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ABSTRACT
We consider the skyline problem (a.k.a. the maxima prob-
lem), which has been extensively studied in the database
community. The input is a set P of d-dimensional points. A
point dominates another if the former has a lower coordinate
than the latter on every dimension. The goal is to find the
skyline, which is the set of points p ∈ P such that p is not
dominated by any other data point. In the external-memory
model, the 2-d version of the problem is known to be solvable
in O((N/B) logM/B(N/B)) I/Os, where N is the cardinal-
ity of P , B the size of a disk block, and M the capacity
of main memory. For fixed d ≥ 3, we present an algorithm
with I/O-complexity O((N/B) logd−2

M/B(N/B)). Previously,

the best solution was adapted from an in-memory algorithm,
and requires O((N/B) logd−2

2 (N/M)) I/Os.

Categories and Subject Descriptors
F2.2 [Analysis of algorithms and problem complex-
ity]: Nonnumerical algorithms and problems—geometric
problems and computations

General Terms
Algorithms, theory

Keywords
Skyline, admission point, pareto set, maxima set

1. INTRODUCTION
This paper studies the skyline problem. The input is a set

P of d-dimensional points in general position, i.e., no two
points of P share the same coordinate on any dimension.
Given a point p ∈ Rd, denote its i-th (1 ≤ i ≤ d) coordinate
as p[i]. A point p1 is said to dominate another point p2,
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represented as p1 ≺ p2, if p1 has a smaller coordinate on all
d dimensions, namely:

∀i = 1, ..., d, p1[i] < p2[i].

The goal is to compute the skyline of P , denoted as
SKY (P ), which includes all the points in P that are not
dominated by any other point, namely:

SKY (P ) = {p ∈ P | �p′ ∈ P s.t. p′ ≺ p}. (1)

The skyline is also known under other names such as the
pareto set, the set of admission points, and the set of maxi-
mal vectors (see [24]).
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Figure 1: The skyline is {1, 5, 7}

Ever since its debut in the database literature a decade
ago [7], skyline computation has generated considerable in-
terests in the database area (see [24] for a brief survey). This
is, at least in part, due to the relevance of skylines to multi-
criteria optimization. Consider, for example, a hotel rec-
ommendation scenario, where each hotel has two attributes
price and rating (a smaller rating means better quality).
Figure 1 illustrates an example with 8 hotels, of which the
skyline is {1, 5, 7}. Every hotel not in the skyline is worse
than at least one hotel in the skyline on both dimensions,
i.e., more expensive and rated worse at the same time. In
general, for any scoring function that is monotone on all di-
mensions, the skyline always contains the best (top-1) point
that minimizes the function. This property is useful when
it is difficult, if not impossible, for a user to specify a suit-
able scoring function that accurately reflects her/his prefer-
ences on the relative importance of various dimensions. In
Figure 1, for instance, {1, 5, 7} definitely includes the best



hotel, no matter the user emphasizes more, and how much
more, on price or rating.

1.1 Computation model
Our complexity analysis is under the standard external

memory (EM) model [2], which has been successful in cap-
turing the characteristics of algorithms dealing with massive
data that do not fit in memory (see [27] for a broad summary
of results in this model). Specifically, in this model, a com-
puter has a main memory that is able to accommodate M
words, and a disk of unbounded size. The disk is formatted
into disjoint blocks, each of which contains B consecutive
words. The memory should have at least two blocks, i.e.,
M ≥ 2B. An I/O operation reads a block of data from the
disk into memory, or conversely, writes a block of memory
information into the disk. The time complexity is measured
in the number of I/Os performed by an algorithm. CPU
calculation is free.

In EM, linear cost should be interpreted as O(N/B) for
a dataset of size N , as opposed to O(N) in a memory-
resident model such as RAM. In this paper, poly-logarithmic
should be understood as O(polylogM/B(N/B)), instead of
O(polylogN), namely, it is important to achieve base M/B.
In this paper, a function is said to be near-linear if it is in
O((N/B) polylogM/B(N/B)) but not in O(N/B).

1.2 Previous results
In internal memory, Matousek [21] showed how to find the

skyline in O(N2.688) time when the dimensionality d of the
dataset P is as high as the number N of points in P . In 2-d
space, Kung et al. [19] proposed an O(N logN)-time algo-
rithm. For any fixed dimensionality d ≥ 3, they also gave
an algorithm with time complexity O(N logd−2 N). Bentley
[4] developed an alternative algorithm achieving the same
bounds as those of [19]. Kirkpatrick and Seidel [16] pre-
sented algorithms whose running time is sensitive to the re-
sult size, and has the same complexity as the algorithms
in [4, 19] when the skyline has Ω(N) points. It can be
shown that any algorithm in the comparison class1 must
incur Ω(N logN) time, implying that the solutions of [4, 19]
are already optimal in this class for d = 2 and 3 (see also
some recent results on instance optimality due to Afshani et
al. [1]). For d ≥ 4, Gabow et al. [11] discovered an algorithm
terminating in O(N logd−3 N log logN) time, which still re-
mains the best result up to this day. Note, however, that
the solution of [11] does not belong to the comparison class,
due to its reliance on the van Emde Boas structure [26] that
uses features of the RAM model. Faster algorithms have
been developed in some special circumstances where, for ex-
ample, the data follow special distributions [5, 6, 10], or each
dimension has a small domain [22].

All the RAM algorithms can be applied in the EM model
directly by treating the disk as virtual memory. Such a
brute-force approach, however, can be expensive in practice
because it fails to take into account the effects of blocking,
which do not exist in RAM but are inherent in external mem-
ory. For example, running the solution of [11] in EM naively

1A skyline algorithm is comparison-based if it can infer the
dominance relation by only comparing pairs of points. The
comparison class includes all such algorithms.

would entail O(N logd−3 N log logN) I/Os, which amounts
to reading the entire dataset O(B logd−3 N log logN) times
(B is at the order of thousands in practice). Hence, there
is a genuine need to design I/O-oriented algorithms. For
d = 2, such an algorithm can be easily found, as Kung et
al. [19] showed that the problem can be settled by sorting
the data followed by a single scan (we will come back to this
in Section 2), which takes O((N/B) logM/B(N/B)) I/Os in
total. To our knowledge, for general d, the RAM algorithm
that can be most efficiently adapted to EM is the one by
Bentley [4], which performs O((N/B) logd−2

2 (N/M)) I/Os –
note that the base of the log is 2, instead of M/B. We are
not aware of any algorithm that can achieve near-linear (or
better) running time.

For d ≥ 3, the skyline of a dataset P can be trivially ob-
tained by computing the cartesian product P × P (i.e., by
comparing all pairs of points in P ) which, in turn, can be
produced by a blocked nested loop (BNL) in Θ(N2/(MB))
I/Os. It has been observed [7] that such a quadratic com-
plexity is too slow in practice for largeN . In the past decade,
several algorithms, as we survey below, have been designed
to alleviate the deficiency, typically by leveraging the tran-
sitivity of the dominance relation (i.e., p1 ≺ p2 and p2 ≺ p3
imply p1 ≺ p3). Although empirical evaluation has con-
firmed their effectiveness on selected datasets, none of those
algorithms has been proved to be asymptotically faster than
BNL in the worst case. We say that they are captured by
the quadratic trap.

Borzsonyi et al. [7] presented a divide and conquer (DC)
method that partitions P into disjoint groups P1, ..., Ps

where the number s of groups is large enough so that each
Pi (i ≤ s) fits in memory. DC proceeds by invoking an
in-memory algorithm to find the skyline SKY (Pi) of each
Pi, and then, deleting those points of SKY (Pi) dominated
by some point in the skyline of another group. Although
divide and conquer is a promising paradigm for attacking
the skyline problem (it is also employed in our solutions),
its application in DC is heuristic and does not lead to any
interesting performance bound.

The sort first skyline (SFS) algorithm by Chomicki et al.
[9] works by sorting the points p ∈ P in ascending order
of score(p), where score can be any function Rd → R that
is monotonically increasing on all dimensions. The mono-
tonicity ensures that, p1 ≺ p2 implies score(p1) < score(p2)
(but the opposite is not true). As a result, a point p ∈ P
cannot be dominated by any point that ranks behind it in
the ordering. Following this rationale, SFS scans P in its
sorted order, and maintains the skyline Σ of the points al-
ready seen so far (note that Σ ⊆ SKY (P ) at any time). As
expected, the choice of score is crucial to the efficiency of
the algorithm. No choice, unfortunately, is known to be able
to escape the quadratic trap in the worst case.

In SFS, sorting is carried out with the standard exter-
nal sort. Intuitively, if mutual comparisons are carried out
among the data that ever co-exist in memory (during the
external sort), many points may get discarded right away
once confirmed to be dominated, at no extra I/O cost at
all. Based on this idea, Godfrey et al. [12] developed the
linear elimination sort for skyline (LESS) algorithm. LESS
has the property that, it terminates in linear expected I/Os
under the independent-and-uniform assumption (i.e., all di-



method I/O complexity remark

Kung et al. [19] O(N logd−2 N)

Gabow et al. [11] O(N logd−3 N log logN) not in the comparison class.

Bentley [4] O((N/B) logd−2
2 (N/M)) adapted from Bentley’s O(N logd−2 N) algorithm in RAM

BNL Θ(N2/(MB)) also applies to the BNL variant of Borzsonyi et al. [7]

DC [7] Ω(N2/(MB))

SFS [9] O(N2/(MB))

LESS [12] O(N2/(MB))

RAND [24] O(µN/(MB)) expected µ is the number of points in the skyline, which can be Ω(N).

this paper O((N/B) logd−2
M/B(N/B)) optimal for d = 3 in the comparison class

Table 1: Comparison of skyline algorithms for fixed d ≥ 3

mensions are independent, and the points of P distribute
uniformly in the data space), provided that the memory
size M is not too small [12]. When the assumption does
not hold, however, it remains unknown whether the cost of
LESS is o(N2/(MB)).

Sarma et al. [24] described an output-sensitive randomized
algorithm RAND, which continuously shrinks P with repet-
itive iterations, each of which performs a three-time scan
on the current P as follows. The first scan takes a random
sample set S ⊆ P with size Θ(M). The second pass replaces
(if possible) some samples in S with other points that have
stronger pruning power. All samples at the end of this scan
are guaranteed to be in the skyline, and thus removed from
P . The last scan further reduces |P |, by eliminating all the
points that are dominated by some sample. At this point,
another iteration sets off as long as P �= ∅. RAND is efficient
when the result has a small size. Specifically, if the skyline
has µ points, RAND entails O(µN/(MB)) I/Os in expecta-
tion. When µ = Ω(N), however, the time complexity falls
back in the quadratic trap.

There is another line of research that concerns pre-
processing a dataset P into a structure that supports fast
retrieval of the skyline, as well as insertions and deletions on
P (see [14, 15, 18, 20, 23] and the references therein). In our
context, such pre-computation-based methods do not have
a notable advantage over the algorithms mentioned earlier.

1.3 Our results
Our main result is:

Theorem 1.1. The skyline of N points in Rd can be com-
puted in O((N/B) logd−2

M/B(N/B)) I/Os for any fixed d ≥ 3.

The theorem concerns only d ≥ 3 because, as men-
tioned before, the skyline problem is known to be solvable
in O((N/B) logM/B(N/B)) I/Os in 2-d space. Unlike the
result of Godfrey et al. [12], we make no assumption on
the data distribution. Our algorithm is the first one that
beats the quadratic trap and, at the same time, achieves
near-linear running time. In 3-d space, our I/O complex-
ity O((N/B) logM/B(N/B)) is asymptotically optimal in the
class of comparison-based algorithms. For any fixed d, The-
orem 1.1 shows that the skyline problem can be settled in
O(N/B) I/Os, when N/B = (M/B)c for some constant c (a
situation that is likely to happen in practice). No previous

algorithm is known to have such a property. See Table 1 for
a comparison of our and existing results.

The core of our technique is a distribution-sweep2 algo-
rithm for solving the skyline merge problem, where we are
given s skylines Σ1, ...,Σs that are separated by s−1 hyper-
planes orthogonal to a dimension; and the goal is to re-
turn the skyline of the union of all the skylines, namely,
SKY (Σ1 ∪ ... ∪ Σs). It is not hard to imagine that this
problem lies at the heart of computing the skyline using a
divide-and-conquer approach. Indeed, the lack of a fast solu-
tion to skyline merging has been the obstacle in breaking the
curse of quadratic trap, as can be seen from the divide-and-
conquer attempt of Borzsonyi et al. [7]. We overcome the
obstacle by lowering the dimensionality to 3 gradually, and
then settling the resulting 3-d problem in linear I/Os. Our
solution can also be regarded as the counterpart of Bentley’s
algorithm [4] in external memory.

Remark. We have defined our problem by assuming that
P is in general position. The skyline SKY (P ) is still well
defined without this assumption. Specifically, let P be a set
of points in Rd (implying that P has no duplicates). Given
two points p, p′ in P , we have p ≺ p′ if p[i] ≤ p′[i] for all
1 ≤ i ≤ d. Note that since p �= p′, the equality does not hold
for at least one i. Then, SKY (P ) is still given by Equation 1.
Our algorithms can be extended to solve this version of the
skyline problem, retaining the same performance guarantee
as in Theorem 1.1. Details can be found in Section 3.3.

2. PRELIMINARIES
In this section, we review some skyline algorithms de-

signed for memory-resident data. The purposes of the re-
view are three fold. First, we will show that the 2-d solution
of Kung et al. [19] can be easily adapted to work in the EM
model. Second, our discussion of their algorithm and Bent-
ley’s algorithm [4] for d ≥ 3 not only clarifies some char-
acteristics of the underlying problems, but also sheds light
on some obstacles preventing a direct extension to achieve
near-linear time complexity in external memory. Finally, we
briefly explain the cost lower bound established in [19] and
why a similar bound also holds in the I/O context.

Let us first agree on some terminologies. We refer to the

2An algorithm paradigm proposed by Goodrich et al. [13]
that can be regarded as the counterpart of plane-sweep in
external memory.
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Figure 2: Illustration of algorithms by Kung et al. [19]: (a) 2-d, (b) 3-d

first, second, and third coordinate of a point as its x-, y-,
and z-coordinate, respectively. Sometimes, it will be conve-
nient to extend the definition of dominance to subspaces in a
natural manner. For example, in case p1 has smaller x- and
y-coordinates than p2, we say that p1 dominates p2 in the
x-y plane. No ambiguity can arise as long as the subspace
concerning the dominance is always mentioned.

2-d. The skyline SKY (P ) of a set P of 2-d points can be
extracted by a single scan, provided that the points of P have
been sorted in ascending order of their x-coordinates. To
understand the rationale, consider any point p ∈ P ; and let
P ′ be the set of points of P that rank before p in the sorted
order. Apparently, p cannot be dominated by any point that
ranks after p, because p has a smaller x-coordinate than any
of those points. On the other hand, p is dominated by some
point in P ′ if and only if the y-coordinate of p is greater
than ymin, where ymin is the smallest y-coordinate of all the
points in P ′. See Figure 2a where P ′ includes points 1, 2, 3;
and that no point in P ′ dominates p can be inferred from the
fact that p has a lower y-coordinate than ymin. Therefore,
to find SKY (P ), it suffices to read P in its sorted order, and
at any time, keep the smallest y-coordinate ymin of all the
points already seen. The next point p scanned is added to
SKY (P ) if its y-coordinate is below ymin, in which case ymin

is updated accordingly. In the EM model, this algorithm
performs O((N/B) logM/B(N/B)) I/Os, which is the time
complexity of sorting N elements in external memory.

3-d. Suppose that we have sorted P in ascending order of
their x-coordinates. Similar to the 2-d case, consider any
point p ∈ P , with P ′ being the set of points before p. It is
clear that p cannot be dominated by any point that ranks
after p. Judging whether p is dominated by a point of P ′,
however, is more complex than the 2-d scenario. The gen-
eral observation is that, since all points of P ′ have smaller
x-coordinates than p, we only have to check whether p is
dominated by some point of P ′ in the y-z plane. Imagine
that we project all the points of P ′ onto the y-z plane, which
yields a 2-d point set P ′′. Let Σ be the (2d) skyline of P ′′.
It is sufficient to decide whether a point in Σ dominates p
in the y-z plane.

It turns out that such a dominance check can be done
efficiently. In general, a 2-d skyline is a “staircase”. In the
y-z plane, if we walk along the skyline in the direction of
growing y-coordinates, the points encountered must have
descending z-coordinates. Figure 2b illustrates this with a
Σ that consists of points 1, ..., 5. To find out whether p

is dominated by any point of Σ in the y-z plane, we only
need to find the predecessor o of p along the y-dimension
among the points of Σ, and give a “yes” answer if and only if
o has a lower z-coordinate than p. In Figure 2b, the answer
is “no” because the predecessor of p, i.e., point 2, actually
has a greater z-coordinate than p. Returning to the earlier
context with P ′, a “no” indicates that p is not dominated
by any point in P ′, and therefore, p belongs to the skyline
SKY (P ).

Based on the above reasoning, the algorithm of [19] main-
tains Σ while scanning P in its sorted order. To find pre-
decessors quickly, the points of Σ are indexed by a binary
tree T on their y-coordinates. The next point p is added
to SKY (P ) upon a “no” answer as explained before, which
takes O(logN) time with the aid of T . Furthermore, a “no”
also necessitates the deletion from Σ of all the points that
are dominated by p in the y-z plane (e.g., points 3, 4 in Fig-
ure 2b). Using T , this requires only O(logN) time per point
removed. As each point of P is deleted at most once, the
entire algorithm finishes in O(N logN) time.

A straightforward attempt of externalizing the algorithm
is to implement T as a B-tree. This will result in the total
execution time of Θ(N logB N), which is higher than the
cost O((N/B) logM/B(N/B)) of our solution by a factor of
Ω(B logB M). The deficiency is due to the fact (see [13]) that
plane sweep, which is the methodology behind the above
algorithm, is ill-fitted in external memory, because it issues
a large number of queries (often Ω(N)), rendering it difficult
to control the overall cost to be at the order of N/B.

Following a different rationale, Bentley [4] gave another
algorithm of O(N logN) time. We will not elaborate his
solution here because our algorithm in the next section de-
generates into Bentley’s, when M and B are set to constants
satisfying M/B = 2.

Dimensionalities at least 4. Kung et al. [19] and Bentley
[4] deal with a general d-dimensional (d ≥ 4) dataset P
by divide-and-conquer. More specifically, their algorithms
divide P into P1 and P2 of roughly the same size by a hyper-
plane perpendicular to dimension 1. Assume that the points
of P1 have smaller coordinates on dimension 1 than those of
P2. Let Σ1 be the skyline SKY (P1) of P1, and similarly,
Σ2 = SKY (P2). All points of Σ1 immediately belong to
SKY (P ), but a point p ∈ Σ2 is in SKY (P ) if and only if no
point in Σ1 dominates p. Hence, after obtaining Σ1 and Σ2

from recursion, a skyline merge is carried out to evict such
points as p.
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Figure 3: Illustration of 3-d skyline merge. The value of s is 3. Only the points already encountered are
shown. Points are labeled in ascending order of their y-coordinates (which is also the order they are fetched).
Point 8 is the last one seen. Each cross is the projection of a point in the x-y plane. Σ(1) contains points 2, 3,
7, Σ(2) includes 4, 6, 8, and Σ(3) has 5, 1. λ(1), λ(2), λ(3) equal the z-coordinate of point 2, 8, 5, respectively.
Point 8 does not belong to SKY (P ) because its z-coordinate is larger than λ(1) (i.e., it violates Inequality 2
on j = 1).

Externalization of the algorithms of Kung et al. [19] and
Bentley [4] is made difficult by a common obstacle. That is,
the partitioning in the divide-and-conquer is binary, causing
a recursion depth of Ω(polylog(N/M)). To obtain the per-
formance claimed in Theorem 1.1, we must limit the depth
to O(polylogM/B(N/B)). This cannot be achieved by sim-
ply dividing P into a greater number s > 2 of partitions
P1, ..., Ps, because doing so may compromise the efficiency
of merging skylines. To illustrate, let Σi = SKY (Pi) for
each 1 ≤ i ≤ s. A point p ∈ Si must be compared to
SKY (Pj) for all j < i. Applying the skyline merge strategy
of [4] or [19] would blow up the cost by a factor of Ω(s2),
which would offset all the gains of a large s. Remedying the
drawback calls for a new skyline merge algorithm, which we
give in the next section.

Cost lower bound. Kung et al. [19] proved that any
2-d skyline algorithm in the comparison class must incur
Ω(N logN) execution time. To describe the core of their ar-
gument, let us define the rank permutation of a sequence S
of distinct numbers (x1, ..., xN), as the sequence (r1, ..., rN)
where ri (1 ≤ i ≤ N) is the number of values of S that
are at most xi. For example, the rank permutation of
(9, 20, 3) is (2, 3, 1). Kung et al. [19] identified a series of
hard datasets, where each dataset P has N points p1, ..., pN
whose x-coordinates can be any integers. They showed that,
any algorithm that correctly finds the skyline of P must have
determined the rank permutation of the sequence formed by
the x-coordinates of p1, ..., pN . In the EM model, it is known
[2] that deciding the rank permutation of a set of N integers
demands Ω((N/B) logM/B(N/B)) I/Os in the worst case for
any comparison-based algorithm. It thus follows that this
is also a lower bound for computing 2-d skylines in external
memory. Note that the same bound also holds in higher-
dimensional space where the problem is no easier than in
the 2-d space.

It is worth mentioning that the I/O lower bound

Ω((N/B) logM/B(N/B)) is also a direct corollary of a result
due to Arge et al. [3].

3. OUR SKYLINE ALGORITHM
We will present the proposed solution in a step-by-step

manner. Section 3.1 first explains the overall divide-and-
conquer framework underpinning the algorithm by clarifying
how it works in 3-d space. To tackle higher dimensionalities
d, there is another layer of divide-and-conquer inside the
framework, as elaborated in Section 3.2 for d = 4. The 4-d
description of our algorithm can then be easily extended to
general d, which is the topic of Section 3.3.

3.1 3-d
Our algorithm accepts as input a dataset P whose points

are sorted in ascending order of x-coordinates. If the size N
of P is at most M (i.e., the memory capacity), we simply
find the skyline of P using a memory-resident algorithm.
The I/O cost incurred is O(N/B).

In case N > M , we divide P into s = Θ(M/B) partitions
P (1), ..., P (s) with roughly the same size, such that each
point in P (i) has a smaller x-coordinate than all points in
P (j) for any 1 ≤ i < j ≤ s. As P is already sorted on the x-
dimension, the partitioning can be done in linear cost, while
leaving the points of each P (i) sorted in the same way.

The next step is to obtain the skyline Σ(i) of each P (i),
i.e., Σ(i) = SKY (P (i)). Since this is identical to solv-
ing the original problem (only on a smaller dataset), we
recursively invoke our algorithm on P (i). Now consider
the moment when all Σ(i) have been returned from re-
cursion. Our algorithm proceeds by performing a skyline
merge, which finds the skyline of the union of all Σ(i), that
is, SKY (Σ(1) ∪ ... ∪ Σ(s)), which is exactly SKY (P ). We
enforce an invariant that, SKY (P ) be returned in a disk
file where the points are sorted in ascending order of y-



coordinates (to be used by the upper level of recursion, if
any). Due to recursion, the invariant implies that, the same
ordering has been applied to all the Σ(i) at hand.

We now elaborate the details of the skyline merge.
SKY (P ) is empty in the outset. Σ(1), ...,Σ(s) are scanned
synchronously in ascending order of y-coordinates. In other
words, the next point fetched is guaranteed to have the low-
est y-coordinate among the points of all Σ(i) that have not
been encountered yet. As s = Θ(M/B), the synchroniza-
tion can be achieved by assigning a block of memory as the
input buffer to each Σ(i). We maintain a value λ(i), which
equals the minimum z-coordinate of all the points that have
already been seen from Σ(i). If no point from Σ(i) has been
read, λ(i) =∞.

We decide whether to include a point p in SKY (P ) when
p is fetched by the synchronous scan. Suppose that p is from
Σ(i) for some i. We add p to SKY (P ) if

p[3] < λ(j),∀j < i (2)

where p[3] denotes the z-coordinate of p. See Figure 3 for
an illustration. The lemma below shows the correctness of
this rule.

Lemma 3.1. p ∈ SKY (P ) if and only if Inequality 2
holds.

Proof. Clearly, p cannot be dominated by any point in
Σ(i+ 1), ...,Σ(s) because p has a smaller x-coordinate than
all those points. Let S be the set of points in Σ(j) already
scanned before p, for any j < i. No point p′ ∈ Σ(j) \ S can
possibly dominate p, as p has a lower y-coordinate than p′.
On the other hand, all points in S dominate p in the x-y
plane. Thus, some point in S dominates p in R3 if and only
if Inequality 2 holds.

We complete the algorithm description with a note that a
single memory block can be used as an output buffer, so that
the points of SKY (P ) can be written to the disk in linear
I/Os, by the same order they entered SKY (P ), namely, in
ascending order of their y-coordinates. Overall, the skyline
merge finishes in O(N/B) I/Os.

Running time. Denote by F (N) the I/O cost of our algo-
rithm on a dataset with cardinality N . It is clear from the
above discussion that

F (N) =

{
O(N/B) if N ≤M
s · F (N/s) +G(N) otherwise

(3)

where G(N) = O(N/B) is the cost of a skyline merge. Solv-
ing the recurrence gives F (N) = O((N/B) logM/B(N/B)).

3.2 4-d
To find the skyline of a 4-d dataset P , we proceed as

in the 3-d algorithm by using a possibly smaller s =
Θ(min{√M,M/B}). The only difference lies in the way
that a skyline merge is performed. Formally, the prob-
lem we face in a skyline merge can be described as fol-
lows. Consider a partition P (1), ..., P (s) of P such that
each point in P (i) has a smaller coordinate on dimension

1 than all points in P (j), for any 1 ≤ i < j ≤ s. Equiva-
lently, the data space is divided into s slabs σ1(1), ..., σ1(s)
by s − 1 hyper-planes orthogonal to dimension 1 such that
P (i) = P ∩σ1(i) for all 1 ≤ i ≤ s. We are given the sky-
line Σ1(i) of each P (i), where the points of Σ1(i) are sorted
in ascending order of their 2nd coordinates. The goal is to
compute SKY (Σ1(1) ∪ ... ∪ Σ1(s)), which is equivalent to
SKY (P ). Further, the output order is important (for back-
tracking to the upper level of recursion): we want the points
of SKY (P ) to be returned in ascending order of their 2nd
coordinates.

The previous subsection solved the problem in 3-d space
with O(N/B) I/Os where N = |P |. In 4-d space, our ob-
jective is to pay only an extra factor of O(logM/B(N/B))
in the cost. We fulfill the purpose with an algorithm called
preMerge-4d, the input of which includes

• slabs σ1(1), ..., σ1(s)

• a set Π of points sorted in ascending order of their 2nd
coordinates. Π has the property that, if two points
p1, p2 ∈ Π fall in the same slab, they do not dominate
each other.

preMerge-4d returns the points of SKY (Π) in ascending
order of their 3rd coordinates.

Although stated somewhat differently, the problem set-
tled by preMerge-4d is (almost) the same as skyline merge.
Notice that Π can be obtained by merging Σ1(1), ...,Σ1(s) in
O(N/B) I/Os. Moreover, we can sort the points of SKY (Π)
(output by preMerge-4d) ascendingly on dimension 2 to ful-
fill the order requirement of skyline merge, which demands
another O((N/B) logM/B(N/B)) I/Os.

Algorithm preMerge-4d. In case Π has at most M
points, preMerge-4d solves the problem in memory. Oth-
erwise, in O(|Π|/B) I/Os the algorithm divides Π into s
partitions Π(1), ...,Π(s) of roughly the same size, with the
points of Π(i) having smaller 2nd coordinates than those of
Π(j) for any 1 ≤ i < j ≤ s. We then invoke preMerge-4d

recursively on each Π(i), feeding the same {σ1(1), ..., σ1(s)},
to calculate Σ2(i) = SKY (Π(i)). Apparently, SKY (Π) is
equivalent to the skyline of the union of all Σ2(i), namely,
SKY (Π) = SKY (Σ2(1) ∪ ... ∪ Σ2(s)). It may appear that
we are back to where we started — this is another skyline
merge! The crucial difference, however, is that only two di-
mensions remain“unprocessed”(i.e., dimensions 3 and 4). In
this case, the problem can be solved directly in linear I/Os,
by a synchronous scan similar to the one in Section 3.1.

By recursion, the points of each Σ2(i) have been sorted
ascendingly on dimension 3. This allows us to enumerate the
points of Σ2(1) ∪ ... ∪ Σ2(s) in ascending order of their 3rd
coordinates, by synchronously reading the Σ2(i) of all i ∈
[1, s]. In the meantime, we keep track of s2 values λ(i1, i2)
for every pair of i1, i2 ∈ [1, s]. Specifically, λ(i1, i2) equals
the lowest 4th coordinate of all the points in σ1(i1)∩Σ2(i2)
that have been scanned so far; or λ(i1, i2) = ∞ if no such
point exists. Note that the choice of s makes it possible to
maintain all λ(i1, i2) in memory, and meanwhile, allocate an
input buffer to each Σ2(i) so that the synchronous scan can
be completed in linear I/Os.

SKY (Π) is empty at the beginning of the synchronous
scan. Let p be the next point fetched. Suppose that p falls



in σ1(i1), and is from Σ2(i2), for some i1, i2. We insert p in
SKY (Π) if

p[4] < λ(j1, j2),∀j1 < i1, j2 < i2 (4)

where p[4] is the coordinate of p on dimension 4. An
argument similar to the proof of Lemma 3.1 shows that
p ∈ SKY (Π) if and only if the above inequality holds. Note
that checking the inequality happens in memory, and in-
curs no I/O cost. Finally, as the points of SKY (Π) enter
SKY (Π) in ascending order of their 3rd coordinates, they
can be written to the disk in the same order.

Running time. Let H(K) be the I/O cost of preMerge-4d
when Π has K points. We have

H(K) =

{
O(K/B) if K ≤M
s ·H(K/s) +O(K/B) otherwise

where s = Ω(
√

M/B). This recurrence gives H(K) =
O((K/B) logM/B(K/B)).

Following the notations in Section 3.1, denote by G(N)
the cost of a skyline merge when the dataset P has size N ,
and by F (N) the cost of our 4-d skyline algorithm. G(N)
equals H(N) plus the overhead of sorting SKY (P ). Hence:

G(N) = O((N/B) logM/B(N/B)).

With the above, we solve the recurrence in Equation 3 as
F (N) = O((N/B) log2M/B(N/B)).

3.3 Higher dimensionalities
We are now ready to extend our technique to dimension-

ality d ≥ 5, the core of which is to attack the following
problem (that generalizes the skyline merges encountered in
the preceding subsections). The input includes:

• A parameter h satisfying 0 ≤ h ≤ d− 2.

• A set of s = Θ(min{M1/(d−2),M/B}) slabs
σi(1), ..., σi(s) for each dimension i ∈ [1, h] (there are
h sets in total), if h > 0. No slab needs to be given
for h = 0. Each set of σi(1), ..., σi(s) is obtained by
cutting the data space Rd with s−1 hyper-planes per-
pendicular to dimension i. We follow the convention
that all points in σi(j1) have smaller coordinates on di-
mension i than those in σi(j2) for any 1 ≤ j1 < j2 ≤ s.

• A set Π of points which are sorted in ascending order
of their coordinates on dimension h+ 1. These points
have the property that, for any p1, p2 ∈ Π, they do not
dominate each other if they are covered by the same
slab, namely, both p1 and p2 fall in a σi(j) for some
i ∈ [1, h] and j ∈ [1, s].

The objective is to output SKY (Π) in ascending order of
their coordinates on dimension h+1. We refer to the prob-
lem as (h, d)-merge.

Let K = |Π|. Our earlier analysis essentially has shown
that (1, 3)- and (2, 4)-merges can both be settled in linear
I/Os, while (1, 4)-merge in O((K/B) logM/B(K/B)) I/Os.
Next, we will establish a general result:

Lemma 3.2. The (h, d)-merge problem can be solved in
O((K/B) logd−h−2

M/B (K/B)) I/Os.

The subsequent discussion proves the lemma by handling
h = d− 2 and h < d− 2 separately.

h = d−2. Our algorithm in this case performs a single scan
of Π. At any time, we maintain sh memory-resident values
λ(i1, ..., ih), where 1 ≤ ij ≤ s for each j ∈ [1, h]. Specifically,
λ(i1, ..., ih) equals the lowest coordinate on dimension d of all
the points already scanned that fall in σ1(i1)∩ ...∩σh(ih);
or λ(i1, ..., ih) = ∞ if no such point has been encountered
yet. By remembering in memory the description of all slabs,
we can update the corresponding λ(i1, ..., ih) (if necessary)
right after a point is read, without any extra I/O.

SKY (Π) is empty at the beginning of the algorithm. Let
p be the next point of Π found by the scan. Assume, without
loss of generality, that p falls in σ1(i1)∩ ...∩σh(ih) for some
i1, ..., ih. We add p to SKY (Π) if

p[d] < λ(j1, ..., jh),∀j1 < i1, ..., jh < ih (5)

where p[d] is the d-th coordinate of p. With the experi-
ence from Equations 2 and 4, it is not hard to see that
p ∈ SKY (Π) if and only if Inequality 5 holds. Obviously,
SKY (Π) can be easily output in ascending order of the co-
ordinates of dimension h + 1 as this is the order by which
points enter SKY (Π).

The above process requires O(sh) memory to store the
slab description and all the λ(i1, ..., ih), plus an extra block
as the input buffer of Π and output buffer of SKY (Π), re-
spectively. This is not a problem because sh = O(M). The
algorithm terminates in O(K/B) I/Os.

h < d − 2. We deal with this scenario by converting
the problem to (h+1, d)-merge, using a divide-and-conquer
approach similar to transforming (1, 4)-merge into (2, 4)-
merge in Section 3.2. Our approach is to generalize the
algorithm preMerge-4d in Section 3.2. The resulting algo-
rithm, named preMerge, solves the same problem as (h, d)-
merge except that it outputs the points of SKY (Π) in
ascending order of their coordinates on dimension h + 2.
This is minor because SKY (Π) can then be sorted again
in O((K/B) logM/B(K/B)) I/Os to meet the order require-
ment of (h, d)-merge.

If K ≤M , preMerge trivially computes SKY (Π) in mem-
ory. Otherwise, in linear I/Os the algorithm divides Π into
Π(1), ...,Π(s) of roughly the same size, such that points of
Π(i) have lower coordinates on dimension h+ 1 than those
of Π(j), for any 1 ≤ i < j ≤ s. Naturally, each Π(i) corre-
sponds to a slab σh+1(i), such that σh+1(1), ..., σh+1(s) are
separated by s− 1 hyper-planes perpendicular to dimension
h+ 1.

We then invoke preMerge recursively on Π(i), feeding the
same h sets of slabs {σi(1), ..., σi(s)} of all i ∈ [1, h]. On re-
turn, we have obtained Σ(i) = SKY (Π(i)), with the points
therein sorted ascendingly on dimension h+ 2. In O(K/B)
I/Os, Σ(1), ...,Σ(s) can be merged into a single list Σ′ where
all points remain in ascending order of dimension h+ 2. At
this point, we are facing a (h+1, d)-merge problem on Σ′ and



merge(h,Π)
/* perform a (h, d)-merge on Π */
1. if h = d− 2 then
2. compute SKY (Π) in O(|Π|/B) I/Os

/* SKY (Π) now sorted by dimension h+ 1 */
3. else
4. SKY (Π)← preMerge(h,Π)
5. sort the points of SKY (Π) by dimension h+ 1
6. return SKY (Π)

preMerge(h,Π)
1. if Π fits in memory then
2. compute SKY (Π) in O(|Π|/B) I/Os

/* sort the points of SKY (Π) in memory by
dimension h+ 2 */

3. else
4. divide Π into Π(1), ...,Π(s) on dimension h+ 1
5. for i← 1 to s do
6. Σ(i)← preMerge(h,Π(i))
7. merge Σ(1), ...,Σ(s) into Σ′

/* Σ′ now sorted by dimension h+ 2 */
8. SKY (Π)← merge(h+ 1,Σ′)

/* SKY (Π) now sorted by dimension h+ 2 */
9. return SKY (Π)

Figure 4: High-level description of the algorithms for performing a (h, d)-merge

h+ 1 sets of slabs {σi(1), ..., σi(s)} of all i ∈ [1, h+ 1]. The
converted problem is solved recursively as described above.

Running time of (h, d)-merge. The pseudocode of Fig-
ure 4 summarizes the main ideas of (h, d)-merge and pre-

Merge. Let H(h,K) be the cost of preMerge(h,Π) on a
dataset Π of size K, and G(h,K) the cost of a (h, d)-merge
on Π. From the earlier discussion, we have:

G(h,K) ={
O(K/B) if h = d− 2

H(h,K) +O
((

K
B

)
logM/B

(
K
B

))
otherwise

(6)

and, for h ≤ d− 3:

H(h,K) ={
O(K/B) if K < M
s ·H (

h, K
s

)
+O

(
K
B

)
+G(h+ 1,K) otherwise

(7)

where s = Ω((M/B)1/(d−2)). To solve the above recur-
rences, first notice that

H(d− 3, K) = O((K/B) logM/B(K/B)) (8)

which, together with Equation 6, implies that, for h ≤ d−3:

G(h,K) = O(H(h,K)) (9)

Hence, for h ≤ d− 4:

H(h,K) ={
O(K/B) if K < M
s ·H (

h, K
s

)
+O(H(h+ 1,K)) otherwise

From the above and Equation 8, we obtain H(h,K) =
O((K/B) logd−h−2

M/B (K/B)) for all h ≤ d − 3. This, together

with Equation 9 and the first case of Equation 6, completes
the proof of Lemma 3.2.

Computing the skyline. Let P be a dataset that
has been sorted in ascending order along dimension 1.

We find SKY (P ) by simply performing a (0, d)-merge
on P . By Lemma 3.2, the overall I/O complexity is
O((N/B) logd−2

M/B(N/B)), which concludes the proof of The-
orem 1.1.

Eliminating the general-position assumption. As
mentioned by the remark in Section 1.3, the skyline problem
is still well defined on a set P of points that are not in general
position, namely, two points may have identical coordinates
on some (but not all) dimensions. Next, we explain how to
extend our algorithm to support such P .

The only part that needs to be clarified is how to deal
with ties in sorting. Recall that, in several places of our
algorithm, we need to sort a set Π ⊆ P of points in ascending
order of their coordinates on dimension i, where 1 ≤ i ≤
d. The goal of tie-breaking is to ensure that if a point p1
ranks after another point p2, then p1 cannot dominate p2.
This purpose can be achieved as follows. If p1 and p2 have
the same i-th coordinate, we rank them lexicographically.
Specifically, we first find the smallest j such that p1 and p2
have different coordinates on dimension j. Note that j must
exist because P is a set, and hence, does not have duplicate
points. If the j-th coordinate of p1 is smaller than that of
p2, we rank p1 earlier; otherwise, p2 is ranked earlier.

4. CONCLUDING REMARKS
We have shown that, in the EM model, the skyline prob-

lem of any fixed dimensionality d ≥ 3 can be settled in
O((N/B) logd−2

M/B(N/B)) I/Os, where N is the dataset size,

B is the size of a disk block, and M is the capacity of main
memory.

Chan et al. [8] proposed the concept of k-dominant sky-
line, where k is a positive integer at most d. Intuitively, the
dominance relation accompanying the new concept requires
a point p1 to be better than another p2 only on k dimen-
sions, instead of all dimensions. Specifically, p1 is said to
k-dominate p2, denoted as p1 ≺k p2, if:

∃ at least k dimensions i1, ..., ik s.t.
p1[ij ] < p2[ij ] for each j = 1, ..., k.

The k-dominant skyline of P is the set of points in P that are
not k-dominated by any other point in P . This problem can



be trivially solved by BNL in O(N2/(MB)) I/Os. The exist-
ing k-dominant-skyline algorithms [8, 17, 25] are heuristic,
and have the same complexity as BNL in the worst case.

For a fixed d, our technique can be utilized to settle this
problem in O((N/B) logk−2

M/B
(N/B)) I/Os for any k ≥ 3.

Let a k-subspace be the space S defined by k dimensions of
Rd. We say that a point p ∈ P is in the skyline under S,
if p is a skyline point of the k-dimensional dataset obtained
by projecting P onto S. Clearly, there are

(
d
k

)
= O(1) k-

subspaces. It is easy to verify that p belongs to k-dominant
skyline of P if and only if p is in the skyline under all k-
subspaces. The proposed skyline algorithm allows us to
find the skyline under each of the k-subspaces in totally
O((N/B) logk−2

M/B(N/B)) I/Os, after which it is easy to ex-

tract the k-dominant skyline in O((N/B) logM/B(N/B))
I/Os. Finally, note that the 2-dominant skyline can be
found in O((N/B) logM/B(N/B)) I/Os using similar ideas,
whereas the 1-dominant skyline can be retrieved in O(N/B)
I/Os by scanning the dataset once (to get the minimum co-
ordinate of the points in P on every dimension).
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