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ABSTRACT

Let R be a set of objects. An objeotc R is anoutlier, if there
exist less thark objects inR whose distances to are at most-.
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that outliers typically indicate irregular patterns thasdrve spe-
cial attention. Such patterns are especially importanteitusty
systems, where, contrast to traditional mining tasks, tia ig not

The values ok, r, and the distance metric are provided by a user at t© Understand the patterns of the ‘majority”, but rathercapture

the run time. The objective is to return all outliers with #meallest
1/O cost.

This paper considers a generic version of the problem, winere
information is available for outlier computation, except dbjects’

mutual distances. We prove an upper bound for the memory con-

sumption which permits the discovery of all outliers by suag
the dataset 3 times. The upper bound turns out to be extrdovely
in practice, e.g., less than 1% & Since the actual memory ca-
pacity of a realistic DBMS is typically larger, we develop avel
algorithm, which integrates our theoretical findings widlefully-
designed heuristics that leverage the additional memampoove
1/0 efficiency. Our technique reports all outliers by scagnihe
dataset at most twice (in some cases, even once), and sagtlijic
outperforms the existing solutions by a factor up to an owfer
magnitude.

Categories and Subject Descriptors:H3.3 [Information Storage
and Retrieval]: Information Search and Retrieval

General Terms: Algorithms, Experimentation
Keywords: Mining, Outlier, Metric Data

1. INTRODUCTION

Data mining aims at discovering interesting charactessif a
dataset, mainly in the forms of correlation (particuladgsocia-
tion rules) and clusters, in order to assist advanced aecisaking
(e.g., classification of new objects, prediction of eventd) these
mining operations draw conclusions from a majority of thtadat,
as in association rule mining, where a rule is useful onlyigf sup-
ported by a sufficiently large subset of the database. Incésg,
“outliers”, i.e., objects differing in behavior with the fosity, are
harmful (and hence, must be ignored), since they may rechee t
accuracy of the mined results.

Outliers, however, have their own merits, as recognized grK
and Ng in their pioneering paper [8]. The merits arise fromfttt
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abnormal “minorities”. In fact, in these systems, the migjquat-
terns may even have been obtained previously, and are takam a
input for assisting outlier mining.

Using a popular example in the outlier-analysis literatwen-
sider a system that detects frauds in creditcard transectioOver
99.9% of the transactions are ordinary, and their behaaofocms
to certain patterns which have long been understood by &xper
Based on such understanding, the experts hope to idenéfyeth
maining (less than 0.1%) transactions demonstrating ciossi de-
viation from normal behavior, in order to alert the compabput
possible investigatory actions.

1.1 Problem Formulation

Let R be a relation withh objectsos, o2, ...,0,. A user specifies
a distance threshold, an integerk by far smaller tham, and a
distance functioni(o;, 0;) (i, € [1,n]). Functiond(.) should be
a metric, i.e., it satisfies the triangle inequality.

DEFINITION 1. Given anyo;, o; in R, if d(0s,0;) < r, we say
that o; is a neighbor of o; (likewise,o; is also a neighbor 0b;).
Specially, each object is a neighbor of itself.

DEFINITION 2. An outlier is an object that has less thain
neighbors.

The above “distance-based” outlier definition is proposgd b
Knorr and Ng [8], who provide solid justification about itseds
fulness and importance in practidg, 9, 10].

We are interested in generic solutions that utilize onlyeots’
mutual distances, and do not place any constraint on datshand
functiond(.), apart from the fact thai(.) should be a metric. Such
a solution, therefore, is applicable in all outlier-detectapplica-
tions, regardless of the data types (pictures, movies, ¢gmes, ...)
andd(.) (Euclidean distance, road network distance, edit distance
...). This requirement excludes the existing solutionsv@yed in
Section 5) which constrain the objects andi¢r) to be in Euclid-
ean spacg or assume the possibility of creating an index/n

1As an interesting property, the definition is compatiblehvitie
notion of “rare events” in statistics. For instance, if th@arlying
objects are known to obey a Gaussian distribution, an olgeat
rare event if its value deviates from the mean of the Gaudsjan
more than 10 times the standard deviation. Such objects €an b
captured as outliers, by settingindk appropriately (see a formula
in[8])

2For example, objects are multi-dimensional points, dndl cap-
tures theirL,-distance.



Our discussion focuses on large datasets that do not fit in-mem term is roughly linear om. In the first term, note that/n» actually
ory, rendering minimization of 1/0 cost to be a major concirn does not depend on, but instead it is a constant related to the

algorithm design. We do not demand any index structur& piput data distribution. To understand this, imagine that mojeaib are
the objects should have been stored irmadomorder, as can be added toR following the same distribution; then, along with the
easily achieved by a simple randomization process. increase ofu, the value ofz also increases, such thatn is still
. . . . equivalent to the probability that the distance betweendbjects
1.2 Contributions and Paper Organization is at mostr. Hence, the first term in Formula 1 is also linearnto
Our objective is to discover all the outliers with 1/0O oveslde Unfortunately, the analysis of [3] fails to account for tretf

linear to the database size. A similar attempt has been made b that, in database environments, nested loop is performbtbaks
Bay and Schwabancher [3]. They show that the problem can be — block nested loop (BNL). Assume that each disk page can ac-

solved with linear CPU time. Unfortunately, their solutimrcurs commodateb objects, and that the memory has pages. Each

quadratic I/O cost, as will be analyzed in the next section. scan of the database is performed with— 1 pages of objects
Motivated by this, we present a systematic study of the grabl in memory, and thus, the scan may terminate only wakrihe

and make two major contributions. First, we establish, ughoa (m — 1) - b memory-resident objects have been confirmed as non-

probabilistic analysis based on random sampling, an uppend outliers. Next, we will show that, for typical values bfandm,

for the amount of memory required to retrieve all outlierssiogn- each scan must cover a significant portion of the databasderre

ning the dataset 3 times. The upper bound indicates an iamgort  ing the overall I/O cosO((n/b)?) (note that this does not con-
fact: the memory usually needs to hold only 1% of a practical tradict the earlier analysis, which only shows that thenber of

dataset to achieve the 3-times-scan performance! distance computatioris linear ton).

Since the memory capacity of a modern DBMS may be larger, as  Let us usep to denote the average probability that a non-outlier
the second contribution, we develop a new algorithm, SISt objecto € R can be verifiedvithoutscanning 90% of the dataset.
with prioritized fushing, which integrates our theoretical findings  Then, in BNL, a scan does not need to examine 909 0bnly
with several carefully-designed heuristics that levertige addi- with a probability approximately™~9*. Consider a dataset of
tional memory to improve 1/O efficiency considerably. Exdise 2D points where 0.05% of the objects are outliers. The vafye o
experiments demonstrate that SNIF completes outlier mibin is at most 99.95%. In practicém — 1) - b can easily reach 10000

scanning the dataset at most twice, and sometimes, even once  (e.g.,m = 101, andb = 100) such thap™ " evaluates to less
The rest of the paper is organized as follows. Section 2 dis- than 1%! In other words, almost every scan must access 908& of t

cusses the drawbacks of an existing method that deploysdhest pages occupied big, leading to quadratic 1/0O overhead.

loop. Section 3 lays down the theoretical foundation for phe-

posed technique, based on which Section 4 explains thdglefai 3. RATIONALE OF OUR TECHNlQUE

SNIF. Section 5 reviews the previous work that is relateduso This section justifies the possibility of discovering alltliers
Section 6 verifies the efficiency of i i . . . o
: veri iciency of our method with extensixe with 1/O cost linear ton /b, wheren is the cardinality ofR, andb

i ts. Secti i i i . . . e
\r/)virrllinen s. Section 7 concludes the paper with directionfufare the number of objects in a disk page. Specifically, we showaha
’ very small amount of memory (around 1% of the dataset) isllysua
sufficient for retrieving all the outliers by scanning theaket 3
2. PITFALLS OF NESTED LOOP times. This motivates an algorithm presented in Sectionhichv
A straightforward solution to our problem is nested loop JNL  further improves performance by scanning the dataset exeerf
That is, for each objeat € R, scan the database from the begin- times.

ning, counting the number of objects within distamdeom o. The .
scan is terminated as soon as the counter redghes, o is not an 3.1 Fundamental Theoretical Facts

outlier. A complete scan of the database is necessary oalig i&in Let us randomly sample objects fromR. To allow rigorous

outlier. analysis, we follow the strategy of “sampling with repla@srti
Despite the clea®(n?) complexity of the algorithm, Bay and  [12]. Specifically, each random sample is takesiependentlyrom

Schwabancher [3] present a surprising, yet reasonablel}:réise all the objects inR, i.e., it is possible that multiple samples happen

actual CPU time of NL is often linear to the dataset size. This to be the same object.

phenomenon is due to the observation that, for most normeoutl We use the sample set to builgpartitions PA;, PAs, ..., PAs

objects inR, scan of the dataset terminates very early so that only of R. Each sampled object is tlventroidof a partition; hence, we

a fraction of the dataset is examined. denote thes samples af?A1.0, ..., PAs.o respectively, after the

To illustrate this specifically, denote as the number of neigh-  partitions they represent. Besides its centroid, a pantitt A; (for
bors ofo (i.e., z is the number of objects if® with distances at some: € [1,s]) includes all the objects € R that satisfy two
mostr to o). Remember that objects iR have been randomized,  conditions:
so that the next object scanned always has a probabjlityto be a
neighbor ofo. So, ifo is not an outlier, in expectatiok,/ = objects
need to be checked befokeneighbors are found.

1. the distance from to P A;.o is no more than/2 (i.e., half
the parameter of outlier definition), and

Therefore, if we assume that there greutliers inz, andz is the 2. ois nearer ta® A;.o than to the centroid of any other partition
average ofc for all non-outliers, the expected number of scanned (in case the object is equi-distant to two or more centroids,
objects (in the entire execution of NL) equals the partition to which the object belongs is a random one

z among the partitions represented by these centroids).

k/=-O(n)+y-n @

n The union of the partitions mayot be R, since an object is not

where the termO(n) corresponds to the fact that the number of in any partition if it is farther away from all centroids thay2.

non-outliers is bounded hy. We compute alensity P A;.den, for each partitionPA; (1 <
The value ofy is extremely small with respect iq so the second 1 < s). Specifically,P A;.den is the number of objects (including



PA;.o itself) whose distances t®A;.o are at most-/2. Note
that an object contributing to the density of a partition slo®t
necessarily belong to that partition. In particular, a Engpject
o may contribute to the densities of multiple partitions, butnly
belongs to a single partition, i.e., the one whose centreithé
nearest te.

All the partitions, including their centroids and denstieonsti-
tute adata summarpf R. The next lemma shows that non-outliers
may be verified directly from the data summary.

LEMMA 1. If PA;.den > k (for anyi € [1, s]), none of the
objects belonging t& A; can be an outlier.

PROOF The lemma follows the fact that functiody(.) satis-
fies the triangle inequality. Let be an object belonging t&A;,
and o’ an object that contributes t®A;.den. Thus, it holds
that d(o, PA;.0) < r/2 andd(o’, PA;.0) < r/2, leading to
d(o,0") <r. PA,.den > k means that there are at leastucho’;
hencep is not an outlier. [

Let us divide thes partitions into two disjoint sets. The first
one Sy004 iNcludes all the partitions whose densities are at least
k. The second seéf,.4 involves all the remaining partitions whose
objects, therefore, cannot be asserted as non-outlierstfre data
summary.

Assuming the memory has pages, we have:

LEMMA 2. We can find all outliers by scanning the dataset 3
times, ifm — 1 pages can accommodate the objects qualifying one
of these conditions: the object (i) is a partition centrofid) does
not belong to any partition at all, or (iii) belongs to a paitin in
Sbad-

PROOF The data summary, which includes the centroids and
densities of all partitions, can be constructed by scanfrance.

In particular, since objects are stored in a random ordercén-
troids can be simply set to the firstobjects encountered in the
scan; thus, it is not necessary to perform a separate samplin
process for obtaining the centroids.

After the first scan, we identify the s&Y,,.4 of partitions with
densities at leagt. Then, we keep the partition centroids in mem-
ory (but throw away partition densities), and perform a selcecan
over R. In this scan, a fetched object is discarded immediately if i
belongs to any partition i¥;,04 (by Lemma 1). An un-discarded
object is retained in memory. In this way, the amount of comes
memory gradually increases; but, given the condition in tren2,
this amount is expected to be less than- 1 pages at the end of
the second scan. Keeping all the non-prunable objects inanem
we perform a third scan ovek, using all the un-occupied memory
pages as the input buffer (there is at least one such pagefdén
to determine whether each object is an outli€rl

How large shouldm (i.e., the memory) be, in order to allow
a 3-times-scan algorithm? To answer this queston, our fiegt s
is to quantify the number of objects satisfying conditioi) ¢if
Lemma 2. For each objeot € R (1 < ¢ < n), We US€0;.n<, /2
to represent the number of objectsAn(including o; itself) whose
distances t@; do not exceea /2.

LEMMA 3. The expected number of objectsfinthat do not
belong to any partition equals

n

> (1-

i=1

0. N<y /2 (2)

n

PROOF Since the centroids are obtained fradfollowing the
sampling-with-replacement scheme, there are totaflypossible
centroid sets, each of which is taken with an equal proligblliet
us denote them as8S1, CSs, ...,CSys, respectively.

We construct a two-dimensional array with rows andn®
columns, where theéth (1 < ¢ < n) row concerns object; in
R, and thej-th (1 < j < n®) column corresponds t0'S;. In each
cell ¢;; at thei-th row andj-th column, we fillin ‘0’ if o; belongs to
some partition when the set of sampled centroids$s; otherwise
(i.e.,0; is not “captured” by any partition), we fill in ‘1.

If we add up the cell-values at theth column, the sum, rep-
resented asol;, equals the number of “un-captured” objects ac-
cording to the centroid set'S;. Hence, the expected number of
un-captured objects (given an arbitrary centroid set)asaverage

sum of all columns: s
1
— Zcolj ?3)
ns £
Jj=1

Note ’[hatz;i1 col; in the above formula is exactly the number
of 1's in the array. Next, we count the 1's in an alternativew
oriented” manner. Letow; be the number of 1's at thieth row.
Clearly, row; is the number of centroid sets that dot capture
objecto;. We call such a centroid set a “non-capturing C0f

The distances betweex and all the centroids in a non-capturing
CS are larger than/2. Sincen — o;.n<, /- Objects inR are farther
away fromo thanr /2, everycentroid in a non-capturing CS of
must originate from those — o;.n<,./» objects. Hence, there are
(n — 0i.n<,/2)* different non-capturing CS's af;.

Therefore,zgi1 col; (the number of 1's in the array) equals
> (n—oin<,/2)°, which, when plugged into Formula 3, gives
Formula2 O

Clearly, the chance that an object belongs to no partition de

creases exponentially with Let us sets to 1000 (the centroids
constitute a very small sample set®j. As a result, for any non-
outlier objecto € R, as long as—="/2 is a non-trivial selectivity,
(1 — Z2=2)¢ evaluates to a negligible value. For example, if
TRz = 0.5%, (1 — ZU=1/2)® becomes less than 1%. Hence,
the number of objects not captured by any partition is verglbm
(we will demonstrate this in the next section).

Let us usergense to denote the number of objeaiss R whose
o.n<, o IS at leastk. We arrive at a formal result regarding the
memory size for fulfilling the condition in Lemma 2.

COROLLARY 1. We expect to find all outliers by scanning the
dataset 3 times, if

i _Oi.nST/Q s _ . _
s+;(1 ) +(k-1)-s (1

n
objects can be stored im — 1 pages.

PROOF Lemma 2 says that, to achieve the designated query
cost,m — 1 pages should be sufficient for storing three types of
objects (i), (ii), and (iii). The number of objects of typgi€ s, and
the number for type (ii) has been given in Lemma 3. To prove the
corollary, it remains to show that the number of type (iii)eatts is
atmost(k — 1) - s - (1 — ™d==s=) in expectation.

Notice that a partition belongs 18,4 if and only if its centroid
is one of then — ngense Objectso whoseo.n<,/; is less thark.
Since each centroid is randomly picked fratnit hasl — Zdense
probability to produce a “bad partition”, or equivalenttyie ex-
pected number of bad partitionsds (1 — “4=zs<). Finally, each
bad partition contains at most— 1 objects, thus completing the
proof. [

Ndense
n

) @
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Figure 1: Minimum memory requirements for finding outliers b y scanning a dataset 3 timess(= 1000)

3.2 Evidence from Real Data

The goal of this section is to identify the value of Formulaod f
practical data, since the formula indicates the minimumamof
memory for finding outliers by 3 scans & For this purpose, we
examine the following datasétpopular in the literature:

e CA: a spatial dataset released by the TIGER project, con-
taining 62k two-dimensional points representing addiesse
in California.

e Householdreleased by the US Census Bureau, containing 1
million three-dimension points, each of which represemés t
annual expenditure of an American family on electricitys ga
and water, respectively.

e Server KDD Cup 1999 data containing the statistics of
500k network connections; we extract the following at-
tributed to create a five-dimensional point dataseaunt
srv-count dest-host-count dest-host-srv-countand dest-
host-same-srv-count

In all cases, the data space is normalized such that eachasis
a domain of [0, 10000]. The distance functiéf) corresponds to
Euclidean distance.

Outlier formulation requires parametersindk. The value ofc
is easier to set [8]: it ranges between 0.01% and 0.1% of ttasea
cardinalityn. In this subsection, we fik to the median value.5%-

n. The setting ofr is more difficult because an excessively small
r leads to an unrealistically large number of outliers, wheran
overly-larger does not produce any outlier at all.

Therefore, for each dataset, we decide iateresting range
[Fmin, Tmaz] Of r as follows. Initially,r equalsoo, and obviously,
no object qualifies as an outlier. Then, we gradually deereas
until some object qualifies for the first time; the valuerddt this
point equalsr... Next, we continuously reduce (so that the
number of outliers increases), and stop as soon as therexare e
actly 0.1% - n outliers. The current value of equalsry,in. As
a result, by investigating € [rmin, 'ma=], We simulate the prac-
tical environments [8, 10] where the number of outliers ifoWe
0.1%-n. The interesting ranges offor CA, HouseholdandServer
are[260, 4585], 2166, 7201], [1530, 10004], respectively.

In Figure 1a, the curve labeled witRdrmula 4 plots the value
of the formula as a function of (in its interesting range) foCA
The formula value is represented as a percentage of theetlatas
cardinality (e.g., 1% means 6.2k objects). Formula 4 cost&i
terms; except the first term, the other two terms vary with.
Hence, Figure la also demonstrates the values of the seoohd a
third terms as a function of, with curves labeled withFormula 2

3CA can be downloaded #itttp://www.census.gov/geo/wwwitiger
Serverathttp://kdd.ics.uci.edu/databases/kddcup99/kddcuypf.
andHouseholdat https://www.ipums.org

“Semantics of these attributes are available
http://kdd.ics.uci.edu/databases/kddcup99/task.html

here:

and ‘num of bad objectsrespectively (recall that the third term is
the number of objects in partitions 8f.4). Again, all values are in
percentages of the cardinality. Figures 1b and 1c illustfz same
information forHouseholdand Server respectively. In all figures,
s equals 1000.

There are two important observations:

1. The value of Formula 4, which is the minimum memory size
for achieving 3-times-scan performance, is less than 10% of
a dataset for alt in the corresponding interesting range.

2. The value of Formula 4 decreases nearly exponentially as
r increases! Specifically, for mostvalues in an interesting
range, the memory only needs to hold 1% of a dataset (in par-
ticular, this is true for the entire interesting range ofecat
Householj.

In fact, the above observations are general, and exist irga la
number of real datasets. This is not surprising, becauseathe of
r for meaningful outlier mining cannot be too small (see tHees
of rmin in Figure 1), resulting in a non-trivial.n<, , for a vast
majority of non-outlier object® € R. This means (i)—="/2
may easily reach a selectivity above 0.5%, rendering Fanaul
to descend to a tiny value (as mentioned in Section 3.1), @nd (
Ndense IS ClOSe ton (i.e., most object® satisfyo.n<,,2 > k),
so that there are very few partitions B4, leading to a small
value for the third term of Formula 4. Finally, combining, ()
and the fact that accounts for a very small percentagergfwe
have shown that outlier mining with linear I/O overhead isgible,
usually with a small amount of memory.

4. THE SNIF TECHNIQUE

Motivated by the analysis in the last section, in the sequel,
propose a new algorithngcan with prioritized fushing (SNIF),
which finds all outliers by scanning at most twice, as verified in
our experiments.

The efficiency of SNIF owes to the fact that, the memory size
is typically larger than the smallest size (often less th¥#ndf R
as in Figure 1) necessary for a 3-times-scan solution. Tives,
can afford to retain more objects in memory during the firsasiet
scan, which allows us to claim a significant portion/®fas non-
outliers directly after the scan! As a result, the remairoigects
that require further verification may fit in memory, so thavtoer
scan ofR suffices to determine the exact outliers.

Based on this idea, SNIF deploys a nopeioritized flushing
technique to minimize the chance of performing the thirchsof
R. Specifically, the technique associates each object wiiriar*
ity”, and, whenever the memory becomes full, flushes theabje
with the lowest priorities. The priorities are designedunisa way
that, objects in memory are those deserving “more attehtifn
outliers, and (i) non-outliers with relatively few neights. Since



a memory-resident objeet is checked with every subsequently

scanned object, we obtain a highly accurate count of thenhbeig

of o, and may be able to use it for deciding whethés an outlier.
Next, we explain the components of SNIF in detail.

4.1 Critical Moment

SNIF starts by reading? from the beginning, and retaining the
retrieved objects in memory, until the memory becomes aultfie
first time — thecritical momentof SNIF.

At this moment, we have obtainéd m objects, wheré is the
number of objects that can be accommodated in a pageyand
the number of memory pages. For each of the these ohjeuie
obtain aneighbor counteb.n.;, equal to the number of neighbors
of o in the already-inspected part of the dataset.

r/2, the densityP A;.den is increased by 1. After this, the partition
PA; (for somej € [1,s]) to whicho belongs is also decided. If
d(o, PAj.0) is larger thanP A;.r (the radius ofP A;), thenP A;.r
is set tod(o, PA;.0). Hence, the data summary (particularly, the
density and radius of each partition) is alwayyscisewith respect
to the objects already scanned.
Next, we initiate the neighbor countem,,;, of o as 0, and then
compuite its distance to every objeétbeing retained in memovy
If d(o,0") < r, botho.n,;, ando’.n,; are increased by 1. Hence,
it is clear that the longes’ stays in memory, the more likely its
neighbor counter can reaéh increasing the chance that it can be
confirmed as a non-outlier before being removed from memory.
Now that we have calculatedln,;, using the memory-resident
objects, we attempt to further increase it by incorporatimg ob-

Then, SNIF builds a data summary (as defined in the previous jects that have been removed from the memory (i.e., either di

section) with respect to thedge- m objects as follows. For each
objecto, the algorithm estimates the total number of its neighbors
in theentire R aso.nny - 3 (n is the cardinality ofR), utilizing

the property that thede m objects constitute a random sample set
of R. From the objects with estimates at leastve randomly sam-
ple s (= 1000 in our implementationdifferentobjects (i.e., sam-
pling withoutreplacement [12]) as the partition centroifsi; .o,

..., PAs.0. This way, none of the centroids is likely to be an outlier.

For each of thé - m memory-resident objects, SNIF decides the
partition it belongs to, using the two conditions statedest®n 3.1
(some objects may not belong to any partition). Next, we lset t
density PA;.den of each partition] < ¢ < s) to the number of
objects (currently in memory) with no more than distange to
PAZO

For each partitior? A;, SNIF maintains aadius P A;.r, which
equals the maximum distance between the centfodd.o and any
object belonging taP A;. Obviously, due to the fact that an object
is assigned td’ A; only if d(o, PA;) < r/2, the value ofPA;.r
never exceeds,/2.

After the above operations, SNIF performs the first flushafg,
ter which onlyb-m /2 objects (including all the partition centroids)
remain in memory. We will elaborate the details of flushirtgian
Section 4.3. For now, it suffices to note several facts:

1. Among the objects removed from memory, those with
o.n.s > k are directly discarded (i.e., they are definitely
non-outliers), while the others are written toverification
file.

2. For each object appended to the file, we keep with it, in the
file, the ID of the partition (in the data summary created ear-
lier) it belongs to.

3. For each partitiolPA; (1 < i < s), we record in memory
the numberP A; . nemoved Of Objects belonging t@ A; that
have been removed (i.e., discarded or preserved in the-verifi
cation file). We also record the numheto-4 . of objects

that have been removed, but do not belong to any partition.

carded or flushed to the verification file), using the data sargm
There are two independent ways to achieve this purposeintgad
to valuesvs, v2, both of which satisfy the lower-bound property of
o.nnp (Fact 4 in Section 4.1). Naturally:

0.y = max{vi, va}

®)
Next we clarify the computation af; andvs, respectively.

Deriving v1. Let v be the value ob.n,; so far (obtained with
respect to only the memory-resident objects). We firsvséb v,
and then inspect each partitiédhA; (1 < i < s) inturn. In case

d(o, PA;.0) + PA;.r <, (6)

we addPA;.nremoved (the number of objects i A; removed
from memory) tov:. Recall thatPA;.r is the largest distance
betweenPA;.o and any object’ assigned taPA;. Hence, the
validation of Inequality 6 indicates, by the triangle inatjty, that
d(o,0") < r, implying thatall the removed objects i A, are
neighbors ofr.

Deriving v2. The formulation ofvs is simpler. Specifically, if
o belongs to a partitiod® A; (for somei € [1, s]), thenv, equals
PA;.den, i.e., the number of objects within distancer/2 from
PA;.0 among the objects already encounteredngust have dis-
tance at most to o). Note thatP A;.den already includes both the
objects ofP A; in memory and those removed; hence, untikev
does not need to take into account

As the number of memory-resident objects increases, the-mem
ory eventually becomes full again. When this happens, SNF i
vokes another flushing, before resuming the scaR.ofn the next
section, we clarify the procedures of flushing.

4.3 Prioritized Flushing

Letnseen, be the number of objects iR that have been scanned;
these objects form a random sample setRof From the current
density P A;.den of each partitionP A;, we estimate its final den-
sity (after scanning the enti®) asP A;.den - n/nsecen. Based on
the estimates, we classify the partitions into two disjsiets. The

4. During the first scan of the database, the neighbor counter first one S,,.4 includes thepotentially prunablepartitions whose

o.n,p Of any objecto in memory is always dower bound
of the actual number of neighbors of in the part of the
database already scanned.

5. Atany time after the critical moment during the first sce,
number of objects that remain in memory is at ldastn /2.

4.2 Processing Subsequent Objects

After the critical moment, SNIF continues to sc&n For each
objecto encountered, we compute the distances betweserd the
centroids of all partitions. For eaghe [1, s], if d(o, PA;.0) <

predicted final densities are larger thiarfby Lemma 1, no object
in such a partition can be an outlier). The second $g involves
the remaining, potentially un-prunable, partitions.

Next, we divide the memory-resident objects (other than the
partition centroids, which must stay in memory) into fivejaiist
types.

1. Objects whose current neighbor counters-ark;

5As an optimization, we perform the distance calculatioryahl
the neighbor counter of eitheror o’ is smaller tharik.



. Objects that are not of the previous type, and belong to a
partition inSgood;

. Objects that are not of the previous types, and belong to a
partition in.Spqq;

. Objects that are not of the previous types, do not belong to
any partition, and were scannatfter the critical moment.

. Objects that are not of the previous types, do not belong to
any partition, and were scannbdforethe critical moment.

We compute ariority for each objecb as

min{n, Test }

n+1 )

wherez.: is the estimated number of neighborsoah the entire
R. The second term of the above formula is a value in [0, 1), mean
ing that if an object has a smaller type-id, it has a lower nitsip
thus ahigher chance to be eliminated from memory. Notice that
the second term is only for distinguishing objects of the stype.

The priorities decided this way reflect the likelihood thbjexts
are outliers: the smaller priority is, the less likely. Tekin this,
let us useori, or2, ..., ors to represent an object of type-1, -2, ...,
-5, respectively.

Clearly, o1 is definitely a non-outlier, andr2 most probably
can be verified as a non-outlier using Lemma 1, at the end of the
first database scan (when the data summary about the éhtge
ready). ors may not be verified by Lemma 1, and thus, should
have a greater priority thaswvy andorz2. Nevertheless, compared
to objects of types-4 and -3 has a better chance of being in
a cluster, since it belongs to a partition. As a resut; should
possess a lower priority tharrs andors. Finally, the difference
betweenor, andors is that, the neighbor counter ofrs is pre-
cise(the distances betweens and all scanned objects have been
calculated) but that ofr4 is not. Thereforeprs is given a higher
priority to stay in memory, so that, at the end of the first scem
can claim it to be an outlier, if its neighbor counter is dtiliver
thank.

Given two objects, o’ of the same type, why should the one,
sayo, with a largerz.s: have a higher chance to stay in memory?
This is justified by two reasons, both related to the fact évary
un-scanned object has a larger probability to be a neighhottan
of o’. The first reason is that if bothando’ were kept in memory,
the neighbor counter af would increase faster, and hence, would
have a better chance of being confirmed as a non-outlier.nieco
o would be more likely to increase the neighbor counters of the
subsequently scanned objects, thus increasing the piitpabat
these objects are validated as non-outliers, too.

After calculating the priorities of all memory-residentjetts,
SNIF sorts them in ascending order of the priorities, andoras
the firstb - m /2 objects in the sorted list. Specifically, “removing”
an object means discarding itif it is of type-1, or otherweggpend-
ing it (in blocks) to the verification file together with its iéion
ID. Whenever an object in partitioR A; (for some: € [1, s]) is
appendedP A;.nremove iS increased by 1. If the object belongs to
no partition, we add 1 ta™°24 _ .. In fact, as will be demonstrated
experimentally latetthe verification file is usually empty, i.e., only
type-1 objects are discarded at each flushing

Now we clarify the computation of.., the expected number of
neighbors ob. For this purpose, we only need to maintain two ad-
ditional values forw. The first one\; equals the number of objects
whose distances to have been computed. The second valde
is the number of these objects whose distancesdre at most-.
Then,z..: is calculated ag2-n/\:1. Note that\; is at leasb-m /2,

(type-id ofo) +

i.e., the estimation aof.; is based on a large sample%eBpecif-
ically, if o was scanned before the critical moment, thenis at
leastb - m (the number of objects in memory at that moment). Oth-
erwise, wherv is read from the file, there must be at leastn /2
objects in memory (see Fact 5 in Section 4.1), whose disttioce
are computed.

Finally, we point out that the contents 8f..q andSy.q, as well
as the priorities of objects, may vary at different flushingisce
they depend on the densities of the partitions at the timehef t
corresponding flushing.

4.4 After the First Scan

After the file of R is exhausted, we have: (i) a complete data
summary, (ii) a set of objects in memory, and (iii) a verifioat
file containing objects whose qualification (being an outhienot)
could not be decided at their flushing time.

At this point, SNIF obtains setSyooa, Spad, and classifies the
memory-resident objects into the 5 types stated in Secti8n 4
Type-1 and -2 objects are discarded as non-outliers, ard3ygh-
jects are directly reported as outliers.

For each type-4 objeet(which is usually an outlier), we attempt
to verify it as follows. First, we count the numbe,... of neigh-
bors ofo among the objects currently in memory. Next, we collect
the setS of partitions whose centroids have distances at rémso
o (differento leads to differeniS). No object belonging to a parti-
tion outsideS can have distanc€ r to o, since the radius of each
partition is no more than/2. Then,o is an outlier if

>

PA;€S,Vie[l,s]

noP A

Tmem + Nremoved + PAi-nremo'ued < k

®)

wherePA; nyemoved (0r n?2E4 ) is the number of objects that

were removed from memory, and belongRal; (or do not belong
to any partition).

If o is indeed an outlier, in most cases we can verify it with In-
equality 8 because (i is typically empty (an outlier tends to be
faraway from all clusters), and (i)?254 _, is often 0. To under-
stand (ii), remember that very few objects belong to no fiarti
the number of them is given by Formula 2, and its value is usu-
ally less than 1% of: as shown in Figure 1. As long as the value
does not exceed - m/2 (the number of removed objects in each
flushing), all the “no-partition” objects are necessar#yained in
memory, due to their high priorities.

Provided that- is not very close to the lower end of its inter-
esting range (defined in Section 3.2), Type-3 objects oftenat
exist (the third term of Formula 4 upper bounds the numbeuciis
objects under a very low value). Otherwise, it implies thesence
of a small cluster whose number of objects is at the ordek.of
This is rare because the cardinalityis larger thark by orders of
magnitude (more than 1000 times), and thus, the size of &eclus
is not likely to be comparable tb. However, if type-3 objects do
exist, there is no effective way we can verify them withoubtier
scan ofR. This is reasonable because determining such objects as
non-outliers demands extremely accurate neighbor caanter

Having performed the above procedures, SNIF terminates if
nreP4 = 0, all type-4 objects have been verified as outliers,
and there is no type-3 object. Otherwise, we execwterdication
stepas follows.

We read the verification file, checking the partition-IDs bét
retrieved objects. If the object belongs to a partitionSip,ea, it

51f we use the optimization stated in Footnote 4, then we shoul
revise the statement here: if the neighbor counter isfless than
k, zest is computed from a sample set with size at léastn /2.
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Figure 2: Idea of CELL (applicable only to point data)

is discarded right away. In other words, the objects thataiarim
memory are those (i) in partitions whose densities are sk,
or (i) in no partition at all. SNIF keeps scanning the vesfion
file, until the file has been exhausted, nar — 1 pages of mem-
ory have been occupied by objects. In either case, we Bctm
a second time to precisely decide whether these memongyerasi
objects are outliers. If the verification file has not been plately
scanned (which is rare; the verification file is empty in altrads
our experiments), we discard all the objects in memory,mesthe
scan, and repeat the above process.

5. RELATED WORK

Except BNL, no existing solution can solve our problem ane sa
isfy the generality requirements in Section 1.1. However,tfie
restricted scenario where objects are multi-dimensioaatp with
mutual distance measured by the norm, Knorr and Ng [8] de-
velop an alternative method CEFLSince we will compare SNIF
with CELL for Euclidean datasets in the experiments, nexewe
plain the rationale of CELL.

Given a distance threshold CELL partitions the data space reg-
ularly into a grid, where each cell is a multi-dimensionalizcp
whose diagonal has lengity2. Then, CELL hashes the objects
into cells, by reading and writing the datagebnce, respectively.
Meanwhile, each cell is associated withcaunter equal to the
number of points it covers.

Based on the grid and the counters, it is possible to quickigrd
mine some outliers and non-outliers. To illustrate thishspace,
consider celk in Figure 2, which shows part of a grid. The cells
labeled with ‘1" constitute théevel-1cells with respect te, and
those labeled with ‘2’ théevel-2(note that the level-2 is “thicker”
than level-1). CELL obtains two numbers andnz, wheren; is
the total number of points in and its level-1 cells, and- is the
the number of points i, its level-1, and -2 cells. It is not hard to
observe that (i) if.; > k, all points inc must be non-outliers, and
(i) if n2 < E, all points inc must be outliers. In either casejs
marked as “colored”; otherwise remains “white”, indicating that
the identities of the points covered byre currently unknown.

For each white celt, CELL loads the points in it (from its hash
bucket) into memory, and verify whether they are outlieysstan-
ning the data in its level-1 and -2 cells. Obviously, as loagere
is available memory, multiple white cells can be processgdther
to improve I/O efficiency. Specially, if the points in all thehite
cells fit in memory (as is an assumption in [8]), CELL terméesat
by scanningR another time in the worst case.

The problems of CELL are two-fold. During hashing, at least
one memory page must be allocated to each cell as an inpetrpuff

can be as small as 2.6% of a dimension. In this case, eachncell i
the grid has a side length @f6%/(2v/2) = 0.92%, i.e., the grid
contains more than 11830 cells! Assuming a disk size of 1kdyt
CA (with 62k two-dimensional points) occupies around 720 ghge
Hence, CELL requires a memory size 16.4 times that of thesdéta

Unlike BNL and SNIF, it incurs a significantly larger number
of random accesses, due to its reliance on hashing. Spégifica
every time a buffer is flushed, the disk head is forced to mowa f
(and then back to) its original position in reading the dettdite,
necessitating at least two random accesses. This problgardis
ticularly serious, if each cell’s input buffer has a singlemory
page (which, unfortunately, is usually true, as the numteets
is large). In this case, every I/O writing and most I/O regdame
random.

CELL can be extended to higher dimensionalities, howewver, a
the cost of severely aggravating the above defects. Themaas
that, with the same, the number of cells increases exponentially
with the dimensionality (each cell has a side lengthof(2/d)).
Furthermore, while the level-1 of a cellstill includes those cells
adjacent toc, the level-2 becomes andimensional “rectangular
ring” with a thickness of 2v/1—1] (e.g., ifl =9, the ring has 5 cells
on either side ot along each dimension). As a result,/agrows,
each white cell must be inspected against a higher numbeastf h
buckets. Finally, CELL is clearly inapplicable to non-Edelan
domains, where grid partitioning is simply undefined.

Although our algorithm SNIF is also based on “partitiong”, i
significantly outperforms CELL both in applicability (SNIgan
be applied as long as the distance function is a metric), &ird e
ciency (SNIF is faster than CELL even in Euclidean space)s Th
is achieved by leveraging several problem characteribised on
random sampling (see Section 3.1), and integrating thesmch
teristics with prioritized flushing. In particular, unlikeELL, SNIF
prunes a majority (more than 99%) of the objects directlgrafie
first database scan, and for some datasets, even termiiggitiesfr
ter the first scan without missing any outlier.

It is worth mentioning that other definitions of outliers balso
been proposed in the literature. The earliest definitioreappin
statistics, where data values are known to obey a probabibidel,
and a value is captured as an outlier if it should have ocduwndy
with a very low probability [2] (calculated from the modelohn-
son et al. [7] identify outliers as points on the convex hali, {n
general, the “out-most” layers of convex hulls). Ramaswatngl.
[14] present a definition based on the distance between attobj
and itsk-th nearest object in the dataset. Breunig et al. [4] pro-
pose the concept of “local outliers”, according to which &jeot
is an outlier if it demonstrates behavior significantly eiént from
the behavior of its nearby objects. This concept is extermyedin
et al. [6] to “top+ local outliers”. Aggarwal and Yu [1] analyze
Euclidean outliers in high-dimensional space, whereasitesic
and Kumar [11] approach this issue with a technique called-‘f
ture bagging”. Finally, Papadimitriou et al. [13] discusstliers
based on “local correlation integrals”.

6. EXPERIMENTS

The organization of this section is as follows. First, we eom
pare the proposed algorithm SNIF against BNL and CELL, de-

so that a page of objects can be written to the hash bucket at aPloying the real dataseSA, Household and Serverdescribed in

time. This seriously limits the range othat can be supported. For
example, for datasefA (as shown in Figure 1a), a meaningiul

"Knorr and Ng [8] also propose an index-based algorithm, hic
however, is substantially slower than CELL, and hence, igteth
from our discussion.

Section 3.2 (they contain Euclidean points in a data spa@revh
all dimensions have a domain of [0, 10000]). Then, we examine
the scalability of SNIF with respect to the dataset cardipalsing

8For each point, 3 values must be stored, i.e., id and x-, yrdioo
nates.
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Figure 3: Performance vs.r (k = 0.05% of cardinality, memory size = 10% of database)

synthetic non-Euclidean data (whose generation will beifidd
later). In the above experiments, the valuesaofthe number of
centroids) for SNIF is fixed to 1000, because the behavioruof o
technique is not sensitive tg as demonstrated in the last experi-
ment.

perform (almost) only sequential 1/Os.

The verification file produced by SNIF after the first scan is
empty in the above experiments, i.e., all the objects rechénen
memory during prioritized flushing have neighbor countersk
(since this is true for most of the subsequent experimeragsyilv

The default memory size equals 10% of the space occupied by explicitly discuss the size of the verification file, only ffis not

the underlying database. The defauls 0.05% of the dataset car-
dinality n. As discussed in Section 3.1, for ahythere exists an
“interesting range” of- such that, as distributes in the range, the
number of outliers is between 1 afd % -n. We define thenedian
of r, also the default of, as the value of this parameter when the
number of outliers equals exacth05% - n (as with the interesting
range, the median of also depends oh). Fork = 0.05% - n,
the default values aof are 375, 4200, 1688 f&LA, Householdand
Server respectively.

We measure the performance of each method by its I/O cost,
including the time of both random and sequential accessée T
disk page size equals 1024 bytes.

Performance vs.r. The first experiment inspects the efficiency
of SNIF, BNL, and CELL with respect to the distance threshold
r. For this purpose, we sétand the memory size to their default
values, and measure the cost of all algorithms at 7 valuesuit
evenly partition the interesting range of each dataset.

Figures 3a-3c illustrate the cost as a function-ofThere is no
result of CELL for some experiments @A, Household and all
experiments orBerverbecause, in these experiments, the memory
requirement of CELL exceeds 10% of the database (e.gC#for
andr = 260, CELL requires memory 16 times larger than the data-
base, as explained in Section 5). Each percentage alongiesc
indicates the percentage of random-access cost in thelloveza
head. We will use the same style to illustrate the cost foactif
random 1/Os in the following diagrams.

SNIF outperforms its competitors significantly, espegiathen
r is small (i.e., more outliers are retrieved). Our technitgreni-
nates by scanning the dataset at most twice. In particdaCA,
whenr is different from the lower end of its interesting range, BNI
returns all outliers by performing a single scan, as ingiddty its
cost decrease in Figure 3a. Furthermore, as analyzed iilo8é&Gt

zero). Equivalently, the objects that are verified in theosélcscan

are retained in memory at the end of the first scan. Figure 3d
demonstrates the number of such objects (in percentagks obt-
responding dataset cardinality) in the experiments offieigB@a-3c.
Observe that, in all caseSNIF prunes at least 99% of a dataset af-
ter the first scan

Performance vs.k. Figures 4a-4c evaluate the efficiency of al-
ternative solutions wheh distributes from 0.01% to 0.1% of the
cardinality, using default values ferand the memory size. CELL
is applicable only tdHousehold again due to its excessively large
memory consumption for the other datasets. The performafrade
methods remains stable for the entire rangé tésted. This phe-
nomenon implies that each algorithm incurs similar cosbag bs
the number of fetched outliers is the same (remember thag fo
medianr, the number of outliers is always 0.05% of the cardinal-
ity). Similar to Figure 3d, we present in Figure 4d the numdsier
objects verified by SNIF in the second scan, confirming theebs
vation that the number is less than 1% of the dataset caityinal

Performance vs. memory size.Next, we study the impact of
memory size on the efficiency of outlier mining. Towards thie
use the default values for bothand r, but measure the perfor-
mance of all algorithms, as the amount of memory changes from
1% to 20% of the database. The results are illustrated inr€igu
CELL is inapplicable taCA and Server and applicable télouse-
hold only if the memory accounts for at least 5% of the database.
There is no result o€A at memory size 1%, because in this case
the memory contains less than 10k bytes, which is unrezaiffi
small.

It is clear that SNIF is by far the best method, if memory is
scarce. Particularly, fadouseholdand Server SNIF is faster than
BNL by a factor over an order of magnitude at memory size 1%.
The cost of our method is the same regardless of the memory ca-

most I/O accesses by CELL are random, whereas SNIF and BNL pacity, with one exceptionServerand 1% memory. In this case,
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Figure 5: Performance vs. memory sizer{ = median of interesting range,k = 0.05% of cardinality)

the verification file is not empty, but contains 16k objects, i3.2%

of the database. As a result, SNIF incurs additional cossé¢an-
ning the file, and accordingly, the cost percentage of rand@s
increases, because random accesses must be performed/erhene
objects are appended to the verification file.

Performance vs. cardinality. To test the scalability of our so-
lution with respect to the dataset size, we create sevendhsiic
non-EuclidearSignaturedatasets with various cardinalities. Each
object inSignatureis a string containing 30 English letters. First,
50 “pivot” strings are randomly generated. Each pivot define
cluster, in which an object is obtained by modifying a numbef
letters in the pivot, where uniformly distributes in [1, 10]. We
continuously generate objects this way (randomly pickirgvat
for each object), until the number of objects reaches 99.8bfte
target cardinalityn. Finally, the remainind).05% - n objects are
again randomly generated, i.e., they are outliers. Thawiist met-
ric for Signaturedatasets is the edit distance.

We vary the cardinality from 200k to 1 million, but fix the
amount of available memory to 10% of the database witlsihall-
estcardinality 200k. Setting and k to their default values, Fig-
ure 6a demonstrates the cost of SNIF and BNL as the cardinalit
grows (CELL cannot be applied to non-Euclidean data). As ex-
pected, the 1/0O-time of BNL demonstrates clear quadrati@bier
(confirming our analysis in Section 2), whereas that of SMIF i
creases linearly (always terminating after 2 scans). Atibjbest
cardinality, SNIF again outperforms BNL by more than an orde
of magnitude. Figure 6b shows the number of objects verified b
SNIF in the second scan.

SNIF sensitivity to s. Finally, we examine the performance of
SNIF when the number of centroids changes. In this experiment,
we setr, k, and the memory size to their default values, but vary
s from 1000 to 3000. Figure 6a plots the cost of SNIF for the real
datasets, and a synthetic dataSigmaturewith cardinality 500Kk.

The behavior of our algorithm is not affectedsashanges: SNIF
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Figure 7: SNIF behavior ass varies (r, k, memory size at default values)

always scans a dataset twice. To explain this, recall treabtim- Shuigeng Zhou was supported by grants numbered 60373019 and
ber of objects that need to be verified after the first scanvisngi 90612007 from the National Natural Science Foundation éh&h

by Formula 4, and a third scan is necessary only if these tsbjiec and the Shuguang Scholar Program of Shanghai Municipald&duc
not fit in memory. Afters has reached a reasonably large value (in- tion Committee. We would like to thank the anonymous reviswe

dependent of the dataset cardinality), the second andtginas of for their insightful comments.

Formula 4 are already very low, such that further increasilegds
to only marginal decrease of those terms. Figure 6b verliigslty
showing that, for all datasets, the number of objects faification
in the second scan decreases only slightly (by less tha®df5
the cardinality) as grows from 1000 to 3000. The phenomeno

n

implies that selection aof is simple in practice — we recommend
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