
Intersection Joins under Updates

Yufei Tao
CUHK

taoyf@cse.cuhk.edu.hk

Ke Yi
HKUST

yike@cse.ust.hk

September 28, 2021

Abstract

In an intersection join, we are given t sets R1, ..., Rt of axis-parallel rectangles in Rd, where
d ≥ 1 and t ≥ 2 are constants, and a join topology which is a connected undirected graph G on
vertices 1, ..., t. The result consists of tuples (r1, ..., rt) ∈ R1 × ...×Rt where ri ∩ rj 6= ∅ for all

i, j connected in G. A structure is feasible if it stores Õ(n) words, supports an update in Õ(1)
amortized time, and can enumerate the join result with an Õ(1) delay, where n =

∑
i |Ri| and

Õ(.) hides a polylog n factor. We provide a dichotomy as to when feasible structures exist: they
do when t = 2 or d = 1; subject to the OMv-conjecture, they do not exist when t ≥ 3 and d ≥ 2,
regardless of the join topology.

Accepted by Journal of Computer and System Sciences (JCSS).
Keywords: Intersection Joins, Enumeration, Dynamic Updates, Data Structures, OMv-Conjecture



1 Introduction

Let R1, R2, ..., Rt be t sets of d-dimensional rectangles (note: all the rectangles in this paper are
axis-parallel). An intersection join is defined by a join topology, which is a connected undirected
graph G on vertices {1, 2, ..., t}. The join result is the set of tuples

(r1, ..., rt) ∈ R1 × ...×Rt

where ri∩ rj 6= ∅ for all i, j such that G has an edge between i and j. Figure 1 shows a join topology
with t = 3, for which the join result consists of all (r1, r2, r3) ∈ R1 ×R2 ×R3 satisfying:

(r1 ∩ r2 6= ∅) ∧ (r2 ∩ r3 6= ∅). (1)

Set n =
∑

i |Ri|. We will concentrate on data complexity by restricting t and d to constants.
Ideally, we want to maintain a feasible data structure with all of the following guarantees:

• It stores Õ(n) words, where Õ(.) hides a polylog n factor.

• It can be updated in Õ(1) amortized time, when a rectangle is inserted into or deleted from
any Ri (1 ≤ i ≤ t).

• It can be used to enumerate the join result with a delay of ∆ = Õ(1), that is:

– within ∆ time, the algorithm must either report the first result tuple or terminate (when
the join result is empty);

– after reporting a result tuple, within another ∆ time, the algorithm must either report a
new result tuple or terminate (when the entire result has been reported).

Notice that, if the join result has k tuples, a feasible structure finds all of them in Õ(1 + k) time.

1 2

3

Figure 1: A join topology for t = 3

1.1 What Intersection Joins can Do

The most important non-natural joins are arguably those with a conjunction of predicates, each of
which is defined with the “≤” or “≥” operator. Many of these joins can be modeled as intersection
joins. For example,

(x, y, z) :- T1(x), T2(y, z), y ≤ x ≤ z

is an intersection join between two sets of 1D intervals: R1 = {[x, x] | x ∈ T1} and R2 = {[y, z] |
(y, z) ∈ T2 ∧ y ≤ z}. As another example,

(w, x, y, z) :- T1(w, x), T2(y, z), w ≤ y, x ≥ z

is an intersection join between two sets of 2D rectangles: R1 = {[w,w]× [x, x] | (w, x) ∈ T1} and
R2 = {(−∞, y]× [z,∞) | (y, z) ∈ T2}.

Outside relational databases, intersection joins find major applications as well:

1



• For d = 1, they are frequent in temporal databases, where a record is associated with a time
interval indicating the record’s validity period. An intersection join is what is needed to find
tuples whose validity periods overlap in a designated manner, and is a crucial operation in
many scenarios [8, 9, 11,18,27].

• For d ≥ 2, intersection joins are known under the name spatial join. This is a core operation
in spatial databases, where each object is associated with a rectangle (typically, the minimum
bounding rectangle of a geometric entity such as a line segment, a polygon, a circle, etc.). A
spatial join is the key to extracting overlay information from different sets of objects and has
received considerable attention (e.g., [5, 22,25,26,28,32]).

1.2 Related Work

“One-Shot” Intersection Joins. In the offline version of our problem, we want to compute the
result of an intersection join on R1, ..., Rt. The computation is done only once, namely, there are no
updates to worry about. Surprisingly, even this problem has not been well understood, except when
the join topology is a tree. Willard [29] showed that the problem can be solved in Õ(n+ k) time for
any tree topology, where k is the number of result tuples. Whether the offline version can be settled
using Õ(n+ k) time for an arbitrary topology is still open, even in 1D space.

Even just for tree topologies, it would be tempting to adapt Willard’s algorithm [29] to the
dynamic scenario (i.e., our problem). His algorithm in essence processes a tree topology using the
“leaf-to-root” semi-join idea that Yannakakis [30] introduced for processing an acyclic natural join. A
straightforward adaptation, however, entails either a large update cost of Õ(n), or an uninteresting
delay of ∆ = Õ(n) in result enumeration. It is not clear how to improve this without introducing
new ideas.

View Maintenance. Our problem can be regarded as a variant of incremental view maintenance.
Define a view W as the set of t-tuples in the join result. We want to “maintain” W incrementally
with Õ(n) space and Õ(1) time per update. As mentioned, the maintenance is done by storing
R1, ..., Rt in a feasible structure, such that W can be extracted from the structure in Õ(|W |) time
whenever needed.

There are two main challenges in achieving the above goal. First, a join result may have a size
up to O(nt), which rules out the possibility of materializing the view if the space must be kept
Õ(n). Second, a single update may change a significant portion of the join result. This makes result
materialization an infeasible approach even if the join result has a size of Õ(n).

Overcoming these challenges is non-trivial even for natural joins (a.k.a., conjunctive queries) .
Note that the concept of “feasible structure” is readily extendable to a natural join R1 ./ ... ./ Rt (in
fact, this definition was explicit in [3]). Finding such structures for natural joins was studied as early
as in the 80’s of the last century, but with success limited to binary joins [7,12]. As a breakthrough,
Berkholz et al. [3] proved that, for natural joins on 3 ≤ t = O(1) relations, feasible structures exist
if and only if the join is q-hierarchical, subject to the OMv-conjecture [13] (see also [14] for similar
upper bound results). We refer the reader to [3] for the definition of q-hierarchical (this notion will
not be needed in our discussion), but state the OMv-conjecture here:

2



OMv-conjecture [13]. Consider the following online boolean matrix-vector multiplication
(OMv) problem. An algorithm is given an n × n boolean matrix M , and is allowed to
preprocess M arbitrarily in poly(n) time. Then, the algorithm is given a stream of
n × 1 boolean vectors v1, v2, ..., vn, and is required to compute Mvi for each i (the
additions and multiplications on the elements of the matrices are performed in the boolean
semi ring). In particular, vector vi+1 (i ≥ 1) is fed to the algorithm only after it has
correctly output Mvi. The cost is the total time the algorithm takes in computing the n
multiplications. The OMv-conjecture states that, no algorithms can solve the problem
successfully with probability at least 2/3 in O(n3−ε) time, for any constant ε > 0.

Partially inspired by the above, recent years have witnessed efforts (see the representative works
[16,17]) studying non-feasible structures on natural joins that can provide a good tradeoff between
update efficiency and enumeration delay.

None of the above works considered non-natural joins. To fill the void, Idris et al. [15] studied
how to maintain data structures that can answer conjunctive queries with inequality predicates,
and support efficient updates on the participating relations. Like our work, the structure should
allow the query result (i.e., a join result) to be enumerated with an Õ(1) delay, but unlike our work,
the structure is permitted to spend Õ(n) time to support each update, where n is the size of the
database (hence, the structure is not feasible).

It is worth mentioning that the form of maintenance discussed above is different from another
(perhaps more traditional) branch of incremental view maintenance, which aims at computing the
delta result changes of a join caused by an update, i.e., find (i) all the new result tuples created
by an insertion, and (ii) the existing result tuples removed by a deletion. Indeed, many works in
the literature have explicitly focused on this branch; e.g., see [3, 4, 14,19–21,31] and the references
therein. In fact, feasible structures can be deployed to support the above style of maintenance as
well, using a reduction which we explain in Appendix B.

1.3 Contributions

This paper provides a complete dichotomy on when an intersection join admits a feasible structure.
Next, we provide an overview of our results and the proposed techniques.

t = 2 (Binary Joins). It is a good idea to start with the most fundamental: in our context, a
binary intersection join in 1D space (t = 2, d = 1). For such joins, we can prove:

Theorem 1. For an intersection join with d = 1 and t = 2, there is a structure of O(n) space that
can be updated in O(log n) amortized time, and can be used to enumerate the join result with a
constant delay.

The structure is asymptotically optimal in the comparison model of computation (see Appendix A
for a proof), and contains just the right amount of sophistication for demonstrating two new ideas
that are also applied in some other structures of the paper:

• Productive list: One issue in designing a feasible structure is how to enumerate a join result of
an exceedingly small size k. As the enumeration can take only Õ(1 + k) time, when k � n, we
cannot afford to read the whole input. We remedy the issue by marking certain nodes of the
structure as “productive”: these nodes tell us where to look to start reporting result tuples
immediately. If k = 0, no productive nodes exist, permitting us to finish in constant time.

• Buffering: Often times, it would be easier to come up with an intersection join algorithm
that runs in Õ(1 + k) time, but harder to guarantee an Õ(1) delay. If we could always turn

3



such an algorithm into one with an Õ(1) delay, designing feasible structures would become
considerably easier. We propose a buffering technique to make this possible, provided that
the algorithm is “aggressive” in reporting. Intuitively, such an algorithm would output most
of the result during an early stage, and then possibly remain “quiet” for a long time before
reporting the rest.

Our 1D structure can be extended to higher dimensionalities:

Theorem 2. For any intersection join with d = O(1) and t = 2, there is a structure of Õ(n) space
that can be updated in Õ(1) amortized time, and can be used to enumerate the join result with an
Õ(1) delay.

t ≥ 3 and d ≥ 2. For intersection joins on t ≥ 3 sets of rectangles, we are able to show that no
feasible structures are likely to exist when the dimensionality is at least 2:

Theorem 3. Unless the OMv-conjecture [13] fails, for any intersection join with t ≥ 3 and d ≥ 2
(regardless of the join topology), no structure can offer the following guarantees simultaneously: for
some constant 0 < ε < 0.5, it (i) can be updated in O(n0.5−ε) time, and (ii) can be used to enumerate
the join result with a delay of O(n0.5−ε).

Our proof is based on a reduction from a negative result established in [3] about the natural
join T1 ./ T2 ./ T3 where the three relations have schemas T1(X), T2(X,Y ), T3(Y ). The fact that
this particular natural join “seals the fate” of all intersection joins of t ≥ 3 and d ≥ 2 is mildly
surprising.

By applying Theorem 3 to tree topologies, one can see that our problem is inherently more
difficult than its offline version (see Section 1.2) in the following sense. First, recall that Willard [29]
gave an offline algorithm that runs in Õ(n + k) time for any tree topology and any constant
dimensionality d. On the other hand, a feasible structure immediately provides an offline algorithm:
one can simply perform n insertions and then enumerate the join result. Thus, Theorem 3 points
out that no such structures can offer an offline algorithm that matches Willard’s solution in running
time, when t ≥ 3 and d ≥ 2, even if the topology is a tree.

1D Joins with t ≥ 3 Sets. This last landscape turns out to be the most challenging (perhaps
the most exciting). As explained in the preceding paragraph, if a feasible structure exists for any
join topology when d = 1, then the offline version can be settled in Õ(n+ k) time in 1D space for
all topologies (not just trees as in [29]) — but whether that is achievable is still open.

We managed to overcome the challenge:

Theorem 4. For any 1D intersection join with constant t ≥ 3, there is a structure of Õ(n) space
that can be updated in Õ(1) amortized time, and can be used to enumerate the join result with an
Õ(1) delay.

The theorem thus solves the offline intersection join problem in 1D space for arbitrary topologies
on any constant number t of interval sets. In particular, we guarantee not only a total output time
of Õ(1 + k), but also an Õ(1) delay as well, provided that Õ(n) preprocessing time is allowed.

Our structure incorporates a series of new ideas many of which are too detailed for the high-level
discussion here, but two particular techniques are notable:

• Lexicographic ordering: We conceptually order all the result tuples (r1, ..., rt) by concatenating
the left endpoints of r1, ..., rt, and comparing the concatenated sequences lexicographically.
The core of our structure is to find the first result tuple by this ordering. As the structure

4



supports fast updates, we can find the entire result efficiently by repeatedly finding the “first”
result tuple, after deleting certain tuples appropriately. The deleted tuples are eventually
added back into the structure at the end of the join. This turns out to be a powerful method,
and plays an indispensable role in our proof of Theorem 4.

• Recursive topology partitioning: The second technique we devised is a recursive mechanism
for processing a 1D intersection join. The mechanism removes certain vertices from the join
topology G, and breaks the remaining parts of G into maximally connected subgraphs. Each
subgraph gives rise to a smaller join to be handled by recursion. The correctness of the
mechanism is based crucially on numerous characteristics of the problem in 1D space.

2 Preliminaries

Throughout the paper, we consider that the input sets R1, ..., Rt are in “general position”. To state
this assumption formally, take a rectangle r ∈

⋃
iRi. If the projection of r onto dimension j ∈ [1, d]

is an interval [x1, x2], we say that r defines the coordinates x1 and x2 on dimension j. The general
position assumption says that every coordinate of any dimension is defined by at most one rectangle
in
⋃
iRi. The assumption allows us to focus on explaining the new ideas behind our techniques.

Removing the assumption can be done with standard tie-breaking techniques (see, e.g., [6]), and
does not affect any of our claims.

2.1 Binary Search Tree (BST)

Even though the BST is a rudimentary structure, it can be described in multiple ways, whose
differences are usually subtle, but can cause ambiguity when one needs to design new structures by
augmenting BSTs. Next, we clarify the BST assumed in this paper and take the opportunity to
define some relevant concepts and notations.

Let S be a set of n values in R. A BST T on S is a binary tree with the following properties:

• Each leaf stores a distinct element of S, and conversely, every element of S is stored at a leaf.

• Every internal node u has two child nodes. It stores a value — called the search key of u and
denoted as key(u) — which equals the smallest element of its right subtree.

• For each internal node u, all the elements stored in its left (or right) subtree must be less than
(or at least, resp.) key(u).

We conceptually associate each node u of T with a slab σ(u), which is a semi-open interval
defined as follows. If u is a leaf storing an element p ∈ S, then σ(u) = [p, p′) where p′ is the successor
of p in S; in the special case where p is already the largest element in S, σ(u) = [p,∞). If u is an
internal node, σ(u) is the union of the slabs of its child nodes.

For each node u of T , we use Tu to represent the subtree rooted at u, and define its subtree size
— denoted as |Tu| — as the number of leaf nodes in Tu.

2.2 The Interval Tree

Let R be a set of intervals in R. Next, we describe what is an interval tree [10, 23] on R.
Let T be a BST on the set of endpoints of the intervals in R. Associate each node u in T with

a stabbing set — which we denote as stab(u) — including all and only intervals r ∈ R with the

5



1 2 3 4 5 6 7 8 9 1110 12 13 14 15 16

u1 u2 u3 u4 u5 u6 u7 u8

u9 u10 u11 u12

u13 u14

u15

Figure 2: A BST on the endpoints of 8 intervals

property that u is the highest node in T whose search key is covered by r. At u, stab(u) is stored in
two separate lists: one sorted by the left endpoints of the intervals therein, and the other by their
right endpoints. This completes the definition of the interval tree.

Example. Suppose that R = {[1, 2], [3, 7], [4, 12], [5, 9], [6, 11], [8, 15], [10, 14], [13, 16]}. Figure 2
shows a BST on the endpoints of the 8 intervals.

Consider the root u15. It has a search key key(u15) = 9 and a stabbing set stab(u15) = {[4, 12],
[5, 9], [6, 11], [8, 15]}. Similarly, one can verify that stab(u1) = {[1, 2]}, stab(u13) = {[3, 7]}, and
stab(u14) = {[10, 14], [13, 16]}.

We will use stab<(u) to represent the set of intervals stored in the stabbing sets that are in the
left subtree of u. Define stab>(u) analogously with respect to the right subtree of u. The following
facts are rudimentary:

• Every interval in R belongs to exactly one stabbing set.

• For each node u, |stab<(u)| + |stab(u)| + |stab>(u)| can never exceed |T (u)| because the
endpoints of each interval in stab<(u) ∪ stab(u) ∪ stab>(u) must be stored at nodes in the
subtree of u.

2.3 Weight-Balancing Lemmas for Updates

2.3.1 Weight-Balancing on the Interval Tree

The interval tree serves as the base of several structures proposed in this paper. As we will see, our
structures will associate each node u in an interval tree T with an additional secondary structure,
denoted as Γu. We want to avoid a full-blown description on how to update the resulting interval
tree (i.e., augmented with all the secondary structures). There are two reasons. First, the challenges
are to figure out how data should be organized in Γu, as opposed to how to update Γu. Second,
unfolding all the details of updating would force us to ramble on many standard techniques related
to weight balancing. The reader would find it rather tedious and unrewarding to plow through all
that technical content.

Fortunately, we are able to find a “middle ground” to avoid most of the details, and yet allow
the reader to verify the correctness of our algorithms in a (much) lighter way. This is achieved by

6



extracting the key properties that Γu needs to have, for the overall augmented interval tree to have
the desired update efficiency.

To explain, again let R be the underlying set of intervals on which the interval tree T is built,
and set n to the number of nodes in T . Fix any node u in T . If u is an internal node with child
nodes v1, v2, we will assume that Γv1 and Γv2 are both ready. We prescribe four properties P1-P4
that need to be satisfied by Γu:

• P1: When an interval r = [x, y] ∈ R with y < key(u) is inserted or deleted in stab<(u), we
can update Γu in f1(n) amortized time, for some function f1.

• P2: Given an interval r ∈ R with x ≤ key(u) ≤ y is inserted or deleted in stab(u), we can
update Γu in f2(n) amortized time, for some function f2.

• P3: Given an interval r = [x, y] ∈ R with key(u) < x is inserted or deleted in stab>(u), we
can update Γu in in f3(n) amortized time, for some function f3.

• P4: Γu can be constructed in f4(|Tu|) time under the condition that, the intervals in stab(u)
have been sorted in two separate lists: one by left endpoint, and the other by right endpoint.

When Γu meets the above requirements, we have following guarantee:

Lemma 5. The augmented interval tree T can be updated in

O

(
log n ·

(
1 + f1(n) + f3(n)

)
+ f2(n) +

log n · f4(n)

n

)
amortized time when an interval is inserted or deleted in R.

Proof. This is a corollary of the results in [2] (see also [24]).

2.3.2 Weight-Balancing on the BST

Next, we mention another result similar to Lemma 5 that is pertinent to BSTs. Let T be a BST on
a set S of n values in R. Suppose that we associate each node u of T with a secondary structure Γu
having the following guarantees:

• When an element is inserted/deleted in the subtree Tu of u, Γu can be updated in Õ(1)
amortized time.

• Γu can be reconstructed in Õ(|Tu|) time.

Then, we have:

Lemma 6. T can updated in Õ(1) amortized time per insertion and deletion in S.

Proof. This is a corollary of the results in [2] (see also [24]).

2.4 A Result from Computational Geometry

Let R be a set of n rectangles in Rd for some constant dimensionality d. Each rectangle in R is
associated with a weight drawn from some ordered domain. Given a query rectangle q, a range
min query returns the rectangle in R with the smallest weight, among all the rectangles in R that
intersect with q. The result below is well-known:

Lemma 7. We can store R in a structure of Õ(n) space that answers any range min query in Õ(1)
time. The structure can be updated in Õ(1) amortized time per insertion or deletion in R.

Proof. Achievable in many ways; see, for example, [1].

7



3 Multi-Way Joins with ≥ 2 Dimensions

Let us start with our negative result. In this section, we will concentrate on intersection joins on t ≥ 3
sets R1, ..., Rt of rectangles in Rd where d ≥ 2. We will show that, subject to the OMV-conjecture,
no feasible structures can exist.

A Natural-Join Result of [3]. Consider three relations with schema T1(X), T2(X,Y ), and T3(Y )
(each relation is under the set semantics, i.e., no duplicate tuples). We refer to T1 ./ T2 ./ T3 as a
wedge natural join.

Suppose that the values of attributes X and Y are integers in [1, D], i.e., the domain size of each
attribute is D. We want to incrementally maintain a feasible structure, that is, one that supports
an update in Õ(1) time, and can be used to enumerate the result of T1 ./ T2 ./ T3 with a small
delay ∆.

Lemma 8. ( [3]) For wedge natural joins, subject to the OMv-conjecture [13], no structure can
offer the following guarantees simultaneously: for some constant 0 < ε < 1, it (i) can be updated in
O(D1−ε) time, and (ii) admits the join result to be enumerated with a delay of O(D1−ε).

The above lemma holds regardless of the space of the structure.

Hardness of the “Wedge” Topology. Consider again the topology shown in Figure 1. We
will refer to the join with this topology as a wedge intersection join. Recall that it describes
an intersection join on R1, R2, and R3 that returns all (r1, r2, r3) ∈ R1 × R2 × R3 satisfying the
conditions in (1). We will show that the existence of any feasible structures on such joins in 2D
space will defy Lemma 8.

Given the sets T1(X), T2(X,Y ), and T3(Y ) participating in the wedge natural join, we construct
three sets of rectangles in two-dimensional space as follows:

R1 = {x× (−∞,∞) | x ∈ T1}
R2 = {(x, y) | (x, y) ∈ T2}
R3 = {(−∞,∞)× y | y ∈ T3}.

Note that the rectangles in all three sets are degenerated: each rectangle in R1 (or R3) is a line
perpendicular to dimension 1 (or 2, resp.), whereas each rectangle in R2 is a point. Our construction
guarantees:

Proposition 1. Tuples x ∈ T1, (x, y) ∈ T2, and y ∈ T3 make a pair (x, y) in the result of
T1 ./ T2 ./ T3 if and only if (r1, r2, r3) is in the result of the wedge intersection join on R1, R2,
and R3, where r1 is the rectangle x× (−∞,∞) in R1, r2 is the rectangle (x, y) in R2, and r3 the
rectangle (−∞,∞)× y in R3.

Suppose that, we are given a wedge-intersection-join structure which can be updated in U(n)
time, and be used to enumerate the join result in ∆(n) time, where n = |R1| + |R2| + |R3|. By
our construction, the sizes of R1 and R2 are at most D, while that of R2 is at most D2. It
thus follows from Lemma 8 that, subject to the OMv-conjecture, U(O(D2)) = O(D1−ε) and
∆(O(D2)) = O(D1−ε) cannot hold at the same time. Combining this with n ≤ D2 shows:

Lemma 9. For wedge intersection joins, subject to the OMv-conjecture [13], no structure can offer
the following guarantees simultaneously: for some constant 0 < ε < 1, it (i) can be updated in
O(n0.5−ε) time, and (ii) admits the join result to be enumerated with a delay of O(n0.5−ε).

8



Before proceeding, let us point out a property of our construction. Consider the triangle topology
that has an edge between i, j for all 1 ≤ i < j ≤ 3. On the constructed R1, R2, R3, a tuple (r1, r2, r3)
is in the join result under the wedge topology if and only if it is in the joint result under the triangle
topology. This is a crucial property that we rely on to extend the hardness result to arbitrary
intersection joins with t ≥ 3 and d ≥ 2, as shown next.

Hardness of t ≥ 3 and d ≥ 2. Consider an arbitrary intersection join with topology G with
t ≥ 3 vertices. Since G is connected, it must have at least one vertex with two edges. Without
loss of generality, assume that G contains an edge between 1 and 2, and an edge between 2 and 3
(otherwise, rename the input sets).

Suppose that we are given a feasible structure for G in two-dimensional space. We can use the
structure to maintain the result of the 2D wedge intersection join on R1, R2, R3 that we constructed
earlier. For this purpose, we add t− 3 dummy input sets R4, R5, ..., Rt, each of which contains only
a single rectangle, which is simply R2 (i.e., the whole data space). The dummy input sets are never
updated. It is clear that (r1, r2, r3) is in the result of the wedge intersection join if and only if

(r1, r2, r3,R2, ...,R2︸ ︷︷ ︸
t−3

)

is in the result of the (constructed) t-way intersection join with topology G. Note that this is true
no matter whether G has an edge between 2 and 3, due to the property mentioned below Lemma 9.

Finally, the absence of efficient structures when t ≥ 3 and d = 2 implies the same when t ≥ 3
and d > 2 (by adding dummy dimensions). We now conclude the proof of Theorem 3.

4 Binary Joins

Having explained what cannot be done, in the rest of the paper we will focus on what can be done.
We will prove the existence of feasible structures in all the other scenarios, namely, either t = 2
(binary joins) or d = 1 (1D joins).

This section will focus on t = 2. First, Section 4.1 will present the structure of Theorem 1,
which as mentioned solves 1D binary joins optimally in the comparison model. Then, Section 4.2
will extend our solutions to constant dimensionalities d ≥ 2.

4.1 An Optimal 1D Structure

4.1.1 Interval-Point Joins

In the 1D version, R1 and R2 are two sets of intervals in R. We will first deal with a special instance
of the problem where every interval of R2 degenerates into a real value, i.e., a point. For clarity, let
us denote R1 simply as R, and use P to represent the set of values in R2. The join result can now
be re-defined in a simpler manner: it reports all (r, p) ∈ R × P satisfying p ∈ r. We will refer to
this as the interval-point join.

Structure. Build an interval tree T on R ∪ P , regarding each point in P as a degenerated interval.
As defined in Section 2.2, each node u of T is associated with a stabbing set stab(u). Denote

by R(u) the set of intervals in stab(u) from R. Sort R(u) in two separate lists: the first by left
endpoint and the other by right endpoint.

At each internal node u, keep:

• A left pilot value, which is the largest point of P stored at a leaf in the left subtree of u;

9



1 2 3 4 5 6 7 8 9 1110 12 13 14 15 16

u1 u2 u3 u4 u5 u6 u7 u8

u9 u10 u11 u12

u13 u14

u15

Figure 3: Illustration of the interval-point-join structure

• A right pilot value, which is the smallest point of P stored at a leaf in the right subtree of u.

We say that an internal node u is productive if R(u) has at least one interval r that covers at least
one point in P . Whether u is productive can be decided in constant time as follows:

• Find the interval [x, y] ∈ R(u) with the smallest left endpoint x. Decide u as productive, if x
is no greater than the left pilot value of u.

• Otherwise, find the interval [x, y] ∈ R(u) with the largest right endpoint y. Decide u as
productive, if y is no less than the right pilot value of u.

• Otherwise, decide u as non-productive.

We link up all the productive nodes with a doubly linked list L (ordering does not matter), referred
to as the productive list.

Finally, we keep P in a sorted list ΣP (managed by a BST). Recall that each value p ∈ P is
stored at a leaf u in T . We keep a cross pointer from u to the position of p in ΣP . Remember that
p may also be stored as a pilot value at several internal nodes u′ in T as well. We also keep a cross
pointer from each such u′ to the position of p in ΣP .

The overall space consumption of our structure is clearly O(n).

Example: Figure 3 shows a BST created on R = {[3, 7], [4, 12], [5, 9], [6, 11], [8, 15]}, and P = {1, 2,
10, 13, 14, 16}.

For the root u15, R(u15) = {[4, 12], [5, 9], [6, 11], [8, 15]}. It has a left pilot value 2, and a right
pilot value 10. It is productive because [4, 12] ∈ R(u15) covers a value in P . On the other hand,
node u13 — with key(u13) = 5, R(u13) = {[3, 7]}, left pilot value 2, and no right pilot value — is
non-productive.

Point 10 is stored as the right pilot value of u15, u5, and as the left pilot value of u14, u11. Hence,
each of u15, u14, u11, and u5 keeps a cross pointer to the position of 10 in ΣP (the sorted list of
P ).

Join Result Enumeration. If L is empty, we finish immediately, declaring that the join result is
empty. The time in this case is constant.

10



enumerate(u)
1. pleft ← the left pilot value at u
2. Σleft ← the list that sorts R(u) in ascending order of

left endpoint
3. r ← the first interval in Σleft

4. repeat
5. if pleft ∈ r then
6. report all such result pairs (r, p) that are produced by r

and a point p in the left subtree of u
/* use ΣP for this purpose; see main texts */

7. r ← the next interval in Σleft

8. else break
9. until r = null, i.e., Σleft has been exhausted

10.pright ← the right pilot value at u
11.Σright ← the list that sorts R(u) in descending order of

right endpoint
12.r ← the first interval in Σright

13.repeat
14. if pright ∈ r then
15. report all such result pairs (r, p) that are produced by r

and a point p in the right subtree of u
/* use ΣP for this purpose; see main texts */

16. r ← the next interval in Σright

17. else return
18.until r = null

Figure 4: Enumerating the result pairs at a productive node

Otherwise, for each productive node u ∈ L, we use the algorithm in Figure 4 to report all result
pairs (r, p) satisfying r ∈ R(u). The algorithm does so with a constant delay (as will be explained
shortly) and guarantee outputting at least one pair (by definition of productive node). Because all
the productive nodes have been explicitly stored in L, we can run the algorithm on every node in L
to report the entire query result with a constant delay. No result pair (r, p) can be missed because
the interval r must reside in the R(u) of exactly one productive node u.

The algorithm of Figure 4 has two parts: (i) Lines 2-9, which find such (r, p) where p is in the
left subtree of u, and (ii) Lines 10-18, which find such (r, p) where p is in the right subtree of u.
Due to symmetry, we will discuss only the first part.

After obtaining at Line 1 the left pilot value pleft at u, the algorithm (Lines 2-9) processes the
intervals of R(u) in ascending order of left endpoint. To explain how, let r ∈ R(u) be the interval
being processed. If r does not cover pleft , we are sure that, for any r′ ∈ R(u) that has not been
processed yet (that is, the left endpoint of r′ is greater than that of r), r′ cannot make a result pair
with pleft and — due to the definition of pleft — cannot make a result pair with any point in the left
subtree of u. In this case, we move on to the second part of the algorithm starting at Line 10.

If, on the other hand, r does cover pleft , we (at Line 6) find all those points p that (i) are in the
left subtree of u and (ii) are covered by r. Every such p makes a result pair with r. A constant
delay can be ensured by resorting to the sorted list Σp. First, use a cross pointer stored at u to find
the position of pleft in Σp. Then, scan Σp from pleft in descending order until seeing the first point

11



that falls outside r.

Example. Let us illustrate the algorithm using Figure 3. Node u15 is the only productive node. At
Line 1, pleft = 2. Then, we scan R(u15) in this order: [4, 12], [5, 9], [6, 11], [8, 15], starting at Line 3
with r = [4, 12]. At Line 4, we find that r does not cover pleft . The scan is therefore aborted; and
the execution jumps to Line 10.

After setting pright = 10 at Line 10, we scan R(u15) in this order: [8, 15], [4, 12], [6, 11], [6, 9],
starting with r = [8, 15] (Line 12). After seeing at Line 14 that r contains pright , we extract all the
points p ∈ P such that p ≥ pright and p is covered by r. There are 3 such points: 10, 13, 14. They
can be found by scanning ΣP in ascending order from 10 = pright .

Next, r is moved to the next interval [4, 12] in R(u15), and processed in the same fashion. The
rest of the execution is omitted.

Update. Thanks to Lemma 5, it becomes much easier to explain why our structure can be updated
in O(log n) amortized time per insertion and deletion.

Given a node u of T , regard the following together as its secondary structure Γu:

• The two sorted lists of R(u), i.e., one sorted by left endpoint, and the other by right endpoint;

• (Only if u is an internal node) its left and right pilot values, and the cross pointers associated
with those values;

• (Only if u is a leaf node and stores a point p ∈ P ) the cross pointer associated with p.

For an internal node u, its pilot values (and the cross pointers) can be obtained from its
child nodes v1, v2 in O(1) time, assuming that Γv1 ,Γv2 are both ready. Thus, with respect to the
properties P1-P4 prescribed in Section 2.3.1, it is straightforward to achieve: f1(n) = f3(n) = O(1),
f2(n) = O(log n), and f4(|Tu|) = O(|Tu|). By Lemma 5, T (augmented with Γu) can be maintained
in O(log n) amortized time per update.

It remains to explain how to modify the productive list L. This can be “piggybacked” on the
updates on T . In general, whenever the secondary structure Γu of a node u is affected by an update,
one can spend O(1) time to determine the current productive status of u, and insert/delete u in L
(remember that the ordering in L does not matter). Therefore, the maintenance of L cannot be
more expensive than maintaining T .

4.1.2 Intersection Joins

We now return to the intersection join problem with d = 1 and t = 2 where the inputs are two sets
R1 and R2 of intervals.

For two intervals r1 and r2, if r1 ∩ r2 6= ∅, then either r1 covers at least an endpoint of r2,
or r2 covers at least an endpoint of r1. This suggests that the problem can be reduced to four
interval-point joins. Specifically, the first (or second) interval-point join sets R to R1 and P to
the set of left (or right, resp.) endpoints of the intervals in R2, while the other two interval-point
joins are defined analogously by reversing the roles of R1, R2. Each pair (r1, r2) in the result of the
original intersection join is output by at least one interval-point join.

We, therefore, maintain four structures of Section 4.1.1, one for each interval-point join. The space
consumption and the update cost apparently remain as O(n) and O(log n) amortized, respectively.

To obtain the result of the intersection join, we enumerate the result of each of the four
interval-point structures in tandem. However, two issues arise:

12



• How to avoid reporting the same pair twice?

• How to ensure a constant delay? Note that even though enumerating the result of each
interval-point join guarantees a constant delay, it does not directly imply a constant delay
on the intersection join. The reason is that result pairs from an interval-point join may have
already been found by an earlier interval-point join. In the worst case, the result pairs of an
interval-point join may have all been found, thus forcing its enumeration algorithm to incur a
long delay without reporting any new pairs.

For the first issue, it suffices to adopt a consistent policy regarding which interval-point join
should report a pair (r1, r2). For example, suppose that r1 covers both endpoints of r2. We may
follow the policy that in this case only the first interval-point join (i.e., R = R1 and P includes the
left endpoints of the intervals in R2) should report it. The pair is simply ignored when discovered
by another interval-point join.

To resolve the second issue, we introduce a buffering technique. We actually aim at achieving a
more general purpose, which has been briefly described in Section 1.3. Formally, suppose that we
are given an algorithm A that does not guarantee a short delay in enumerating the join result, but
has the following α-aggressive property:

For any integer x ≥ 1, after running for an x amount of time, A definitely has found
bx/αc distinct result tuples.

We remind the reader that, in the RAM model, the running time is defined as the number of atomic
operations (i.e., operations each taking one unit of time, e.g., addition, multiplication, comparison,
accessing a memory word, etc.) performed. The above property essentially says that A must have
found bx/αc result tuples after x atomic operations, for all x ≥ 1.

Our buffering technique ensures:

Lemma 10. Given an α-aggressive algorithm A for a join, we can design an algorithm with a delay
of at most α.

Proof. We run A with a buffer, which includes all the result pairs that have been found, but not yet
reported. Divide the overall execution A into epochs, each consisting of α atomic operations. We
keep counting the number of atomic operations performed, and report a pair from the buffer at the
end of each epoch.

To prove that the above strategy works, we need to show that the buffer is never empty at the
end of each epoch. Consider the end of the i-th epoch (i ≥ 1). By α-aggressiveness, A must have
found at least α · i/α = i distinct result pairs. This completes the proof.

Let us now go back to our algorithm that runs the four interval-point joins sequentially. As
mentioned, each interval-point join ensures a delay ∆ = O(1); and the four interval-point joins
perform in total at most c(1 + k) atomic operations, for some constant c ≥ ∆. Next, we argue
that this algorithm is 8c-aggressive. This, together with Lemma 10, will complete the proof of
Theorem 1.

Suppose that there exists an integer x ≥ 1 such that, after x atomic operations, the algorithm
has found less than bx/(8c)c result pairs. As each pair can be reported at most 4 times, strictly less
than x/(2c) result pairs — counting duplicate ones — have been found. Thus, the delay before at
least one pair must be strictly larger than x

x/2c = 2c. However, since all interval-point joins ensure a

delay at most ∆, our in-tandem algorithm should find a (new or duplicated) pair with a delay at
most 2∆ ≤ 2c, thus creating a contradiction.

13



4.2 A Multi-Dimensional Structure

Next, we discuss intersection joins on t = 2 sets R1, R2 of rectangles in Rd with a constant
dimensionality d.

4.2.1 Dominance Joins

We say that a rectangle r is d-sided if it has the form (−∞, x1]× (−∞, x2]× ...× (−∞, xd]. This
section focuses on a special instance of the problem — referred to as dominance join — where all the
rectangles in R1 are d-sided, and all the rectangles in R2 degenerate into points. For convenience,
we rename R1 as R, and R2 as P ; the join result contains all (r, p) ∈ R× P where r contains p.

Set n = |R|+ |P |. We will design a feasible structure with a recursive approach. The base case
is d = 1 and has been resolved in Theorem 1 (particularly, Section 4.1.1). Assuming the availability
of a feasible structure for (d− 1)-dimensional dominance joins, next we will describe how to achieve
the purpose in d-dimensional space.

Structure. We will refer to dimension 1 the x-dimension. Accordingly, the x-range of a rectangle r
is the projection of r on the first dimension.

Create a BST T on the set of values that includes (i) the endpoints of the x-ranges of the
rectangles in R, and (ii) the x-coordinates of the points in P . We assign each rectangle of R and
each point of P to O(log n) nodes in T as follows:

• For a rectangle r ∈ R, let (−∞, x] be its x-range. Descend the path Π from the root of T to
the leaf storing x1. Every time we go into the right child at some node u on Π, we assign r to
the left child of u.

• A point p ∈ P is assigned to all the proper ancestors of the leaf storing the x-coordinate of p.

Denote by Ru ⊆ R the set of rectangles assigned to a node u of T , and by Pu ⊆ P the set of
points assigned to u. The projection of each r ∈ Ru (or p ∈ Pu) onto dimensions 2, 3, ..., d defines
a (d − 1)-dimensional rectangle (or point, resp.). Clearly, for any r ∈ Ru and any p ∈ Pu, the
x-range of r covers the x-coordinate of p. Hence, r contains p if and only if the (d− 1)-dimensional
rectangle defined by r contains the (d− 1)-dimensional point defined by p. We denote by R′u the
set of (d− 1)-dimensional rectangles obtained from Ru, and by P ′u the set of (d− 1)-dimensional
rectangles obtained from Pu.

Motivated by this, we associate u with a secondary structure Γu, which is a (d− 1)-dimensional
dominance-join structure on R′u and P ′u. Node u is productive if the (d− 1)-dimensional join on R′u
and P ′u returns a non-empty result. Because Γu is a feasible structure, whether u is productive can
be decided in Õ(1) time. All the productive nodes are collected into a productive list L.

The size of Γu is Õ(|Tu|) by the inductive assumption. Therefore, our structure uses Õ(n) space
overall.

Reporting the Join Result. For each node u in L, use Γu to report the result of the (d − 1)-
dimensional join on R′u and P ′u with an Õ(1) delay.

Observe that any (r, p) in the result of the original d-dimensional join is reported by exactly one
(d− 1)-dimensional join. Specifically, suppose that (−∞, x] is the x-range of r. Let Π be the path
in T from the root to the leaf of x, and z be the leaf in T storing the x-coordinate of p. Set node u
to the lowest ancestor of z on Π. Then, the pair (r, p) is reported at the left child of u.

We therefore achieve an Õ(1) delay overall.

14



Update. For each node u of T , whenever a rectangle (or point) inserted/deleted from Ru (or
Pu), we inserted/deleted it in the (d− 1)-dimensional structure Γu, which takes Õ(1) time by the
inductive assumption. Furthermore, Γu can be reconstructed by simply re-inserting all the rectangles
in R′u and P ′u, which by the inductive assumption takes Õ(|Tu|) time. It immediately follows from
Lemma 6 that our structure can be updated in Õ(1) time (both conditions in Section 2.3.2 have
been satisfied).

We now have officially established the claim that any dominance join of a fixed dimensionality d
admits a feasible structure.

4.2.2 Intersection Joins

We now attend to the d-dimensional intersection join between two sets R1 and R2 of rectangles. It
turns out that, as shown below, such a join can be converted to 4d = O(1) dominance joins, each of
which has dimensionality at most 3d = O(1).

Consider two intersecting rectangles r ∈ R1 and r′ ∈ R2. Fix a dimensionality i ∈ [1, d]. Let
[xi, yi] and [x′i, y

′
i] be the projections of r and r′ on this dimension, respectively. If we look at the

permutation that sorts the four coordinates in ascending order, there are 4 possible permutations:

• xi, x′i, yi, y′i

• xi, x′i, y′i, yi

• x′i, xi, yi, y′i

• x′i, xi, y′i, yi.

We can enforce each of the above permutations using the conjunction of at most 3 conditions of the
form “a ∈ (−∞, b]”. Specifically, the permutation xi, x

′
i, yi, y

′
i is enforced by:

xi ∈ (−∞, x′i] ∧ −yi ∈ (−∞,−x′i] ∧ yi ∈ (−∞, y′i].

The above is equivalent to requiring that the 3D point (xi,−yi, yi) be covered by the 3-sided
rectangle (−∞, x′i]× (−∞,−x′i]× (−∞, y′i]. Likewise, the permutation xi, x

′
i, y
′
i, yi is enforced by

xi ∈ (−∞, x′i] ∧ −yi ∈ (−∞,−y′i].

which is equivalent to requiring that the 2D point (xi,−yi) be covered by the 2-sided rectangle
(−∞, xi]× (−∞,−y′i]. The other two permutations can also be enforced in a symmetric manner.

If one chooses a permutation independently for every dimension, the number of choices is 4d.
This is precisely the number of different ways that r can intersect with r′. Let us refer to each of
them as a configuration.

It is clear from the above discussion that, we can create a dominance-join structure for each
of the 4d configurations. For each configuration, we convert a rectangle r1 ∈ R1 into a point p by
creating 3 or 2 new dimensions for every original dimension. This creates a point of dimensionality
d′ ≤ 3d. Accordingly, a rectangle r2 ∈ R2 is converted to a d′-sided rectangle r, such that r1
intersects with r2 under that configuration if and only if r covers p.

Since each result pair (r1, r2) ∈ R1 × R2 is reported by only one dominance join, we have
obtained a feasible structure for the intersection join between R1 and R2. This completes the proof
of Theorem 2.

15



5 One-Dimensional Multi-Way Joins

We now proceed to discuss 1D joins (i.e., d fixed to 1) on a constant number t of input sets R1, ..., Rt.
We will prove Theorem 4 by presenting a feasible structure for any join topology G

5.1 Min/Max Intersection Joins

Next, we introduce the “min” and “max” versions of intersection joins whose purposes will be clear
in the next subsection.

First, let us impose two total orders on R1× ...×Rt. Let (r1, ..., rt) and (r′1, ..., r
′
t) be two distinct

tuples from the cartesian product. Identify the first i ∈ [1, t] such that ri 6= r′i. Then, we say:

• (r1, ..., rt) is left-smaller (or left-larger) than (r′1, ..., r
′
t) if the left endpoint of ri is smaller (or

larger) than that of r′i;

• (r1, ..., rt) is right-smaller (or right-larger) than (r′1, ..., r
′
t) if the right endpoint of ri is smaller

(or larger) than that of r′i.

Note that the above are always well-defined because of the general position assumption stated in
Section 2 (specifically, ri and r′i must differ in both left endpoint and right endpoint).

Let J represent the set of tuples returned by the intersection join on R1, ..., Rt under the topology
G. We define:

• Min-IJ Query: return the left-smallest tuple in J ;

• Max-IJ Query: return the right-largest tuple in J .

The two queries can be supported efficiently:

Lemma 11. There exists a structure that consumes Õ(n) space, supports an update (i.e., inser-
tion/deletion in any of R1, ..., Rt) in Õ(1) amortized time, and answers any min-/max-IJ query in
Õ(1) time.

We will refer to the structure of the above lemma as an IJ-heap on (R1, ..., Rt) under G. The
proof of the lemma is deferred to Section 6.

5.2 Reduction to min-IJ Queries

This subsection serves as a proof for:

Lemma 12. Given an IJ-heap on (R1, ..., Rt) under G, we can report all the result tuples in the
intersection join with an Õ(1) delay.

Combining the above with Lemma 11 gives a feasible structure needed for Theorem 4.

Proof of Lemma 12. We answer an IJ query by calling the algorithm in Figure 5 as

IJ(0, ∅)

which performs recursive calls at Line 8. The proposition below establishes the correctness of our
algorithm:

16



IJ(λ, {ρ1, ..., ρλ})

/* requirements: if λ ≥ 1 then

C1 : ρi ∈ Ri for each i ∈ [1, d].
C2 : ρ1, ..., ρλ produce at least one result tuple.
C3 : The minimum result tuple from the current R1, ..., Rt (whose content may shrink and grow
during the algorithm’s execution) is a tuple (r∗1, ..., r

∗
t ) satisfying r∗i = ρi for all i ∈ [1, λ].

output: all result tuples (r1, ..., rt) satisfying ri = ρi for all i ∈ [1, λ] */

1. if λ = t then output (ρ1, ..., ρλ) and return
2. Sdel = ∅
3. repeat
4. ρλ+1 ← the interval in Rλ+1 with the smallest left endpoint s.t. ρ1, ..., ρλ, ρλ+1 produce

at least one result tuple
/* this requires a min-IJ query; see Proposition 3 */

5. if ρλ+1 = null then
6. insert all the tuples of Sdel back into Rλ+1

7. return
8. IJ(λ+ 1, {ρ1, ..., ρλ, ρλ+1})
9. delete ρλ+1 from Rλ+1

10. add ρλ+1 to Sdel

Figure 5: Reduction from intersection joins to min-IJ

Proposition 2. C1, C2, and C3 in Figure 5 are fulfilled by each recursive call to IJ during the
execution of IJ(0, ∅). Furthermore, Every result tuple is output exactly once.

Proof. See Appendix C.

We now use the supplied IJ-heap to implement Line 4:

Proposition 3. Line 4 takes Õ(1) time.

Proof. Use the IJ-heap to perform a min-IJ query. If the query returns nothing, set ρλ+1 to null.
Otherwise, suppose that it returns (r1, ..., rt). Check whether ri = ρi for all i ∈ [1, λ]. If so, set
ρλ+1 to rλ+1; otherwise, set ρλ+1 to null. Requirement C3 ensures the correctness of the above
strategy.

The following fact is crucial for proving that our algorithm has a short delay:

Proposition 4. At any moment of our algorithm, if Line 1 has output x tuples, at most t · x
deletions have been performed at Line 9 (counting the deletions made at all levels of the recursion).

Proof. An interval (in any of R1, ..., Rt) is deleted after it has produced at least a result tuple.
Each result tuple output at Line 1 can trigger at most t deletions at Line 9. The proposition thus
follows.

We complete the proof of Lemma 12 by combining the following with Lemma 10:

Proposition 5. Our algorithm is Õ(1)-aggressive.

17



Proof. Using the supplied IJ-heap, every insertion and deletion into any Ri (i ∈ [1, t]) takes Õ(1)
amortized time.

Consider any moment during the execution of our algorithm. Let ndel be the total number of
deletions that have been made at Line 9 so far (counting all levels of recursion). This implies that
the total number of insertions at Line 6 is at most ndel . It follows that the running time thus far is
Õ(ndel ).

The Õ(1)-aggressiveness then follows from Proposition 4, which indicates that we must have
reported at least ndel/t result tuples.

6 The IJ-Heap

This section is dedicated to proving Lemma 11. We actually aim to support a more general form of
min-/max-IJ queries. Remember that we have a constant number t of interval sets R1, ..., Rt, and a
join topology G. A min-/max-IJ query is now given t pairs of values

(ai, bi)

for i ∈ [1, t]. Let J be the set of tuples (r1, ..., rt) ∈ R1 × ...×Rt satisfying all of the following:

• (r1, ..., rt) is in the result of the intersection join under topology G;

• for each i ∈ [1, t], ri intersects with both (−∞, ai] and [bi,∞). Note that, if bi ≤ ai, then this
condition means that ri must intersect with [bi, ai].

Then, the min-/max-IJ query should return the left-smallest/right-largest tuple in J . Clearly, by
setting ai = ∞ and bi = −∞ for all i ∈ [1, t], a min-/max-IJ query degenerates into the version
defined in Section 5.1.

The IJ-heap we aim to design should use of Õ(n) space (n =
∑

i |Ri|), can be updated in
Õ(1) amortized time (per insertion/deletion in any Ri, 1 ≤ i ≤ t), and answer any (re-defined)
min-/max-IJ query in Õ(1) time.

6.1 Notations

Our strategy is to break G into smaller subgraphs and handle the “sub-joins” represented by those
subgraphs recursively. Some extra concepts and notations are needed to reason about those subjoins
effectively.

Recall that G has the vertex set {1, 2, ..., t}, which we will call the universe and represent as U .
Let V be any non-empty subset of U . A vector v is said to be defined in V if:

• v has length |V |;

• for each i ∈ V , v has a distinct component which we denote as v[i];

• v lists its components v[i] (i ∈ V ) in ascending order of i.

Henceforth, we will write v as vV to indicate explicitly the set V . The only exception arises when
V = U , in which case V is omitted but implicitly understood.

Consider two non-empty subsets V, V ′ of U such that V ′ ⊂ V . Given a vector vV defined in V ,
its projection in V ′ is the vector v′V ′ where v′V ′ [i] = vV [i] for each i ∈ V ′.

18



Given a non-empty subset V ⊆ U , we refer to a vector RV as an instance vector in V if

RV [i] ⊆ Ri

for each i ∈ V . Define

×(RV ) = RV [i1]×RV [i2]× ...×RV [i|V |]

where i1, i2, ..., i|V | list out the integers in V in ascending order. We will reserve R to denote the
special instance vector (R1, ..., Rt). An instance vector, in general, gives the interval sets that
participate in a join.

A vector rV is said to be a data vector in V if

rV [i] ∈ Ri

for each i ∈ V . Note that a data vector differs from an instance vector in that, each component of
the former is a rectangle while each component of the latter is a set of rectangles.

We use GV to represent the subgraph of G induced by the vertices in V . Given an instance
vector RV , define

J(GV ,RV ) =
{
rV ∈ ×(RV )

∣∣ rV [i] ∩ rV [j] 6= ∅ for any distinct i, j ∈ V adjacent in GV
}
.

Note that J(GV ,RV ) is the result of the intersection join defined by GV on the interval sets
{RV [i] | i ∈ V }. In particular, J(G,R) is the result of the (full) intersection join on R1, ..., Rt and
G.

Next, we impose two total orders on ×(RV ), in a way consistent with the total orders defined in
Section 5.1 on ×(R). Take any distinct elements rV , r

′
V from ×(RV ). Let i be the smallest integer

in V such that rV [i] 6= r′V [i]. Then, we say:

• rV is left-smaller (or left-larger) than r′V if the left endpoint of rV [i] is smaller (or larger)
than that of r′V [i];

• rV is right-smaller (or right-larger) than r′V if the right endpoint of rV [i] is smaller (or larger)
than that of r′V [i];

A vector qV is said to be a constraint vector in V if qV [i] is a pair

(qV [i].a, qV [i].b)

Define

J(GV ,RV , qV ) =
{
rV ∈ J(GV ,RV )

∣∣ for all i ∈ V
rV [i] ∩ (−∞, q[i].a] 6= ∅ and rV [i] ∩ [q[i].b,∞) 6= ∅

}
Given a constraint vector qV , a min-IJ query (or a max-IJ query) on RV under GV returns the
left-smallest (right-largest) element in J(GV ,RV , qV ).

Finally, it is worth pointing out that, all the above definitions apply to t = 1 as well.

19



6.2 The Endpoint Property

Let q be a constraint vector. Set:

a =
t

max
i=1

q[i].a (2)

b =
t

min
i=1

q[i].b (3)

Consider an arbitrary data vector r = (r1, ..., rt) in J(G,R, q). Define:

t(r) = r1 ∪ ... ∪ rt. (4)

Since G is connected, t(r) must be a consecutive interval. Specifically, if x (or y, resp.) is the
smallest (or largest, resp.) left (or right, resp.) endpoint of r1, ..., rt, then t(r) = [x, y]. We must
have:

Lemma 13 (Endpoint Property). If b ≤ a, then t(r) must have a non-empty intersection with
[b, a]. Otherwise, t(r) must contain both a and b.

Proof. We will prove that t(r) must intersect with both of (−∞, a] and [b,∞). Then, the lemma
will follow.

Assume that t(r) is disjoint with (−∞, a], that is, t(r) is entirely to the right of a. Suppose
that a = q[i].a, for some i ∈ [1, d]. Thus, t(r) is disjoint with (−∞, q[i].a]. This contradicts the
fact that at least one of r1, ..., rt must intersect with (−∞, q[i].a].

A symmetric argument shows that t(r) must also intersect with [b,∞).

6.3 Structure Overview

Given (R1, ..., Rt) and G, we build an IJ-heap using a recursive approach, which works by induction
on t.

Base: t = 1. Recall that the definition of min-/max-IJ queries have been extended to t = 1 in
Section 6.1. In this case, only one interval set R1 exists. Given a pair of real values (a, b), a min-
(max-, resp.) IJ query returns the interval r with the smallest left (or largest right, resp.) endpoint,
among all the intervals of R1 that intersect with both (−∞, a] and [b,∞).

The query can be regarded as a 2D “range min” query described in Section 2.4. For this purpose,
convert r into a 2D rectangle r× r. Clearly, r intersects with both (−∞, a] and [b,∞) if and only if
r× r intersects with the 2D rectangle (−∞, a]× [b,∞). Thus, the structure of Lemma 7 adequately
serves our purposes.

Inductive: t ≥ 2. Assume that we already know how to obtain an IJ-heap when G has at most
t− 1 vertices. Next, we will design an IJ-heap for any G with t vertices.

Build an interval tree T on R1 ∪ ... ∪Rt. Denote by S the set of endpoints of all the intervals in
R1 ∪ ... ∪Rt. Note that S is also the set of keys stored in the leaves of T .

Consider a min-IJ query with a constraint vector q. Define Π1 (or Π2) be the path in T from
the root to the leaf storing the successor of a (or predecessor of b) in S, where a and b are given in
(2) and (3), respectively. Next, we introduce a taxonomy of the tuples in J(G,R, q). The taxonomy
will naturally lead to our strategy of answering the query.

We say that a data vector r = (r1, ..., rt) hinges on a node u in T if

• at least one of r1, ..., rt belongs to stab(u) (i.e., the stabbing set of u; see Section 2.1);

20



• none of r1, ..., rt belongs to the stabbing set of any proper ancestor of u.

As each interval appears in exactly one stabbing set, r must hinge on exactly one node. If r hinges
on u, then the interval t(r) as defined in (4) must be covered by σ(u) (i.e., the slab of u; see
Section 2.1).

By the endpoint property in Lemma 13, a data vector r ∈ J(G,R, q) must belong to one of the
following categories:

• Category 1: r hinges on a node on Π1 or Π2.

• Category 2: (Applicable only if b ≤ a) r hinges on a node u whose slab σ(u) is covered by
[b, a].

We will find the left-smallest data vectors from Categories 1 and 2, respectively. Then, the final
answer to the min-IJ query is the left-smaller one between the two fetched data vectors.

In Section 6.4, we will describe a secondary structure associated with u, which is crucial to
retrieving the data vectors of Categories 1 and 2. The algorithms for retrieving those categories will
be presented in Section 6.5.

6.4 The Combination Structure

To motivate the problem to be tackled in this subsection, let us fix a node u in the interval tree T
and consider any data vector r = (r1, ..., rt) that hinges on u. By definition, there must be at least
one integer i ∈ [1, t] such that ri appears in stab(u). Consider any other integer j ∈ [1, t] that is
different from i. Where can rj appear in the interval tree T ? There are three possibilities: in the
stabbing set of (i) u itself, (ii) a node in the left subtree of u, or (iii) a node in the right subtree of u.

We can divide all the data vectors hinging on u into disjoint “groups” as follows. For each
i ∈ [1, t], the ri component of such a data vector (r1, ..., rt) can independently take any of the
aforementioned three possibilities, which gives 3t “possibility combinations”. Imagine placing two
data vectors in the same group if their possibility combinations are identical. At first glance, this
yields 3t groups, but 2t groups must be empty and, hence, useless. Specifically, a group is useless if
there does not exist any i ∈ [1, t] such that ri takes the possibility of appearing in stab(u). In a
useless group, each ri has only two possibilities; hence, the number of useless groups is 2t. We thus
conclude that the number of useful groups is 3t − 2t, which is a constant.

Recall that our goal in Section 6.3 is to identify the left-smallest data vector in J(G,R, q), and
every data vector in J(G,R, q) hinges on a node u of Category 1 or 2. Suppose that, for every u,
we can fetch the left-smallest data vector of J(G,R, q) in every useful group of u. Then, the overall
left-smallest data vector in J(G,R, q) is simply the left-smallest from all the data vectors fetched
earlier. The challenge is to design a secondary structure for every u that allows fast retrieval of the
aforementioned data vector from each of its useful groups. The structure must support efficient
updates as well.

Next, we formalize the above strategy. Fix an arbitrary internal u in T . For each i ∈ [1, t],
define:

• stab<i (u): the set of intervals from Ri in the stabbing sets of the nodes in the left subtree of u;

• stab=
i (u): the set of intervals from Ri in the stabbing set of u;

• stab>i (u): the set of intervals from Ri in the stabbing sets of the nodes in the right subtree of
u.

21



We define a combination of u — denoted as C — as the cartesian product

stab?
1(u)× stab?

2(u)× ...× stab?
t (u)

where each of the t question marks “?” can independently take “<”, “=”, or “>”, subject to
the constraint that at least one of those symbols must take “=”. The number of combinations is
3t − 2t = O(1).

Phrased differently, a combination C of u is determined by three disjoint sets V <, V =, and V >,
whose union equals the universe U = {1, ..., t}. Construct a vector RC where, for each i ∈ U , RC[i]
equals

• stab<i (u) if i ∈ V <

• stab=
i (u) if i ∈ V =

• stab>i (u) if i ∈ V >.

Thus, the combination is simply ×(RC). Remember that |V =| ≥ 1.
The rest of the subsection serves as a proof of:

Lemma 14. For each combination C of u, we build a structure of Õ(|Tu|) space to meet both
requirements below:

• Any min-/max-IJ query on RC under the topology G can be answered in Õ(1) time. Specifically,
for any constraint vector q, we can return in Õ(1) time the left-smallest tuple in J(G,RC, q).

• Given an insertion/deletion in RC[i] for any i ∈ [1, t], we can update the structure in Õ(1)
amortized time.

We refer to the structure of the above lemma as the combination structure of C.

Structure. Does G have an edge between a vertex i ∈ V < and a vertex j ∈ V >? If so, we answer
any min-IJ query on RC under G by returning nothing at all. To see why, notice that no intervals
in stab<i (u) can intersect with any intervals in stab>j (u). Hence, J(G,RC) = ∅; and accordingly,

J(G,RC, q) ⊆ J(G,RC) = ∅ regardless of q.
Next, we focus on the situation where G has no edges between V < and V >. Consider the

subgraph G<> of G that is induced by the vertices in U \ V =; in other words, G<> is obtained by
removing the vertices in V = from G.

Compute the connected components (CC) of G<>. Every CC must be a subset of either V < or
V >. Let h1 be the number of CCs that are subsets of V <; and if h1 > 0, denote the CCs as

V <
1 , ..., V

<
h1

;

note that their union is V <. Likewise, let h2 be the number of CCs that are subsets of V >; and if
h2 > 0, represent them as

V >
1 , ..., V

>
h2

;

note that their union is V >.
The combination structure of C has three parts:

22



• (if h1 > 0) for each j ∈ [1, h1], build an IJ-heap on the instance vector RV <
j

under the topology

GV <
j

, where

RV <
j

= the projection of RC in V <
j .

Recall that (as defined in Section 6.1) GV <
j

is the subgraph of G induced by V <
j . Since

|V <
j | ≤ t− 1, we already know how to build the IJ-heap on GV <

j
by the inductive assumption

in Section 6.3.

• (if h2 > 0) for each j ∈ [1, h2], build an IJ-heap on the instance vector RV >
j

under the topology

GV >
j

, where for each i ∈ V >
j :

RV >
j

= the projection of RC in V >
j .

• for each i ∈ V =, build a structure on stab=
i (u) to support:

Given real values λ1, λ2 satisfying λ1 ≤ key(u) ≤ λ2 and arbitrary real values a, b, this
operation finds the interval with the smallest left endpoint, among all the intervals r
in stab=

i (u) such that r (i) covers the entire interval [λ1, λ2], and (ii) r intersects with
(−∞, a] and [b,∞).

Note that this operation can be supported by a 4D range-min structure of Lemma 7. To see
why, let us convert r = [x, y] to a 4D rectangle [x,∞)× (−∞, y]× r× r. For any λ1, λ2, a, and
b, we know: r satisfies the two conditions aforementioned, if and only if [x,∞)×(−∞, y]×r×r
intersects with the 4D rectangle (−∞, λ1]× [λ2,∞)× (−∞, a]× [b,∞).

By the inductive assumption in Section 6.3, the combination structure uses Õ(|Tu|) space overall,
and can be updated in Õ(1) amortized time per insertion/deletion in RC[i], for any i ∈ [1, t].

Query. We consider only min-IJ queries on RC under G because max-IJ queries are symmetric.
Our algorithm answers a min-IJ query with constraint vector q in five steps.

Step 1: Skip this step if h1 = 0. Otherwise, for each j ∈ [1, h1], construct a constraint vector:

qV <
j

= the projection of q in V <
j .

Then, perform a max-IJ query with this vector on RV <
j

under GV <
j

(an IJ-heap has been built for

this purpose). Denote the data vector retrieved as rmax
V <
j

; if the vector is null, we terminate and

return nothing.
Construct a data vector rmax

V < by setting for each i ∈ V <

rmax
V < [i] = rmax

V <
j

[i]

where j is the only integer in [1, h1] such that i ∈ V <
j .

Step 2: Skip this step if h2 = 0. Otherwise, for each j ∈ [1, h2], we will issue a min-IJ query
recursively on the subjoin defined by GV >

j
. Construct a constraint vector:

qV >
j

= the projection of q in V >
j .

23



Perform a min-IJ query with this vector on RV >
j

under GV >
j

. Denote the data vector retrieved as

rmin
V >
j

; if the vector is null, we terminate and return nothing.

Construct a data vector rmin
V > by setting for each i ∈ V >

rmin
V > [i] = rmin

V >
j

[i]

where j is the only integer in [1, h2] such that i ∈ V >
j .

Step 3: For each i ∈ V =, we will retrieve the interval rmin
i with smallest left endpoint, from all

the intervals in stab=
i (u) that (i) intersect with (−∞, q[i].a] and [q[i].b,∞), and (ii) contain a range

[λ1, λ2], where λ1 and λ2 are decided in the following manner.
Denote by N<(i) the set of vertices in V < that are adjacent to i in G. If N<(i) is empty, then

set λ1 = key(u). Otherwise, set λ1 to the smallest right endpoint of the intervals in the following
set: {

rmax
V < [i′]

∣∣ i′ ∈ N<(i)
}
. (5)

Conversely, denote by N>(i) the set of vertices in V > that are adjacent to i in G. If N>(i) is
empty, then set λ2 = key(u). Otherwise, set λ2 to the largest left endpoint of the intervals in the
following set: {

rmin
V > [i′]

∣∣ i′ ∈ N>(i)
}
. (6)

Now that λ1, λ2 are ready, we use the 4D range min structure (of the combination structure) to
find rmini . If rmini does not exist, we terminate and return nothing. Otherwise, proceed to the next
step.

Step 4: For each j ∈ [1, h1], we will issue yet another min-IJ query on RV <
j

. First, construct a

constrain vector:

q′
V <
j

= the projection of q on V <
j .

Consider each i ∈ V <
j in turn. Denote by N=(i) the set of vertices in V = that are adjacent to i in G.

If N=(i) = ∅, then the current q′
V <
j

[i] is finalized. Otherwise, we update q′
V <
j

[i].b to the maximum

between q[i].b and λ3, where λ3 is the largest left endpoint of the intervals in the following set:{
rmin
i′

∣∣ i′ ∈ N=(i)
}
. (7)

Now, perform a min-IJ query on RV <
j

under GV <
j

with q′
V <
j

. Denote the data vector retrieved

as rmin
V <
j

; if the vector is null, we terminate and return nothing.

Step 5: Return a data vector ρ where for each i ∈ [1, t]:

• ρ[i] = rmin
V < [i] if i ∈ V <;

• ρ[i] = rmin
i if i ∈ V =;

• ρ[i] = rmin
V > [i] if i ∈ V >.

Each of the above steps finishes in Õ(1) time, by the inductive assumption in Section 6.3. The
overall query time is therefore Õ(1). Deferring the correctness proof of the query algorithm to
Appendix D, we have now established Lemma 14.

24



6.5 Structures for Categories 1 and 2

For every node u in the interval tree T , we build the structure of Lemma 14 on each combination of
u. All these structures occupy Õ(n) space in total.

We now resume our discussion in Section 6.3 and explain how to find the left-smallest data
vector r from Categories 1 and 2.

Category 1. Let u be a node on Π1 or Π2. A data vector that hinges on u must belong to one
combination of u. We issue a min-IJ query with the constraint vector q on all the 3t − 2t = O(1)
combination structures, and find the left-smallest data vector r from the data vectors fetched by
those queries. It is guaranteed that r must be the left-smallest among all the data vectors in
J(G,R, q) that hinge on u. By Lemma 14, this takes Õ(1) time.

As Π1 and Π2 have Õ(1) nodes only, the left-smallest data vector of Category 1 can be found in
Õ(1) time in total.

Category 2. This category applies only if b ≤ a. Any node u that needs to be considered must
be have its slab σ(u) covered by [b, a]. We pre-compute at each node u the “best answer” that u
has to offer. The pre-computed information is organized in such a way that, when a min-IJ query
comes, “the best of the best” answers from the relevant nodes can be retrieved efficiently.

To implement the above idea, let us define the local minimum of u, as the left-smallest among
all data vectors r = (r1, ..., rt) in J(G,R) that hinge on u. The local minimum must belong to one
of the combinations of u and can be found in Õ(1) time as follows:

• Create a dummy constraint vector q′ where q′[i].a =∞ and q[i].b = −∞ for all i ∈ [1, t].

• Issue a min-IJ query on each of the 3t − 2t combination structures of u using q′.

• Set the local minimum to the left-smallest of all the data vectors fetched by the queries at the
previous step.

We now use a 2D range-min structure of Lemma 7 — denoted as T ′ — to manage the slabs of
all the nodes in T . Specifically, given a node u with slab σ(u) = [x, y], we create a (degenerated)
2D rectangle [x, x]× [y, y], treating the local minimum of u as the rectangle’s “weight”. A weight r
is smaller than another r′ if r is left-smaller than r′. By Lemma 7, T ′ requires only Õ(n) space.

This completes the description of our IJ-heap, whose space consumption is Õ(n) overall. Given
a min-IJ query with constraint vector q (on R under G), we find the left-smallest data vector of
Category 2 as follows. First, compute the values of a and b using (2) and (3). If a < b, ignore this
category. Otherwise, perform a 2D range-min query on T ′ using the rectangle [b,∞) × (−∞, a].
The result of the range-min query is the left-smallest local minimum of the nodes whose slabs
σ(u) = [x, y] are covered by [b, a], and is what we look for in Category 2.

Therefore, we now conclude that a min-IJ query on R under G can be answered in Õ(1) time.

6.6 Update

The update algorithm is fairly straightforward, utilizing the result in Lemma 5.
For any node u in the interval tree T , its secondary structure Γu involves only O(1) combination

structures of Lemma 14. Whenever an interval is insert/deleted in any of stab<(u), stab(u), or
stab>(u), we update the Γu using Lemma 14 in Õ(1) time. This means that all the functions
f1(n), f2(n), f3(n), and f4(n) in Lemma 5 are Õ(1). Thus, Lemma 5 tells us that T can be updated
in Õ(1) amortized time per insertion/deletion in any of R1, ..., Rt.

25



Finally, the cost of updating T ′ can be piggybacked on the cost of updating T . Specifically, for
every node u in T ′ that is affected by an insertion/deletion in T , we re-compute its local minimum
in Õ(1) time in the way described in Section 6.5, and update T ′ accordingly in Õ(1) amortized time.

The overall update time of our IJ-heap is therefore Õ(1) amortized. This completes the proof of
Lemma 11 and, hence, also the proof of Theorem 4.

7 Conclusions

Given (i) t sets of d-dimensional rectangles R1, R2, ..., Rt and (ii) a connected undirected graph
G (called a topology graph) on vertices {1, 2, ..., t}, an intersection join returns all (r1, ..., rt) ∈
R1 × ...×Rt satisfying the condition that ri ∩ rj 6= ∅ for all i, j such that G has an edge between
vertices i and j. The paper investigates the question “when do feasible structures exist for intersection
joins?”, where a feasible structure needs to use Õ(n) space (note: n =

∑t
i=1 |Ri|), supports an

insertion/deletion in Õ(1) amortized time, and permits the join result to be reported with an
Õ(1)-time delay. Subject to the OMv-conjecture, we have answered the question by showing that
a feasible structure exists if and only if t = 2 (binary joins, regardless of d) or d = 1 (1D joins,
regardless of t).

A natural (and promising) direction for future research is to study how to relax the feasibility
requirements to support intersection joins under updates in the scenarios where feasible structures
do not exist, namely, t ≥ 3 and d ≥ 2 (multidimensional multiway joins). An interesting question is:
if the update time has to be Õ(1) amortized, what is the smallest delay (in join result reporting)
achievable? An equally interesting question lies in the other extreme: if the delay has to be Õ(1),
what is the fastest amortized update time possible? Settling these questions would provide helpful
hints towards resolving the ultimate puzzle: what is the precise tradeoff between the amortized
update cost and the delay? We suspect that joins with different topology graphs G may exhibit
various tradeoffs.

Acknowledgements

This work was supported in part by GRF projects 14207820, 16201318, 16201819, and 16205420
from HKRGC.

Appendix

A Optimality of Theorem 1

It suffices to show that Ω(log n) time is needed to handle an update.
We achieve the purpose via a reduction from predecessor search. In that problem, we are given

a set P of real values, and want to answer the following queries efficiently: given an arbitrary real
value q, find its predecessor in P , namely, the largest value in P that is smaller than or equal
to q. Under the comparison model, this query requires Ω(log n) time to solve, regardless of the
preprocessing on P .

Suppose that for intersection joins with d = 1 and t = 2, we are given a structure that ensures
constant delay enumeration, and can be updated in U(n) time. Then, we can deploy the structure
to answer predecessor search in O(U(n)) time as explained below.

26



In preprocessing, convert P into an interval set

R1 = {[pre(x), x] | x ∈ P}

where pre(x) is the value in P immediately preceding x (if x is the minimum in P , then pre(x) = −∞).
Create an intersection join structure T on R1 and an empty R2. Given a predecessor query q on
P , insert a degenerated interval [q, q] into R2, and then use T to enumerate the join result. Note
that the join result contains only one tuple [pre(q), suc(q)] if q /∈ P , where suc(q) is the value in P
immediately succeeding q (or ∞ if no such value exists). If q ∈ P , then the join result contains 2
tuples: [pre(q), q] and [q, suc(q)]. In either case, the predecessor of q can be found in O(1) time.

The query time is O(U(n)), which implies U(n) = Ω(log n).

B “Traditional” Incremental View Maintenance

As mentioned in Section 1.2, a more conventional form of maintenance aims to report the delta
changes in the join result. In our intersection-join context where R1, ..., Rt are the input sets of
intervals, the objectives are two fold:

1. When an interval r is inserted into Ri (for some i ∈ [1, t]), we must enumerate all the new
result tuples of the intersection join (i.e., those involving r) with an Õ(1) delay;

2. When an interval r is deleted Ri (for some i ∈ [1, t]), we must enumerate all the disappearing
result tuples of the intersection join (i.e., those involving r) with an Õ(1) delay.

The feasible structures formulated in this paper can be combined with a leave-one-out approach
to achieve the above objectives. Specifically, we maintain t feasible structures, such that the i-th
(i ∈ [1, t]) one is built on:

R1, ..., Ri−1, ∅, Ri+1, ..., Rt.

Note that the i-th input set is deliberately set to empty. We will refer to the i-th feasible structure
as “structure i”.

To insert/delete an interval r ∈ Ri, we first insert/delete r in structures 1, ..., i− 1, i+ 1, ..., t.
To fulfill objective (1)/(2), insert r into structure i, thereby turning the i-th input set of this
structure from ∅ to {r}. Now, use structure i to enumerate its “join result”, namely, the result of
the intersection join on

R1, ..., Ri−1, {r}, Ri+1, ..., Rt.

The result is exactly what is needed to achieve objective (1)/(2). After this is done, remove r from
the i-th feasible structure.

Apart from enumerating the delta result changes, the update cost is Õ(1). The space consumption
is Õ(n) where n =

∑
i |Ri|.

C Proof of Proposition 2

C.1 Assumptions Never Violated

This is obvious about C1 and C2 (in particular, C2 is ensured by the if-condition at Line 5). Next,
we focus on C3.

First observe that, because of Line 6, we definitely the following clean return property:

27



When IJ(λ, ...) finishes, Rλ+1, ..., Rt have been restored to their original content (i.e., same
as before the query started).

Next we prove that C3 always holds by induction on λ. In general, when the IJ algorithm is
invoked with parameters (λ, ...), we say that a level-λ call has been made.

Base case: λ = 0. C3 obviously holds for the first recursive call made by IJ(0, ∅) (at Line 8).
Consider two consecutive recursive calls made by IJ(0, ∅): let the first be IJ(1, {ρ1}), and the

second be IJ(1, {ρ′1}). R2, ..., Rt are the same for both calls, due to the clean return property.
Regarding R1, the difference is that, for the second call, R1 contains one less interval: ρ1 (which
has been deleted at Line 9 after the first call finished). Assuming that C3 holds for the first call,
next we show that it must also hold for the second.

Suppose that this is not true. Thus, for the second call, there exists an interval ρ′′1 ∈ R1 such
that ρ′′1 produces a result tuple and has a smaller left endpoint than ρ′1. But this contradicts how ρ′1
was obtained at Line 4 right before the second call.

Inductive case λ = i+ 1. Assume that C3 holds for all the level-λ calls with λ ≤ i. We will
prove that the same is true for λ = i+ 1.

For this purpose, fix an arbitrary level-i call IJ(i, {ρ1, ..., ρi}). It suffices to show that all the
calls it makes at Line 8 have C3 fulfilled.

By the inductive assumption, at the beginning of IJ(i, {ρ1, ..., ρi}), ρ1, ..., ρi produce the minimum
result tuple from the current R1, ..., Rt. Thus, C3 holds for the first call made by IJ(i, {ρ1, ..., ρi}).

Consider two consecutive recursive calls made by IJ(i, {ρ1, ..., ρi}): let the first be IJ(i +
1, {ρ1, ..., ρi, ρi+1}), and the second be IJ(i + 1, {ρ1, ..., ρi, ρ′i+1}). Ri+2, ..., Rt are the same for
both calls, due to the clean return property. R1, ..., Ri are also the same because they are not
modified within IJ(i, {ρ1, ..., ρi}). Regarding Ri, the difference is that, for the second call, Ri
contains one less interval: ρi+1 (which has been deleted at Line 9 after the first call finished).
Assuming that C3 holds for the first call, next we show that it must also hold for the second.

Suppose that this is not true. Thus, for the second call, there exists an interval ρ′′i+1 ∈ Ri+1

such that ρ′′i+1 produces a result tuple with ρ1, ..., ρi, and has a smaller left endpoint than ρ′i+1. But
this contradicts how ρ′i+1 was obtained at Line 4 right before the second call.

C.2 Correctness of the Output

That no result tuple is reported twice follows from the fact that the tuple (ρ1, ..., ρt) output at Line
1 becomes monotonically left-larger (see the definition of “left-larger” in Section 5.1).

To prove that no result tuple is missed, suppose that the algorithm fails to output some result
tuple (r1, ..., rt). Let i ≥ 0 be the largest integer such that a call to IJ was made with the parameters
(i, {r1, ..., ri}). Hence, i < t.

By the clean return property stated in the proof of Proposition 2, we know that when
IJ(i, {r1, ..., ri}) started, Ri+1, ..., Rt had been fully restored, i.e., no tuples were missing in
Ri+1, ..., Rt. This immediately implies that Line 8 must have made a recursive call IJ(i +
1, {r1, ..., ri, ri+1}), giving a contradiction.

D Correctness Proof of the Query Algorithm in Section 6.4

We will first prove in Section D.1 an important property before establishing the query algorithm’s
correctness in Section D.2.

28



D.1 The Local-Extreme Property

Consider any non-empty V ⊆ U , and any instance vector RV in V . Given a constraint vector qV in
V , define for each i ∈ V :

Ji(GV ,RV , qV ) =
{
r
∣∣ ∃rV ∈ J(GV ,RV , qV ) s.t. rV [i] = r

}
.

One can regard Ji(GV ,RV , qV ) as the “projection” of J(GV ,RV , qV ) on i.
Let rmin

i (or rmax
i ) be the interval in Ji(GV ,RV , qV ) with the smallest left (or largest right,

resp.) endpoint. We have:

Lemma 15 (Local-Extreme Property). Let ρmin
V and ρmax

V be the left-smallest and right-largest
elements of J(GV ,RV , qV ), respectively. Then, for every i ∈ V , it must hold that

ρmin
V [i] = rmin

i

ρmax
V [i] = rmax

i .

Proof. We will prove only the part of the lemma about ρmin
V , because a symmetric argument will

then apply to ρmax
V .

Construct a vector rmin
V with rmin

V [i] = rmin
i for every i ∈ V . It suffices to show that rmin

V is in
J(GV ,RV , qV ). Suppose that this is not true. Thus, there exist distinct i, j in V such that (i) GV
has an edge between i and j, (ii) but rmin

i is disjoint with rmin
j . Without loss of generality, assume

that rmin
i is to the left of rmin

j .

By the fact that rmin
i ∈ Ji(GV ,RV , qV ), J(GV ,RV , qV ) has a data vector r′V with r′V [i] = rmin

i .
The fact r′V ∈ J(GV ,RV , qV ) means that r′V [i] intersects with r′V [j]. Thus, r′V [j] must have a
smaller left endpoint than rmin

j , contradicting the definition of rmin
j .

The lemma suggests a direction for answering a min-IJ query. We can “detach” the query by
looking at the “projection” Ji(GV ,RV , qV ) on each i ∈ V individually. Once we have found rmin

i

for each i, putting them together gives the answer to the min-IJ query. A symmetric strategy works
for max-IJ queries.

D.2 Correctness Proof

We are now ready to establish the correctness of the query algorithm in Section 6.4. Remember
that, given a constraint vector q, a min-IJ query finds the left-smallest element in J(G,RC, q). We
will denote that element as ρmin ; note that when J(G,RC, q) is empty, ρmin is null. We need to
prove that (i) if ρmin is null, our algorithm returns empty, and (ii) otherwise, the data vector ρ we
return must be ρmin .

In this proof, given an interval r, we will use r.` to denote its left endpoint, and r.a to denote
its right endpoint. Note that both r.` and r.a are real values. Also, remember that u is the node
whose combination structure is being searched.

Proposition 6. J(G,RC, q) = ∅ when either of the following happens:

• rmax
V <
j

(computed in Step 1) is null for any j ∈ [1, h1];

• rmin
V >
j

(computed in Step 2) is null for any j ∈ [1, h2].

29



Proof. We will prove only the first bullet, because a similar argument works for the second. Note that
rmax
V <
j

being null implies J(GV <
j
,RV <

j
, qV <

j
) = ∅. If J(G,RC, q) is not empty, let ρ be an arbitrary

data vector therein. It is easy to verify that the projection of ρ in V <
j is in J(GV <

j
,RV <

j
, qV <

j
),

contradicting J(GV <
j
,RV <

j
, qV <

j
) = ∅.

Proposition 7. If J(G,RC, q) is not empty, then for every i ∈ V >, it must hold that

ρmin [i] = rmin
V > [i].

Proof. Suppose that this is not true. Construct a different data vector ρ′ as follows:

• for every i ∈ V < ∪ V =, set ρ′[i] = ρmin [i];

• for every i ∈ V >, set ρ′[i] = rmin
V > [i].

For any j ∈ [1, h2], the projection of ρmin in V >
j is in J(GV >

j
,RV >

j
, qV >

j
). By applying the

local-extreme property of Lemma 15 on GV >
j

, we know rmin
V > [i].`≤ ρmin [i].` for every i ∈ V >.

Hence, rmin
V > [i].`≤ ρmin [i].` for every i ∈ V >. This suggests that ρ′ must be left-smaller than ρmin .

Next we will show that ρ′ is in J(G,RC, q), thus contradicting the role of ρmin . It suffices
to prove: for any i ∈ V > and i′ ∈ V = such that G has an edge between i, i′, we must have:
ρ′[i] intersects with ρ′[i′]. Clearly, ρmin [i] intersects with ρmin [i′]. As ρmin [i′] covers key(u) but
ρmin [i].`> key(u), we know that ρmin [i′] must cover ρmin [i].` and, thus, also rmin

V > [i].` (using the
fact key(u) < rmin

V > [i].`≤ ρmin [i].`). We therefore conclude that ρ′[i] intersects with ρ′[i′].

Proposition 8. If rmin
i (computed in Step 3) is null for any i ∈ V =, then J(G,RC, q) = ∅.

Proof. Suppose that J(G,RC, q) 6= ∅; thus, ρmin is not null. By definition, ρmin [i] intersects with
(−∞, q[i].a] and [q[i].b,∞). We will prove that ρmin [i] contains the interval [λ1, λ2] obtained in
Step 3 for i, thus contradicting the fact that rmin

i is null.
By definition, λ1 ≤ key(u) ≤ λ2. Hence, it suffices to prove that ρmin [i] contains both [λ1, key(u)]

and [key(u), λ2]. We will prove this only for [λ1, key(u)] because a symmetric argument proves the
same for [key(u), λ2].

If N<(i) is empty, then λ1 = key(u), in which case ρmin [i] obviously covers [λ1, key(u)]. Next,
we focus on the scenario where N<(i) is not empty.

For every i′ ∈ N<(i), ρmin [i′] lies to the left of key(u). Therefore, ρmin [i] must cover ρmin [i′].a.
This indicates that ρmin [i] must cover the smallest right endpoint λ′1 of the intervals in the following
set: {

ρmin [i′]
∣∣ i′ ∈ N<(i)

}
. (8)

It remains to show that λ′1 ≤ λ1. By comparing (8) to (5), one can see that we only need to show
that ρmin [i′].a≤ rmax

V < [i′].a, for each i′ ∈ N<(i).
Fix an arbitrary i′ ∈ N<(i). Identify the only j ∈ [1, h1] satisfying i′ ∈ V <

j . Let ρmin
V <
j

be the

projection of ρmin in V <
j . Since ρmin

V <
j
∈ J(GV <

j
,RV <

j
, qV <

j
), applying the local-extreme property in

Lemma 15 on GV <
j

shows that ρmin
V <
j

[i′].a≤ rmax
V <
j

[i′].a= rmax
V < [i′].a.

Proposition 9. If J(G,RC, q) is not empty, then for every i ∈ V =, it must hold that

ρmin [i] = rmin
i .

30



Proof. Suppose that this is not true. Fix an i ∈ V = such that ρmin [i] 6= rmin
i . In Proposition 8, we

have proved that ρmin [i] contains the interval [λ1, λ2] obtained in Step 3 for i. Furthermore, ρmin [i]
needs to intersect with (−∞, q[i].a] and [q[i].b,∞). By how rmin

i is computed, it must hold that
rmin
i .`< ρmin [i].`.

Construct a data vector ρ′ as follows:

• for every i′ 6= i, set ρ′[i′] = ρmin [i];

• set ρ′[i] = rmin
i .

We will prove that ρ′ is in J(G,RC, q) which, given the fact that ρ′ is left-smaller than ρmin ,
contradicts the role of ρmin .

It suffices to show that:

• for any i′ ∈ V < that is adjacent to i in G, ρ′[i′] intersects with ρ′[i];

• for any i′ ∈ V > that is adjacent to i in G, ρ′[i′] intersects with ρ′[i].

To prove the first bullet, first note that ρmin [i′] intersects with ρmin [i]. Since ρmin [i] contains
key(u) but ρmin [i′].a< key(u), we know ρmin [i].`≤ ρmin [i′].a. This leads to rmin

i .`≤ ρmin [i′].a,
indicating that rmin

i intersects with ρmin [i′](recall that rmin
i covers key(u)). We therefore conclude

that ρ′[i] intersects with ρ′[i′].
To prove the second bullet, let j be the only integer in V > such that i′ ∈ V >

j . Consider the rmin
V >
j

obtained in Step 2. Proposition 7 guarantees that ρ′[i′] = ρmin[i′] = rmin
V >
j

[i′]. Since rmin
V >
j

[i′] belongs

to the set in (6), the value λ2 obtained at Step 3 for i must satisfy

λ2 ≥ rmin
V >
j

[i′].`> key(u).

By how rmin
i is computed, rmin

i must cover key(u) and λ2. Hence, rmin
i covers rmin

V >
j

[i′].` as well,

implying that rmin
i intersects with rmin

V >
j

[i′]. We thus conclude that ρ′[i] intersects with ρ′[i′].

Proposition 10. If rmin
V <
j

(computed in Step 4) is null for any j ∈ [1, h1], then J(G,RC, q) = ∅.

Proof. That rmin
V <
j

is null implies J(GV <
j
,RV <

j
, q′

V <
j

) = ∅. Suppose that J(G,RC, q) 6= ∅; thus, ρmin

is not null. Let ρmin
V <
j

the projection of ρmin in V <
j . We will show that ρmin

V <
j
∈ J(GV <

j
,RV <

j
, q′

V <
j

),

thus contradicting J(GV <
j
,RV <

j
, q′

V <
j

) = ∅.
It suffices to show that, for each i ∈ V <

j , ρmin
V <
j

[i] intersects with [q′
V <
j
.b,∞). This is obvious if

N=(i) = ∅ because (i) in this case q′
V <
j

is the projection of q in V <
j , and (ii) by definition ρmin [i]

must intersect with [q[i].b,∞).
Consider now N=(i) 6= ∅. For each i′ ∈ N=(i), we know from Proposition 9 that ρmin [i′] =

rmin
i′ . As ρmin [i].a< key(u) but ρmin [i′] covers key(u), we know that ρmin [i] must intersect with

[ρmin [i′].`,∞). As the above holds for every i′ ∈ N=(i), we assert that ρmin [i] must intersect
with [λ3,∞) (recall how λ3 is derived from (7)). Therefore, ρmin

V <
j

[i] must intersect with [q′
V <
j
.b,∞),

meaning that ρmin
V <
j

is in J(GV <
j
,RV <

j
, q′

V <
j

).

31



Proposition 11. If J(G,RC, q) is not empty, then for every i ∈ V <, it must hold that

ρmin [i] = rmin
V < [i].

Proof. For each j ∈ [1, h1], We have proved in Proposition 10 that the projection ρmin
V <
j

of ρmin in

V <
j must belong to J(GV <

j
,RV <

j
, q′

V <
j

). The local-extreme property of Lemma 15 tells us that that

rmin
V < [i].`≤ ρmin

V <
j

[i].`

holds for every i ∈ V <
j .

Suppose that the proposition does not hold. Construct a data vector ρ′ as follows:

• for every i ∈ V = ∪ V >, set ρ′[i] = ρmin [i];

• for every i ∈ V <, set ρ′[i] = rmin
V < [i].

Thus, ρ′ is left-smaller than ρmin . Next, we will show that ρ′ is in J(G,RC, q), thus contradicting
the role of ρmin .

It suffices to show that ρ′[i] intersects with ρ′[i′], for any i ∈ V < and i′ ∈ V =(i). Fix j to be the
unique integer in [1, h1] such that i ∈ V <

j . Since ρ′[i′] is in the set of (7), the λ3 computed in Step

4 for i is at least ρ′[i′].`. By how rmin
V <
j

is computed, rmin
V <
j

[i] must intersect with [λ3,∞) and, hence,

must also intersect with ρ′[i′] (here, we used the fact that ρ′[i′] covers key(u)). We thus conclude
that ρ′[i] = rmin

V < [i] = rmin
V <
j

[i] intersects with ρ′[i′].

The correctness of our algorithm follows from all the above propositions, and the fact that the
vector ρ constructed in Step 5 is in J(G,RC , q), implying that J(G,RC , q) is not empty.

References

[1] Pankaj K. Agarwal, Lars Arge, Haim Kaplan, Eyal Molad, Robert Endre Tarjan, and Ke Yi.
An optimal dynamic data structure for stabbing-semigroup queries. SIAM J. of Comp.,
41(1):104–127, 2012.

[2] Lars Arge and Jeffrey Scott Vitter. Optimal external memory interval management. SIAM J.
of Comp., 32(6):1488–1508, 2003.

[3] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering conjunctive queries
under updates. In PODS, pages 303–318, 2017.

[4] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering FO+MOD queries
under updates on bounded degree databases. In ICDT, pages 8:1–8:18, 2017.

[5] Thomas Brinkhoff, Hans-Peter Kriegel, and Bernhard Seeger. Efficient processing of spatial
joins using R-trees. In SIGMOD, pages 237–246, 1993.

[6] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. Springer-Verlag, 3rd edition, 2008.

[7] Bipin C. Desai. Performance of a composite attribute and join index. IEEE Trans. Software
Eng., 15(2):142–152, 1989.

32



[8] David J. DeWitt, Jeffrey F. Naughton, and Donovan A. Schneider. An evaluation of non-equijoin
algorithms. In VLDB, pages 443–452, 1991.

[9] Anton Dignös, Michael H. Böhlen, and Johann Gamper. Overlap interval partition join. In
SIGMOD, pages 1459–1470, 2014.

[10] Herbert Edelsbrunner. Dynamic data structures for orthogonal intersection queries. Report
F59, Inst. Informationsverarb., Tech. Univ. Graz, 1980.

[11] Jost Enderle, Matthias Hampel, and Thomas Seidl. Joining interval data in relational databases.
In SIGMOD, pages 683–694, 2004.

[12] Pankaj Goyal, Hon Fung Li, Eric Regener, and Fereidoon Sadri. Scheduling of page fetches in
join operations using Bc-trees. In ICDE, pages 304–310, 1988.

[13] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak.
Unifying and strengthening hardness for dynamic problems via the online matrix-vector
multiplication conjecture. In STOC, pages 21–30, 2015.

[14] Muhammad Idris, Mart́ın Ugarte, and Stijn Vansummeren. The dynamic yannakakis algorithm:
Compact and efficient query processing under updates. In SIGMOD, pages 1259–1274. ACM,
2017.

[15] Muhammad Idris, Mart́ın Ugarte, Stijn Vansummeren, Hannes Voigt, and Wolfgang Lehner.
Conjunctive queries with inequalities under updates. PVLDB, 11(7):733–745, 2018.

[16] Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Maintaining
triangle queries under updates. TODS, 45(3):11:1–11:46, 2020.

[17] Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Trade-offs in static and dynamic
evaluation of hierarchical queries. In Dan Suciu, Yufei Tao, and Zhewei Wei, editors, PODS,
pages 375–392, 2020.

[18] Zuhair Khayyat, William Lucia, Meghna Singh, Mourad Ouzzani, Paolo Papotti, Jorge-Arnulfo
Quiané-Ruiz, Nan Tang, and Panos Kalnis. Fast and scalable inequality joins. VLDB J.,
26(1):125–150, 2017.

[19] Christoph Koch. Incremental query evaluation in a ring of databases. In PODS, pages 87–98,
2010.

[20] Christoph Koch, Daniel Lupei, and Val Tannen. Incremental view maintenance for collection
programming. In PODS, pages 75–90, 2016.

[21] Katja Losemann and Wim Martens. MSO queries on trees: enumerating answers under updates.
In Joint Meeting of the Annual Conference on Computer Science Logic (CSL) and the Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS, pages 67:1–67:10,
2014.

[22] Nikos Mamoulis and Dimitris Papadias. Multiway spatial joins. TODS, 26(4):424–475, 2001.

[23] Edward M. McCreight. Efficient algorithms for enumerating intersecting intervals and rectangles.
Report CSL-80-9, Xerox Palo Alto Res. Center, 1980.

33



[24] Jurg Nievergelt and Edward M. Reingold. Binary search trees of bounded balance. SIAM J. of
Comp., 2(1):33–43, 1973.

[25] Dimitris Papadias, Nikos Mamoulis, and Yannis Theodoridis. Processing and optimization of
multiway spatial joins using r-trees. In PODS, pages 44–55, 1999.

[26] Jignesh M. Patel and David J. DeWitt. Partition based spatial-merge join. In SIGMOD, pages
259–270, 1996.

[27] Danila Piatov, Sven Helmer, and Anton Dignös. An interval join optimized for modern hardware.
In ICDE, pages 1098–1109, 2016.

[28] Farhan Tauheed, Thomas Heinis, and Anastasia Ailamaki. THERMAL-JOIN: A scalable
spatial join for dynamic workloads. In SIGMOD, pages 939–950. ACM, 2015.

[29] Dan E. Willard. An algorithm for handling many relational calculus queries efficiently. JCSS,
65(2):295–331, 2002.

[30] Mihalis Yannakakis. Algorithms for acyclic database schemes. In Very Large Data Bases, 7th
International Conference, September 9-11, 1981, Cannes, France, Proceedings, pages 82–94,
1981.

[31] Thomas Zeume and Thomas Schwentick. Dynamic conjunctive queries. JCSS, 88:3–26, 2017.

[32] Rui Zhang, Jianzhong Qi, Dan Lin, Wei Wang, and Raymond Chi-Wing Wong. A highly
optimized algorithm for continuous intersection join queries over moving objects. VLDB J.,
21(4):561–586, 2012.

34


