
Subgraph Enumeration in Optimal I/O Complexity
Shiyuan Deng #

Chinese University of Hong Kong

Yufei Tao #

Chinese University of Hong Kong

Abstract
Given a massive data graph G = (V, E) and a small pattern graph Q, the goal of subgraph enumeration
is to list all the subgraphs of G isomorphic to Q. In the external memory (EM) model, it is well-
known that every indivisible algorithm must perform Ω( |E|ρ

Mρ−1B
) I/Os in the worst case, where M

represents the number of words in (internal) memory, B denotes the number of words in a disk
block, and ρ is the fractional edge covering number of Q. It has been a longstanding open problem
to design an algorithm to match this lower bound. The state of the art is an algorithm in ICDT’23
that achieves an I/O complexity of O( |E|ρ

Mρ−1B
logM/B

|E|
B

) with high probability. In this paper, we
remove the logM/B

|E|
B

factor, thereby settling the open problem when randomization is permitted.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Information
systems → Join algorithms

Keywords and phrases Subgraph Enumeration, Conjunctive Queries, External Memory, Algorithms

Digital Object Identifier 10.4230/LIPIcs.ICDT.2024.21

Funding This work was supported in part by GRF projects 14207820, 14203421, and 14222822 from
HKRGC.

1 Introduction

This paper revisits subgraph enumeration, a classical problem that has been extensively
studied in computer science (see [2, 3, 5–8,10, 13–19,27, 30, 32, 40] and the references therein)
and has many applications in database systems. The input is a simple undirected graph
G = (V, E) called the data graph and another simple undirected graph Q = (VQ, EQ) called
the pattern. The objective is to find all the pattern’s occurrences in the data graph, or
specifically, all the subgraphs1 of G that are isomorphic to Q. We consider that (i) Q is
connected (i.e., only a single connected component), and (ii) G has no isolated vertices (i.e.,
vertices with no incident edges), implying |V | ≤ 2|E|.

We investigate the problem in the external memory (EM) model [1], the de facto model
for studying I/O-efficient algorithms. A machine is equipped with M words of memory and
an unbounded disk that has been partitioned into disjoint blocks, each comprising B words.
The values of M and B satisfy M ≥ 2B. An I/O operation either reads a disk block into
memory or overwrites a disk block with B memory words. The cost of an algorithm is defined
as the number of I/Os performed. CPU calculation is for free.

We require Q to have a constant size, namely, |VQ| = O(1) (otherwise, even detecting
whether G contains at least one occurrence of Q is NP-hard [9]). Conversely, the data graph
G is presumed to have a gigantic size |E| > M and is provided under the adjacency format
across O(|E|/B) blocks. An algorithm should report each occurrence Gsub of Q by “emission”.
Specifically, the algorithm has the discretion to emit Gsub — for free — at any moment when
all the edges of Esub are memory resident, as long as Gsub is emitted only once throughout

1 A subgraph of G is defined to be a graph Gsub = (Vsub, Esub) satisfying Vsub ⊆ V and Esub ⊆ E.

© S. Deng and Y. Tao;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Database Theory (ICDT 2024).
Editors: Graham Cormode and Michael Shekelyan; Article No. 21; pp. 21:1–21:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sydeng@cse.cuhk.edu.hk
mailto:taoyf@cse.cuhk.edu.hk
https://doi.org/10.4230/LIPIcs.ICDT.2024.21
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


21:2 Subgraph Enumeration in Optimal I/O Complexity

the algorithm. Although not required to output the result to the disk, such an algorithm can
be easily modified to do so in O(OUT/B) extra I/Os, where OUT is the total number of
occurrences found.

Our discussion will focus on indivisible algorithms (also called tuple-based algorithms),
which operate under the constraint that one I/O can bring O(B) edges into the memory,
effectively prohibiting any compression tricks that attempt to pack ω(B) edges into B words.
Nearly all the existing subgraph enumeration algorithms are indivisible. Consequently,
discerning the optimal I/O complexity attainable by this class provides valuable insight into
the problem’s characteristics.

Previous Results. An imperative parameter characterizing the computational hardness of
subgraph enumeration is the fractional edge covering number ρ of the pattern Q = (VQ, EQ).
To understand this concept, imagine assigning, for each edge e = {X, Y } ∈ EQ, a non-
negative weight we such that, for each vertex X ∈ VQ, the edges incident on X have a
total weight at least 1, i.e.,

∑
e∈EQ:X∈e we ≥ 1. Then, the value of ρ is the smallest sum∑

e∈EQ
we that can be achieved by all possible weight assignments. As a well-established

lower bound [20, 23, 36], every (deterministic or randomized) indivisible algorithm needs
Ω(|E|ρ/(Mρ−1B)) I/Os to solve the subgraph enumeration problem in the worst case.

Designing an algorithm to match this lower bound has been an intriguing endeavor. Next,
we provide a chronicle of the milestones in the literature. In 2014, Pagh and Silvestri [36]
studied the subgraph enumeration problem for Q = triangle (i.e., 3-clique) and presented two
algorithms: the first is randomized and guarantees the I/O complexity O(|E|1.5/(

√
MB)) in

expectation, while the second is deterministic and ensures an I/O cost of O(|E|1.5/(
√

MB) ·
logM/B

|E|
B ). In 2015, Hu, Qiao, and Tao [22] (long version in [23]) managed to improve the

deterministic bound to O(|E|1.5/(
√

MB)). Because ρ = 1.5 for Q = triangle, the algorithm
of [22] is asymptotically optimal (and so is the randomized algorithm of [36] in expected
performance).

In 2016, Hu and Yi [20] considered the scenario where the pattern Q is an (arbitrary)
tree and gave a deterministic algorithm with I/O complexity O( |E|ρ

Mρ−1B logM/B
|E|
B ). In 2017,

Ketsman and Suciu [25] obtained an algorithm that, given an arbitrary pattern Q, solves
the subgraph enumeration problem in O( |E|ρ

Mρ−1B polylog |E|) I/Os with high probability (i.e.,
with probability at least 1 − 1/|E|c, where c can be an arbitrarily large constant decided
before running the algorithm), provided that M ≥ |E|Ω(1). In 2020, Tao [38] found a simpler
algorithm attaining the same I/O complexity as [25]. Another main contribution of [38] is
its establishment of the isolated cartesian product theorem (the ICP-theorem) (see also [26]),
which serves as the main weapon in analyzing the performance of a method called heavy-light
decomposition. This method underlies the algorithm of [38] and all the subsequent works
(including ours) on the topic.

In 2023, Deng, Silvestri, and Tao [12] presented new progress that came close to achieving
the optimal I/O bound for a general pattern Q = (VQ, EQ). Their algorithm finishes in
O( |E|ρ

Mρ−1B + |E|k/2

Mk/2−1B
logM/B

|E|
B ) I/Os with high probability, where the parameter k represents

the size of VQ. In general, we know ρ ≥ k/2 [37]. For a pattern Q where ρ is strictly greater
than k/2, the I/O cost of [12] can be simplified to the optimal bound O(|E|ρ/(Mρ−1B)).
However, when ρ = k/2, the I/O bound becomes O( |E|ρ

Mρ−1B logM/B
|E|
B ), which is away from

optimality by a logM/B
|E|
B factor. It is worth mentioning that the relationship ρ = k/2 is

satisfied by many patterns Q, important examples of which include k-cycles and k-cliques.
Unlike in the EM model, subgraph enumeration has been well understood in the traditional

RAM model, where the problem can be settled in O(|E|ρ) time [34,35,39], which is known to



S. Deng and Y. Tao 21:3

pattern Q I/O cost in big-O source remark
triangle |E|1.5/(

√
MB) expected [36]

triangle |E|1.5
√

MB
logM/B

|E|
B

[36]

triangle |E|1.5/(
√

MB) [21, 23]

acyclic |E|ρ

Mρ−1B
logM/B

|E|
B

[20]

arbitrary |E|ρ

Mρ−1B
· polylog |E| w.h.p. [25, 26,38] needs M ≥ |E|Ω(1)

arbitrary |E|ρ

Mρ−1B
logM/B

|E|
B

w.h.p. [12]

arbitrary |E|ρ/(Mρ−1B) w.h.p. ours optimal

Table 1 A summary of the previous results and ours

be worst-case optimal; see also [4, 11,24,28,29,31,33] for algorithms with O(|E|ρ polylog |E|)
time. In general, it is non-trivial to translate a RAM algorithm into an efficient external
memory counterpart: a direct translation of the solutions in [4,11,24,28,29,31,33–35,39] will
result in a huge I/O complexity of Ω(|E|ρ). Indeed, the aforementioned subgraph enumeration
algorithms in EM harbor numerous ideas that are purposed for accessing data in blocks and
are thus not required in RAM.

Our Results. This paper’s main contribution is an algorithm that solves the subgraph
enumeration problem in O(|E|ρ/(Mρ−1B)) I/Os with high probability (and, hence, also in
expectation). Although this improves the result of [12] by “only” a logarithmic factor, our
algorithm is the first whose I/O complexity matches the lower bound Ω(|E|ρ/(Mρ−1B)) for
any pattern Q. See Table 1 for a comparison between our result and the existing ones.

Math Conventions. For an integer x ≥ 1, the notation [x] represents the set {1, 2, ..., x}.
We define sort(n) to be the I/O complexity of sorting n elements; it is known [1] that
sort(n) = O(1 + ⌈ n

B ⌉ logM/B⌈ n
B ⌉). We use double curly braces to represent multi-sets, e.g.,

{{1, 1, 1, 2, 2, 3}} is a multi-set with 6 elements. Symbol N represents the set of integers.

2 The Heavy-Light Algorithmic Framework

This section will introduce the heavy-light decomposition technique, a framework that trans-
forms subgraph enumeration into a join on binary relations. To lay the groundwork for
a formal discussion, we will begin by reviewing the relevant concepts of joins and their
connections to subgraph enumeration in Section 2.1. Then, Section 2.2 will delve into the
specifics of the decomposition technique at a level sufficient for our technical development.

2.1 Reducing Subgraph Enumeration to Joins
Let att represent an arbitrary infinite set where each element is called an attribute. Given
any set U ⊆ att, we define a tuple over U as a function t : U → N. Given any subset Usub of
U , we designate t[Usub] as the tuple tsub over Usub such that tsub(X) = t(X) holds true for
every X ∈ Usub.

A relation is a set R comprising tuples over the same set U of attributes. The set U

is called the schema of R, a fact we denote as U = schema(R). We say that R is unary if
|schema(R)| = 1, or binary if |schema(R)| = 2. Given an integer value x and an attribute
X ∈ schema(R), the degree of x under X in R is the number of tuples t ∈ R satisfying

ICDT 2024



21:4 Subgraph Enumeration in Optimal I/O Complexity

t(X) = x. We say that the attribute X has degree at most λ in R if all values have degrees
bounded by λ under X in R. For each attribute X ∈ schema(R), define its active domain
under R — represented as adomR(X) — as ΠX(R), where Π is the standard projection
operator in relational algebra.

A join is formalized as a set Q of relations. If we denote schema(Q) =
⋃

R∈Q schema(R),
the join result — denoted as join(Q) — can be defined as a relation over schema(Q):

join(Q) = {tuple t over schema(Q) | ∀R ∈ Q : t[schema(R)] ∈ R}.

The input size N of Q is the total number of tuples in all the relations of Q, namely,
N =

∑
R∈Q |R|. The join Q is schema-clean if it has no two relations such that the schema

of one relation contains that of the other. For each attribute X ∈ schema(Q), define its
active domain under Q — represented as adomQ(X) — as

⋃
R∈Q:X∈schema(R) adomR(X),

namely, the set of values that appear under X in at least one relation of Q.
Every join Q defines a schema graph, which is a hypergraph G = (X , E) where X =

schema(Q) and E = {{schema(R) | R ∈ Q}}. Throughout the paper, we will refer to the
elements in X as “attributes” and the elements in E as “hyperedges”. Note that E is a multi-
set: even if two relations R1, R2 ∈ Q share a common schema, we still treat schema(R1) and
schema(R2) as different hyperedges in E . As another noteworthy remark, if a relation R ∈ Q
is unary, the hyperedge schema(R) ∈ E has only one attribute. Finally, we say that two
attributes X1, X2 ∈ X are adjacent in G if they co-appear in at least one hyperedge in E .

In EM, the join enumeration problem is formalized as follows. Let Q be a schema-clean
join whose schema graph G = (X , E) has O(1) attributes. Initially, the tuples of each relation
R ∈ Q — which we call the raw tuples — are provided in O(⌈|R|/B⌉) consecutive blocks on
the disk, and G is provided in memory using O(1) words. Similar to subgraph enumeration,
an algorithm is not required to write the result to the disk. Instead, it suffices to do the
reporting through emission. Specifically, for each tuple t ∈ join(Q), the algorithm can emit t

for free at any moment when the raw tuple t[schema(R)] exists in memory for every R ∈ Q,
but t should be emitted only once throughout the algorithm. A randomized algorithm is
said to guarantee an I/O bound “with high probability” if the bound holds asymptotically
with a probability at least 1 − 1/N c, where c can be any arbitrarily large constant decided
before running the algorithm. We consider only indivisible algorithms where each I/O can
bring only O(B) raw tuples into memory.

The following lemma was proved in [12]:

▶ Lemma 1 ( [12]). Consider any input to subgraph enumeration with data graph G = (V, E)
and pattern graph Q. It is possible to construct a join Q with schema graph Q and input size
N = Θ(|E|) such that, if we can emit all the result tuples of Q using an indivisible algorithm
in Tjoin I/Os with high probability, then we can design an indivisible algorithm to solve the
original subgraph enumeration problem using Tjoin + O(⌈|E|/B⌉) I/Os with high probability.

As implied by the lemma’s statement, the join Q constructed contains only binary
relations, all of which have distinct schemas. Henceforth, we will concentrate on devising an
algorithm to process any schema-clean join Q on binary relations in Tjoin = O(Nρ/(Mρ−1B))
I/Os with high probability, where ρ is the fractional edge-covering number of the schema
graph of Q. Once this is done, we will have obtained a subgraph enumeration algorithm
that achieves the I/O complexity O(|E|ρ/(Mρ−1B)) with high probability. In the rest of the
paper, we consider that Q has at least two relations (if Q has only one relation, the join
requires no I/Os because the relation itself is the join result).



S. Deng and Y. Tao 21:5

2.2 Heavy-Light Decomposition
Given a join Q, the heavy-light decomposition method conceptually partitions the tuples t in
the join result join(Q) by (i) the number of “high-degree” values used in t and (ii) the specific
attributes under which those values appear. The method then concentrates on computing
the result tuples in each partition separately. Presented below is a version of the method
that was introduced in [38] and deployed in the subsequent works [12,26].

Suppose that we are given a join Q where there are at least two relations, all the relations
are binary, and their schemas are distinct. Denote by G = (X , E) the schema graph of Q.
For each hyperedge e ∈ E , we use Re to represent the (only) relation in Q whose schema is e.

Define

λ =
√

NM (1)

where N is the input size of Q and M is the memory size. An integer x is heavy if the degree
of x under an attribute of any relation is no less than λ; otherwise, the integer is light. The
total number of heavy integer values is bounded by O(N/λ).

Configurations. Fix an arbitrary subset H ⊆ X . We call each attribute of H a heavy
attribute. A configuration of H is a tuple η over H such that η(X) is a heavy value for
every X ∈ H. We denote by config(H) the set of “active configurations” η satisfying
η[e] ∈ Re for every hyperedge e ∈ E subsumed by H (i.e., e ⊆ H); note that if no
such hyperedges exist, then every configuration of H is active. It is easy to see that
|config(H)| = O((N/λ)|H|) = O((N/M)|H|/2), plugging in the value of λ in (1).

Residual Joins. Fix any subset H ⊆ X and any active configuration η ∈ config(H). Next,
we will formulate a “residual join” to compute the tuples u ∈ join(Q) that “agree” with η on
every heavy attribute. We say that a hyperedge e ∈ E is relevant to H if e \ H ̸= ∅, namely, e

is not subsumed by H. For every relevant e ∈ E , define Re(η) as the relation that comprises
every tuple t ∈ Re satisfying

t(X) = η(X) for all X ∈ e ∩ H;
t(X) is light for every X ∈ e \ H.

Namely, t(X) must take the heavy value η(X) if X is heavy; otherwise, t(X) must be light.
Once Re(η) is ready, we can define the residual relation of e under η — denoted as R′

e(η)
— via a simple projection2:

R′
e(η) = Πe\H(Re(η)). (2)

Now, by putting together the residual relations defined by all the relevant hyperedges e, we
obtain the residual join of η — denoted as Q′(η) — which can be formalized as

Q′(η) = {R′
e(η) | e ∈ E , e relevant to H}. (3)

We will use Nη to represent the input size of Q′(η), that is

Nη =
∑

R∈Q′(η)

|R|. (4)

2 Strictly speaking, a tuple in R′
e(η) may no longer be a raw tuple (recall that raw tuples are those in

the input relations of Q). This would create an issue when the need arises to verify our algorithms’
indivisibility. The issue, however, can be easily fixed by “augmenting” each tuple u ∈ R′

e(η) with η,
thereby recording the raw tuple of Re corresponding to u. In the subsequent discussion, we will no
longer be concerned with such (pedantic) details, except to mention that all our join algorithms can be
implemented in an indivisible manner without affecting the claimed I/O complexities.

ICDT 2024



21:6 Subgraph Enumeration in Optimal I/O Complexity

A

B

C

D

E

F

A

B

C

F

A

B

C

F

(a) Original schema graph G (b) Residual sch. graph G′ of H (c) Simplified residual sch. graph G′′ of H

Figure 1 Illustration of the heavy-light decomposition method (H = {D, E})

It is important to note that the relations in Q′(η) consist solely of light values.
To “visualize” the schemas of the relations in Q′(η), define G′ = (X ′, E ′) as the hypergraph

obtained by discarding the heavy attributes from G = (X , E), namely, X ′ = X \ H and
E ′ = {{e \ H | e ∈ E and e \ H ≠ ∅}} (note: E ′ is a multi-set). This G′ — called the residual
schema graph of H — is the schema graph of Q′(η); this is true regardless of η.

▶ Example 2. For an illustration, Figure 1a presents the schema graph G = (X , E) of a
join Q, where X = {A, B, C, D, E, F} and E = {AB, AC, AE, BC, BE, DE, DF, EF}. Set H = {D, E};
the two heavy attributes D and E are colored black in the figure. Let η be an arbitrary active
configuration of H. All the hyperedges are relevant to H, except DE. The residual relation of
AB under η — that is, R′

AB(η) — is the same as RAB(η), which in turn is simply the relation
RAB in Q. The residual relation of AE under η — that is, R′

AE(η) — has only one attribute A
and contains every light value a such that RAE has a tuple u with u(A) = a and u(E) = η(E).
Figure 1b shows the residual schema graph G′, which is the schema graph of the residual join
Q′(η) of η.

By considering all subsets H ⊆ X , we have

join(Q) =
⋃
H

( ⋃
η∈config(H)

join(Q′(η)) × {η}
)

. (5)

This transforms the evaluation of the original join Q into computing the residual joins.

Simplified Residual Joins. Again, fix any subset H ⊆ X and one arbitrary configuration
η ∈ config(H). One issue arising from computing the residual join Q′(η) is that the join
may not be schema-clean, i.e., Q′(η) may contain two relations where one relation’s schema
encompasses that of the other. The second phase of the heavy-light decomposition framework
is to convert each Q′(η) to its schema-clean version. Next, we explain how this is done.

Define L = X \ H; we will call each attribute in L a light attribute (as opposed to the
heavy attributes in H). We say that a light attribute X ∈ L is a border attribute if it is
adjacent in G to at least one heavy attribute in H. For each such attribute X, define

R′′
X(η) =

⋂
e∈E:X∈e

ΠX(R′
e(η)). (6)

To understand the intuition behind, here we look at all the edges (of G) containing X and
examine their residual relations under η. The relation R′′

X(η) collects every integer that
appears under attribute X in all those residual relations.

Now consider each hyperedge e = {X1, X2} in G where both X1 and X2 are light attributes.
Note that e is also a hyperedge in E ′. Construct a relation R′′

e (η) ⊆ R′
e(η) as follows:

If X1 and X2 are both border attributes, then R′′
e (η) = R′

e(η) ▷◁ R′′
X1

(η) ▷◁ R′′
X2

(η),
where ▷◁ is the standard natural join operator in relational algebra;



S. Deng and Y. Tao 21:7

If only X1 is a border attribute, then R′′
e (η) = R′

e(η) ▷◁ R′′
X1

(η);
If only X2 is a border attribute, then R′′

e (η) = R′
e(η) ▷◁ R′′

X2
(η);

If neither is a border attribute, then R′′
e (η) = R′

e(η).

It is safe to discard the tuples in R′
e(η) \ R′′

e (η) because they cannot contribute to the result
of the residual join Q′(η). We call R′′

e (η) the simplified residual relation of e under η.
A border attribute X ∈ X may become isolated in G′, meaning that X is not adjacent to

any other vertex in G′ (i.e., X appears only in unary hyperedges of E ′). This happens when
X is not adjacent to any light attribute in G (i.e., X is adjacent to only heavy attributes in
G). Let I be the set of isolated attributes in G′.

The simplified residual join of η — denoted as Q′′(η) — can now be formalized as

Q′′(η) = {R′′
e (η) | binary e ∈ E ′} ∪ {R′′

X(η) | X ∈ I}. (7)

To visualize the schemas of the relations in Q′′(η), define G′′ = (X ′′, E ′′) where X ′′ = X ′ = L
and E ′′ contains (ii) all the binary edges of E ′ and (ii) one unary edge for each isolated
attribute. This G′′ is the schema graph of Q′′(η), regardless of η ∈ config(H).

▶ Example 3. Let us continue the discussion in Example 2. In Figure 1a, L = {A, B, C, F},
and among these attributes, A, B and F are border attributes, but only F is an isolated attribute.
The relation R′′

A is the intersection of ΠA(R′
AB(η)) = ΠA(RAB), ΠA(R′

AC(η)) = ΠA(RAC), and
R′

AE(η) (recall that R′
AE(η) contains only one attribute, i.e., A). The simplified residual

relation of AB — that is, R′′
AB(η) — comprises every tuple u ∈ R′

AB(η) such that u(A) ∈ R′′
A

and u(B) ∈ R′′
B . The simplified residual relation of BC — that is, R′′

BC(η) — comprises every
tuple u ∈ R′

BC(η) such that u(B) ∈ R′′
B . Figure 1c shows the simplified residual schema graph

G′′, which is the schema graph of the simplified residual join Q′′(η) of η.

It is easy to verify that join(Q′′(η)) = join(Q′(η)). Combining this fact with (5), we
have

join(Q) =
⋃
H

( ⋃
η∈config(H)

join(Q′′(η)) × {η}
)

. (8)

which transforms the evaluation of the original join Q into computing join(Q′′(η)) × {η} for
all η ∈ config(H) and H ⊆ X .

A main contribution of [12] is the following lemma.

▶ Lemma 4 ( [12]). Let Q be a schema-clean join on at least two binary relations whose
schema graph is G = (X , E). Let k = |X |, N be the input size of Q, and ρ be the fractional
edge covering number of G. Suppose that, for any H ⊆ X , using TH I/Os in total we can
produce

config(H) in consecutive disk blocks;
each input relation of Q′′(η) in consecutive disk blocks for every active configuration
η ∈ config(H).

Then, there is an algorithm for computing join(Q) using
∑

H⊆X TH +O(Nρ/(Mρ−1B)) I/Os.

The algorithm of [12] necessitates
∑

H⊆X TH = O( Nk/2

Mk/2−1B
logM/B

N
B ) I/Os, as is the

culprit behind the algorithm’s sub-optimality. Our mission in this work is:

reduce
∑

H⊆X

TH to O(Nk/2/(Mk/2−1B)). (9)

ICDT 2024



21:8 Subgraph Enumeration in Optimal I/O Complexity

3 Binary-Relation Joins in a Small Domain

In this and the next sections, we will discuss two standalone problems that are intriguing in
their own right. The solutions to those problems will play a crucial role in our approach to
achieving the objective given in (9).

This section will study join enumeration in the special scenario where the number of
distinct values is limited. The rest of the section serves as a proof of:

▶ Lemma 5. Let Q be a schema-clean join on binary relations, and let G = (X , E) be its
schema graph. If |adomQ(X)| ≤ D for every attribute X ∈ X , we can emit all the result
tuples of the join Q in O((1 + D√

M
)k · M

B + sort(N)) I/Os, where k = |X |, N is the input
size of Q, M is the memory size, and B is the disk block size.

Recall from Section 2 that adomQ(X) is the active domain of X under Q. In general, the
value of D (i.e., the maximum active domain size) can reach Ω(N), in which case Lemma 5
is not particularly useful: it is worse than the O(Nρ/(Mρ−1B)) I/O bound that will be
ultimately established in this paper. However, the lemma’s strength is reflected in the
scenario where D is small. For example, for D =

√
N and k ≥ 3, the I/O complexity of

Lemma 5 becomes O(Nk/2/(Mk/2−1B)), which is never worse, but can be considerably
better, than O(Nρ/(Mρ−1B)) because the value of ρ falls in the range from k/2 to k − 1 [37].

We now proceed to prove the lemma. For each attribute X ∈ X , we obtain and sort the
active domain adomQ(X) in O(sort(N)) I/Os. Then, by scanning (the sorted) adomQ(X),
we partition the integer domain N into a set Sintv

X of disjoint intervals such that each interval
covers ⌊

√
M/c⌋ values of adomQ(X) — where c is a constant to be chosen later — except

possibly one interval that may cover less values. The size of Sintv
X is O(1 + D/

√
M) because

|adomQ(X)| ≤ D.
Let X1, X2, ..., Xk be an arbitrary ordering of the k attributes in X . Consider any

hyperedge e = {Xi, Xj} of E (1 ≤ i < j ≤ k). Given an interval Ii ∈ Sintv
Xi

and an interval
Ij ∈ Sintv

Xj
, define

Re(Ii, Ij) = {u ∈ Re | u(Xi) ∈ Ii and u(Xj) ∈ Ij}.

Recall that Re is the (only) relation in Q with schema e. As Ii (resp., Ij) covers ⌊
√

M/c⌋ values
of adomQ(Xi) (resp., adomQ(Xj)), the set Re(Ii, Ij) can contain at most (⌊

√
M/c⌋)2 ≤

M/c2 tuples. For each interval combination (I1, I2, ..., Ik) ∈ Sintv
X1

× Sintv
X2

× ... × Sintv
Xk

, define
a sub-join

Q(I1, I2, ..., Ik) = {Re(Ii, Ij) | e = {Xi, Xj} ∈ E}.

It is easy to verify that

join(Q) =
⋃

(I1,I2,...,Ik)∈Sintv
X1

×Sintv
X2

×...×Sintv
Xk

join(Q(I1, I2, ..., Ik)). (10)

Let us assume, for now, that, given a hyperedge e = {Xi, Xj} ∈ E , any interval Ii ∈ Sintv
Xi

,
and any interval Ij ∈ Sintv

Xj
, we can load Re(Ii, Ij) from the disk into memory using O(M/B)

I/Os. Fix an arbitrary interval combination (I1, I2, ..., Ik) ∈ Sintv
X1

× Sintv
X2

× ... × Sintv
Xk

. If
we add up the size of Re(Ii, Ij) for all hyperedges e = {Xi, Xj} ∈ E , the total size is at
most |E| · M/c2, which is at most M by setting the constant c sufficiently large. Hence, in
O(M/B) · |E| = O(M/B) I/Os, we can load into memory the set Re(Ii, Ij) of every hyperedge
e = {Xi, Xj} ∈ E . This permits us to emit the result tuples of Q(I1, I2, ..., Ik) with no more



S. Deng and Y. Tao 21:9

I/Os. As the cartesian product Sintv
X1

× Sintv
X2

× ... × Sintv
Xk

has a size of O((1 + D√
M

)k), by
virtue of (10) we can emit all the result tuples in Q using O((1 + D√

M
)k · M

B ) I/Os.
It remains to explain how to ensure that Re(Ii, Ij) can always be loaded into memory

using O(M/B) I/Os. This requires only O((1 + D√
M

)2 · 1
B + sort(N)) extra I/Os to prepare

the input relations of Q appropriately. The details are standard and moved to Appendix A.
With that, we conclude the proof of Lemma 5.

4 Batched Two-Way Semi-Join Reductions

This section will study an interesting variant of the traditional “semi-join” problem. This
variant is extracted from a sub-problem that will arise in Section 5 when we discuss how to
fulfill the objective outlined in (9).

We are given a binary relation R with schema {X, Y }, together with ℓ unary relations
S1, S2, ..., Sℓ with schema {X} and another ℓ unary relations T1, T2, ..., Tℓ with schema {Y }.
Both attributes X and Y have degrees at most λ in R, whereas every Si and every Ti (i ∈ [ℓ])
have been sorted by X and Y , respectively. For each i ∈ [ℓ], define a join

Qi = {R, Si, Ti} (11)

whose result join(Qi) is a subset of R, including every tuple u ∈ R with u(X) ∈ Si and
u(Y ) ∈ Ti. Our objective is to compute, for every i ∈ [ℓ], the result join(Qi) and write it to
consecutive blocks on the disk. We will refer to the above as the batched two-way semi-join
reduction problem.

The problem admits a “textbook solution” that computes each join(Qi) individually as
follows. Specifically, we can first sort R on attribute X and compute R′ = R⋉Si by scanning
R and Si synchronously. Then, we sort R′ on attribute Y and compute R′′ = R′ ⋉ Ti by
scanning R′ and Ti synchronously. The relation R′′ is the join result join(Qi). Executing these
steps for each i ∈ [ℓ] necessitates a total I/O cost of O(ℓ · sort(|R|) +

∑ℓ
i=1⌈(|Si| + |Ti|)/B⌉).

On the other hand, we will prove:

▶ Lemma 6. Batched two-way semi-join reduction can be solved with an I/O complexity

O

((
|R|
λ

+ λ

M

) ∑ℓ
i=1 |Si| + |Ti|

B
+ ℓ ·

⌈ |R|
B

⌉
+ ℓ · |R|2M

λ2 · B
+ sort(|R|)

)
.

The above holds for arbitrary integers λ and ℓ (which may not be constants).

The lemma is most interesting under λ =
√

|R| · M , in which case the I/O complexity can
be simplified to O(

√
|R|/M · (

∑ℓ
i=1 |Si| + |Ti|)/B + ℓ · |R|/B + sort(|R|)). In the “lopsided

situation” where
∑ℓ

i=1 |Si| + |Ti| ≤ ℓ
√

|R| · M — that is, on average each unary relation has
a size O(

√
|R| · M) = O(λ) — the I/O complexity becomes O(ℓ · ⌈|R|/B⌉ + sort(|R|)), which

improves the aforementioned textbook solution by a factor of O(logM/B(|R|/B)) for large ℓ.
The rest of the section serves as a proof of Lemma 6. We start by partitioning the integer

domain N into a set Sintv
X of intervals such that

|Sintv
X | = O(|R|/λ) and

for each interval I ∈ Sintv
X , the relation R has O(λ) tuples u with u(X) ∈ I.

Symmetrically, obtain a set Sintv
Y of intervals satisfying two analogous conditions with respect

to Y . The intervals in Sintv
X and Sintv

Y can be obtained in O(sort(|R|)) I/Os3.

3 We will explain this only for Sintv
X due to symmetry. Sort and group the tuples of R by their X-values.

ICDT 2024



21:10 Subgraph Enumeration in Optimal I/O Complexity

For any interval IX ∈ Sintv
X , any interval IY ∈ Sintv

Y , and any i ∈ [ℓ], define

R(IX , IY ) = {u ∈ R | u(X) ∈ IX and u(Y ) ∈ IY }
Si(IX) = {u ∈ X | u(X) ∈ IX}
Ti(IY ) = {u ∈ Y | u(Y ) ∈ IY }.

After O(ℓ + |R|2

λ2·B + sort(|R|) + ℓ·|R|
λB +

∑ℓ
i=1(|Si| + |Ti|)/B) I/Os, we can store each

R(IX , IY ) in consecutive blocks whose starting address can be located in one I/O;
Si(IX) in consecutive blocks whose starting address can be located in one I/O;
Ti(IY ) in consecutive blocks whose starting address can be located in one I/O.

The details are standard and moved to Appendix B.
For each i ∈ [ℓ], we initialize an empty disk file for Qi and will gradually populate the

file with tuples of join(Qi) until eventually the file’s content is exactly join(Qi). Motivated
by the fact

join(Qi) =
⋃

(IX ,IY )∈Sintv
X

×Sintv
Y

R(IX , IY ) ▷◁ Si(IX) ▷◁ Ti(IY ) (12)

we process each interval pair (IX , IY ) ∈ Sintv
X × Sintv

Y separately and, in doing so, append
R(IX , IY ) ▷◁ Si(IX) ▷◁ Ti(IY ) to the file of Qi for every i ∈ [ℓ].

We now elaborate how to process a pair (IX , IY ) ∈ Sintv
X × Sintv

Y . Conceptually, partition
R(IX , IY ) (arbitrarily) into chunks, each of which contains M − B ≥ M/2 tuples except
possibly the last chunk. For each chunk, we first read it into memory using O(M/B) I/Os;
let Rchunk be the set of tuples in that chunk. Keeping Rchunk in memory, we then — for
each i ∈ [ℓ] in turn — compute and append Rchunk ▷◁ Si(IX) ▷◁ Ti(IY ) to the file of Qi

using O( |Si(IX )|+|Ti(IY )|+M
B ) I/Os. For this purpose, we scan Si in its entirety using one

block of memory. As soon as a tuple v ∈ Si(IX) is brought into memory, it is compared
to all the tuples in Rchunk . In doing so, for each tuple u ∈ Rchunk , we track whether any
tuple v ∈ Si(IX) with u(X) = v(X) has been seen; if so, we “mark” u. Similarly, by
scanning Ti(IY ) once, we can detect, for each tuple u ∈ Rchunk , whether Ti(IY ) has any
tuple v with u(Y ) = v(Y ); if so, we “mark” u. The tuples of Rchunk ▷◁ Si(IX) ▷◁ Ti(IY ) are
exactly those in Rchunk that receive two marks (one from scanning Si(IX) and the other
from Ti(IY )). These tuples are then written to the disk in O(M/B) I/Os. In the entire
processing of (IX , IY ), Si(IX) and Ti(IY ) are scanned O(⌈|R(IX , IY )|/M⌉) times, i.e., the
number of chunks.

By executing the above algorithm for every (IX , IY ), we produce the result of Qi on the
disk for all i ∈ [ℓ] with an I/O complexity:

O
( ∑

(IX ,IY )∈Sintv
X

×Sintv
Y

⌈
|R(IX , IY )|

M

⌉
·

ℓ∑
i=1

|Si(IX)| + |Ti(IY )| + M

B

)
(13)

In Appendix C, we show how to relate the above to the degree threshold λ and prove

(13) = O
(( |R|

λ
+ λ

M

) ∑ℓ
i=1 |Si| + |Ti|

B
+ ℓ · |R|

B
+ ℓ · |R|2M

λ2 · B

)
. (14)

Each group has a size of at most λ. Next, we will scan the groups in ascending order of their X-values
and, in doing so, divide the tuples of R using special tokens. First, place a token before the first group
and then start the scan. Every time an entire group of tuples has been scanned, place another token at
the end of the group if we have seen at least λ tuples since the last token. Finally, place another token
at the end of the last group. It is easy to see that there can be at most 2λ tuples between any two
consecutive tokens and the number of tokens is O(|R|/λ). The desired set Sintv

X of intervals can then be
easily determined based on the tokens.



S. Deng and Y. Tao 21:11

With this, we can then conclude the proof of Lemma 6.

5 I/O-Efficient Heavy-Light Decomposition

We now return to processing a schema-clean join consisting purely of binary relations and
will accomplish the mission described in (9). This section effectively proves the lemma below.

▶ Lemma 7. Let Q be a schema-clean join on at least two binary relations, whose schema
graph is G = (X , E). Let k = |X |, and let N be the input size of Q. Fix an arbitrary H ⊆ X .
In TH = O(Nk/2/(Mk/2−1B)) I/Os, we can produce

config(H) in consecutive disk blocks;
each input relation of Q′′(η) in consecutive disk blocks for every active configuration
η ∈ config(H).

Because X has 2k = O(1) subsets H, the above lemma indicates
∑

H⊆X TH =
O(Nk/2/(Mk/2−1B)), as needed in (9). We will explain in Section 5.1 how to generate
config(H) and then in Section 5.2 how to create the input relations of the simplified residual
joins Q′′(η) for all η ∈ config(H). As will be clear later, the core of the former (resp., latter)
task boils down to the problem tackled in Section 3 (resp., 4).

Preprocessing. For each attribute X ∈ X , we use adomH
Q(X) (resp., adomL

Q(X)) to
represent the set of heavy (resp., light) values in adomQ(X). Recall that, for each hyperedge
e = {X, Y } ∈ E , the symbol Re denotes the only relation in Q whose schema is e. We define:

RHH
e = {u ∈ Re | u(X) ∈ adomH

Q(X) and u(Y ) ∈ adomH
Q(Y )}. (15)

RLL
e = {u ∈ Re | u(X) ∈ adomL

Q(X) and u(Y ) ∈ adomL
Q(Y )}. (16)

If e contains a heavy attribute X ∈ H and a light attribute Y ∈ L (recall: L = X \ H), we
refer to e ∈ E as a crossing hyperedge. Given a crossing hyperedge e, we define:

RHL
e = {u ∈ Re | u(X) ∈ adomH

Q(X) and u(Y ) ∈ adomL
Q(Y )}. (17)

It is rudimentary to use sort(N) I/Os to produce on the disk:
adomH

Q(X) in sorted order for every X ∈ X ;
adomL

Q(X) in sorted order for every X ∈ X ;
RHH

e for every e ∈ E ;
RLL

e for every e ∈ E ;
RHL

e for every crossing hyperedge e ∈ E .
We remark that sort(N) = O( N

B logM/B
N
B ) = O( N

B logM/B
N
M ) = O( N

B

√
N
M ) = O( Nk/2

Mk/2−1B
),

where the last step used the fact k ≥ 3 (because Q has at least two relations and is
schema-clean). In other words, sorting is within the target budget of Lemma 7.

5.1 Generating config(H)
Let us first explain how to compute config(H) under the condition H = X . In such case, we
construct a join

QH = {RHH
e | e ∈ E}.

Note that config(H) is precisely the result join(QH) of QH . The input relations of QH
contain only values classified as “heavy” for the original join Q. Hence, for every attribute

ICDT 2024



21:12 Subgraph Enumeration in Optimal I/O Complexity

X ∈ X , it holds that adomQH(X) — the active domain of X under QH — has size O(N/λ),
which is O(

√
N/M) given the heavy-value threshold λ in (1). We compute join(QH) —

namely, config(H) — using Lemma 5 (plugging in D = O(
√

N/M)). The I/O cost is

O
((

1 +
√

N/M√
M

)k

· M

B
+ sort(N)

)
+ O

( |config(H)|
B

)
(18)

where the term O(|config(H)|/B) does not come from Lemma 5, but is instead due to the need
of writing config(H) to the disk. Applying the relationship |config(H)| = O((N/M)|H|/2) =
O((N/M)k/2), the reader can easily confirm that (18) is bounded by O(Nk/2/(Mk/2−1B)).

The case where H ⊂ X can be dealt with in a more conventional manner:

1. CPadomH =×X∈H adomH
Q(X), i.e., the cartesian product of the heavy-value sets

adomH
Q(X) for all the heavy attributes X ∈ H.

2. R∗ = CPadomH

/* henceforth, we will regard R∗ as a relation with schema H */
3. for each hyperedge e ∈ E such that e ⊆ H do
4. R∗ = R∗ ⋉ Re (semi-join)

The final R∗ is the config(H) we aim to compute. Regarding the cost, Line 1 can be
implemented4 in O(|CPadomH|/B) I/Os (dominated by the cost of writing CPadomH to
the disk), where |CPadomH| = O((

√
N/M)|H|). With sorting, we can perform Lines 2-4 in

O(sort(|CPadomH|) + sort(N)) I/Os. The total overhead is thus bounded by

O
((N

M

)|H|/2
logM/B

N

M
+ sort(N)

)
= O

((N

M

)k/2
+ sort(N)

)
= O(Nk/2/(Mk/2−1B)) (19)

I/Os, where the first equality holds because |H| < |X | = k.

5.2 Generating the Input Relations for the Simplified Residual Joins
We now proceed to explain how to create the input relations of Q′′(η) for every active
configuration η ∈ config(H). It suffices to consider H ⊂ X (if H = X , every Q′′(η) is
empty, i.e., there are no input relations at all). The relationship H ⊂ X implies a useful
property: O(sort(|config(H)|) = O(sort((N/M)|H|/2) = O(Nk/2/(Mk/2−1B)), following the
same derivation as in (19).

Input Relations of Residual Joins. We start by generating Re(η) — the subset of the
relation Re that “agrees” with η; see definition in Section 2.2 — for every hyperedge e ∈ E
relevant to H (i.e., e is not subsumed by H, as defined in Section 2.2) and active configuration
η ∈ config(H). This is, in fact, trivial if e is disjoint with H (i.e., both attributes in e

are light), in which case Re(η) is simply the relation RLL
e in (16), which has already been

obtained.
It remains to consider the crossing hyperedges e ∈ E (which contain one heavy attribute

and one light attribute). W.l.o.g., let e = {X, Y } where X ∈ H and Y ∈ L. Imagine
dividing RHL

e into groups according to the X-values of the tuples therein. Then, for each
active configuration η ∈ config(H), the set Re(η) is exactly the group having the X-value
η(X). Motivated by this, we sort RHL

e (defined in (17)) by attribute X in O(sort(N))
I/Os and sort the active configurations η ∈ config(H) by η(X) in O(sort(|config(H)|) =

4 Using the textbook algorithm “blocked nested loop”.



S. Deng and Y. Tao 21:13

O(Nk/2/(Mk/2−1B)) I/Os. Then, by going through RHL
e and config(H) synchronously once,

we can, for each η ∈ config(H), identify the starting disk address of Re(η) and store this
address along with η.

Now that we have created Re(η) on the disk for every relevant hyperedge e ∈ E and active
configuration η ∈ config(H), we can acquire the residual relation R′

e(η) via a projection,
as indicated in (2), which requires only a single scan of Re(η). This generates the input
relations of the residual joins Q′(η) of all η ∈ config(H). The overall I/O cost is bounded by
O(Nk/2/(Mk/2−1B)).

While the above algorithm fulfills the objective of creating the input relations of all residual
joins, we will modify it slightly to better facilitate the subsequent algorithm design. The
purpose of these modifications is to ensure that, for every active configuration η ∈ config(H)
and every hyperedge e ∈ E containing a border attribute5 Y ∈ L, there should be a copy
of R′

e(η) on the disk that has been sorted on attribute Y . To that end, we change the
aforementioned method for computing Re(η) as follows:

If e is disjoint with H, sort RLL
e on Y in O(sort(N)) I/Os. Remember that RLL

e = Re(η)
regardless of η ∈ config(H).
If e is a crossing hyperedge of the form {X, Y } where X ∈ H, instead of sorting RHL

e only
by attribute X as described earlier, we perform the sorting first by X and then break
ties by Y . After that, the relations Re(η) of all η ∈ config(H) can still be obtained by
going through (the sorted) RHL

e and (the sorted) config(H) synchronously once, but the
tuples of each Re(η) are now sorted on attribute Y .

Every relation R′
e(η) is still computed by taking a projection of Re(η) as before. The overall

I/O complexity remains as O(Nk/2/(Mk/2−1B)).

Input Relations of Simplified Residual Joins. Next, for each border attribute X ∈ X
and every active configuration η ∈ config(H), we compute the set R′′

X(η) defined in (6). This
is the intersection of all the ΠX(R′

e(η)), where e ranges over all the hyperedges in G′ (defined
in Section 2.2) containing X. Since (i) we have prepared a copy of R′

e(η) sorted by X on
the disk and (ii) R′

e(η) has a size at most Nη (see (4)), the intersection can be computed
in O(⌈Nη/B⌉) I/Os; note that the R′′

X(η) thus computed is sorted on X and has a size at
most Nη. The total cost for obtaining the sets R′′

X(η) of all η ∈ config(H) is bounded by∑
η∈config(H)

O(⌈Nη/B⌉) = |config(H)| +
∑

η∈config(H)

O(Nη/B) (20)

Deng et al. showed [12, Lemma 11] that∑
η∈config(H)

Nη = O(Nk/2/Mk/2−1).

Therefore:

(20) = O(Nk/2/Mk/2) + O(Nk/2/(Mk/2−1B)) = O(Nk/2/(Mk/2−1B)). (21)

In the scenario where every hyperedge e ∈ E contains at most one light attribute, the set I of
isolated attributes is exactly the set of border attributes, and hence, the simplified residual
join Q′′(η) of each η ∈ config(H) — see (7) — consists of {R′′

X(η) | X is a border attribute}.
We are therefore done with generating the input relations of all the simplified residual joins.

5 As defined in Section 2.2, a border attribute is a light attribute that co-appears with a heavy attribute
in some hyperedge of E .

ICDT 2024



21:14 Subgraph Enumeration in Optimal I/O Complexity

In the final segment of our proof (for Lemma 7), we consider that E has at least one edge
e = {X1, X2} where both X1 and X2 are light attributes. Note that this means |H| ≤ k − 2.
Next, given an arbitrary such hyperedge e = {X1, X2}, we will explain how to produce on
the disk the simplified residual relations R′′

e (η) under all active configurations η ∈ config(H)
with O(Nk/2/(Mk/2−1B)) I/Os in total.

This is trivial if neither X1 nor X2 is a border attribute — in this case, R′′
e (η) = R′

e(η),
which has already been computed. Now consider the case where e has only one border
attribute, say, X1 (thus X2 is not a border attribute; nonetheless, remember that X2 is a light
attribute). Earlier we have prepared a copy of R′

e(η) = RLL
e sorted on X1, as well as R′′

X1
(η),

which is also sorted on X1. Because the sizes of both R′
e(η) and R′′

X1
(η) are at most Nη, we

can compute R′′
e (η) = R′

e(η) ▷◁ R′′
X1

(η) in O(⌈Nη/B⌉) I/Os. Hence, the simplified residual
relations R′′

e (η) under all η ∈ config(H) can be obtained in O(
∑

η∈config(H) O(⌈Nη/B⌉))
I/Os, which is O(Nk/2/(Mk/2−1B)); see (20) and (21).

The most non-trivial situation arises when both X1 and X2 in e are border attributes.
This is where the “batched two-way semi-join reductions” problem (we will abbreviate the
problem name as “batched semi” from now on) discussed in Section 4 comes in. Let us
construct an instance of that problem as follows:

The value of ℓ in “batched semi” equals |config(H)| = O((N/M)|H|/2) = O((N/M)k/2−1),
applying |H| ≤ k − 2.
The binary relation R in “batched semi” corresponds to RLL

e .
The degree threshold λ in “batched semi” equals the value of λ in (1), which is O(

√
NM).

The i-th (i ∈ [ℓ]) unary relation Si in “batched semi” corresponds to the set R′′
X1

(η) of
the i-th6 active configuration η ∈ config(H). Remember that R′′

X1
(η) has been sorted on

X1.
The i-th (i ∈ [ℓ]) unary relation Ti in “batched semi” corresponds to set R′′

X2
(η) of the

i-th active configuration η ∈ config(H). Remember that R′′
X2

(η) has been sorted on X2.

“Batched semi” computes the result join(Qi) of the join Qi defined in (11). Based
on our construction, join(Qi) equals RLL

e ▷◁ R′′
X1

(η) ▷◁ R′′
X2

(η) — with η being the i-th
configuration in config(H) — which is exactly the simplified residual relation R′′

e (η) of e

under η. From Lemma 6, we can assert that the relations R′′
e (η) under all η ∈ config(H)

can be computed with an I/O cost

O

((
N

λ
+ λ

M

) ∑
η∈config(H) |R′′

X1
(η)| + |R′′

X2
(η)|

B
+ ℓ · N

B
+ ℓ · N2M

λ2 · B
+ sort(N)

)

= O

 √
N√

MB

( ∑
η∈config(H)

(|R′′
X1

(η)| + |R′′
X2

(η)|)
)

+ ℓ · N

B
+ sort(N)


= O

 √
N√

MB

( ∑
η∈config(H)

(|R′′
X1

(η)| + |R′′
X2

(η)|)
)

+ Nk/2

Mk/2−1B

 (22)

where the last step applied ℓ = O((N/M)k/2−1).

▶ Proposition 8.
∑

η∈config(H) |R′′
X1

(η)| = O
(√

NM ·
(

N
M

)k/2−1
)

6 Here, impose an arbitrary ordering of config(H).



S. Deng and Y. Tao 21:15

Proof. Because X1 is a border attribute, there must exist a heavy attribute H ∈ H such
that e = {X1, Y } is a hyperedge in E . By how R′′

X1
(η) is computed in (6), we know that

R′′
X1

(η) is a subset of R′
e(η). Furthermore, since R′

e(η) = Πe\H(Re(η)) (see (2)), it must
hold that

|R′′
X1

(η)| ≤ |R′
e(η)| ≤ |Re(η)|.

Next, we will prove that∑
η∈config(H)

|Re(η)| = O

(
√

NM ·
(

N

M

)k/2−1
)

(23)

which will then imply the claim in the proposition.
To that end, we break the left hand side of (23) as follows:∑
η∈config(H)

|Re(η)| =
∑

y∈adomH (Y )

( ∑
η∈config(H):η(Y )=y

|Re(η)|
)

. (24)

Observe from the definition of Re(η) that Re(η) is simply σY =y(Re) where σ is the standard
selection operator in relational algebra. Hence, for any y ∈ adomH(Y ), the size |Re(η)| is
the same for all η ∈ config(H) satisfying η(Y ) = y. As there are at most O((N/M)(|H|−1)/2)
such active configurations η, we can derive

(24) = O((N/M)(|H|−1)/2) ·
∑

y∈adomH (Y )

|σY =y(Re)|

≤ O((N/M)(|H|−1)/2) · |Re|

= O

(
N (|H|+1)/2

M (|H|−1)/2

)
(as |H| ≤ k − 2) = O

(
√

NM ·
(

N

M

)k/2−1
)

as claimed in (23). ◀

A symmetric argument yields
∑

η∈config(H) |R′′
X2

(η)| = O(
√

NM ·
(

N
M

)k/2−1). Plugging
these relationships into (22), we can derive

(22) = O

( √
N√

MB
·
√

NM

(
N

M

)k/2−1
+ Nk/2

Mk/2−1B

)
= O

(
Nk/2

Mk/2−1B

)
.

We now conclude that the input relations of the simplified residual joins Q′′(η) of all
η ∈ config(H) can be computed in O(Nk/2/(Mk/2−1B)) I/Os in total. This completes the
entire proof of Lemma 7.

6 Conclusions

By putting together Lemmas 1, 4, and 7, we have arrived at the main result of this paper:

▶ Theorem 9. Let G = (V, E) be a simple undirected graph with no isolated vertices. Let
Q = (VQ, EQ) be a simple undirected connected pattern graph. There is an algorithm in the
external memory model that, with probability at least 1 − 1/|E|c where c is an arbitrarily high
constant decided before running the algorithm, emits every occurrence of Q in G exactly once
with O(|E|ρ/(Mρ−1B)) I/Os, where ρ is the fractional edge covering number of Q, M is the

ICDT 2024



21:16 Subgraph Enumeration in Optimal I/O Complexity

number of words in memory, and B is the number of words in a disk block. The same I/O
complexity holds also in expectation.

The theorem optimally settles the subgraph enumeration problem in external memory
when randomization is permitted. The main open problem left behind by this work is to
achieve the I/O complexity O(|E|ρ/(Mρ−1B)) deterministically.

References
1 Alok Aggarwal and Jeffrey Scott Vitter. The input/output complexity of sorting and related

problems. Communications of the ACM (CACM), 31(9):1116–1127, 1988.
2 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the ACM (JACM),

42(4):844–856, 1995.
3 Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles.

Algorithmica, 17(3):209–223, 1997.
4 Kaleb Alway, Eric Blais, and Semih Salihoglu. Box covers and domain orderings for beyond

worst-case join processing. In Proceedings of International Conference on Database Theory
(ICDT), pages 3:1–3:23, 2021.

5 Suman K. Bera, Noujan Pashanasangi, and C. Seshadhri. Near-linear time homomorphism
counting in bounded degeneracy graphs: The barrier of long induced cycles. In Proceedings of
the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2315–2332, 2021.

6 Andreas Bjorklund, Petteri Kaski, and Lukasz Kowalik. Counting thin subgraphs via packings
faster than meet-in-the-middle time. ACM Transactions on Algorithms, 13(4):48:1–48:26,
2017.

7 Andreas Bjorklund, Rasmus Pagh, Virginia Vassilevska Williams, and Uri Zwick. Listing tri-
angles. In Proceedings of International Colloquium on Automata, Languages and Programming
(ICALP), pages 223–234, 2014.

8 N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms. SIAM Journal of
Computing, 14(1):210–223, 1985.

9 Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of ACM
Symposium on Theory of Computing (STOC), pages 151–158, 1971.

10 Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a good basis for
counting small subgraphs. In Proceedings of ACM Symposium on Theory of Computing
(STOC), pages 210–223, 2017.

11 Shiyuan Deng, Shangqi Lu, and Yufei Tao. On join sampling and the hardness of combinatorial
output-sensitive join algorithms. In Proceedings of ACM Symposium on Principles of Database
Systems (PODS), pages 99–111, 2023.

12 Shiyuan Deng, Francesco Silvestri, and Yufei Tao. Enumerating subgraphs of constant sizes in
external memory. In Proceedings of International Conference on Database Theory (ICDT),
pages 4:1–4:20, 2023.

13 David Eppstein. Arboricity and bipartite subgraph listing algorithms. Information Processing
Letters (IPL), 51(4):207–211, 1994.

14 David Eppstein. Subgraph isomorphism in planar graphs and related problems. J. Graph
Algorithms Appl., 3(3):1–27, 1999.

15 David Eppstein, Maarten Loffler, and Darren Strash. Listing all maximal cliques in sparse
graphs in near-optimal time. In International Symposium on Algorithms and Computation
(ISAAC), volume 6506, pages 403–414, 2010.

16 Peter Floderus, Miroslaw Kowaluk, Andrzej Lingas, and Eva-Marta Lundell. Detecting and
counting small pattern graphs. SIAM J. Discret. Math., 29(3):1322–1339, 2015.

17 Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, Saket Saurabh, and B. V. Raghavendra
Rao. Faster algorithms for finding and counting subgraphs. Journal of Computer and System
Sciences (JCSS), 78(3):698–706, 2012.



S. Deng and Y. Tao 21:17

18 Pierre-Louis Giscard, Nils M. Kriege, and Richard C. Wilson. A general purpose algorithm for
counting simple cycles and simple paths of any length. Algorithmica, 81(7):2716–2737, 2019.

19 Chinh T. Hoang, Marcin Kaminski, Joe Sawada, and R. Sritharan. Finding and listing induced
paths and cycles. Discrete Applied Mathematics, 161(4-5):633–641, 2013.

20 Xiao Hu and Ke Yi. Towards a worst-case I/O-optimal algorithm for acyclic joins. In
Proceedings of ACM Symposium on Principles of Database Systems (PODS), pages 135–150,
2016.

21 Xiaocheng Hu, Miao Qiao, and Yufei Tao. External memory stream sampling. In Proceedings
of ACM Symposium on Principles of Database Systems (PODS), pages 229–239, 2015.

22 Xiaocheng Hu, Miao Qiao, and Yufei Tao. Join dependency testing, loomis-whitney join, and
triangle enumeration. In Proceedings of ACM Symposium on Principles of Database Systems
(PODS), pages 291–301, 2015.

23 Xiaocheng Hu, Miao Qiao, and Yufei Tao. I/O-efficient join dependency testing, loomis-
whitney join, and triangle enumeration. Journal of Computer and System Sciences (JCSS),
82(8):1300–1315, 2016.

24 Manas Joglekar and Christopher Re. It’s all a matter of degree - using degree information to
optimize multiway joins. Theory Comput. Syst., 62(4):810–853, 2018.

25 Bas Ketsman and Dan Suciu. A worst-case optimal multi-round algorithm for parallel
computation of conjunctive queries. In Proceedings of ACM Symposium on Principles of
Database Systems (PODS), pages 417–428, 2017.

26 Bas Ketsman, Dan Suciu, and Yufei Tao. A near-optimal parallel algorithm for joining binary
relations. Log. Methods Comput. Sci., 18(2), 2022.

27 Mahmoud Abo Khamis, Hung Q. Ngo, Christopher Ré, and Atri Rudra. Joins via geometric
resolutions: Worst-case and beyond. In Proceedings of ACM Symposium on Principles of
Database Systems (PODS), pages 213–228, 2015.

28 Mahmoud Abo Khamis, Hung Q. Ngo, Christopher Re, and Atri Rudra. Joins via geometric
resolutions: Worst case and beyond. ACM Transactions on Database Systems (TODS),
41(4):22:1–22:45, 2016.

29 Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. What do shannon-type inequalities,
submodular width, and disjunctive datalog have to do with one another? In Proceedings of
ACM Symposium on Principles of Database Systems (PODS), pages 429–444, 2017.

30 Ton Kloks, Dieter Kratsch, and Haiko Müller. Finding and counting small induced subgraphs
efficiently. Information Processing Letters (IPL), 74(3-4):115–121, 2000.

31 Gonzalo Navarro, Juan L. Reutter, and Javiel Rojas-Ledesma. Optimal joins using compact
data structures. In Proceedings of International Conference on Database Theory (ICDT),
volume 155, pages 21:1–21:21, 2020.

32 Jaroslav Nesetril and Svatopluk Poljak. On the complexity of the subgraph problem. Com-
mentationes Mathematicae Universitatis Carolinae, 26(2):415–419, 1985.

33 Hung Q. Ngo, Dung T. Nguyen, Christopher Re, and Atri Rudra. Beyond worst-case analysis
for joins with minesweeper. In Proceedings of ACM Symposium on Principles of Database
Systems (PODS), pages 234–245, 2014.

34 Hung Q. Ngo, Ely Porat, Christopher Re, and Atri Rudra. Worst-case optimal join algorithms.
Journal of the ACM (JACM), 65(3):16:1–16:40, 2018.

35 Hung Q. Ngo, Christopher Re, and Atri Rudra. Skew strikes back: new developments in the
theory of join algorithms. SIGMOD Rec., 42(4):5–16, 2013.

36 Rasmus Pagh and Francesco Silvestri. The input/output complexity of triangle enumeration.
In Proceedings of ACM Symposium on Principles of Database Systems (PODS), pages 224–233,
2014.

37 Edward R. Scheinerman and Daniel H. Ullman. Fractional Graph Theory: A Rational Approach
to the Theory of Graphs. Wiley, New York, 1997.

38 Yufei Tao. A simple parallel algorithm for natural joins on binary relations. In Proceedings of
International Conference on Database Theory (ICDT), pages 25:1–25:18, 2020.

ICDT 2024



21:18 Subgraph Enumeration in Optimal I/O Complexity

39 Todd L. Veldhuizen. Triejoin: A simple, worst-case optimal join algorithm. In Proceedings of
International Conference on Database Theory (ICDT), pages 96–106, 2014.

40 Virginia Vassilevska Williams and Ryan Williams. Finding, minimizing, and counting weighted
subgraphs. SIAM Journal of Computing, 42(3):831–854, 2013.

Appendix

A Completing the Proof of Lemma 5

Focusing on an arbitrary hyperedge e = {Xi, Xj} ∈ E , next we will explain how to process
Re in O((1 + D√

M
)2 · 1

B + sort(N)) I/Os such that, given any interval Ii ∈ Sintv
Xi

, and any
interval Ij ∈ Sintv

Xj
, we can load Re(Ii, Ij) into memory using O(M/B) I/Os.

Recall that the intervals in Sintv
Xi

are disjoint. We order those intervals by their starting
points; an interval has rank t if it has the t-th smallest starting point. Define ranks similarly
for the intervals in Sintv

Xj
.

For each tuple u ∈ Re, we associate it with an Xi-interval rank, which is the rank of the
interval in Sintv

Xi
covering u(Xi). By sorting, we can obtain the Xi-interval ranks of all the

tuples in Re using O(sort(N)) I/Os. We also associate u with an Xj-interval rank, defined
similarly with respect to Xj . The Xj-interval ranks of all the tuples in Re can again be
decided using O(sort(N)) I/Os.

We now sort the tuples of Re by their Xi-interval ranks, breaking ties by Xj-interval
ranks. After sorting, for any intervals Ii ∈ Sintv

Xi
and Ij ∈ Sintv

Xj
, the O(M) tuples in

Re(Ii, Ij) have been grouped into O(M/B) consecutive blocks on the disk. We bookmark
the group’s starting address such that, given the ranks of Ii and Ij , we can locate the
group on the disk immediately. This requires materializing the starting addresses of all the
|Sintv

Xi
| · |Sintv

Xj
| = O((1 + D/

√
M)2) groups in a two-dimensional array, which can be created

in O(1 + (1 + D√
M

)2 · 1
B + N

B ) I/Os by scanning the (sorted) Re once.

B Preprocessing the Input Relations for Proving Lemma 6

We will first explain how to preprocess R in O(( |R|
λ )2 · 1

B + sort(|R|)) I/Os such that, for any
interval IX ∈ Sintv

X and any interval IY ∈ Sintv
Y , we can ensure that (i) R(Ii, Ij) is stored in

consecutive blocks and (ii) the first block’s address can be obtained in one I/O.
It suffices to re-apply the techniques illustrated in Appendix A. Sort the intervals of

Sintv
X by their starting points and do the same for Sintv

Y , which requires O(sort(|R|/λ)) I/Os.
An interval of Sintv

X (resp., Sintv
Y ) is said to have rank t if it has the t-th smallest starting

point among all the intervals in Sintv
X (resp., Sintv

Y ). Associate each tuple u ∈ R with an
X- (resp., Y -) interval rank, which is the rank of the interval in Sintv

X covering u(X) (resp.,
Sintv

Y covering u(Y )). Sort the tuples of R by their X-interval ranks, breaking ties by their
Y -interval ranks, after which the tuples in R(IX , IY ) are placed in a sequence of consecutive
blocks for any interval pair (IX , IY ) ∈ Sintv

X ×Sintv
Y . We record the sequence’s starting address

such that the sequence can be located immediately based on the ranks of IX and IY . This
requires materializing |Sintv

X | · |Sintv
Y | = O((|R|/λ)2) starting addresses in a two-dimensional

array, which can be created in O(1 + ( |R|
λ )2 · 1

B + |R|
B ) I/Os by scanning R once.

We now turn our attention to preprocessing S1, S2, ..., Sℓ. For each i ∈ [ℓ], recall that Si

has been sorted on attribute X. By scanning Si synchronously with the (already sorted)
Sintv

X , we can ensure that, for each interval IX ∈ Sintv
X , the set Si(IX) is stored in a

sequence of consecutive blocks. We record the sequence’s starting address such that the



S. Deng and Y. Tao 21:19

sequence can be located directly based on the rank of IX . This requires materializing
|Sintv

X | = O(⌈|R|/λ⌉) starting addresses in an array, which can be created in O(1 + |R|
λB + |Si|

B )
I/Os by scanning Si once. The total I/O cost of preprocessing the Si of all i ∈ [ℓ] this way is
O(ℓ + ℓ |R|

λB +
∑ℓ

i=1 |Si|/B).
The preprocessing of T1, T2, ..., Tℓ is similar and omitted.

C Proof of Equation (14)

We will prove the following relationship for each i ∈ [ℓ]:

∑
(IX ,IY )∈Sintv

X
×Sintv

Y

⌈
|R(IX , IY )|

M

⌉
· |Si(IX)| + |Ti(IY )| + M

B

= O
(( |R|

λ
+ λ

M

)
|Si| + |Ti|

B
+ |R|

B
+ |R|2M

λ2B

)
. (25)

Equation (14) will then follow from a simple summation on all i ∈ [ℓ].
Clearly:

left hand side of (25)

≤
∑

(IX ,IY )

(
1 + |R(IX , IY )|

M

)
· |Si(IX)| + |Ti(IY )| + M

B

=
∑

(IX ,IY )

|Si(IX)| + |Ti(IY )| + M

B
+

∑
(IX ,IY )

|R(IX , IY )|
M

· |Si(IX)| + |Ti(IY )| + M

B
. (26)

The first summation of (26) is easy to bound:

∑
(IX ,IY )

|Si(IX)| + |Ti(IY )| + M

B
=

∑
(IX ,IY )

|Si(IX)|
B

+
∑

(IX ,IY )

|Ti(IY )|
B

+
∑

(IX ,IY )

M

B

= |T intv
Y | · |Si|

B
+ |Sintv

X | · |Ti|
B

+ M

B
· |Sintv

X | · |T intv
Y |

= O

(
|R|(|Si| + |Ti|)

λ · B
+ M

B

|R|2

λ2

)
(27)

where the last step used |Sintv
X | = O(|R|/λ) and |T intv

Y | = O(|R|/λ). To unfold the second
summation of (26), let us first rearrange the terms:

∑
(IX ,IY )

|R(IX , IY )|
M

· |Si(IX)| + |Ti(IY )| + M

B

=
∑

(IX ,IY )

|R(IX , IY )|
M

|Si(IX)|
B

+
∑

(IX ,IY )

|R(IX , IY )|
M

|Ti(IY )|
B

+
∑

(IX ,IY )

|R(IX , IY )|
B

(28)

To facilitate the subsequent derivation, let us define

R(IX , −) = {u ∈ R | u(X) ∈ IX}

for any interval IX ∈ Sintv
X . Note that the size of R(IX , −) is bounded by O(λ) due to the

ICDT 2024



21:20 Subgraph Enumeration in Optimal I/O Complexity

way that Sintv
X is constructed. Equipped with this, we can derive

∑
(IX ,IY )

|R(IX , IY )||Si(IX)| =
∑
IX

|Si(IX)| ·

(∑
IY

|R(IX , IY )|
)

=
∑
IX

|Si(IX)| · |R(IX , −)|

= O(λ) ·
∑
IX

|Si(IX)| = O(λ · |Si|). (29)

A symmetric analysis shows that
∑

(IX ,IY ) |R(IX , IY )||Ti(IY )| = O(λ · |Ti|). Utilizing also
the obvious fact

∑
(IX ,IY ) |R(IX , IY )| = |R|, we obtain

(28) = O

(
λ · |Si|
MB

+ λ · |Ti|
MB

+ |R|
B

)
. (30)

Equation (25) now follows from (26), (27) and (30).


	1 Introduction
	2 The Heavy-Light Algorithmic Framework
	2.1 Reducing Subgraph Enumeration to Joins
	2.2 Heavy-Light Decomposition

	3 Binary-Relation Joins in a Small Domain
	4 Batched Two-Way Semi-Join Reductions
	5 I/O-Efficient Heavy-Light Decomposition
	5.1 Generating config(H)
	5.2 Generating the Input Relations for the Simplified Residual Joins

	6 Conclusions
	A Completing the Proof of Lemma 5
	B Preprocessing the Input Relations for Proving Lemma 6
	C Proof of Equation (14)

