
Range Updates and Range Sum Queries on1

Multidimensional Points with Monoid Weights2

Shangqi Lu #3

Chinese University of Hong Kong, New Territories, Hong Kong4

Yufei Tao #5

Chinese University of Hong Kong, New Territories, Hong Kong6

Abstract7

Let P be a set of n points in Rd where each point p ∈ P carries a weight drawn from a commutative8

monoid (M, +, 0). Given a d-rectangle rupd (i.e., an orthogonal rectangle in Rd) and a value ∆ ∈ M,9

a range update adds ∆ to the weight of every point p ∈ P ∩ rupd; given a d-rectangle rqry, a range10

sum query returns the total weight of the points in P ∩ rqry. The goal is to store P in a structure to11

support updates and queries with attractive performance guarantees. We describe a structure of Õ(n)12

space that handles an update in Õ(Tupd) time and a query in Õ(Tqry) time for arbitrary functions13

Tupd(n) and Tqry(n) satisfying Tupd · Tqry = n. The result holds for any fixed dimensionality d ≥ 2.14

Our query-update tradeoff is tight up to a polylog factor subject to the OMv-conjecture.15

2012 ACM Subject Classification Theory of computation → Data structures design and analysis16

Keywords and phrases Range Updates, Range Sum Queries, Data Structures, Lower Bounds17

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2022.1418

Funding This research was supported in part by GRF Projects 14207820 and 14203421 from HKRGC.19

1 Introduction20

This paper studies range sum queries on multidimensional points where the point weights21

are drawn from a commutative monoid and can be modified by range updates. Specifically,22

let P be a set of n points in Rd for some constant d ≥ 1. Denote by (M, +, 0) an arbitrary23

commutative monoid1 where each element in M is called a weight. Each point p ∈ P carries24

a weight w(p) ∈M; initially, the weights are 0 for all the points. We want to store P in a25

data structure to support two operations with attractive performance guarantees:26

Range (sum) query: given a d-rectangle2 rqry, the query returns the total weight of all27

the points p ∈ P ∩ rqry (where sum is defined using the monoid’s operator +);28

Range update: given a d-rectangle rupd and a weight ∆ ∈M, the update adds ∆ to the29

weight of every point p ∈ P ∩ rupd.30

We will refer to the above as the “range sum with range updates” (RSRU) problem. Our31

complexity analysis assumes the standard unit-cost RAM model and holds on all commutative32

monoids (M, +, 0) satisfying: (i) each weight w ∈ M can be stored in one word, and (ii)33

w1 + w2 can be computed in constant time for any w1, w2 ∈M.34

1 A commutative monoid (M, +, 0) is defined by a set M, an operator +: M × M → M obeying
associativity and commutativity, and an identity element 0 ∈ M satisfying 0 + w = w for every w ∈ M.

2 Defined as [a1, b1] × ... × [ad, bd].

© Shangqi Lu and Yufei Tao;
licensed under Creative Commons License CC-BY 4.0

33rd International Symposium on Algorithms and Computation (ISAAC 2022).
Editors: Sang Won Bae and Heejin Park; Article No. 14; pp. 14:1–14:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sqlu@cse.cuhk.edu.hk
mailto:taoyf@cse.cuhk.edu.hk
https://doi.org/10.4230/LIPIcs.ISAAC.2022.14
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Range Updates and Range Sum Queries on Multidimensional Points with Monoid Weights

1.1 Previous Results35

Supporting range queries and range updates has important implications in geographical36

information systems (GIS), online analytical processing (OLAP), and database management37

systems (DBMS); the reader may refer to [16,19,22,24] for the relevant applications.38

For d = 1, the RSRU problem admits a folklore structure3 of O(n) space that supports39

each query and update in O(log n) time. The problems become rather challenging as soon as40

d reaches 2. For any d ≥ 2, the standard range tree [2, 10] uses Õ(n) space and answers a41

query in Õ(1) time (throughout the paper, the notation Õ(.) suppresses a polylog n factor).42

It also supports a “point update” — an update whose rectangle rupd degenerates into a point43

— in Õ(1) time. Given an update with an arbitrary rupd, however, the range tree issues a44

point update for each p ∈ P ∩ rupd and thus can incur a cost of Õ(n).45

For d ≥ 2, Lau and Ritossa [19] developed an O(n)-space structure that supports46

each query and update in Õ(n1−1/d) time. They also showed a connection to the OMv-47

conjecture [12], which has been widely utilized to characterize the hardness of problems48

involving dynamic data structures [1, 3–9,11,13–15,17,18,20,21,23]:49

In online matrix-vector multiplication (OMv), an algorithm A is allowed to preprocess
an n× n boolean matrix M in poly(n) time and then, in the online phase, needs to
compute Mvi for n × 1 boolean vectors v1, ..., vn (additions and multiplications
are as in the boolean semi-ring). The vectors are supplied in succession, i.e., vi+1
arrives only after A has output Mvi. The cost of A is the total time it spends in
the online phase. The OMv-conjecture states that no algorithm can guarantee a
cost of O(n3−δ) no matter how small the constant δ > 0 is.

50

For d = 2, Lau and Ritossa [19] proved that, subject to the OMv-conjecture, no structure51

with update time Tupd and query time Tqry can guarantee max{Tupd, Tqry} = O(n1/2−δ),52

regardless of the constant δ > 0. Hence, their aforementioned structure can no longer be53

improved significantly in 2D space.54

The results of [19] leave two intriguing questions. First, the hardness result does not shed55

much light on the tradeoff between Tupd and Tqry. For example, if we insist on Tqry = Õ(1),56

is it possible to improve the update cost Õ(n) of the range tree by a polynomial factor?57

Conversely, if Tupd must be Õ(1), what is the best query time achievable? As yet another58

example, can we hope to obtain Tupd = Õ(n0.5) and Tqry = Õ(n0.49), thereby improving only59

the query time of [19] polynomially? The second question concerns the scenario of d ≥ 3,60

where there remains a large gap between the upper and (conditional) lower bounds of [19].61

We will answer all these questions in this paper.62

The RSRU problem has a degenerated array version that has received special attention. In63

that version, P := [m]d where m ≥ 1 is an integer (given an integer x ≥ 1, [x] represents the64

set {1, 2, ..., x}). In other words, P has exactly n = md points, and each point’s coordinate65

is an integer in [m] on every dimension; equivalently, P can be regarded as a d-dimensional66

array. This RSRU variant can be settled by a structure of O(n) space that supports a query67

and an update both in O(logd+1 n) time [24]. Furthermore, if the monoid is multiplicative4,68

the query and update time can be reduced to O(logd n) [24]; see also [16,22] for (array-RSRU)69

structures designed for the monoid (R, +, 0) (that is, each weight is a real value).70

3 https://cp-algorithms.com/data_structures/segment_tree.html.
4 A monoid (M, +, 0) is multiplicative if, for any weight w ∈ M and any integer c ≥ 1, c · w :=

w + w + ... + w︸ ︷︷ ︸
c

can be calculated in constant time.

https://cp-algorithms.com/data_structures/segment_tree.html

S. Lu and Y. Tao 14:3

Space Update, Query Ref Remark

Õ(n) Õ(n), Õ(1) [2] d ≥ 2
O(n) Õ(

√
n), Õ(

√
n) [19] d = 2

O(n) Õ(n1−1/d), Õ(n1−1/d) [19] d ≥ 3
Õ(n) any Õ(Tupd), Õ(Tqry)

satisfying Tupd · Tqry = n

this paper d ≥ 2

− max{Tupd, Tqry} = O(n1/2−δ)
impossible

[19] monoid (R, +, 0), d = 2
cond. on OMv-conjecture

− O(na), O(nb) with a + b < 1
impossible (a, b are constants)

this paper monoid (R, +, 0), d = 2
cond. on OMv-conjecture

Table 1 A comparison of our and previous results on the RSRU problem

1.2 New Results71

For the RSRU problem, we establish a smooth trade-off between the update and query time72

under fixed dimensions d ≥ 2:73

▶ Theorem 1. For the RSRU problem, there is a structure of Õ(n) space that supports an74

update in Õ(Tupd) time and a query in Õ(Tqry) time for arbitrary functions Tupd(n) ≥ 1 and75

Tqry(n) ≥ 1 satisfying Tupd · Tqry = n. The result holds for any constant dimension d ≥ 2.76

By setting Tupd = Tqry =
√

n, we obtain a structure of Õ(n) space that handles an77

update/query in Õ(
√

n) time for any d. Compared to [19], for d = 2 we obtain the same78

update and query time (up to a polylog factor), whereas for d ≥ 3 our update and query time79

is better by a polynomial factor. The theorem, interestingly, also captures the range tree as80

a special case with Tupd = n and Tqry = 1. By adjusting Tupd and Tqry, one can obtain a81

series of structures with different update-query tradeoffs that were not known previously.82

Our structures are drastically different from the ones in [19] and do not deteriorate with d83

(ignoring polylog factors).84

We further prove that Theorem 1 is nearly tight subject to the OMv-conjecture.85

▶ Theorem 2. Consider the RSRU problem defined on d = 2 and the monoid (R, +, 0). Fix86

any constant c satisfying 0 ≤ c < 1 and an arbitrarily small constant δ > 0. Subject to the87

OMv-conjecture, the following holds for any structure constructible in poly(n) time:88

if the update time Tupd = O(nc), then the query time Tqry cannot be O(n1−c−δ);89

if Tqry = O(nc), then Tupd cannot be O(n1−c−δ).90

The above clearly implies the impossibility of max{Tupd, Tqry} = O(n1/2−δ), as was91

already proved in [19]. On the other hand, our conditional lower bounds are much more92

informative; for example, they reveal, somewhat unexpectedly, the range tree — with93

Tqry = Õ(1) and Tupd = Õ(n) — can no longer be improved significantly without breaking94

the OMv-conjecture. Putting together Theorems 1 and 2, we now have a complete picture on95

the query-update tradeoff achievable for the RSRU problem under any fixed dimension up to96

a sub-polynomial factor. Table 1 summarizes the comparison of our and previous results.97

1.3 New Techniques98

Our structures stem from a new observation on the inherent characteristics of the RSRU99

problem. The observation, described below, is interesting in its own right and illustrates100

what separates the RSRU problem from its array variant (defined in Section 1.1).101

ISAAC 2022

14:4 Range Updates and Range Sum Queries on Multidimensional Points with Monoid Weights

For any point p ∈ Rd, we use p[i] (i ∈ [d]) to represent its coordinate on dimension i.102

Similarly, given a d-rectangle r := [a1, b1] × ... × [ad, bd], we use r[i] to represent its i-th103

projection [ai, bi]. Given a subset S ⊆ [d], we define an S-rectangle r as a d-rectangle where104

r[i] := (−∞,∞) for every i ∈ [d] \ S, namely, r can have a bounded range r[i] only on the105

dimensions i ∈ S.106

Given an update with rectangle rupd and some weight, we call it a U-update for some107

U ⊆ [d] if rupd is a U -rectangle. Likewise, given a query with rectangle rqry, we call it a108

Q-query for some Q ⊆ [d] if rqry is a Q-rectangle.109

▶ Definition 3. Fix two (possibly overlapping) subsets U and Q of [d]. A (U, Q)-structure is110

a structure that supports only U -updates and Q-queries.111

Our objective in the RSRU problem is to design a ([d], [d])-structure. We are now ready112

to state our characteristic observation:113

▶ Theorem 4. For the RSRU problem, suppose that, given any disjoint U ⊆ [d] and Q ⊆ [d],114

there is a (U, Q)-structure of Õ(n) space that guarantees update time Tupd and query time Tqry.115

Then, there is a ([d], [d])-structure of Õ(n) space that handles an update in O(Tupd · logd n)116

time and a query in O(Tqry · logd n) time.117

The theorem indicates that the core of RSRU lies in dealing with updates and queries118

that concern disjoint sets of dimensions. For example, in 2D space, the core boils down to119

supporting U = {1} and Q = {2}, namely, every update rectangle rupd is a vertical slab120

while every query rectangle rqry is a horizontal slab. Interestingly, this is precisely what121

separates general RSRU from its array variant. As we will see, when P is a 2D array, there is122

a trivial (U, Q)-structure of O(1) space ensuring O(log n) update and query time (the time123

can even be reduced to O(1) if the monoid is multiplicative); in contrast, when P is a generic124

set of Euclidean points, the hardness in Theorem 2 applies!125

Theorem 4 has yet another notable implication: it “trivializes” the array version of RSRU126

and allows us to recover all the existing results from [16, 22, 24] (reviewed in Section 1.1)127

with a simple structure. The details can be found in Appendix A.128

2 A Dimension Elimination Technique129

This section is devoted to proving Theorem 4. Our strategy is to incrementally remove a130

common dimension of U and Q until the two dimension sets become disjoint, at which point131

we can apply the U -Q disjoint structure stated in the theorem’s assumption statement. The132

core is to establish the following lemma.133

▶ Lemma 5. Consider any overlapping subsets U and Q of [d]. Let i ∈ [d] be an arbitrary134

dimension in U ∩Q. Suppose that we have a (U \{i}, Q)-structure and a (U, Q\{i})-structure135

both of which use O(n logc n) space (where c ≥ 0 is a constant) and support an update in136

O(Tupd) time and a query in O(Tqry) time. Then, there is a (U, Q)-structure of O(n logc+1 n)137

space that handles an update in O(Tupd log n) time and a query in O(Tqry log n) time.138

Before proving the lemma, let us first see how it leads to Theorem 4.139

Proof of Theorem 4. We will establish a more general claim: fix any integer k ∈ [0, d]; for140

any subsets U and Q of [d] such that |U ∩Q| = k, there is a (U, Q)-structure of Õ(n) space141

that guarantees update and query time O(Tupd logk n) and O(Tqry logk n), respectively. When142

k = 0, U and Q are disjoint and the claim directly follows from the theorem’s assumption.143

S. Lu and Y. Tao 14:5

Next, we will prove the claim for k = k0 + 1, assuming the claim’s correctness on k = k0 ≥ 0.144

Identify an arbitrary i ∈ U ∩Q; i must exist because |U ∩Q| = k0 + 1 ≥ 1. By the inductive145

assumption, there exist a (U \ {i}, Q)-structure and a (U, Q \ {i})-structure, both of which146

use Õ(n) space and ensure update time O(Tupd logk0 n) and query time O(Tqry logk0 n). We147

now apply Lemma 5 to obtain a (U, Q)-structure of Õ(n) space with update and query time148

O(Tupd logk0+1 n) and O(Tqry logk0+1 n) time, respectively. This completes the proof. ◀149

The rest of the section serves as a proof of Lemma 5. Section 2.1 will describe our150

structure as well as the update and query algorithms. Section 2.2 will present our analysis.151

Basic Notations and Concepts. Let U and Q be the dimension sets in Lemma 5. Assume,152

w.l.o.g., that the value i in the lemma is 1, i.e., 1 ∈ U ∩Q. For convenience, we will refer to153

dimension 1 as the “x-dimension”. Accordingly, given a point p ∈ Rd, its “x-coordinate” is154

p[1]. We will represent an update as (rupd, ∆), where rupd is a d-rectangle and ∆ is a weight155

in M; recall that the update adds ∆ to the weight of every point p ∈ P ∩ rupd. We will use156

rupd[2 : d] to denote the projection of rupd onto dimensions 2, 3, ..., d, namely, rupd[2 : d] is a157

(d− 1)-dimensional rectangle.158

Given a set S of n real values, a binary search tree (BST) on S is a binary tree T such159

that (i) T has height O(log n), (ii) T has n leaves each storing a different value in S as its160

key, (iii) every internal node has two children, (iv) for each internal node, the elements of S161

in its left subtree are strictly less than those in its right subtree, and (v) each internal node162

stores a key, which is the smallest element of S in its right subtree. For each leaf/internal163

node u, denote its key as key(u). The parent of a non-root node u is represented as parent(u)164

and the root of T as root(T).165

We associate each node u of T with a slab σ(u) defined recursively as follows. If166

u = root(T), then σ(u) := (−∞,∞). Otherwise, let v := parent(u). If u is the left child of167

v, σ(u) := σ(v) ∩ (−∞, key(v)); otherwise, σ(u) := σ(v) ∩ [key(v),∞). Slabs have several168

easy-to-verify properties:169

If node v is an ancestor of node u, then σ(u) ⊆ σ(v).170

If u and v have no ancestor-descendant relationships, then σ(u) and σ(v) are disjoint.171

For each node u, σ(u) ∩ S is the set of elements stored in the subtree of u.172

2.1 Structure and Algorithms173

Denote by S the set of distinct x-coordinates of the points in P . Build a BST T on S. For174

each node u of T , define175

Pu := {p ∈ P | p[1] ∈ σ(u)}176

namely, the set of points p ∈ P whose x-coordinates are in the slab σ(u) of u. We associate177

each u with a (U \ {1}, Q)-structure and a (U, Q \ {1})-structure both constructed on Pu.178

Recall that the two structures are already available by the assumption of Lemma 5. We179

will call each of them a secondary structure on Pu. This completes the description of our180

(U, Q)-structure.181

Each p ∈ P is in O(log n) secondary structures. For each secondary structure Υ, define182

weight of p in Υ :=
∑

(rupd,∆)∈UΥ:p∈rupd

∆183

where UΥ is the set of updates5 ever performed on Υ.184

5 More specifically, each update (rupd, ∆) ∈ U should be treated as a pair with an id because two updates

ISAAC 2022

14:6 Range Updates and Range Sum Queries on Multidimensional Points with Monoid Weights

z2
z1

u∗

I

Figure 1 White dots are the internal path nodes of I and black dots are the canonical nodes of I.

Canonical and Internal Path Nodes of an Interval. To pave the way for our discussion,185

next we define what are the canonical and internal path nodes of an interval I := [x1, x2],186

where both x1 and x2 belong to S. Let z1 and z2 be the leaves whose keys equal x1 and x2,187

respectively. Denote by π1 (resp., π2) the path from root(T) to z1 (resp., z2).188

We call u an internal path node of I if u is an internal node on π1 or π2.189

We call u a canonical node of I if190

u = z1 or z2, or191

parent(u) is in π1 ∪ π2, u itself is not in π1 ∪ π2, and σ(u) is covered by I.192

Let CI be the set of canonical nodes of I. We must have |CI | = O(log n).193

As another way to understand CI , one can first identify the lowest node u∗ ∈ π1 ∩π2 (this194

is the node where π1 and π2 diverge). If u∗ is a leaf, it means π1 = π2 and u∗ is the only195

node in CI . Now consider the case where u∗ is an internal node. Let us descend the path π′
1196

from u∗ to z1. Every time we descend into the left child of a node v ≠ u∗ on π′
1, we add to197

CI the right child of v (nothing is added if we descend into the right child of v). Perform198

also a symmetric process for the path from u∗ to z2. The CI at this moment contains all the199

canonical nodes. See Figure 1 for an illustration.200

Update Algorithm. Consider a U -update (rupd, ∆) on our (U, Q)-structure (remember201

the structure only needs to support U -updates). W.o.l.g., assume that the x-range of rupd202

has the form [x1, x2] where both x1 and x2 belong to S.6 We carry out the update using the203

following algorithm.204

update (rupd, ∆)
1. Iupd ← rupd[1] /* the x-range of rupd */
2. r′

upd ← (−∞,∞)× rupd[2 : d] /* r′
upd replaces the x-range with (−∞,∞) */

3. for each internal path node u of Iupd do
4. perform an update (rupd, ∆) on the (U, Q \ {1})-structure of Pu

5. for each canonical node u of Iupd do
6. perform an update (r′

upd, ∆) on the (U \ {1}, Q)-structure of Pu

It is worth pointing out that r′
upd is a U \ {1}-rectangle. Hence, the update (r′

upd, ∆) at Line205

6 is permitted on the (U \ {1}, Q)-structure of Pu. See Figure 2(a) for an illustration.206

▶ Proposition 6. Let Υ be a structure updated at Line 4 or 6 of update. Suppose that it is207

a secondary structure of Pu. For each p ∈ Pu, its weight in Υ increases by ∆ if and only if208

p ∈ rupd.209

can have the same (rupd, ∆).
6 This assumption can be easily fulfilled by performing predecessor/successor search in O(log n) time.

S. Lu and Y. Tao 14:7

z2
z1

u∗
update (U,Q \ {1})-str

update (U \ {1}, Q)-str

at

at

Iupd

z2
z1

u∗

Iqry

query (U,Q \ {1})-str

query (U \ {1}, Q)-str
at

at
query (U \ {1}, Q)-str

(a) Update (b) Query

Figure 2 Illustration of the update and query algorithms

Proof. This is obvious if Υ is a (U, Q \ {1})-structure of Pu (Line 4). Consider, instead, Υ210

as a (U \ {1}, Q)-structure of Pu (Line 6). It follows that u is a canonical node of Iupd and211

hence p[1] ∈ Iupd. By the assumption of Lemma 5, Υ increases the weight of p if and only if212

p ∈ r′
upd. Our claim holds because p ∈ r′

upd if and only if p ∈ rupd. ◀213

Query Algorithm. Consider a Q-query with search rectangle rqry on our (U, Q)-structure.214

W.o.l.g., we assume that the x-range of rqry has the form [x1, x2] where both x1 and x2215

belong to S. Our query algorithm is shown below.216

query (rqry)
1. Iqry ← rqry[1]; r′

qry ← (−∞,∞)× rqry[2 : d]
2. OUT← 0
3. for each internal path node u of Iqry do
4. OUT← OUT + output of the query rqry on the (U \ {1}, Q)-structure of Pu

5. for each canonical node u of Iqry do
6. OUT← OUT + output of the query r′

qry on the (U \ {1}, Q)-structure of Pu

7. OUT← OUT + output of the query r′
qry on the (U, Q \ {1})-structure of Pu

8. return OUT

The reader should note that r′
qry is a Q\{1}-rectangle and hence also a Q-rectangle. Therefore,217

the queries at Lines 6 and 7 are permitted. See Figure 2(b) for an illustration.218

▶ Proposition 7. Let Υ be a structure searched at Line 4, 6, or 7 of query. Suppose that it219

is a secondary structure of Pu. For each p ∈ Pu, its weight in Υ is added into OUT if and220

only if p ∈ rqry.221

Proof. This is obvious if Υ is a (U \{1}, Q)-structure at Line 4. If Υ is a (U \{1}, Q)-structure222

at Line 6 or a (U, Q \ {1})-structure at Line 7, u must be a canonical node of Iqry and223

hence p[1] ∈ Iqry. By the assumption of Lemma 5, when Υ is searched with r′
qry, its output224

incorporates the weight of p if and only if p ∈ r′
qry. Our claim holds because p ∈ r′

qry if and225

only if p ∈ rqry. ◀226

2.2 Analysis227

Space and Time Complexities. The update time and query time are clearly O(Tupd228

log n) and O(Tqry log n), respectively. The secondary structures of a node u in T occupy229

space O(|Pu| logc n). As each point p ∈ P appears in the Pu of O(log n) nodes u, the total230

space of our (U, Q)-structure is O(n logc+1 n).231

ISAAC 2022

14:8 Range Updates and Range Sum Queries on Multidimensional Points with Monoid Weights

Correctness. It remains to prove that all queries are answered correctly. Let us start with232

a concept crucial for our argument: update atom. Formally, each update (rupd, ∆) generates233

an atom (rupd, ∆, p) for every p ∈ P ∩ rupd. The atom describes the fact that the update234

should increase w(p) by ∆. Conceptually, the effect of (rupd, ∆) is achieved by “executing”235

all of its atoms.236

Given a query with search rectangle rqry, we will show that the output OUT of algorithm237

query is exactly
∑

p∈P ∩rqry
w(p). Define238

U as the set of updates that have ever been performed on our (U, Q)-structure;239

A as the collection of atoms generated by the updates in U .240

Each atom (rupd, ∆, p) ∈ A is said to be relevant if p ∈ rqry. For each p ∈ P , it holds that241

w(p) =
∑

(rupd,∆,p)∈A

∆242

which yields243 ∑
p∈P ∩rqry

w(p) =
∑

p∈P ∩rqry

(∑
(rupd,∆,p)∈A

∆
)

=
∑

relevant (rupd,∆,p)∈A

∆. (1)244

Let Υ be a secondary structure searched at Line 4, 6, or 7 of query(rqry). Denote by u245

the node that Υ is associated with. Define:246

UΥ as the set of updates (rupd, ∆) ∈ U such that algorithm update(rupd, ∆) modifies Υ247

at either Line 4 or 6;248

AΥ as the collection of atoms (rupd, ∆, p) generated by the updates in UΥ satisfying249

p ∈ Pu.250

We will refer to AΥ as the atom set of Υ. By Proposition 6, it holds for each point p ∈ Pu:251

weight of p in Υ :=
∑

(rupd,∆,p)∈AΥ

∆.252

By Proposition 7, when searched in algorithm query(rqry), Υ returns:253 ∑
p∈Pu∩rqry

weight of p in Υ =
∑

p∈P ∩rqry

(∑
(rupd,∆,p)∈AΥ

∆
)

=
∑

relevant (rupd,∆,p)∈AΥ

∆.254

It follows from the above discussion that255

OUT =
∑

searched Υ

(∑
relevant (rupd,∆,p)∈AΥ

∆
)

. (2)256

Our mission is to draw equivalence between (1) and (2). We achieve the purpose with257

the following lemma.258

▶ Lemma 8. Every relevant atom (rupd, ∆, p) ∈ A appears in the atom set AΥ of exactly259

one secondary structure Υ searched by query(rqry).260

Proof. Consider any relevant atom (rupd, ∆, p) ∈ A. Let Iqry := rqry[1]. By definition of261

relevance, p ∈ rqry. Among the canonical nodes of Iqry, there is exactly one node — denoted262

as uqry — satisfying the condition that p[1] falls in the slab σ(uqry) of uqry. Similarly, let263

Iupd := rupd[1]. By definition of atom, p ∈ rupd. Among the canonical nodes of Iupd, there is264

exactly one node — denoted as uupd — satisfying p[1] ∈ σ(uupd). Nodes uqry and uupd must265

have an ancestor-descendant relationship.266

Fix a secondary structure Υ searched by query(rqry) (at Line 4, 6, or 7). The next two267

facts follow from how update(rupd, ∆) and query(rqry) execute (as illustrated in Figure 2).268

Fact 1. Suppose that Υ is the (U \{1}, Q)-structure of node v. Then, (rupd, ∆, p) appears269

in AΥ if and only if270

S. Lu and Y. Tao 14:9

v = uupd, and271

v is an ancestor of uqry (this includes the case v = uqry).272

Fact 2. Suppose that Υ is the (U, Q \ {1})-structure of v. Then, (rupd, ∆, p) appears in273

AΥ if and only if274

v = uqry, and275

v is an internal path node of Iupd.276

We proceed by discussing two cases separately:277

Case 1: uupd is a proper descendant of uqry. Atom (rupd, ∆, p) cannot belong to278

the atom set of any (U \ {1}, Q)-structure Υ searched by query(rqry). Otherwise, Υ must be279

associated with uupd (first bullet of Fact 1), but then the second bullet of Fact 1 contradicts280

uupd being a proper descendant of uqry. On the other hand, as a proper ancestor of uupd,281

uqry must be an internal path node of Iupd. Fact 2 thus shows that (rupd, ∆, p) exists in the282

atom set of only one (U, Q \ {1})-structure searched by query(rqry): the one at node uqry.283

Case 2: uupd is an ancestor of uqry. Atom (rupd, ∆, p) cannot belong to the atom set284

of any (U, Q \ {1})-structure Υ searched by query(rqry). To see why, suppose that such a Υ285

exists. By Fact 2, Υ must be associated with node uqry, and uqry must be an internal path286

node of Iupd. This is impossible because uupd (being a canonical node of Iupd) cannot have287

any descendant that is an internal path node of Iupd. Finally, Fact 1 shows that (rupd, ∆, p)288

appears in the atom set of only one (U \ {1}, Q)-structure searched by query(rqry): the one289

at node uupd. ◀290

This completes the proof of Lemma 5.291

3 U-Q Disjoint Structures292

Equipped with Theorem 4, we can now concentrate on designing (U, Q)-structures with293

disjoint U and Q. We will prove:294

▶ Lemma 9. Fix an integer k ≥ 1 and consider the RSRU problem under dimensionality295

d = k. Suppose that, for any disjoint U, Q ⊆ [d], there is a (U, Q)-structure of Õ(n)296

space supporting an update in Õ(Tupd) time and a query in Õ(Tqry) time for any functions297

Tupd(n) ≥ 1 and Tqry(n) ≥ 1 satisfying Tupd · Tqry = n. Then, the following holds for298

dimensionality d = k + 1: for any disjoint U, Q ⊆ [d], we can build a (U, Q)-structure of299

Õ(n) space supporting an update in Õ(Tupd) and a query in Õ(Tqry) time for any functions300

Tupd(n) ≥ 1 and Tqry(n) ≥ 1 satisfying Tupd · Tqry = n.301

Before delving into the proof, let us see how the lemma leads to Theorem 1.302

Proof of Theorem 1. At d = 1, it is easy to obtain a ([1], [1])-structure of O(n) space and303

O(log n) = Õ(1) update and query time (see Section 1.1). The structure can serve as the304

basis solution for k = 1 and any Tupd(n) ≥ 1, Tqry(n) ≥ 1 with Tupd ·Tqry = n. Lemma 9 then305

asserts that, for any constant d and any disjoint U, Q ⊆ [d], we can build a (U, Q)-structure306

that uses Õ(n) space and handles an update in Õ(Tupd) and a query in Õ(Tqry) time for307

any Tupd(n) ≥ 1, Tqry(n) ≥ 1 satisfying Tupd · Tqry = n. Combining this with Theorem 4308

establishes Theorem 1. ◀309

The rest of the subsection serves as a proof of Lemma 9. Let us first eliminate the case310

of U = ∅. In this scenario, the rectangle rupd of an update is fixed to Rd and hence all311

points in P have the same weight. It suffices to maintain the w(p∗) of an arbitrary p∗ ∈ P .312

In addition, build a standard range count structure on P such that uses Õ(n) space and,313

ISAAC 2022

14:10 Range Updates and Range Sum Queries on Multidimensional Points with Monoid Weights

z2z1 I

Figure 3 White dots are the path leaves of I and black dots are the non-path canonical nodes.

given a rectangle rqry, outputs |P ∩ rqry| in Õ(1) time; the range tree [10] fulfills our purpose314

here. To answer a query with rectangle rqry, we first obtain c := |P ∩ rqry| and then return315

c ·w(p∗). The query time is Õ(1), noticing that c ·w(p∗) can be calculated in O(log c) time7.316

Next, we assume U ≠ ∅ and, w.l.o.g., consider that (i) U contains the x-dimension (i.e.,317

dimension 1), (ii) n := |P | is a power of two, and (iii) the points in P have distinct coordinates318

on each dimension. Fix any Tupd(n) ≥ 1 and Tqry(n) ≥ 1 satisfying Tupd · Tqry = n.319

Structure. We will describe a binary tree T of O(log Tqry) levels and O(Tqry) nodes.320

Each node u in T is associated with a subset Pu ⊆ P and an interval σ(u) as its slab. If321

u = root(T), Pu := P and σ(u) := (−∞,∞). In general, if |Pu| ≤ Tupd, u is a leaf of322

T . Otherwise, we split Pu evenly into P1 and P2 at some value x such that P1 (resp., P2)323

includes all the points of Pu whose x-coordinates are less (resp., greater) than x. The left and324

right children of u are associated with P1 and P2, respectively, and have slab σ(u) ∩ (−∞, x)325

and σ(u) ∩ [x,∞), respectively. The total number of nodes in T is O(n/Tupd) = O(Tqry).326

Each internal node u in T is associated with a (U \ {1}, Q)-structure Tu on Pu. Since327

(U \ {1})∩Q = ∅ and |(U \ {1})∪Q| ≤ k, we already know how to construct such a structure328

(see the assumption of Lemma 9). We parameterize Tu such that it supports an update on329

Pu in Õ(Tupd) time and answers a query on Pu in Õ(|Pu|/Tupd) time; its space is Õ(|Pu|).330

For each leaf z in T , create a range tree Tz on Pz. As discussed in Section 1.1, Tz331

uses Õ(|Pz|) space, answers a query on Pz in Õ(1) time, and supports an update on Pz in332

Õ(|Pz|) = Õ(Tupd) time.333

Each p ∈ P appears in O(log Tqry) secondary structures Υ. For every such Υ, define334

weight of p in Υ :=
∑

(rupd,∆)∈UΥ:p∈rupd

∆335

where UΥ is the set of updates ever performed on Υ.336

Non-path Canonical Nodes and Path Leaves of an Interval. We now adapt the337

concepts “canonical” and “path nodes” from Section 2.1 to our context here. Consider an338

interval I := [x1, x2]. Let z1 and z2 be the leaves of T such that x1 ∈ σ(z1) and x2 ∈ σ(z2).339

Denote by π1 (resp., π2) the path from root(T) to z1 (resp., z2).340

We call each of z1 and z2 a path leaf of I.341

We call u a non-path canonical node of I if parent(u) is in π1∪π2, u itself is not in π1∪π2,342

and σ(u) is covered by I.343

See Figure 3 for an illustration.344

7 E.g., 15w = w + 2w + 4w + 8w, where 4w (resp. 8w) can be derived from 2w (resp. 4w) in constant time.

S. Lu and Y. Tao 14:11

Update. Consider an update (rupd, ∆). Define Iupd := rupd[1] and r′
upd := (−∞,∞) ×345

rupd[2 : d]. At each non-path canonical node u of Iupd, perform an update (r′
upd, ∆) on Tu.346

At each path leaf z of Iupd, perform an update (rupd, ∆) on Tz.347

Query. Given a query with rectangle rqry, we simply access every node u in T and issue a348

query with the same rectangle rqry on the secondary structure Tu. Then, we return the sum349

of the weights returned by those structures.350

Analysis. It should have become straightforward that our structure uses Õ(n) space overall351

and supports an update in Õ(Tupd) time. Next, we analyze the query time. As T has O(Tqry)352

leaves and a query spends Õ(1) time on each leaf, the time spent on all the leaves is Õ(Tqry).353

Let us now attend to the internal nodes. Consider the i-th level of T .8. There are O(2i)354

internal nodes and |Pu| = O(n/2i) for every such node u. The time spent on all the level-i355

nodes is Õ(2i · (n/2i)/Tupd) = Õ(n/Tupd) = Õ(Tqry). As T has Õ(1) levels, the overall356

query cost is Õ(Tqry).357

It remains to show the correctness of our (k + 1)-dimensional structure. For this purpose,358

let us first observe:359

▶ Proposition 10. For any p ∈ P , w(p) =
∑

node u in T :p∈Pu
(weight of p in Tu).360

Proof. The proposition obviously holds after the structure has just been constructed. Con-361

sider an update (rupd, ∆). Define Iupd := rupd[1]. Denote by z1, z2 the two path leaves of362

Iupd and by C the set of non-path canonical nodes of Iupd. It is easy to verify:363

for any distinct nodes u, v in {z1, z2} ∪ C, Pu and Pv are disjoint;364 ⋃
u∈{z1,z2}∪C(Pu ∩ rupd) = P ∩ rupd.365

For each point p ∈ P ∩ rupd, there is a unique node u ∈ {z1, z2} ∪ C satisfying p ∈ Pu.366

Our update procedure increases the weight of p in Tu by ∆ and does not change its weight in367

any other secondary structure. On the other hand, if p /∈ rupd, the procedure will not change368

its weight in any secondary structure. Therefore, if the proposition holds before the update,369

it still does afterwards. ◀370

Fix any query with rectangle rqry. For each node u in T , denote by OUTu the answer371

returned by the structure Tu. The value OUTu equals
∑

p∈Pu∩rqry
(weight of p in Tu). The372

final answer returned is373 ∑
node u in T

∑
p∈Pu∩rqry

weight of p in Tu =
∑

p∈P ∩rqry

(∑
node u in T :p∈Pu

weight of p in Tu

)
374

=
∑

p∈P ∩rqry

w(p)375

where the last equality used Proposition 10. With this, we have established the correctness376

of our structure and thus conclude the proof of Lemma 9.377

4 Hardness of RSRU378

This section will establish Theorem 2. Let us first review the γ-uMv problem from [13]:379

8 The root is at level 0 and the level number increases by 1 each time we descend into a child.

ISAAC 2022

14:12 Range Updates and Range Sum Queries on Multidimensional Points with Monoid Weights

Fix a constant γ > 0, and choose two integers n1 and n2 satisfying n1 = ⌊nγ
2⌋. In

the γ-uMv problem, an algorithm A is allowed to preprocess an n1 × n2 boolean
matrix M in poly(n1, n2) time, after which A receives a 1 × n1 boolean vector
u and an n2 × 1 boolean vector v, and needs to compute uMv (additions and
multiplications are as in the boolean semi-ring). The cost of A is the time it spends
on computing uMv.

380

The following result is due to Henzinger et al. [13]:381

▶ Lemma 11 ([13]). Fix an arbitrary constant γ > 0. Subject to the OMv-Conjecture, no382

algorithm can solve the γ-uMv problem with cost O(n1−δ
1 · n2 + n1 · n1−δ

2), no matter how383

small the constant δ > 0 is.384

Given an RSRU structure defying Theorem 2, we will show how to utilize it to develop an385

algorithm to beat Lemma 11. We use M[i, j] to denote the entry of M at the i-th row and386

j-th column, u[i] to denote the i-th component of u, and v[j] to denote the j-th component387

of v, where i ∈ [n1] and j ∈ [n2].388

Proof of the First Bullet of Theorem 2. Consider the RSRU problem under d = 2389

and monoid (R, +, 0) and let constants c ∈ [0, 1) and δ > 0 be chosen as in Theorem 2.390

Define U := {1} and Q := {2}. We will prove that, subject to the OMv-conjecture, no391

(U, Q)-structure constructible in poly(n) time can guarantee update time O(nc) and query392

time O(n1−c−δ). This will imply the first bullet of the theorem.393

Assume that such a structure Υ exists. Set γ := 1−c−δ/2
c+δ/2 . Next, we will describe an394

algorithm for the γ-uMv problem. In preprocessing, we create a set P of 2D points as395

follows: P has a point (i, j) if and only if M[i, j] = 1 for each i ∈ [n1] and j ∈ [n2]. Initialize396

w(p) := 0 for all p ∈ P and then create a (U, Q)-structure Υ on P . The preprocessing time397

is poly(n1, n2) because |P | ≤ n1 · n2. Given vectors u and v, we compute uMv by issuing398

at most n1 U -updates and at most n2 Q-queries. For each i ∈ [n1], if u[i] = 1, we perform399

an update with rectangle (rupd, 1) with rupd := [i, i]× (−∞,∞) on P , which effectively adds400

1 to the weight of every point p ∈ P satisfying p[1] = i. Then, for each j ∈ [n2], if v[j] = 1,401

we perform a query with rqry := (−∞,∞)× [j, j] on P , which effectively checks whether any402

point p ∈ P with p[2] = j has a positive w(p). The reader can verify that uMv = 1 if and403

only if at least one of the queries returns a non-zero value.404

To analyze the cost, set λ := n
1/(c+δ/2)
2 . As n1 = ⌊nγ

2⌋, we have n1 = Θ(λ1−c−δ/2) and405

n2 = Θ(λc+δ/2). The number of points in P is O(n1 · n2) = O(λ); hence, Υ ensures update406

time O(λc) and query time O(λ1−c−δ). As the algorithm performs at most n1 updates and407

at most n2 queries, the total cost is408

O(n1 · λc + n2 · λ1−c−δ) = O(λ1−δ/2) = O((n1 · n2)1−δ/2)409

where the last step used λ = Θ(n1 · n2). This contradicts Lemma 11.410

Proof of the Second Bullet of Theorem 2. As before, define U := {1} and Q := {2}.411

We will prove that, subject to the OMv-conjecture, no (U, Q)-structure constructible in412

poly(n) time can guarantee update time O(n1−c−δ) and query time O(nc). This will imply413

the second bullet of the theorem.414

Assume that such a structure exists. We deploy it to tackle γ-uMv in the same way as415

before where γ := c+δ/2
1−c−δ/2 . To analyze the cost, set λ := n

1/(1−c−δ/2)
2 . As n1 = ⌊nγ

2⌋, we416

have n1 = Θ(λc+δ/2), n2 = Θ(λ1−c−δ/2), and |P | = O(n1 ·n2) = O(λ). The structure handles417

an update and query in O(λ1−c−δ) and O(λc) time, respectively. Because at most n1 updates418

S. Lu and Y. Tao 14:13

and at most n2 queries are performed, our algorithm’s cost is O(n1 · λ1−c−δ + n2 · λc) =419

O(λ1−δ/2) = O((n1 · n2)1−δ/2), contradicting Lemma 11.420

Remark. We can extend the above lower bound to any monoid (M, +, 0) as long as there421

is a value e∗ ∈M satisfying
∑c

i=1 e∗ ̸= 0 for any c ∈ [1, n]. The only modification is in the422

online phase: for each i ∈ [n1] with u[i] = 1, add e∗ (rather than 1) to w(p) for all the points423

p ∈ P satisfying p[1] = i. Then, we have uMv = 1 if and only if at least one of the at most424

n2 queries defined as before returns a non-zero value.425

Appendix426

A A Simpler Structure for the Array Variant of RSRU427

Henceforth, we will focus on the array version of RSRU, defined in Section 1.1, where P is a428

d-dimensional array [m]d for some integer m ≥ 1 (as a result, n = md). Our goal is to show:429

▶ Theorem 12. For the array variant of RSRU, there is a structure of O(n) space that430

supports each query and update in O(logd+1 n) time. The query and update complexities can431

be improved to O(logd n) if the underlying monoid is multiplicative.432

Recall that a monoid (M, +, 0) is multiplicative if c·w := w + w + ... + w︸ ︷︷ ︸
c

can be calculated433

in constant time for any weight w ∈M and any integer c ≥ 1. The monoid (R, +, 0) studied434

in [16, 22] is multiplicative; hence, the theorem subsumes the results in [16, 22] (reviewed435

in Section 1.1). For arbitrary commutative monoids, the extra O(log n) factor arises from436

the need to compute a multiplication c · w in O(log c) time; the integer c never exceeds n437

in our algorithms. In [24], Yang and Wan claimed a structure with query and update time438

O(logd n), but a careful look at their definition reveals that their monoid is multiplicative;439

for non-multiplicative monoids, their query and update time both slow down by an O(log n)440

factor. Hence, Theorem 12 recovers the result of [24] as well. Our structures are drastically441

different from those in [16,22,24].442

A.1 The Counterpart of Theorem 4443

The characteristics of RSRU revealed by Theorem 4 extend to the array version as well:444

▶ Theorem 13. For the array variant of RSRU, suppose that, given any disjoint U ⊆ [d]445

and Q ⊆ [d], there is a (U, Q)-structure of O(1) space that guarantees update time Tupd and446

query time Tqry. Then, there is a ([d], [d])-structure of O(n) space that handles an update in447

O(Tupd · logd n) time and a query in O(Tqry · logd n) time.448

To prove the theorem, we need the lemma below that echoes Lemma 5.449

▶ Lemma 14. Consider any two overlapping subsets U and Q of [d]. Let i ∈ [d] be an450

arbitrary dimension in U ∩Q. Suppose that we have a (U \{i}, Q)-structure and a (U, Q\{i})-451

structure both of which use O(m|U∩Q|−1) space and support an update in O(Tupd) and a452

query in O(Tqry) time. Then, there is a (U, Q)-structure of O(m|U∩Q|) space that handles an453

update in O(Tupd log n) time and a query in O(Tqry log n) time.454

Proof. Due to symmetry, we assume i = 1. Let S be the set of distinct x-coordinates of the455

points in P . |S| = m because P is an array. We use the same reduction in the proof Lemma 5456

to obtain a (U, Q)-structure. Recall that T is a BST on S and Pu := {p ∈ P | p[1] ∈ σ(u)} for457

ISAAC 2022

14:14 Range Updates and Range Sum Queries on Multidimensional Points with Monoid Weights

every node u in T . Associate each u with a (U \{1}, Q)-structure and a (U, Q\{1})-structure458

both constructed on Pu. The update and query algorithms require no changes and finish in459

O(Tupd log n) and O(Tqry log n) time, respectively. Since T has O(m) nodes and the space460

at each node is O(m|U∩Q|−1), the total space is O(m|U∩Q|). ◀461

Equipped with the above lemma, we will now prove a general claim: fix any integer462

k ∈ [0, d]; for any subsets U and Q of [d] such that |U ∩Q| = k, there is a (U, Q)-structure463

of O(mk) space that guarantees update and query time O(Tupd logk n) and O(Tqry logk n),464

respectively. Theorem 13 then follows because md = n.465

When k = 0, U and Q are disjoint and the claim holds from the theorem’s assumption.466

Next, we will prove the claim for k = k0 + 1, assuming the claim’s correctness on k = k0 ≥ 0.467

Fix an arbitrary i ∈ U ∩Q. By the inductive assumption, there exist a (U \ {i}, Q)-structure468

and a (U, Q \ {i})-structure, both of which use O(mk0) space and ensure update and query469

time O(Tupd logk0 n) and O(Tqry logk0 n) time, respectively. We now apply Lemma 14 to470

obtain a (U, Q)-structure of O(mk0+1) space with update and query time O(Tupd logk0+1 n)471

and O(Tqry logk0+1 n) time, respectively. This completes the proof.472

A.2 U-Q Disjoint Structures473

Since P is a d-dimensional array [m]d, henceforth, we consider only d-rectangles of the form474

[a1, b1]× ...× [ad, bd], where ai ∈ [m] and bi ∈ [m] for all i ∈ [d]. Accordingly, a U -rectangle475

is redefined as a d-rectangle r satisfying r[i] = [1, m] for every i ∈ [d] \ U , and similarly, a476

Q-rectangle r is a d-rectangle satisfying r[i] = [1, m] for every i ∈ [d] \Q.477

We will show:478

▶ Lemma 15. Consider the array version of RSRU. For any disjoint U ⊆ [d] and Q ⊆ [d],479

there is a (U, Q)-structure of O(1) space that supports an update and a query in O(log n)480

time. The update and query time can be improved to O(1) if the underlying monoid (M, +, 0)481

is multiplicative.482

Combining Theorem 13 with the above lemma establishes Theorem 12. The rest of the483

subsection serves as a proof of Lemma 15.484

Case 1: Q = ∅. In other words, the query rectangle rqry always covers the whole [m]d. It485

suffices to maintain the total weight of all the points: s :=
∑

p∈P w(p). A query obviously486

can be settled in O(1) time. Given an update (rupd, ∆), we first calculate the number c of487

points in P covered by rupd. As P is a multidimensional array, this can be done in O(1)488

time because c =
∏

i∈[d] |rupd[i] ∩ [m]|.9 Then, we increase s by c ·∆, which takes O(log n)489

time, or O(1) time if the monoid is multiplicative.490

Case 2: Q ̸= ∅. W.o.l.g., we will assume Q = [ℓ] for some integer ℓ ∈ [1, d]; hence,491

U ⊆ [ℓ + 1, d]. Given an ℓ-tuple t := (x1, x2, ..., xℓ) ∈ [m]ℓ, let P (t) := {t} × [m]d−ℓ, i.e., the492

set of points p ∈ P satisfying p[i] = xi for all i ∈ [ℓ]. Define493

w(t) :=
∑

p∈P (t)

w(p).494

▶ Proposition 16. For any ℓ-tuples t and t′, it always holds that w(t) = w(t′).495

9 If rupd[i] = [ai, bi], then |rupd[i] ∩ [m]| = bi − ai + 1.

S. Lu and Y. Tao 14:15

Proof. Consider any update (rupd, ∆). As rupd is a U -rectangle, rupd[i] = [1, m] for each496

i ∈ [ℓ]. The number c of points in P (t) ∩ rupd is
∏

i∈[ℓ+1,d] |rupd[i] ∩ [m]|. Likewise, |P (t′) ∩497

rupd| =
∏

i∈[ℓ+1,d] |rupd[i] ∩ [m]| = c. Hence, both w(t) and w(t′) will increase by c ·∆ after498

the update. The claim follows because w(t) = w(t′) = 0 in the beginning (i.e., before the499

first update). ◀500

Our structure simply maintains the w(t∗) for an arbitrary ℓ-tuple t∗. Given a Q-query501

with rectangle rqry, we first obtain in constant time the number c1 of ℓ-tuples t := (x1, ..., xℓ)502

satisfying xi ∈ rqry[i] for every i ∈ [ℓ].10 By Proposition 16 and the fact rqry[i] = [1, m] for503

every i ∈ [ℓ + 1, d] (rqry is a Q-rectangle), the query answer is exactly c1 · w(t∗), which can504

be computed in O(log n) time. Given an update (rupd, ∆), we obtain in constant time the505

number c2 of points in P (t∗) covered by the U -rectangle rupd,11 and then increase w(t∗)506

by c2 ·∆ in O(log n) time. Both the update and query time can be reduced to O(1) if the507

monoid is multiplicative.508

This completes the proof of Lemma 15.509

References510

1 Amir Abboud and Søren Dahlgaard. Popular conjectures as a barrier for dynamic planar511

graph algorithms. In Proceedings of Annual IEEE Symposium on Foundations of Computer512

Science (FOCS), pages 477–486, 2016.513

2 Jon Louis Bentley. Decomposable searching problems. Information Processing Letters (IPL),514

8(5):244–251, 1979.515

3 Thiago Bergamaschi, Monika Henzinger, Maximilian Probst Gutenberg, Virginia Vassilevska516

Williams, and Nicole Wein. New techniques and fine-grained hardness for dynamic near-517

additive spanners. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms518

(SODA), pages 1836–1855, 2021.519

4 Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering conjunctive queries520

under updates. In Proceedings of ACM Symposium on Principles of Database Systems (PODS),521

pages 303–318, 2017.522

5 Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering ucqs under updates523

and in the presence of integrity constraints. In Proceedings of International Conference on524

Database Theory (ICDT), pages 8:1–8:19, 2018.525

6 Christoph Berkholz and Maximilian Merz. Probabilistic databases under updates: Boolean526

query evaluation and ranked enumeration. In Proceedings of ACM Symposium on Principles527

of Database Systems (PODS), pages 402–415, 2021.528

7 Katrin Casel and Markus L. Schmid. Fine-grained complexity of regular path queries. In529

Proceedings of International Conference on Database Theory (ICDT), pages 19:1–19:20, 2021.530

8 Raphaël Clifford, Allan Grønlund, Kasper Green Larsen, and Tatiana Starikovskaya. Upper531

and lower bounds for dynamic data structures on strings. In Proceedings of Symposium on532

Theoretical Aspects of Computer Science (STACS), pages 22:1–22:14, 2018.533

9 Soren Dahlgaard. On the hardness of partially dynamic graph problems and connections to di-534

ameter. In Proceedings of International Colloquium on Automata, Languages and Programming535

(ICALP), pages 48:1–48:14, 2016.536

10 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational537

Geometry: Algorithms and Applications. Springer-Verlag, 3rd edition, 2008.538

10 c1 =
∏

i∈[ℓ] |rqry[i] ∩ [m]|.
11 c2 =

∏
i∈[ℓ+1,d] |rupd[i] ∩ [m]|.

ISAAC 2022

14:16 Range Updates and Range Sum Queries on Multidimensional Points with Monoid Weights

11 Maximilian Probst Gutenberg, Virginia Vassilevska Williams, and Nicole Wein. New algorithms539

and hardness for incremental single-source shortest paths in directed graphs. In Proceedings540

of ACM Symposium on Theory of Computing (STOC), pages 153–166, 2020.541

12 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak.542

Unifying and strengthening hardness for dynamic problems via the online matrix-vector543

multiplication conjecture. In Proceedings of ACM Symposium on Theory of Computing544

(STOC), pages 21–30, 2015.545

13 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak.546

Unifying and strengthening hardness for dynamic problems via the online matrix-vector547

multiplication conjecture. CoRR, abs/1511.06773, 2015.548

14 Monika Henzinger, Andrea Lincoln, Stefan Neumann, and Virginia Vassilevska Williams.549

Conditional hardness for sensitivity problems. In Innovations in Theoretical Computer Science550

(ITCS), pages 26:1–26:31, 2017.551

15 Monika Henzinger, Andrea Lincoln, and Barna Saha. The complexity of average-case dynamic552

subgraph counting. Electronic Colloquium on Computational Complexity, page 157, 2021.553

16 Nabil Ibtehaz, M. Kaykobad, and M. Sohel Rahman. Multidimensional segment trees can do554

range updates in poly-logarithmic time. Theoretical Computer Science, 854:30–43, 2021.555

17 Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Maintaining556

triangle queries under updates. ACM Transactions on Database Systems (TODS), 45(3):11:1–557

11:46, 2020.558

18 Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Trade-offs in static and dynamic559

evaluation of hierarchical queries. In Proceedings of ACM Symposium on Principles of Database560

Systems (PODS), pages 375–392, 2020.561

19 Joshua Lau and Angus Ritossa. Algorithms and hardness for multidimensional range updates562

and queries. In Innovations in Theoretical Computer Science (ITCS), pages 35:1–35:20, 2021.563

20 Hung Le, Lazar Milenkovic, Shay Solomon, and Virginia Vassilevska Williams. Dynamic564

matching algorithms under vertex updates. In Innovations in Theoretical Computer Science565

(ITCS), pages 96:1–96:24, 2022.566

21 Shangqi Lu and Yufei Tao. Towards optimal dynamic indexes for approximate (and exact)567

triangle counting. In Proceedings of International Conference on Database Theory (ICDT),568

pages 6:1–6:23, 2021.569

22 Pushkar Mishra. On updating and querying sub-arrays of multidimensional arrays. CoRR,570

abs/1311.6093, 2013.571

23 Yufei Tao and Ke Yi. Intersection joins under updates. Journal of Computer and System572

Sciences (JCSS), 124:41–64, 2022.573

24 Jason Yang and Jun Wan. On updating and querying submatrices. CoRR, abs/2010.13180,574

2020.575

	1 Introduction
	1.1 Previous Results
	1.2 New Results
	1.3 New Techniques

	2 A Dimension Elimination Technique
	2.1 Structure and Algorithms
	2.2 Analysis

	3 U-Q Disjoint Structures
	4 Hardness of RSRU
	A A Simpler Structure for the Array Variant of RSRU
	A.1 The Counterpart of Theorem 4
	A.2 U-Q Disjoint Structures

