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Abstract
This paper formalizes cross-space active learning
on a graph convolutional network (GCN). The
objective is to attain the most accurate hypothesis
available in any of the instance spaces generated
by the GCN. Subject to the objective, the chal-
lenge is to minimize the label cost, measured in
the number of vertices whose labels are requested.
Our study covers both budget algorithms which
terminate after a designated number of label re-
quests, and verifiable algorithms which terminate
only after having found an accurate hypothesis. A
new separation in label complexity between the
two algorithm types is established. The separation
is unique to GCNs.

1. Introduction
In traditional active learning, the samples are drawn from
X × Y where X is some instance space and Y := {−1, 1}
is the label space. The goal is to find a hypothesis with a
small classification error by requesting the labels for only
a subset of the samples. This paper studies a new setup —
we call cross-space active learning — where each sample
is represented in multiple instance spaces but still carries a
single label. The objective is to identify the best instance
space promising the lowest classification error.

Cross-space active learning is best formulated on a finite
set V of objects. Let n := |V |. Each object e ∈ V has
a label Ye ∈ Y that is hidden initially. X1,X2, ...,XT are
T ≥ 2 instance spaces such that e has a representation
X

(t)
e ∈ Xt for each t ∈ [T ] (the notation [x] represents

the set {1, 2, ..., x}). Xt is associated with a class Ht of
hypotheses each being a function h : Xt → Y . The error
of an h ∈ Ht is er(t, h) := 1

n |{e ∈ V | h(X(t)
e ) ̸= Ye}|.

An algorithm A can ask an oracle to reveal the labels for a
subset Q ⊆ V . Once revealed, an object’s label is visible to
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all the instance spaces. A needs to output a pair (t, h) and
use h to classify the objects of V \ Q in Xt. The cost of
A is |Q|. We are interested in algorithms with cost far less
than n, in which case the number of misclassified objects is
essentially n · er(t, h).

Nowadays, the above setup arises frequently due to the pop-
ularity of convolutional networks. Convolution, in general,
refers to an iterative process that synthesizes new features
based on some notion of adjacency. Applying the process
to instance space Xt produces instance space Xt+1 (t ≥ 1).
The iteration can go on T − 1 times to generate X2, ...,XT

for some T ≥ 2. Hopefully, one of these spaces would
be particularly friendly to the underlying learning task, in
which case we could achieve a better accuracy with fewer
samples compared to working in the original space X1.

We will devote our attention to graph convolutional net-
works (GCN), which have attracted considerable interest in
recent years (a brief survey will appear in Section 4). The
input is an undirected graph G := (V,E) and an n × d
real-valued matrix X, where n := |V | and d ≥ 1 is an inte-
ger. Each row of X represents the raw features of a distinct
vertex in V ; define X(1) := X. Convolution computes an
n × dt+1 matrix X(t+1) from X(t), for each t ∈ [T − 1].
Effectively, this casts V into instance spaces X1, ...,XT

where Xt ⊂ Rdt is associated with a hypothesis class Ht

for t ∈ [T ]. Every vertex has a label that is hidden initially.
An algorithm may request the labels for a small Q ⊆ V ,
after which it needs to predict the labels for V \Q using a
hypothesis ht ∈ Ht, for some t ∈ [T ].

Define ν∗ := mint∈[T ],h∈Ht
er(t, h), namely, the minimum

error across all the instance spaces. Define t∗ as the t ∈ [T ]
such that ν∗ = minh∈Ht

er(t, h), that is, Xt∗ is the best
instance space. We aim to understand the label complexity
of discovering a pair (t, h) with er(t, h) ≤ ν∗ + ϵ for an
arbitrary ϵ ∈ (0, 0.5).

Our study covers two algorithm classes.

• The budget class: An algorithm is given a budget L
on the maximum number of label requests and must
terminate after exhausting the budget.

• The verifiable class: An algorithm is given a value of
ϵ and terminates only when it can ensure er(t, h) ≤
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ν∗ + ϵ with high confidence.

The notions of budget and verifiable algorithms are well-
known in traditional active learning (where there is only one
instance space); see (Balcan et al., 2010; Hanneke, 2012)
and the references therein. Intuitively, budget algorithms
are less powerful because they need not be aware of the
precision (namely, ϵ) that they can guarantee. Although such
algorithms can find a good hypothesis given a large enough
budget L, they may not be able to verify the precision of the
hypothesis. Verifiable algorithms, in contrast, must monitor
the precision of the best hypothesis found so far. A verifiable
algorithm can usually be turned into a budget algorithm with
nearly the same label complexity, but the opposite may not
be true. Understanding when the two algorithm classes can
be separated — that is, finding a scenario where budget
algorithms achieve a provably smaller label complexity —
has been an intriguing topic in active learning (Balcan et al.,
2010; Hanneke, 2012).

This paper presents the first study of budget and verifiable
algorithms on GCNs under the cross-space learning frame-
work. Our most important contribution is a new separation
unique to GCNs, which reveals a somewhat surprising fun-
damental difference of the two algorithm classes. Specifi-
cally, when T is O(polylog n) — a condition that typically
holds in reality — a budget algorithm can ensure the same
asymptotic label complexity (up to a polylog factor) as if
we were performing active learning directly in Xt∗ , even
though t∗ is unknown! The same guarantee, however, can
be proved to be impossible for verifiable algorithms.

Our budget and verifiable algorithms are sensitive to the dis-
agreement coefficients1 of the T instance spaces. Their label
complexities never exceed, but can be considerably lower
than, Õ(ν

∗+ϵ
ϵ2 ·maxTt=1 λt) where λt is the VC dimension

of (Xt,Ht) and Õ(.) hides a polylog factor. These results
complement the previous work (to be reviewed in Section 4)
that focused on developing the underlying convolution pro-
cess. For example, Kipf and Welling 2017 recommended
t∗ = 2 for their now-famous convolution design, namely,
the best instance space is obtained by performing convolu-
tion only once. They came to this conclusion after trying
t = 2, 3, 4, ..., only to realize that t = 2 yields the best
learning outcome. However, inspecting all those t values
requires a non-trivial label cost, the minimization of which
is exactly the cross-space learning problem we aim to solve.

Furthermore, our results motivate a theoretical model (to be
introduced in Section 7) for studying cross-space learning
on GCNs in a stochastic manner. At a high level, an oracle
starts by choosing an appropriate graph G := (V,E) and
an integer t∗ ≥ 1. It then generates an n× d matrix X(t∗)

1Disagree coefficient is a key concept in the theory of active
learning, to be reviewed in Section 3.

and the vertex labels according to a certain distribution.
After that, the oracle computes X(1) from X(t∗) through a
“reverse convolution” process on G, effectively concealing
X(t∗). Finally, it releases X(1), G, and T to an algorithm for
cross-space learning. The model captures a scenario where
GCNs promise more accurate classification than learning
from X(1) directly, thereby offering a plausible explanation
about the usefulness of GCNs.

2. Cross-Space Active Learning on a GCN
This section formalizes the main problem studied in this
paper. The GCN variant behind our formulation is simple
graph convolution (SGC) (Wu et al., 2019). This choice is
based on several considerations. First, SGC has been shown
to be just as effective as many (more) sophisticated GCN
architectures; see, for example, the empirical evaluations in
(Wu et al., 2019; Chen et al., 2020; He et al., 2020; Wang
et al., 2021; Zhu & Koniusz, 2021). Second, SGC has a
clean convolution process especially suitable for theoretical
studies. Third, for proving strong negative results, we should
assume a convolution process that is as primitive as possible
because, intuitively, more sophisticated convolution can
only increase the problem’s hardness. Fourth, extending
our algorithms to general GCN architectures is easy, as
discussed in Appendix C.

All matrices will be written in bold fonts. Given a matrix
M, we use Mi to denote the i-th row of M and M[i, j] to
denote the element at the i-th row and j-th column of M.

Problem. Let G := (V,E) be an undirected graph where
every vertex has a self-loop, and no parallel edges exist be-
tween two vertices. We consider, w.l.o.g., V = [n]. Denote
by A the adjacency matrix of G, and by D := diag(deg(1),
..., deg(n)) the degree matrix, where deg(i) is the degree
of vertex i ∈ [n]. Define

S := D−1/2AD−1/2 (1)

where D−1/2 := diag( 1√
deg(1)

, ..., 1√
deg(n)

).

Let X be an n×d matrix where Xi contains the raw features
of vertex i ∈ [n]. With X(1) := X, the convolution process
of SGC generates

X(t+1) := SX(t) = StX (2)

for each t ≥ 1. X(t+1) is an n × d matrix with X
(t+1)
i

representing the synthesized features of vertex i. The con-
volution is repeated T − 1 times for some T ≥ 2, which
yields X(2), ...,X(T ).

The oracle secretly chooses an n × 1 matrix Y, where
Yi ∈ Y := {−1, 1} is the label of vertex i ∈ [n]. The goal
of learning is to classify the label of each vertex with the
fewest mistakes.
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To perform label classification, we resort to a class H of hy-
potheses each being a function h : Rd → Y . Conveniently,
we regard each X

(t)
i as a point in Rd such that h(X(t)

i ) gives
the classification result for vertex i based on its features in
X(t). For any t ∈ [T ] and h ∈ H, define

er(t, h) :=
|{i ∈ [n] | h(X(t)

i ) ̸= Yi}|
n

. (3)

The minimum achievable error is

ν∗ := min
t∈[T ],h∈H

er(t, h). (4)

Let λ := vc(Rd,H) where vc represents “VC dimension”.
We will treat X(t) as a set of n points in Rd. Clearly,
vc(X(t),H) ≤ λ.

A learning algorithm A has complete details of G,X, T ,
and H, but knows nothing about Y. It can designate any
vertex i ∈ [n] and request the oracle to reveal the label Yi.
The cost of A is the total number of requests. In the end, A
must choose a pair (t, h) ∈ [T ]×H and, for each vertex i

whose label remains hidden, predicts the label as h(X(t)
i ).

We consider only the situation where the cost is far less
than n such that the number of mistakes by A is essentially
n · er(t, h). The objective of cross-space active learning
(CSAL) on a GCN is to minimize er(t, h).

Remark 2.1. Under the terminology in Section 1, the in-
stance spaceXt, for each t ∈ [T ], is the set of d-dimensional
points in X(t), and Ht = H. Using the same dimensionality
d and hypothesis class in all spaces allows us to present the
core ideas with minimum technical complication. Remov-
ing these restrictions is easy, as shown in Appendix C.

Two Algorithm Classes. Besides G, X, T , and H, a budget
CSAL algorithm A takes two extra parameters: δ ∈ (0, 1)
and L ≥ 1; A is allowed to request at most L labels.

Definition 2.2. A budget CSAL algorithm A achieves
a label complexity Λ(ϵ, δ, G, X, Y, T, H) if, for any
G,X,Y,H, ϵ ∈ (0, 0.5), δ ∈ (0, 1), T ≥ 2, and L ≥
Λ(ϵ, δ,G,X,Y, T,H), the following statement holds with
probability at least 1− δ: A(L, δ,G,X, T,H) outputs (t, h)
with er(t, h) ≤ ν∗ + ϵ.

Besides G, X, T , and H, a verifiable CSAL algorithm A
takes two extra parameters: δ ∈ (0, 1) and ϵ ∈ (0, 0.5); A
is allowed to request an arbitrary number of labels.

Definition 2.3. A verifiable CSAL algorithm A achieves
a label complexity Λ(ϵ, δ,G,X,Y, T,H) if, for any
G,X,Y,H, ϵ ∈ (0, 0.5), δ ∈ (0, 1), and T ≥ 2, the fol-
lowing statement holds with probability at least 1 − δ:
A(ϵ, δ,G,X, T,H) outputs (t, h) with er(t, h) ≤ ν∗ + ϵ
by making at most Λ(ϵ, δ,G,X,Y, T,H) label requests.

A key difference between Definitions 2.2 and 2.3 is what
happens when L is far greater than Λ(ϵ, δ, G, X,Y, T, H).
A verifiable algorithm must stop with a cost far less than L,
while a budget algorithm is not required to do so.

3. Review of Active Learning
This section discusses several concepts and results from
active learning that are relevant to our discussion.

Basic Definitions. Let X be an instance space and Y :=
{−1, 1} be a label space. Denote by D a distribution (i.e.,
probability measure) overX ×Y . H is a class of hypotheses,
each being a function h : X → Y . Let λ := vc(X ,H). For
each h ∈ H, define erD(h) := Pr(x,y)∼D[h(x) ̸= y] and
ν := infh∈H erD(h). We consider that H has at least one
optimal hypothesis h∗ with erD(h

∗) = ν.

An active learning algorithm A draws a sequence of inde-
pendent samples (xi, yi) ∼ D, where i := 1, 2, ...,m for
some finite m. For each i ∈ [m], the instance xi is disclosed
to A, but the label yi is hidden; A can ask an oracle to re-
veal yi if necessary. In the end, A must return a hypothesis
h ∈ H. Its cost is the total number of label requests made.

Disagreement Coefficients. Given any S ⊆ X , define
PrD[S] := Pr(x,y)∼D[x ∈ S]. For any H ⊆ H, the dis-
agreement region ofH is

DIS(H) := {x ∈ X | ∃h, g ∈ H s.t. h(x) ̸= g(x)}.

Given any h ∈ H and r > 0, define

BD(h, r) := {g ∈ H | Pr
D
[DIS({g, h})] ≤ r}.

For any h ∈ H, its disagreement coefficient under D is a
function θhH,D : (0, 1]→ [1,∞) defined as

θhH,D(r) := max

{
1, sup

r′>r

PrD[DIS(BD(h, r
′))]

r′

}
. (5)

The disagreement coefficient of H under D is the function

θH,D(r) := θh
∗

H,D(r) (6)

for an arbitrary optimal h∗. All the results stated in this
paper hold regardless of the choice of h∗.

Proposition 3.1 (Chapter 7 of (Hanneke, 2014)). Disagree-
ment coefficients have the following properties:

1. θH,D(r) ≤ min{1/r, |H|}.

2. θH,D(r) is non-increasing in r.

3. θH,D(r) ≤ c · θH,D(cr) for any constant c > 1.

4. θH∪G,D(r) ≤ θH,D(r)+θG,D(r)+2 for any hypothesis
classes H and G.
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Label Complexities. A verifiable active learning algorithm
A takes three parameters: ϵ ∈ (0, 0.5), δ ∈ (0, 1), and
H. It achieves a label complexity Λ(ϵ, δ,D,H) if, for any
D, ϵ ∈ (0, 0.5), and δ ∈ (0, 1), the following holds with
probability at least 1 − δ: A(ϵ, δ,H) returns a hypothesis
h ∈ H with erD(h) ≤ ν+ϵ by making at most Λ(ϵ, δ,D,H)
label requests.

Lemma 3.2. There is a verifiable active learning algorithm
achieving a verifiable label complexity Λ(ϵ, δ,D,H) at most

θH,D(ν + ϵ) · (1 + ν/ϵ)2 · λ · polylog(1/(δϵ)). (7)

Proof. See Chapters 5.2 and 8.7 of (Hanneke, 2014).

The algorithm in the lemma will be referred to as
ActLearnV(ϵ, δ,H).

A budget active learning algorithm A takes three param-
eters: L ≥ 1, δ ∈ (0, 1), and H; the algorithm is allowed
to request at most L labels. A achieves a label complexity
Λ(ϵ, δ,D,H) if, for any D, ϵ ∈ (0, 0.5), δ ∈ (0, 1), and
L ≥ Λ(ϵ, δ,D,H), the following holds with probability at
least 1 − δ: A(L, δ,H) returns a hypothesis h ∈ H with
erD(h) ≤ ν + ϵ.

Lemma 3.3. There is a budget active learning algorithm
achieving a budget label complexity Λ(ϵ, δ, D,H) at most
the value given in (7).

Proof. See Chapter 5.2 of (Hanneke, 2014).

The algorithm in the lemma will be referred to as
ActLearnB(L, δ,H).

Remark 3.4. Our verifiable definition corresponds to the
notion of self-verifying in (Hanneke, 2014). Balcan et al.
(2010) defined verifiable in an alternative manner that is
equivalent to self-verifying (and hence also to our version),
up to a polylog(1/(δϵ)) factor in label complexity, as noted
in (Balcan et al., 2010; Hanneke, 2014).

4. Related Work
Active Learning. In passive learning, an algorithm’s cost
is measured by the number of instance-label pairs drawn.
In practical applications, labeling an instance can be con-
siderably more expensive than drawing an instance. The
phenomenon motivated active learning where, as discussed
in Section 3, the primary goal is label minimization. In their
seminal work, Balcan, Beygelzimer, and Langford (2009)
developed the A2 algorithm which paved the foundation of
modern active learning algorithms (see (Dasgupta, 2005;
Hanneke, 2007; Dasgupta et al., 2007; Castro & Nowak,
2008; Balcan et al., 2007; Koltchinskii, 2010; Balcan et al.,

2010; Hanneke, 2012) and the references therein). Many
of those algorithms achieve near-optimal label complexi-
ties with respect to known lower bounds (Dasgupta, 2005;
Kaariainen, 2006; Castro & Nowak, 2008; Beygelzimer
et al., 2009; Hanneke, 2011). Disagreement coefficient,
which was introduced by Hanneke (2007), has played a
major role in characterizing the label complexity of active
learning. The reader may refer to (Hanneke, 2014) for a
comprehensive survey on this area.

Balcan et al. (2010) and Hanneke (2012) showed that budget
algorithms achieve an asymptotically lower label complexity
than verifiable algorithms when ν is treated as a constant,
and ϵ is treated as an asymptotic parameter approaching 0
(see Section 3 for the definitions of ν and ϵ).

Graph Convolutional Networks. Recent years have wit-
nessed extensive research on GCNs. We refer the reader to
the surveys of (Liu & Zhou, 2020; Wu et al., 2021) for a
systematic introduction to this exciting topic. The following
discussion will focus on several categories in the literature
most relevant to this paper. For each category, we will pro-
vide citations to some representative work as entry points
for further readings.

The “main-stream” research on GCNs aims to design a con-
volution process to maximize the usefulness of vertices’
features in the generated instance spaces. Current solutions
can be further divided into spectral-based (Bruna et al.,
2014; Defferrard et al., 2016; Kipf & Welling, 2017; Wu
et al., 2019; Zhu & Koniusz, 2021) and spatial-based (At-
wood & Towsley, 2016; Gilmer et al.; Hamilton et al., 2017;
Li et al., 2018b; Micheli, 2009). Our algorithms, which are
developed under a generic cross-space setting (Appendix C),
can be applied to find the best instance space regardless of
whether the GCN is spectral- or spatial-based.

Most existing GCNs suffer from the over-smoothing issue,
namely, for each vertex, its features in the generated instance
spaces converge quickly as T (i.e., the number of instance
spaces) increases. Considerable effort has been dedicated
to understanding and remedying this issue (Li et al., 2018a;
Klicpera et al., 2019; Oono & Suzuki, 2020; Zhao & Akoglu,
2020; Xu et al., 2018; Rong et al., 2020; Liu et al., 2020).
So far, the largest value of T even in the “deepest” GCN
can safely be regarded to be O(polylog n) (recall that n is
the number of vertices). This is why T = O(polylog n)
presents an important scenario in this field.

The statistic model to be developed in Section 7 belongs to
the explainablility category, where the objective is to dis-
cover qualitative justifications on the learning outcome of a
GCN; see (Luo et al., 2020; Lin et al., 2021; Schlichtkrull
et al., 2021; Ying et al., 2019; Yuan et al., 2021) and the refer-
ences therein. Finally, our work is also remotely relevant to
the category studying the expressive power of GCNs (Mor-
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ris et al., 2019; Maron et al., 2019; Srinivasan & Ribeiro,
2020; Xu et al., 2019).

Multi-View Learning. Cross-space learning proposed in
this paper should not be confused with “multi-view learn-
ing”. The latter also concerns multiple instance spaces, but
the goal there is to produce a composite hypothesis that
utilizes hypotheses of different spaces to collaboratively
accomplish a learning task. In contrast, cross-space learn-
ing’s aim is to discover the instance space most effective
for learning, which in essence is to discover the best feature
representations for the vertices (i.e., embedding the graph
appropriately), as is a primary motivation of GCNs. The
interested reader may refer to (Balcan & Blum, 2010; Lan &
Huan, 2015; Muslea et al., 2006; Wang & Zhou, 2008; 2010)
for representative work on (active) multi-view learning.

5. Algorithms
This section will describe the proposed CSAL algorithms.

Notations. For t ∈ [T ], set νt := minh∈H er(t, h) — the
function er(t, h) was defined in (3) — and let h∗

t be a hy-
pothesis in H satisfying er(t, h∗

t ) = νt. In other words, νt
is the minimum error attainable in instance space Xt, while
h∗
t is a hypothesis giving that error. Define t∗ as an inte-

ger in [T ] such that νt∗ = ν∗ where ν∗ is the cross-space
minimum error, as defined in (4).

For each t ∈ [T ], we impose a distribution Ut over X(t)×Y :
a sample (x, y) ∼ Ut satisfies Pr[(x, y) = (X

(t)
i ,Yi)] =

1/n for each i ∈ [n]. Define

θt(r) := θH,Ut
(r) (8)

where θH,Ut(r) is the disagreement coefficient of H under
Ut (see (6) for the definition of disagreement coefficient).
Impose also a distribution U over V ×Y : a sample (x, y) ∼
U satisfies Pr[(x, y) = (i,Yi)] = 1/n for each i ∈ [n].

5.1. A Verifiable Algorithm

To motivate our approach, let us first understand the de-
ficiency of a “standard” method for tackling CSAL. Sup-
pose that, for each t ∈ [T ], we can (i) find a hypothesis
ht ∈ H with er(t, ht) ≤ νt + ϵ/2, and (ii) obtain an esti-
mate êr(t, ht) of er(t, ht) within absolute error ϵ/2. The
(t, ht) having the lowest êr(t, ht) must enjoy the guarantee
er(t, ht) ≤ ν∗ + ϵ and, therefore, can be returned as a legal
output. By textbook results from the PAC theory, we can
obtain the aforementioned (t, ht) and êr(t, ht) for each t
with high confidence by probing Õ( λ

ϵ2 ·(νt+ϵ)) labels. The
overall cost is thus Õ( λ

ϵ2

∑T
t=1(νt + ϵ)).

We will show how to achieve a label complexity that never
exceeds, but can be much smaller than, Õ( λ

ϵ2 (ν
∗+ϵ)). Note

that λ
ϵ2 (ν

∗ + ϵ) can be far less than λ
ϵ2

∑T
t=1(νt + ϵ) even

if T is as small as 2 (e.g., consider ν∗ = ν1 ≪ ν2). The
vast difference between the two complexities suggests that
— for designing verifiable algorithms — the instance spaces
should not be explored independently, because doing so
will have the cost dominated by the hardest instance space,
which can be much more expensive to learn than Xt∗ .

Instead of learning the instance spaces individually, we
combine them into one. For this purpose, it is crucial to
think of every (t, h) ∈ [T ]×H as a function from V to Y .
For each (t, h), we define an induced function

gt,h(i) := h(X
(t)
i )

and accordingly

er(gt,h) := er(t, h) =
|{i ∈ [n] | gt,h(i) ̸= Yi}|

n
.

Naturally, anyH ⊆ [T ]×H induces a hypothesis class

GH := {gt,h | (t, h) ∈ H}. (9)

Given ϵ, δ, and H, our verifiable algorithm is:

run ActLearnV(ϵ, δ,G[T ]×H) by setting D = U .

Recall (from Section 3) that ActLearnV samples from an
agnostic distribution D. We manually fix the distribution
to U . Every time ActLearnV draws a sample (x, y) ∼ D,
we supply a pair (x, y) ∼ U with y hidden. If ActLearnV
requests y, the request is relayed to the oracle. Given the
output gt,h ∈ G[T ]×H from ActLearnV, we return (t, h).

For analysis, define

θall(r) := θG[T ]×H,U (r)

where θG[T ]×H,U (r) is the disagreement coefficient of
G[T ]×H under U .

Lemma 5.1. For any r > 0, θall(r) < 3
∑T

t=1 θt(r).

Proof. Define Gt = G{t}×H. By (9), G[T ]×H =
⋃

t∈[T ] Gt.
For any t ∈ [T ], each (t, h) ∈ t × H essentially maps
V to Y in the same way as gt,h. The reader can verify
θGt,U (r) = θt(r) from the disagreement coefficient defini-
tion in Section 3. The lemma now follows from Property 4
in Proposition 3.1 and the fact that θt(r) ≥ 1.

Theorem 5.2. Our algorithm has a label complexity

λ · θall(ν∗ + ϵ) · (1 + ν∗/ϵ)2 · polylog(nT/(δϵ)). (10)

Proof. Let g∗ := argming∈G[T ]×H
er(g) be an optimal hy-

pothesis in G[T ]×H; note that er(g∗) = ν∗. Set λ′ =
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vc(V,G[T ]×H). By Lemma 3.2, with probability at least
1 − δ, the output gt,h of ActLearnV(ϵ, δ,G[T ]×H) satis-
fies er(gt,h) ≤ er(g∗) + ϵ = ν∗ + ϵ and ActLearnV(ϵ,
δ,G[T ]×H) has a cost at most λ′ · θall(ν∗+ ϵ) · (1+ ν∗/ϵ)2 ·
polylog(1/(δϵ)). Next, we will show λ′ < log2 T +
λ log2(3n), which will complete the proof.

We will bound the number of ways to classify V using the
hypotheses in G[T ]×H =

⋃
t∈[T ] Gt, where Gt = G{t}×H.

For each t ∈ [T ], vc(V,Gt) = vc(X(t),H) ≤ vc(Rd,H) =
λ. By Sauer’s lemma (Sauer, 1972), V can be classified in
less than (3n)λ ways using the hypotheses in Gt. Hence,
G[T ]×H can classify V in less than T (3n)λ ways, implying
λ′ < log2 T + λ log2(3n) (applying the definition of VC
dimension).

Corollary 5.3. The label complexity in Theorem 5.2 is at
most λ

ϵ2 · (ϵ+ ν∗) · polylog(nT/(δϵ)).

Proof. The corollary follows from θall(ν
∗ + ϵ) ≤ 1

ν∗+ϵ
(Property 1, Proposition 3.1).

Remark 5.4. Our solution can be easily converted to a
budget algorithm. It suffices to change ActLearnV(ϵ,
δ,G[T ]×H) to ActLearnB(L, δ, G[T ]×H) where L is the
label budget. Theorem 5.2 still holds (replacing Lemma 3.2
with Lemma 3.3 in the proof).

5.2. A Budget Algorithm

We have seen earlier that, as far as verifiable algorithms are
concerned, it is a bad idea to learn each instance space inde-
pendently. However, the situation changes dramatically for
budget algorithms. Our budget CSAL algorithm — named
Budget-CSAL — simply learns a hypothesis from every
instance space independently and then returns the best of
all, as shown below.

Budget-CSAL(L, δ,H)
1. for t← 1 to T do
2. ht ← output of ActLearnB(L/(2T ), δ/2,H)

with D = Ut
3. H = {(t, ht) | t ∈ [T ]}
4. gt,h ← output of ActLearnB(L/2, δ/2,GH)

with D = U /* see (9) for GH */
5. return (t, h)

At Line 2, we run ActLearnB (the algorithm in Lemma 3.3)
by manually fixing the agnostic distribution D to Ut (in the
way described in Section 5.1), whereas D is manually fixed
to U at Line 4.

Theorem 5.5. Budget-CSAL has a label complexity

λ · T · θt∗(ν∗ + ϵ) · (1 + ν∗/ϵ)2 · polylog(T/(δϵ)). (11)

Before giving the proof, let us first point out several impor-
tant facts.

• For T = polylog(1/(δϵ)) — a scenario with practical
importance — the label complexity becomes Õ(λ ·
θt∗(ν

∗+ϵ)·(1+ν∗/ϵ)2). This is the “ideal” complexity
achievable if we had known t∗ in advance (in that
case, ignore all instance spaces except Xt∗ and apply
Lemma 3.3 directly in Xt∗ ). Theorem 5.2, on the other
hand, does not offer such a guarantee: even for T = 2,
the term θall(ν

∗+ ϵ) in (10) can be considerably larger
than θt∗(ν

∗ + ϵ), as we will see in Remark 6.7.

• For arbitrarily large T , the relationship between
θall(ν

∗+ϵ) and T ·θt∗(ν∗+ϵ) is not fixed. It is possible
for θall(ν∗+ϵ) to be far greater than T ·θt∗(ν∗+ϵ); an
example will appear in Remark 6.7. Conversely, there
are also scenarios2 where θall(ν

∗ + ϵ) is far less than
T · θt∗(ν∗ + ϵ).

• Theorems 5.2 and 5.5 (see also Remark 5.4) together
imply that there is a budget algorithm whose label
complexity is upper bounded by the smaller between
(10) and (11).

Proof of Theorem 5.5. We require

L

2T
≥ θt∗

(
ν∗ +

ϵ

2

)
·
(
1 +

ν∗

ϵ/2

)2

λ · polylog
( 1

δϵ/4

)
. (12)

By Lemma 3.3, the hypothesis ht∗ obtained at Line 2 of
Budget-CSAL for t = t∗ satisfies er(t∗, ht∗) ≤ ν∗ + ϵ/2
with probability at least 1 − δ/2. Assume that the event
occurs. Let g∗ = argming∈GH

er(g). Because ht∗ ∈ H,
we know er(g∗) = er(t∗, ht∗) ≤ ν∗ + ϵ/2.

We also require

L

2
≥ θGH,U

(
er(g∗) +

ϵ

2

)
·
(
1 +

er(g∗)

ϵ/2

)2

·

λ′ · polylog
( 1

δϵ/4

)
(13)

where λ′ := vc(V,GH). By Lemma 3.2, with probability at
least 1− δ/2, the hypothesis gt,h returned at Line 4 satisfies
er(gt,h) ≤ er(g∗) + ϵ/2 ≤ ν∗ + ϵ. Therefore, the output
(t, h) of Budget-CSAL satisfies er(t, h) ≤ ν∗ + ϵ with
probability at least 1− δ.

Properties 2 and 3 in Proposition 3.1 tell us θt∗(ν∗ + ϵ
2 ) ≤

θt∗(
ν∗+ϵ

2 ) ≤ 2θt∗(ν
∗ + ϵ). From Property 1 of the same

proposition, we know θGH,U (r) ≤ |GH| = T for any r > 0.
Furthermore, λ′ ≤ log2 |GH| = log2 T . Equipped with
these bounds, it is straightforward to verify that both (12)
and (13) are fulfilled when L is at least the value in (11).

2For example, this happens when G is the special graph where
each vertex has only one edge to itself (a self-loop). In this case,
X(t) remains the same for all t ≥ 1 and θall(ν∗+ϵ) = θt∗(ν

∗+ϵ).
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6. Hardness of Verification in CSAL
We are now ready to discuss the paper’s most important
result: a separation between verifiable and budget CSAL
algorithms. Section 6.1 will describe the separation and
present a complete proof. Section 6.2 will then adapt the
proof to analyze the tightness of Theorem 5.2.

6.1. Separation between Budget and Verification

The separation can now be formally stated as:

Theorem 6.1. No verifiable algorithm can achieve a label
complexity in the form of (11), even if T = 2.

The rest of the subsection serves as a proof of the theorem.
The hardness stems from the intuitive fact that a verifiable
algorithm must learn sufficiently well in T = 2 instance
spaces simultaneously. To prevent the algorithm from ig-
noring either space, we must force it to return a hypothesis
from a space that varies depending on the GCN input. Fur-
thermore, the GCN input must have certain properties —
some of which are related to disagreement coefficients —
for us to control the algorithm’s cost according to (11). The
crux of the proof is to design a suitable family of GCN
inputs, which is unique to cross-space learning on GCNs
and manifests how our argument differs from the known
hardness proofs in active learning.

A Problem of Distinguishing Distributions. Fix arbitrary
values ϵ and n such that ϵ ∈ (0, 1/12], and 1

6ϵ and ϵn are
both integers. Set

ℓ := 6ϵn

and define interval

Ij := ((j − 1)ℓ, jℓ], for j ∈ [1/(6ϵ)].

Note that (0, n] is partitioned by I1, I2, ..., I 1
6ϵ

.

Next, we introduce 1 + 1
6ϵ matrices Y of dimensions n× 1

with Yi ∈ {−1, 1} for all i ∈ [n]. For each j ∈ [ 1
6ϵ ], matrix

Yj is defined as follows.

• Yj
i := −1 for i /∈ Ij ;

• Yj
i := −1 for the ℓ/3 smallest values of i ∈ Ij and

Yj
i := 1 for the other 2ℓ/3 values of i ∈ Ij .

In addition, define Yneg as the matrix with Yneg
i := −1 for

all i ∈ [n].

Consider two distributions over Y := {Yneg,Y1, ...,Y
1
6ϵ }.

• D1: uniform over {Y1, ...,Y
1
6ϵ } (i.e., probability 0

for Yneg);

• D2: probability 1 for Yneg.

Define distribution D3 := 0.5D1 + 0.5D2. In the dis-
tinguishing problem, given a Y ∼ D3, a (determinis-
tic/randomized) algorithm B needs to decide whether Y
comes from D1 or D2. In the beginning, Y is invisible. B
can request an oracle to reveal Yi for any i ∈ [n] — we will
call the request a probe — and must output either D1 or D2

in the end. The cost of B is the number of probes.

Lemma 6.2. For the distinguishing problem, if an algorithm
B ensures PrY∼D3

[B errs on Y] ≤ 1/8, B must make more
than 1/(12ϵ) probes on at least one Y ∈ Y with a non-zero
probability.

Proof. Let Bdet be a deterministic algorithm that has cost
at most 1/(12ϵ) on any Y ∈ Y. We will show that
PrY∼D3 [Bdet errs on Y] ≥ 1/4. Let Z be the output of
Bdet when all the probes reveal label −1. If Z = D1, Bdet
errs on Yneg and, hence, PrY∼D3

[Bdet errs on Y] ≥ 1/2.
On the other hand, if Z = D2, then Bdet errs on at
least half of the inputs from {Y1, ...,Y

1
6ϵ },3 meaning

PrY∼D3
[Bdet errs on Y] ≥ 1/4.

Consider now a randomized algorithm B that always has
cost at most 1/(12ϵ) on every Y ∈ Y. B can be regarded
as a distribution over a family of deterministic algorithms
Bdet each incurring cost no more than 1/(12ϵ) on any
Y. As PrY∼D3 [Bdet errs on Y] ≥ 1/4 for every Bdet,
PrY∼D3

[B errs on Y] must be at least 1/4.

Therefore, if PrY∼D3 [B errs on Y] ≤ 1/8, there must be at
least one Y ∈ Y, on which B makes at least 1/(12ϵ) probes
with a non-zero probability.

From Verification to Distinguishing. We now construct a
family of GCN inputs such that if a verifiable algorithm A
can achieve the label complexity (11) on those inputs, we
can obtain an algorithm B for the distinguishing problem to
beat Lemma 6.2.

Let ϵ and n be chosen as in the distinguishing problem.
To build a GCN input, we design G, X, Y, T , and H as
follows.

• G is a complete graph on n vertices with self-loops.

• X is an n × 1 matrix where Xi := i for all vertices
i ∈ [n]. We draw Y ∼ D3 and fix T := 2.

3Among all the intervals I1, ..., I1/(6ϵ), Bdet can probe vertices
of at most 1/(12ϵ) intervals. Let Ij , for some j ∈ [1/(6ϵ)], be an
interval that Bdet never probes. When Y = Yj , all the probes
must return −1 and, hence, Bdet errs by returning D2.
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• Given an interval I := (a, b], define hI(x) as the hy-
pothesis that returns 1 if x ∈ I , or −1 otherwise. Let

H := {hIj | j ∈ [1/(6ϵ)]}. (14)

We will use Y to identify a GCN input because all the other
components of an input are fixed. Let λ := (R,H) = 2.

Proposition 6.3. For any i ∈ [n], X(2)
i = (n+ 1)/2.

Proof. See Appendix A.

Define

ρ := the only j ∈ [1/(6ϵ)] s.t. (n+ 1)/2 ∈ Ij . (15)

Proposition 6.3 implies that there are, effectively, only two
different hypotheses on X(2):

• hIρ , which classifies all vertices as 1;

• every other hypothesis in H, which classifies all ver-
tices as −1.

Proposition 6.4. If Y is from D1, t∗ = 1 and ν∗ = 2ϵ.
Otherwise, t∗ = 2 and ν∗ = 0. In both cases, any h ∈ H
with er(t∗, h) ≤ ν∗ + ϵ is an optimal hypothesis on X(t∗),
i.e., er(t∗, h) = ν∗.

Proof. Consider Y = Yk for some k ∈ [1/(6ϵ)]. On
X(1), hIk correctly classifies all vertices, except for the ℓ/3

smallest vertices in Ik; hence, er(1, hIk) = ℓ/3
n = 2ϵ. For

any j ̸= k, hIj mis-classifies the ℓ vertices in Ij and also the
2ℓ/3 largest vertices in Ik; thus, er(1, hIj ) = 5ℓ/3

n = 10ϵ.
On X(2), hIρ mis-classifies all vertices, except the 2ℓ/3
largest vertices in Ij ; hence, er(2, hIρ) = (n− 2ℓ/3)/n =
1− 4ϵ. For any j ̸= ρ, hIj correctly classifies all vertices,
except for the 2ℓ/3 largest vertices in Ik; thus, er(2, hIj ) =
2ℓ/3
n = 4ϵ. Therefore, ν∗ = 2ϵ, t∗ = 1, (1, hIk) is the only

legal output, and er(1, hIk) = ν∗.

For Y = Yneg, in the same fashion, one can verify that
er(1, h) = 6ϵ for every h ∈ H, er(2, hIj ) = 0 for every
j ̸= ρ, and er(2, hIρ) = 1. Therefore, ν∗ = 0, t∗ = 2, the
set {(2, hIj ) | j ̸= ρ} contains all the legal outputs, and
er(2, hIj ) = ν∗ for all j ̸= ρ.

Henceforth, we say that an algorithm fails on a GCN input
Y ∈ Y if it does not return a pair (t, h) with er(t, h) = ν∗.

Proposition 6.5. If Y comes from D1, θt∗(ν
∗ + ϵ) =

1/(12ϵ). Otherwise, θt∗(ν∗ + ϵ) = 1.

Proof. See Appendix B.

Fix δ = 1/16. Using Propositions 6.4 and 6.5, we can
simplify the label complexity (11) of A into

θt∗(ν
∗ + ϵ) · α

for some α = polylog( 1ϵ ). Choose ϵ small enough to make

α < 1/(12ϵ).

Given any GCN input Y ∈ Y, with probability ≥ 15/16,
A returns an optimal hypothesis on X(t∗) (due to Proposi-
tion 6.4) with cost at most θt∗(ν∗ + ϵ) · α.

Lemma 6.6. From A, we can obtain an algorithm A′ with
the following properties.

• Given any GCN input Y ∈ Y, A′ requests at most
α · θt∗(ν∗ + ϵ) labels with probability ≥ 15/16;

• Given any GCN input Y ∈ Y, A′ outputs (2, hIj ) for
some j ̸= ρ when all the label requests return −1;

• PrY∼D3 [A′ fails on Y] ≤ 1/16.

Proof. A can be regarded as a distribution over a family
of deterministic algorithms Adet. We modify each Adet

as follows. Let Z be the output of Adet in the scenario
where all the label requests return −1. If Z = (2, hj)
for some j ̸= ρ, leave Adet unchanged. Otherwise, mod-
ify the output to (2, hj) for an arbitrary j ̸= ρ. Let
A′

det be the altered algorithm. Since Adet fails on Yneg

but A′
det does not, PrY∼D3

[Adet fails on Y] ≥ 1/2 and
PrY∼D3 [A′

det fails on Y] ≤ 1/2.

The above changes turn A into an alternative random-
ized algorithm A′. Our modification does not affect
how many labels are requested. Hence, A′ inherits from
A the property of ensuring cost at most θt∗(ν

∗ + ϵ) ·
α with probability at least 15/16 on any Y. Further-
more, PrY∼D3

[A′ fails on Y] ≤ PrY∼D3
[A fails on Y] ≤

1/16.

A′ need not be verifiable because it guarantees only a small
average failure probability over D3, rather than a small
probability on every Y. Nevertheless, it allows us to design
an algorithm B for the distinguishing problem:

algorithm B
1. run A′ up to α label requests
2. if A′ has not terminated or has found a label 1 then
3. return “Y from D1”
4. else return “Y from D2”

B errs only in two events

1. Y ̸= Yneg yet A′ terminates within α label requests
all of which returned −1;
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2. Y = Yneg yet A′ requests more than α labels.

In event 1, by Lemma 6.6, A′ returns (2, hIj ) for some
j ̸= ρ and thus fails on Y. Hence, event 1 occurs with
probability at most PrY∼D3 [A′ fails on Y] ≤ 1/16. On the
other hand:

Pr[event 2] = Pr
D3

[Yneg] · Pr[A′ has cost > α on Yneg]

≤ (1/2) · (1/16) = 1/32

where the inequality used Lemma 6.6 and α·θt∗(ν∗+ϵ) = α
when Y = Yneg (see Proposition 6.5).

Therefore, B satisfies PrY∼D3 [B errs on Y] ≤ 1/16 +
1/32 < 1/8 but makes at most α < 1/(12ϵ) probes with
probability 1 on every Y ∈ Y. This contradicts Lemma 6.2
and completes the proof of Theorem 6.1.

Remark 6.7. When Y = Yneg, one can verify that θall(ν∗+
ϵ) = Ω(1/ϵ) and θt∗(ν

∗ +ϵ) = 1. In this case, the budget
label complexity in (11) is lower than the verifiable one in
(10) by a factor of nearly 1/ϵ.

6.2. Tightness of Theorem 5.2

The complexity in (10) may seem “obviously” tight at first
glance. After all, when T = 1, cross-space active learn-
ing degenerates into traditional active learning such that
θall = θ1, in which case Theorem 5.2 degenerates into
Lemma 3.2 up to a polylog factor. The argument, although
correct, overlooks the influence of T . For example, it does
not rule out the possibility of improving (10) by a factor
of T c for some arbitrarily small constant c > 0. Such a
factor vanishes when T = 1 and, thus, does not improve
Lemma 3.2.

By modifying our construction in Section 6.1, we can rule
out the aforementioned T c improvement. In fact, this is
true even if θall(ν∗ + ϵ) is replaced with

∑T
t=1 θt(ν

∗ + ϵ)
in (10) (the former is asymptotically bounded by the lat-
ter, as shown in Lemma 5.1). A crucial observation is that
Proposition 6.3 implies Xt

i = (1+n)/2 for any i ∈ [n] and
t ≥ 2. By setting T = 1/ϵ, we thus create T − 1 identi-
cal instance spaces X2,X3, ...,XT . Proposition 6.5 implies∑T

t=1 θt(ν
∗ + ϵ) = Θ(1/ϵ). Hence, under a T c improve-

ment, the resulting algorithm must request (1/ϵ)1−c′ labels
on every GCN input Y ∈ Y for some constant c′ > 0. Such
an algorithm can then be leveraged to tackle the distinguish-
ing problem with a guarantee contradicting Lemma 6.2.

7. Stochastic Learning on a GCN
The problem formulated in Section 2 is non-stochastic be-
cause the input matrices X and Y are arbitrarily given. This
section will describe an alternative formulation where X
and Y are generated in a stochastic manner.

The oracle first chooses a graph G := (V,E) whose matrix
S as defined in (1) is invertible4. For every vertex i ∈
V := [n], the oracle draws a sample (xi, yi) from a certain
distribution Di over Rd × Y , where Y := {−1, 1} and
d ≥ 1 is some integer. The oracle then decides on some
integer k ≥ 2, generates an n × d matrix X(k) by setting
X

(k)
i = xi for each i ∈ [n], and creates an n × 1 matrix

Y with Yi = yi for each i. Finally, the oracle computes
X = (S−1)k−1X(k) and releases X, G, an integer T ≥ k to
a learning algorithm, which then tackles the CSAL problem
defined in Section 2 by choosing an appropriate hypothesis
class H.

In the above, every vertex i ∈ [n] has a dedicated distribu-
tion Di. This does not mean that there needs to be n distinct
distributions because many vertices can share the same dis-
tribution. This, naturally, is related to graph clustering (i.e.,
spectral clustering), which divides V into disjoint clusters
V1, V2, ..., Vs for some s ≥ 1. Vertices in Vj (for j ∈ [s])
share the same distribution, which we denote as DVj

.

The stochastic model allows us to study algorithms that
may not work well on every (X,Y), but achieve good
overall performance on the inputs generated according to
DV1 , ...,DVs . Next, we illustrate the idea on the special
case s = 1 where all vertices obey the same distribution
D. If ν := infh∈H erD(h), a reasonable goal is to find a
pair (t, h) ∈ [T ] × H with er(t, h) ≤ ν + ϵ. It is known
(see Chapter 7 of (Hanneke, 2014)) that many choices of D
and H lead to constant-bounded disagreement coefficients
θH,D. This translates to θk(ν

∗ + ϵ) = O(1) — where θk(r)
follows the definition in (8) — with high probability as
long as n is not too small (Tao & Wang, 2019). Therefore,
our algorithm in Theorem 5.5 achieves a label complexity
λ · T · (1 + ν∗/ϵ)2 · polylog(T/(δϵ)) with high probability,
over an input generated from D.

The model echoes the rationale behind GCNs that the topol-
ogy structure in G should provide valuable hints for dis-
covering features more amenable to learning than those in
X. Indeed, because of the matrix inversion performed by
the oracle, X alone (i.e., without G) would be useless for
learning. The algorithm essentially aims to recover X(k),
namely, the “genuine” features that the oracle concealed
using G. When viewed through this perspective, the success
of GCNs receives a plausible explanation.
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Appendix

A. Proof of Proposition 6.3
We use 1 to denote an n × n matrix where every element equals 1. Since G is a complete graph with self-loops, we
have A = 1. As the degree of each vertex is n, D−1/2 = diag( 1√

n
, ..., 1√

n
) = 1√

n
I where I is the n× n identity matrix.

Therefore, we have

S = D−1/2AD−1/2 =
1√
n
IA

1√
n
I =

1

n
1

Hence,

X(2) = SX(1) =
1

n
1X(1).

We can now compute each element X(2)
i , i ∈ [n], as

X
(2)
i =

1

n

n∑
j=1

1[i, j] ·X(1)
j =

1

n

n∑
j=1

X
(1)
j =

1

n

n∑
j=1

j =
1

n

(1 + n) · n
2

=
1 + n

2
.

B. Proof of Proposition 6.5
As in Section 5, for t = 1 and 2, impose a distribution Ut over X(t) × Y where a sample (x, y) ∼ Ut satisfies Pr[(x, y) =
(X

(t)
i ,Yi)] = 1/n for each i ∈ [n].

First, consider the case where Y comes from D1, and assume, w.l.o.g. (due to symmetry), Y = Y1. As explained in the
proof of Proposition 6.4, t∗ = 1, ν∗ = 2ϵ, and hI1 is optimal on X(1). For any j ̸= 1, hI1(x) ̸= hIj (x) if and only if
x ∈ I1 ∪ Ij . Therefore,

Pr
(x,y)∼U1

[hI1(x) ̸= hIj (x)] = Pr
(x,y)∼U1

[x ∈ I1 ∪ Ij ] = 2ℓ/n = 12ϵ

meaning that

BU1
(hI1 , r) =

{
{hI1}, if r < 12ϵ

H, otherwise

where H is given in (14). When BU1
(hI1 , r) = {hI1}, DIS(BU1

(hI1 , r′)) = ∅; when BU1
(hI1 , r) = H,

DIS(BU1
(hI1 , r)) = [n]. We thus obtain

Pr
U1

[DIS(BU1
(hI1 , r))] =

{
0, if r < 12ϵ

1, otherwise.

By the definition of disagreement coefficient — specifically, (5) and (6) — the reader can now easily verify that θH,U1(ν
∗ +

ϵ) = θH,U1
(3ϵ) := θh

I1

H,U1
(3ϵ) = 1/(12ϵ). This is also the value of θ1(ν∗ + ϵ), as defined in (8).

Next, we consider the case where Y comes from D2, that is, Y = Yneg. As explained in the proof of Proposition 6.4,
t∗ = 2, ν∗ = 0, and any hIj with j ̸= ρ is optimal on X(2). Fix k to an arbitrary value in [1/(6ϵ)] different from ρ. Clearly,

Pr
(x,y)∈D2

[hIk(x) ̸= hIj (x)] =

{
0, if j ̸= ρ

1, if j = ρ.

When r < 1, BU2
(hIk , r) = H\{hIρ} and DIS(BU2

(hIk , r)) = ∅; when r ≥ 1, BU2
(hIk , r) = H and DIS(BU2

(hIk , r)) =
{(n+ 1)/2}. We thus obtain

Pr
U2

[DIS(BU2
(hIk , r))] =

{
0, if r < 1

1, otherwise.

It is now straightforward to verify θ2(ν
∗ + ϵ) = θ2(ϵ) := θh

Ik

H,U2
(ϵ) = 1.
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C. General GCNs
We now generalize the problem definition of Section 2. Let G := (V,E), n, and the n× d matrix X all be defined as in
Section 2.

Define X(1) := X and d1 := d. We consider a deterministic convolution process Conv on G, which

• takes an n× dt matrix X(t) (for some t ≥ 1) as the parameter, and

• outputs an n× dt+1 matrix X(t+1).

Apply Conv for T − 1 times (for some T ≥ 2) to obtain X(2), ...,X(T ). Each t ∈ [T ] is associated with a class Ht of
hypotheses, each being a function from Rdt to Y . Let λt = vc(Rdt ,Ht). For any t ∈ [T ] and h ∈ Ht, define er(t, h) as in
(3). The cross-space minimum error ν∗ now equals mint∈[T ],h∈Ht

er(t, h).

The oracle chooses an n× 1 matrix Y as in Section 2. The meanings of budget/verfiable algorithm and label complexity
remain the same except that H should be replaced with {H1, ...,HT }.

Re-define Gt := {t} × Ht and Gall :=
⋃

t∈[T ] Gt. For any H ⊆ Gall, define GH as in (9). Regarding disagreement
coefficients, re-define θt(r) := θHt,Ut

(r) for each t ∈ [T ] and θall(r) := θGall,U (r). Our algorithms and analysis can be
adapted to the above setup. Theorem 5.2 still holds after replacing λ with maxTt=1 λt in (10). Similarly, Theorem 5.5 holds
after replacing λ with λt∗ in (11).


