∑

f∈Frow∪Fcol∪Fsqr

|f | ≤ t+wL

(

Bw

s

)2

+ 2wL
√
n

(

Bw

s

)2

≤ t+
3L

√
n · B2w3

s2

As |f | = s for each f on the left hand side of the above inequality, we obtain:

|Frow ∪ Fcol ∪ Fsqr| ≤
t

s
+

3L
√
n · B2w3

s3

thus completing the proof.

We are now ready to prove a lower bound on the total number of information bits that must
be stored. Denote by λ the number of blocks occupied by the underlying structure. Let us assume
for now that λ = O(NL/B)—this assumption will be removed later with a simple trick. Hence:

λ ≤ βNL/B = βn2L/B

7

for some constant β > 0. Denote by ti (1 ≤ i ≤ λ) the number of information bits in the i-th block
that appear in at least one canonical bit-flake. Combining Lemma 2 and the fact that there are at
least 3n(nwL

s − αnL
B) canonical bit-flakes, it holds that:

λ
∑

i=1

(

ti
s
+

3L
√
n ·B2w3

s3

)

≥ 3n

(

nwL

s
− αnL

B

)

Hence:

λ
∑

i=1

ti ≥ 3ns

(

nwL

s
− αnL

B

)

− s
λ
∑

i=1

3L
√
n ·B2w3

s3

= 3ns

(

nwL

s
− αnL

B

)

− λ · 3L
√
n · B2w3

s2

≥ 3n2wL− 3αn2sL

B
− βn2L

B
· 3L

√
n ·B2w3

s2

= 3n2wL

(

1− αs

Bw
− βBLw2√n

s2

)

. (5)

Lemma 3. We can set s = Bc for some c > 0 such that both αs/(Bw) and βBLw2√n/s2 are o(1)
when B is large enough.

Proof. First, note that w = Θ(logN) = Θ(log n) = Θ(logB), where the last equality used the fact

that the term (ǫ+2/3)(1−µ)
2ǫ+1/3 in (3) is Θ(1). Hence:

αs

Bw
= O

(

Bc

B logB

)

which is o(1) when:

c ≤ 1. (6)

Recall that L = Bµ where 0 ≤ µ < 1. This together with (3) gives:

βBLw2√n

s2
= O

B ·Bµ · log2B ·B
(ǫ+2/3)(1−µ)

4ǫ+2/3

B2c

= O

B
1+µ+

(ǫ+2/3)(1−µ)
4ǫ+2/3 log2 B

B2c

which is o(1) when:

1 + µ+
(ǫ+ 2/3)(1 − µ)

4ǫ+ 2/3
< 2c. (7)

A value of c satisfying (6) and (7) exists when:

1 + µ+
(ǫ+ 2/3)(1 − µ)

4ǫ+ 2/3
< 2

⇔ (ǫ+ 2/3)(1 − µ)

4ǫ+ 2/3
< 1− µ

⇔ ǫ+ 2/3 < 4ǫ+ 2/3

which is always true for ǫ > 0.

8

Therefore, by fixing s as stated in the lemma, we can rewrite (5) into

λ
∑

i=1

ti ≥ 3n2wL(1 − o(1)) = 3NwL(1 − o(1))

which is what we need for Theorem 1 at r = 3.

Removing the Assumption λ = O(NL/B). We say that a block is under-full if it contains
less than wB/2 information bits. It is easy to see that we only need to discuss structures with at
most one under-full block—if there are two under-full blocks, we can always merge them into one
block without increasing the cost of any queries (at all). Hence, we can remove the assumption
λ = O(NL/B) as follows. First, if the structure stores at least 3NwL information bits, then it
already satisfies Theorem 1 with r = 3. Otherwise, we know that the number λ of blocks it occupies
is at most 1 + 3NwL

wB/2 = O(NL/B).

Remarks. It is worth pointing out that the proof does not work for µ = 1, because in this case
(7) requires c > 1 which conflicts (6). This is consistent with Theorem 2 that better query cost is
possible for L = Ω(B).

As mentioned in Section 2, [9] showed that, on a B×B grid, a 2-redundant structure can achieve
query cost O((N/B)1/4 + K/B) when L = O(1)—better than what is allowed by Theorem 1 for
r = 3. By looking closely at our proof, one sees that our hard input is actually a Ba×Ba grid with
a close to 2 (the exponent in (3) equals ǫ+2/3

2ǫ+1/3 for µ = 0). In other words, the problem actually
becomes significantly harder on a larger grid.

How are Our Techniques Different from [9]? Our proof was inspired by the analysis in
[9]. In particular, we owe the method of flake counting to [9], which is the central ingredient for
obtaining a tradeoff between space and query cost. Nevertheless, some new ideas were deployed,
as summarized below.

The first one is to construct flakes at the bit level, which led to the introduction of bit-flakes
(Definition 1). This proved to be a crucial step towards eliminating the strong indivisibility as-
sumption. Naturally, it also demands re-designing several components in flaking counting, most
notably (i) the approach described in the proof of Lemma 1 for collecting sufficiently many disjoint
bit-flakes from a query, and (ii) in Lemma 2 bounding the number of canonical bit-flakes per block
with respect to the number t of bits participating in at least one canonical bit-flake.

The second idea is to decide n in such a way that every query with output size n incurs in
O(nL/B) I/Os (see Equation 3). In retrospect, the idea sounds fairly reasonable. It forces the n
points retrieved by each query to be stored in a compact manner. That is, they must be covered
by asymptotically the minimum of blocks, noticing that nL/B blocks are compulsory for their
storage. As a result, these blocks do not contain much information useful for answering other
queries. Intuitively, the effect is that, the data structure must pack all the N points in NL/B
blocks just to answer row queries, pack them again in another NL/B blocks for column queries,
and yet again for square queries. Hence, the redundancy needs to be roughly 3. Of course, for
the above idea to work, queries should have small overlaps in their results. It turned out that an
overlap of no more than

√
n points suffices.

The third idea was applied in Lemma 2, which replaced Johnson’s bound in [9] (see Theorem 5.3
there). In fact, applying Johnson’s bound in Lemma 2 would tell us that the number of canonical
bit-flakes in b is at most s/(wL

√
n). This is quite different from what we have in Lemma 2, and

does not seem to be tight enough for establishing our final result. At a higher level, the cause of

9

the ineffectiveness behind Johnson’s bound here is that, in general, the bound can be loose when
there are only a small number of canonical bit-flakes. This indeed happens in our proof, because
the size s of a canonical bit-flake can be large (the value of c in Lemma 3 is close to 1 for small ǫ
and µ).

Finally, Lemma 3 is what really turns the flake-counting method into a working argument. The
way that s is decided is specific to our context, and does not have a counterpart in [9].

Non-Integer
√
n. In this case, set n′ = (⌈√n⌉)2. Clearly, n′ = Θ(n). It is easy to adapt our

proof to work instead with N = (n′)2 points forming an n′ × n′ grid. We will do so explicitly in
the next section.

4 Indexability Theorem for General r ≥ 2

This section serves as a complete proof of Theorem 1. Our argument is analogous to the one in the
previous section, but includes extra details for handling general r. Remember that r is a constant
integer at least 2.

As before, we consider a set P of points forming an n × n grid (i.e., N = n2), where the value
of n makes the query cost bounded by O(nL/B) when the output size is K = n. Recall that the

structure under our analysis has query cost O((NL/B)
1
r
−ǫ +KL/B). We choose:

n =
⌈

(n0)
1/(r−1)

⌉r−1
(8)

where

n0 = B
ǫ+(r−1)/r
2ǫ+(r−2)/r

(1−µ)
.

Note that, for ǫ ∈ (0, 1/r], it holds that 1 ≤ ǫ+(r−1)/r
2ǫ+(r−2)/r < r−1

r−2 . Our choice ensures that n1/(r−1) is
an integer.

The next lemma is rudimentary:

Lemma 4. The following are true:

n = Θ(n0)
(

n2L

B

)
1
r
−ǫ

= Θ

(

nL

B

)

nL/B ≥ 1.

Proof. Set x = ⌈(n0)
1/(r−1)⌉. Hence, n0 > (x− 1)r−1, and n = xr−1. Consider sufficiently large B

so that x ≥ 2. In this case:

n ≤ (2(x − 1))r−1 < 2r−1n0 = O(n0).

Then, n = Θ(n0) follows from the obvious fact that n ≥ n0.

Since (as can be easily verified) ((n0)2L
B)(1/r)−ǫ = n0L/B, we know:

(

n2L

B

)
1
r
−ǫ

= Θ

(

(

(n0)
2L

B

)
1
r
−ǫ
)

= Θ

(

n0L

B

)

= Θ

(

nL

B

)

.

Finally, nL/B ≥ n0L/B = ((n0)2L
B)(1/r)−ǫ ≥ 1 because ǫ ≤ 1/r.

10

It follows that log n = Θ(log n0) = Θ(logB)—recall that r and µ are constants, while
ǫ+(r−1)/r
2ǫ+(r−2)/r = Θ(1). The subsequent analysis concentrates on queries with output size n. Every
such query can be answered in cost

O

(

(

n2L

B

)
1
r
−ǫ

+
nL

B

)

which is O(nL/B) by Lemma 4. Hence, we can assume that its cost is no more than αnL/B for
some constant α > 0.

An axis-parallel rectangle is said to have size lx × ly if it covers an lx × ly subgrid of the grid
underlying P . We consider r query sets, referred to as set 0, ..., set r − 1 respectively, each of
which consists of n queries. Specifically, the queries in set i (0 ≤ i ≤ r − 1) have the same size

n
i

r−1 × n
r−1−i
r−1

are pair-wise disjoint, and together cover the entire grid. The total number of queries from all r
sets is rn.

We still use Definition 1 to define bit-flake. Lemma 1 still holds in our current context. Further-
more, define a canonical flake in the same way as in Section 3. Hence, the nr queries constructed
earlier give rise to at least

nr

(

nwL

s
− αnL

B

)

canonical bit-flakes. Lemma 2, however, no longer holds, so we provide its counterpart:

Lemma 5. Let b be a block, and t the number of information bits in b that appear in at least one
canonical bit-flake. Then, b can contain at most

t

s
+

n(r−2)/(r−1) · r(r − 1) · LB2w3

2s3

canonical bit-flakes.

Proof. Recall that our queries are divided into set 0, ..., set r − 1, each of which contains queries
with the same size. Let Fi (i ∈ [0, r − 1]) be the set of canonical bit-flakes that are contained in
b, and defined from queries of set i. The bit-flakes in each Fi are mutually disjoint. The total
number of information bits that appear in at least one bit-flake in F0 ∪ ... ∪ Fr−1 is t. By the set
exclusion-inclusion principle, we have:

∑

f∈(F0∪...∪Fr−1)

|f | −
∑

i, j s.t. i 6= j

∑

f1∈Fi,f2∈Fj

|f1 ∩ f2| ≤

∣

∣

∣

∣

∣

∣

⋃

f∈(F0∪...∪Fr−1)

f

∣

∣

∣

∣

∣

∣

= t. (9)

We now show that

|f1 ∩ f2| ≤ wL · n(r−2)/(r−1) (10)

for any f1 ∈ Fi and f2 ∈ Fj with i 6= j. Without loss of generality, suppose i < j. Let q1 (q2) be the
query from which f1 (f2) was defined. In other words, q1 and q2 have sizes ni/(r−1) ×n(r−1−i)/(r−1)

and nj/(r−1) × n(r−1−j)/(r−1), respectively. Let lx × ly be the size of q1 ∩ q2. It holds that

lx ≤ ni/(r−1)

ly ≤ n(r−1−j)/(r−1).

11

Therefore, q1 ∩ q2 covers at most

lx · ly ≤ n(r−1−j+i)/(r−1) ≤ n(r−2)/(r−1)

points of P . As f1 ∩ f2 is a subset of the information bits belonging those points, (10) follows from
the fact that a point’s information field has wL bits.

Hence, (9) leads to:

∑

f∈(F0∪...∪Fr−1)

|f | −
∑

i, j s.t. i 6= j

∑

f1∈Fi,f2∈Fj

(

wL · n(r−2)/(r−1)
)

≤ t.

The disjointness of the bit-flakes in Fi implies that |Fi| ≤ t/s ≤ Bw/s, with which the above
inequality gives

∑

f∈(F0∪...∪Fr−1)

|f | −
∑

i, j s.t. i 6= j

(

wL · n(r−2)/(r−1) · B
2w2

s2

)

≤ t

⇒
∑

f∈(F0∪...∪Fr−1)

|f | − n(r−2)/(r−1) · r(r − 1)

2
· LB

2w3

s2
≤ t.

As |f | = s for every f ∈ F0 ∪ ... ∪ Fr−1, we arrive at:

|F0 ∪ ... ∪ Fr−1| ≤
t

s
+ n(r−2)/(r−1) · r(r − 1)

2
· LB

2w3

s3

completing the proof.

By the trick explained in Section 3, it suffices to consider that the underlying structure uses
O(n2L/B) space, namely, λ ≤ βn2L/B blocks for some constant β > 0. Define ti (1 ≤ i ≤ λ) as
the number of bits that are stored in the i-th block, and appear in at least one canonical bit-flake.
The previous lemma, combined with the fact that there are at least nr(nwL

s − αnL
B) canonical flakes,

shows:

λ
∑

i=1

(

ti
s
+

n(r−2)/(r−1) · r(r − 1) · LB2w3

2s3

)

≥ nr

(

nwL

s
− αnL

B

)

.

Hence:

λ
∑

i=1

ti ≥ nsr

(

nwL

s
− αnL

B

)

− λ · n
(r−2)/(r−1) · r(r − 1) · LB2w3

2s2

≥ n2rwL− αn2rsL

B
− βn2L

B
· n

(r−2)/(r−1) · r(r − 1) · LB2w3

2s2

= n2rwL
(

1− αs

Bw
− (r − 1)β · BLw2 · n(r−2)/(r−1)

2s2

)

. (11)

Lemma 6. We can set s = Bc for some c > 0 such that both αs
Bw and (r−1)β·BLw2·n(r−2)/(r−1)

2s2
are

o(1) when B is large enough.

12

Proof. First, note that w = Θ(logN) = Θ(log n) = Θ(logB). With s = Bc, we have

αs

Bw
= O

(

Bc

B logB

)

which is o(1) when:

c ≤ 1. (12)

Applying L = Bµ, (8) and Lemma 4, we know:

(r − 1)β · BLw2 · n(r−2)/(r−1)

2s2
= O

B
1+µ+

ǫ+(r−1)/r
2ǫ+(r−2)/r

r−2
r−1

(1−µ) · log2 B
B2c

which is o(1) when:

1 + µ+
ǫ+ (r − 1)/r

2ǫ+ (r − 2)/r
· r − 2

r − 1
· (1− µ) < 2c. (13)

A value of c satisfying (12) and (13) exists when:

1 + µ+
ǫ+ (r − 1)/r

2ǫ+ (r − 2)/r
· r − 2

r − 1
· (1− µ) < 2

⇔ ǫr + (r − 1)

2ǫr + (r − 2)
· r − 2

r − 1
< 1

⇔ ǫr(r − 2) < 2ǫr(r − 1)

⇔ r − 2 < 2r − 2

which is always true (recall that r ≥ 2).

Therefore, setting s as in the above lemma, (11) becomes

λ
∑

i=1

ti ≥ n2rwL(1− o(1)) = rNwL(1− o(1))

concluding the proof of Theorem 1.

5 r-Redundant Structures

Next, we present r-redundant structures achieving the performance in Theorem 2. For simplicity,
we assume that the points in the input set P are in general position, such that no two points in
P share the same x- or y-coordinate. This assumption can be removed by standard tie-breaking
techniques.

Preliminary: External Interval Tree. This structure, due to Arge and Vitter [3], settles the
following stabbing problem. The input set consists of N intervals in the real domain. Given a
real value q, a stabbing query reports all the data intervals enclosing q. The external interval tree
consumes O(N/B) space, and answers a stabbing query in O(logB N +K/B) I/Os, where K is the
number of reported intervals.

13

y = y1

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

q

p1

p2 p3
p4 p5

p6

p7

p8

middle slabs

boundary slabs

Figure 2: Answering a range query (ρ = 8)

The First 1-Redundant Structure. Let us start by giving a 1-redundant structure occupying
NL/B +

√

NL/B + O(N/B) space, and solving a query in O(
√

NL/B + KL/B) I/Os. Note
that the space cost is worse than required in Theorem 2. The structure in fact has been used as a
component in the range search tree [6] and its external counterpart [2]. Our version here differs only
in parameterization (as will be pointed out shortly). Nevertheless, we describe it in full because
the details are useful in clarifying general r-redundant structures later.

We introduce a parameter ρ =
√

NL/B. Also, define a slab as the part of data space R
2

between and including two vertical lines x = c1 and x = c2. Partition the x-axis into ρ segments
such that P has ⌈N/ρ⌉ points whose x-coordinates fall in each segment, except possibly the last
segment. Denote by Pi (1 ≤ i ≤ ρ) the set of points in the i-th segment, counting from left to right.
Denote by σi the slab corresponding to the i-segment.

For each Pi, sort its points in ascending order of y-coordinate. From now on, we will treat Pi as
a sorted list, abusing the notation slightly. Naturally, the j-th point of Pi refers to the j-th point
in the sorted list. If 2 ≤ j ≤ |Pi|, the predecessor of the j-th point is the (j − 1)-st point. As a
special case, the predecessor of the first point in Pi is defined as a dummy point whose y-coordinate
is −∞. The x-coordinate of the dummy point is unimportant.

Define L′ = L + 2. We store the coordinates and information fields of the points of Pi in an
array Ai (respecting the ordering of those points). Ai thus occupies at most 1 + L′|Pi|/B blocks,
i.e., all but the last block contains B words of data. Hence, arrays A1, ..., Aρ require in total at
most ρ+NL′/B =

√

NL/B+NL/B+O(N/B) blocks. We are still allowed O(N/B) extra space,
which is sufficient to store the coordinates of each point constant times. As discussed below, we
use that space to create an external interval tree T .

T is built on N one-dimensional intervals obtained as follows. From each Pi, we generate a set
Ii of |Pi| intervals. Each point p ∈ Pi determines an interval in Ii having the form (ypred, yp], where
yp is the y-coordinate of p, and ypred is that of its predecessor. We associate this interval with a
pointer to the block of array Ai where info(p) is stored, so that when the interval is fetched, we
can jump to that block in one I/O. T indexes the union of I1, ..., Iρ. As T uses O(N/B) blocks,

14

the overall space of our structure is NL/B +
√

NL/B +O(N/B).
To answer a range query with search region q = [x1, x2]× [y1, y2], we first identify the (at most)

two boundary slabs that contain the left and right edges of q, respectively (this takes O(logB N)
I/Os with another B-tree on the slabs’ x-ranges). Denote them respectively as σi1 and σi2 with
i1 ≤ i2. Scan arrays Ai1 and Ai2 completely to report the information fields of the qualifying points
there. Since each array has at most ⌈N/ρ⌉ points, the cost of the scan is

O

(

NL′

ρB

)

= O(
√

NL/B).

In the example of Figure 2 (where ρ = 8), the boundary slabs are σ2 and σ6, in which all the points
are examined.

The other qualifying points can lie only in slabs σi where i ranges from i1+1 to i2−1. Refer to
those slabs as the middle slabs. For each such slab σi, we find the lowest point pi in σi on or above
the horizontal line y = y1. After this, jump to the block in Ai where info(pi) is stored, and start
scanning Ai from pi to retrieve the information fields of the other points above the line y = y1. We
do so in ascending order of those points’ y-coordinates, so that the scan can terminate as soon as
encountering a point falling out of q. All the points already scanned prior to this moment are the
only points in σi satisfying q. If the number of them is Ki, the scan performs at most O(1+KiL

′/B)
I/Os. Hence, carrying out the scan in all slabs σi (i ∈ [i1 +1, i2 − 1]) takes O(ρ+KmidL

′/B) I/Os,
where Kmid is the number of qualifying points from the middle slabs. In Figure 2, the middle slabs
are σ3, σ4 and σ5. The scan in σ3, for instance, starts from p3, and ends at the lowest point in σ3
above the query rectangle.

It remains to explain how to find all the pi for each i ∈ [i1 + 1, i2 − 1]. This can be settled
with the external interval tree T . Recall that pi determines an interval in Ii. The definition of pi
makes that interval the only one from Ii that contains the value y1. Hence, it can be found by a
stabbing query on T with y1 as the search value. Note that this stabbing query may retrieve an
interval for every slab, including those that are not a middle slab. In Figure 2, for example, the
stabbing query returns (the intervals determined by) 8 points: p1, ..., p8. Nevertheless, as there are
only ρ slabs, the stabbing query finishes in O(logB N + ρ/B) I/Os, after which we can keep only
the points in the middle slabs and discard the others. Therefore, overall the cost of reporting the
qualifying points in the middle slabs is bounded by

O(KmidL
′/B + ρ+ logB N + ρ/B) = O(

√

NL/B +KmidL/B). (14)

As analyzed earlier, the qualifying points from the boundary slabs can be found in O(
√

NL/B)
I/Os. Hence, the total query cost is O(

√

NL/B +KL/B).
As mentioned, this structure has been used in [2, 6]. The only nuance in our scenario is the

choice of ρ (which was logarithmic in [2, 6]). The techniques in the rest of the section, on the other
hand, are newly developed in this paper.

Reducing the Space. The previous structure incurs more space than our target in Theorem 2 by
an additive term of ρ =

√

NL/B. This term can be eliminated with a trick we call tail collection,
as explained next.

A close look at our earlier description reveals that the extra term ρ exists because each Ai

(1 ≤ i ≤ ρ) may have an under-full block, which does not have B words of data, and thus, wastes
space. This under-full block, if present, must be the last block in Ai. We remove it from Ai, after
which all the blocks in Ai are fully utilized. We concatenate the data of all the non-full blocks
(from different arrays) into a separate tail file G. All blocks in G store B words of data, except

15

possibly one. Therefore, the total space used by G and the arrays is now at most 1 +NL/B, i.e.,
ρ blocks less than before.

Note that G itself has no more than ρ blocks. Therefore, we can afford to scan it completely in
answering a query, which will add only ρ I/Os to the query cost, and hence, does not change the
query complexity O(

√

NL/B + KL/B). The query algorithm is still the same as before, except
that in scanning an array, if we have come to its end and see that some information has been moved
to G, we should continue scanning the relevant portion in G.

r-Redundant Structure. Assuming that there is an (r − 1)-redundant structure with space
(r−1)NL/B+O(N/B) and query cost O((NL/B)1/r+KL/B), next we will obtain an r-redundant
structure with space rNL/B + O(N/B) and query cost O((NL/B)1/(r+1) +KL/B). This can be
done by modifying the earlier 1-redundant structure, as shown below.

The first change is the value of ρ, which is now set to (NL/B)1/(r+1). Then, in the same manner
as in the 1-redundant case, we divide P into P1, ..., Pρ, and create arrays A1, ..., Aρ, the tail file
G, and the external interval tree T . Currently, the information field of each point has been stored
once, such that the space consumption is NL/B + O(N/B). On each Pi (1 ≤ i ≤ ρ), we build an
(r− 1)-redundant structure Ti, which occupies (r− 1)|Pi|L/B +O(|Pi|/B) space. Hence, T1, ..., Tρ

together use

ρ
∑

i=1

(r − 1)|Pi|L
B

+O

(|Pi|
B

)

=
(r − 1)NL

B
+O(N/B)

space. This explains why the overall space is rNL/B + O(N/B). Note that the final structure is
r-redundant.

To answer a range query q = [x1, x2]×[y1, y2], as in the 1-redundant case, we start by identifying
the boundary slabs σi1 and σi2 (i1 ≤ i2). Recall that they define middle slabs σi for each i ∈
[i1 + 1, i2 − 1]. The information fields of the qualifying points in the middle slabs are retrieved
in the same way as in the 1-redundant case, i.e., utilizing T , the arrays of the middle slabs, and
perhaps also the tail file. If Kmid points from the middle slabs satisfy the query, as shown in (14),
they can be extracted in O(ρ+KmidL/B) = O((NL/B)1/(r+1) +KmidL/B) I/Os.

Finally, to report the qualifying points in the boundary slabs, we query the (r − 1)-redundant
structures Ti1 and Ti2 . Notice that each of these structures indexes at most ⌈N/ρ⌉ points. Hence,
if K1 and K2 points are found from Ti1 and Ti2 respectively, searching the two structures entails

O

(

(

NL

ρB

)1/r

+ (K1 +K2)L/B

)

= O

(

(

NL

B

)
r

r+1
· 1
r

+
(K1 +K2)L

B

)

= O

(

(

NL

B

)1/(r+1)

+
(K1 +K2)L

B

)

I/Os. As Kmid +K1 +K2 = K, the overall query cost is O((NL/B)1/(r+1) +KL/B).
Combining the above inductive construction with our earlier 1-redundant structure, we have

established the first part of Theorem 2.

A Better Structure for L = Ω(B). The peculiarity at L = Ω(B) arises from the fact that,
the cost of reporting K ≥ 1 points is Ω(KL/B) = Ω(K), namely, the query algorithm can afford
to spend one I/O on each qualifying point. Imagine that we store the information fields of all
points in an array, indexed by point ids. The array uses NL/B + O(1) blocks. Then, create on
P an O(N/B)-space structure designed for orthogonal range search with L = 1, treating each id

16

as an information field. This structure allows us to report the ids of the points satisfying a query
in O((N/B)ǫ + K/B) I/Os, after which their information fields can be extracted from the array
in O(K +KL/B) = O(KL/B) I/Os. We thus have obtained a 1-redundant structure with space
NL/B +O(N/B) and query time O((N/B)ǫ +KL/B).

We now conclude the whole proof of Theorem 2.

6 Conclusions

This paper revisited linear-space data structures for the 2D orthogonal range search problem in
external memory. The primary objective is to understand the best achievable query efficiency
when the information of each point can be stored at most r ≥ 1 times, when r is a given constant.
Interestingly, we showed that the length L (measured in words) of the information field carried by
each point plays a crucial role in this problem. Specifically, for L = O(Bµ) where µ is a positive

constant smaller than 1, the best query cost is O((NL/B)
1

r+1) plus the linear cost of outputting
the information fields, whereas for L = Ω(B), even with r = 1 it is possible to achieve query cost
O((N/B)ǫ) (plus the linear output cost) for arbitrarily small constant ǫ > 0. Our argument also
showed that a structure gains no extra power by dividing the information fields and storing the
bits therein separately, as long as those bits must be retrieved from the disk for reporting, instead
of being computed.

Acknowledgements

This research was supported in part by GRF grants 4164/12, 4168/13, and 142072/14.

References

[1] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related problems.
Communications of the ACM (CACM), 31(9):1116–1127, 1988.

[2] L. Arge, V. Samoladas, and J. S. Vitter. On two-dimensional indexability and optimal
range search indexing. In Proceedings of ACM Symposium on Principles of Database Sys-
tems (PODS), pages 346–357, 1999.

[3] L. Arge and J. S. Vitter. Optimal external memory interval management. SIAM Journal of
Computing, 32(6):1488–1508, 2003.

[4] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An efficient and ro-
bust access method for points and rectangles. In Proceedings of ACM Management of Data
(SIGMOD), pages 322–331, 1990.

[5] J. L. Bentley. Multidimensional binary search trees used for associative searching. Communi-
cations of the ACM (CACM), 18(9):509–517, 1975.

[6] B. Chazelle. Filtering search: A new approach to query-answering. SIAM Journal of Comput-
ing, 15(3):703–724, 1986.

[7] R. Grossi and G. F. Italiano. Efficient splitting and merging algorithms for order decomposable
problems. Information and Computation, 154(1):1–33, 1999.

17

[8] A. Guttman. R-trees: a dynamic index structure for spatial searching. In Proceedings of ACM
Management of Data (SIGMOD), pages 47–57, 1984.

[9] J. M. Hellerstein, E. Koutsoupias, D. P. Miranker, C. H. Papadimitriou, and V. Samoladas.
On a model of indexability and its bounds for range queries. Journal of the ACM (JACM),
49(1):35–55, 2002.

[10] J. M. Hellerstein, E. Koutsoupias, and C. H. Papadimitriou. On the analysis of indexing
schemes. In Proceedings of ACM Symposium on Principles of Database Systems (PODS),
pages 249–256, 1997.

[11] J. Iacono and M. Patrascu. Using hashing to solve the dictionary problem (in external mem-
ory). To appear in Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2012.

[12] K. V. R. Kanth and A. K. Singh. Optimal dynamic range searching in non-replicating index
structures. In Proceedings of International Conference on Database Theory (ICDT), pages
257–276, 1999.

[13] E. Koutsoupias and D. S. Taylor. Tight bounds for 2-dimensional indexing schemes. In
Proceedings of ACM Symposium on Principles of Database Systems (PODS), pages 52–58,
1998.

[14] O. Procopiuc, P. K. Agarwal, L. Arge, and J. S. Vitter. Bkd-tree: A dynamic scalable kd-tree.
In Proceedings of Symposium on Advances in Spatial and Temporal Databases (SSTD), pages
46–65, 2003.

[15] J. T. Robinson. The K-D-B-tree: A search structure for large multidimensional dynamic
indexes. In Proceedings of ACM Management of Data (SIGMOD), pages 10–18, 1981.

[16] V. Samoladas and D. P. Miranker. A lower bound theorem for indexing schemes and its ap-
plication to multidimensional range queries. In Proceedings of ACM Symposium on Principles
of Database Systems (PODS), pages 44–51, 1998.

[17] M. Streppel and K. Yi. Approximate range searching in external memory. Algorithmica,
59(2):115–128, 2011.

[18] S. Subramanian and S. Ramaswamy. The p-range tree: A new data structure for range
searching in secondary memory. In Proceedings of the Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 378–387, 1995.

[19] E. Verbin and Q. Zhang. The limits of buffering: a tight lower bound for dynamic membership
in the external memory model. In Proceedings of ACM Symposium on Theory of Computing
(STOC), pages 447–456, 2010.

[20] K. Yi and Q. Zhang. On the cell probe complexity of dynamic membership. In Proceedings of
the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 123–133, 2010.

18

