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Abstract

This paper initializes the study of range subgraph counting and range subgraph listing, both
of which are motivated by the significant demands in practice to perform graph analytics on
subgraphs pertinent to only selected, as opposed to all, vertices. In the first problem, there is an
undirected graph G where each vertex carries a real-valued attribute. Given an interval q and a
pattern Q, a query counts the number of occurrences of Q in the subgraph of G induced by the
vertices whose attributes fall in q. The second problem has the same setup except that a query
needs to enumerate (rather than count) those occurrences with a small delay. In both problems,
our goal is to understand the tradeoff between space usage and query cost, or more specifically:
(i) given a target on query efficiency, how much pre-computed information about G must we
store? (ii) Or conversely, given a budget on space usage, what is the best query time we can
hope for? We establish a suite of upper- and lower-bound results on such tradeoffs for various
query patterns.

This research was supported in part by GRF Projects 14207820, 14203421, and 14222822 from
HKRGC.
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1 Introduction

Consider G = (V,E) as a data graph and Q as a pattern graph. A subgraph of G, if isomorphic to
Q, is said to be an occurrence of Q. The goal of pattern searching is to either list the occurrences of
Q or to count the number of them. Both are fundamental problems in computer science and have
attracted considerable attention in the past few decades.

This paper studies pattern searching in vertex-induced subgraphs. Here, a query selects a subset
U ⊆ V of vertices and needs to count/list the occurrences of Q in G′, where G′ is the subgraph of G
induced by U . Note that if an occurrence uses any vertex outside U , the occurrence should not be
counted/listed. Trivially, one can answer the query by first generating G′ and then counting/listing
Q in G′ “from scratch”, but this does not leverage the power of preprocessing. Instead, our goal is to
store G in a data structure that can answer all queries with non-trivial guarantees. It is intriguing
to investigate how much we can minimize the query time subject to a space budget, and conversely,
how much space we must consume to achieve a target query time.

Vertex selection in database systems is done with a predicate q, which determines U as {v ∈ V |
v satisfies q}. Concentrating on range predicates, the problems we consider are:

Problem 1 (Range Subgraph Counting). G = (V,E) is an undirected graph where
each vertex v ∈ V carries a real-valued attribute Av. For an interval q = [x1, x2], define
Vq = {v ∈ V | x1 ≤ Av ≤ x2} and Gq as the subgraph of G induced by Vq. Let Q be a
connected (only one connected component) pattern graph with O(1) vertices. Given an interval
q, a query returns the number of occurrences of Q in Gq. The pattern Q is fixed for all queries.

Problem 2 (Range Subgraph Listing). Same setup except that a query reports the
occurrences of Q in Gq.

Universal Notations. Several notations will apply throughout the paper. Set n = |V | and
m = |E|. Symbol ω < 2.37286 [1] represents the matrix multiplication exponent. The notations
Õ(.) and Ω̃(.) hide a factor polylogarithmic to the underlying problem’s parameters.

1.1 Motivation

Practical Applications. Subgraph patterns are important for understanding the characteristics of
a data graph G, as has been documented in a long string of papers, e.g., [2, 3, 8, 10, 11, 17, 18, 24–28,
30,33,36–38,50]. In practice, analysts are interested in not only patterns from the whole G but also
those pertinent only to selected vertices. Consider a social network G where each vertex represents
an individual. A graph’s clustering coefficient [49], a popular measurement in network science,
is the ratio between the number of triangles (3-cliques1) and the number of wedges (2-paths2).
The coefficient of G, however, is just a single value revealing little about the features of specific
demographic groups. It is more informative to, for example, compare the coefficients of (i) the
subgraph of G induced by people with ages ∈ [20, 30], and (ii) that induced by age ∈ [60, 70]. A
step further, by putting together the coefficients induced by “age ∈ [i · 10, (i + 1) · 10]” for each
i ∈ [1, 10], one obtains an interesting comparison across different age groups. Refined analysis can
then concentrate on the pattern occurrences of a target group. The power of the above analysis owes
to queries of Problem 1 and 2 with arbitrary selection ranges. Designing effective data structures is
essential to avoid lengthy response time.

1An ℓ-clique is a clique with ℓ vertices.
2An ℓ-path is a path with ℓ edges.
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Problem Pattern Q Space Query Remark

1 (cnt) any fixed Q O(n2) Õ(1) near optimal†

1 wedge Õ(m2/λ2) Õ(λ) for any λ ∈ [1,
√
m], near optimal†

1 (lower wedge Õ(m2−δ/λ2) Õ(λ) for λ ∈ [1,
√
m] and any δ > 0,

bound) impossible subj. to strong set disjointness conj.

1 ℓ-clique O(m) Õ(1)

2 (rep) any fixed Q Õ(m+mρ∗
/∆) delay Õ(∆) for any ∆ ≥ 1,

ρ∗ = frac. edge covering num. of Q

2 triangle O(m) delay Õ(1 + (m∗)
ω−1
ω+1 ) m∗ = num. of edges in

at least one triangle in Gq

2 ℓ-star O(m) delay Õ(1) near optimal

2 2ℓ-cycle Õ(#Pℓ) delay Õ(1) #Pℓ = num. of ℓ-paths in G

Remark: “near optimal” means no polynomial improvement (i.e., nδ for arbitrary small constant δ > 0)

possbile. The near optimality marked with † is subject to the strong set disjointness conjecture.

Table 1: A summary of our results

Importance of Space-Query Tradeoffs. One should not confuse the space-query tradeoff with
the tradeoff between preprocessing time and query cost, as has been extensively studied on join
algorithms [5,12,20–23,35,41–43,45]. Both tradeoffs are important, but they matter in different
ways. Unlike preprocessing time, which is “one-time cost” (because a structure, once built, can
be used forever), the space consumption is permanent. In other words, the space-query tradeoff
has a (much) more durable effect on the underlying database system. However, in spite of their
importance, the space-query tradeoffs on joins have received surprisingly little attention: we are
aware of only a single paper [20], which, as will be discussed in Section 1.3, does not consider query
predicates (or equivalently, only one query, which always outputs the entire join, exists) and concerns
only reporting (but not counting). Our work can be thought of as a step in the same direction
as [20] because, as explained in Section 5, subgraph searching can be cast as a join problem (in
fact, some of our results are explicitly about joins), and actually the first step on predicate-driven
queries and counting.

Finally, it is worth mentioning that a useful structure, no matter how little space it occupies,
must be constructible in polynomial time. This is true for all the structures developed in our paper.
In fact, each of our structures can be built with at most the time needed to find all the occurrences
of the query pattern Q, ignoring polylog factors.

1.2 Our Contributions

Table 1 summarizes the main results of this paper. Next, we will explain the results in detail.

1.2.1 Problem 1

Wedges. We will show:

Theorem 1.1. Consider Problem 1 with Q = wedge. For any real value λ ∈ [1,
√
m], there is a

structure of Õ(m2/λ2) space that answers a query in Õ(λ) time.

The space-query tradeoff may look disappointing. After all, wedge counting is easy in one-off
computation: we can count the number of wedges in G using O(n + m) time. It is natural to
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wonder whether the space in Theorem 1.1 is necessary. We answer the question by showing that
any substantial improvement to Theorem 1.1 will yield a major breakthrough on set disjointness:

Set Disjointness. The data is a collection of s ≥ 2 sets S1, S2, ..., Ss. Given distinct set ids
a, b ∈ [1, s], a query returns whether Sa ∩ Sb is empty.

Let N =
∑s

i=1 |Si| be the input size of set disjointness. Given any λ ∈ [1,
√
N ], there is a simple

structure of O(N2/λ2) space with O(λ) query time (see Appendix B). Improving the tradeoff by a
polynomial factor even for one arbitrary λ has been a long-standing open problem. The strong set
disjointness conjecture [31,32] states that a structure with query time λ must use Ω̃(N2/λ2) space
for any λ ≥ 1. We will prove:

Theorem 1.2. Consider Problem 1 with Q = wedge. Fix any λ ∈ [1,
√
m] and any constant δ > 0.

Suppose that we can obtain a structure of Õ(m2−δ/λ2) space answering a query in Õ(λ) time. Then,
for any set disjointness input of size N , we can obtain a structure of Õ(N2−δ/λ2) space answering
a query in Õ(λ) time (thus breaking the strong set disjointness conjecture).

Cliques. We will show:

Theorem 1.3. For Problem 1 with Q = ℓ-clique, there is a structure of O(m) space answering a
query in Õ(1) time.

Counting triangles (ℓ = 3) appears harder than counting wedges: in one-off computation, the

fastest known algorithm for the former takes O(m
2ω
ω+1 ) time. It is thus surprising to see Q = triangle

easier than Q = wedge in Problem 1. From Theorem 1.1 and 1.3, one sees that the problem of
calculating the clustering coefficient (see Section 1.1) of Gq for any q boils down to counting the
wedges in Gq. Effectively, this implies optimal settlement of that problem (subject to the strong
set disjointness conjecture), which bears practical significance due to the popularity of clustering
coefficients.

Arbitrary Subgraphs. We will show:

Theorem 1.4. For any Q, there is a structure for Problem 1 that uses O(n2) space and answers a
query in Õ(1) time.

The above result is difficult to improve: reducing the space by an nδ factor for any constant
δ > 0 breaks the strong set disjointness conjecture. To explain, assume n = O(m).3 If there was a
structure of O(n2−δ) = O(m2−δ) space and Õ(1) query time, applying the structure to Q = wedge
would yield a breakthrough on set disjointness by way of Theorem 1.2. The reader should note
that the hardness comes from producing a guarantee on all Q; it is possible to do better for special
patterns (Theorem 1.3). The hardness thus endows Q = wedge with unique significance in Problem
1. Theorem 1.4 further implies that Problem 1 under Q = wedge is the hardest when G is the

sparsest: m = o(n1+ϵ) for any constant ϵ > 0. To see why, set m = n1+ϵ, which gives n2 = m
2

1+ϵ .
Since 2

1+ϵ = 2− 2ϵ
1+ϵ , Theorem 1.4 yields a structure of O(m2−δ) space and Õ(1) query time with

δ = 2ϵ
1+ϵ , improving Theorem 1.1 by a polynomial factor at λ = Õ(1).

3Discard “isolated” vertices with no incident edges.
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1.2.2 Problem 2

A listing query ensures a delay ∆ if it reports a new occurrence of Q or declares “no more occurrences”
within ∆ time after the previous occurrence4.

Arbitrary Subgraphs. We will show:

Theorem 1.5. For any Q and ∆ ≥ 1, there is a structure for Problem 2 that uses Õ(m+mρ∗/∆)
space and has a query delay of Õ(∆), where ρ∗ is the fractional edge covering number of Q.

Imagine assigning each edge of Q a non-negative weight such that (i) for each vertex of Q, all its
incident edges receive a combined weight at least 1 and (ii) the total weight of all edges is minimized.
The fractional edge covering number ρ∗ of Q is the total weight of an optimal assignment. The
maximum number of occurrences of Q in G is O(mρ∗) [4] and the bound is tight in the worst case.

Our structure actually settles a problem on natural joins:

Range Join. Let R be a set of O(1) relations each with O(1) real-valued attributes. Denote
by join(R) the natural join result on the relations in R. Given an interval q = [x1, x2], a query
reports all the tuples t ∈ join(R) such that every attribute of t falls in q.

Let N be the total number of tuples in the relations of R. For any ∆ ≥ 1, we give a structure of
Õ(N +Nρ∗/∆) space answering a query with an Õ(∆) delay. Here, the fractional edge covering
number ρ∗ is with respect to the join’s hypergraph (details deferred to Section 5).

The challenge behind Theorem 1.5 is to design a structure that works for all Q. It is possible to
do better for specific Q. Next, we present three examples that are not only important subproblems
themselves but also illustrate different techniques.

Triangles. We will show:

Theorem 1.6. For Problem 2 with Q = triangle, there is a structure of O(m) space answering a

query with an Õ(1 + (m∗)
ω−1
ω+1 ) delay, where m∗ is the number of edges appearing in at least one

reported triangle.

The fractional edge covering number ρ∗ is 1.5 for Q = triangle. To ensure Õ(m) space,
Theorem 1.5 needs to set ∆ =

√
m. As ω−1

ω+1 < 0.408, Theorem 1.6 achieves a polynomial improvement
in delay. The reader should note that the value m∗ in Theorem 1.6 never exceeds m but can be
much less (this happens when there are few triangles to list). Problem 2 with Q = triangle and q
fixed to (−∞,∞) was used as a motivating problem in the previous work of [20], which described a
structure of O(m) space with a delay Õ(

√
m) and is thus strictly improved by Theorem 1.6.

ℓ-Stars. An ℓ-star is a tree with ℓ leaves and one non-leaf vertex (a wedge is a 2-star). We will
show:

Theorem 1.7. For Problem 2 where Q = ℓ-star, there is a structure of O(m) space answering a
query with an Õ(1) delay.

As a corollary, for any interval q, O(m) space suffices to detect the presence of an ℓ-star in Gq

using Õ(1) time. For Q = wedge, this means that the hardness manifested by Theorem 1.2 is indeed
due to counting.

2ℓ-Cycles5. We will show:

4The reader may assume that a dummy occurrence is always output at the beginning of a query algorithm.
5A cycle with 2ℓ vertices.
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Theorem 1.8. For Problem 2 with Q = 2ℓ-cycle where ℓ ≥ 2, there is a structure of Õ(#Pℓ) space
answering a query with an Õ(1) delay, where #Pℓ is the number of ℓ-paths in G.

The fractional edge covering number ρ∗ is ℓ for a 2ℓ-cycle. Theorem 1.5 needs Õ(mℓ) space to
achieve an Õ(1) delay. The space in Theorem 1.8 is significantly better. For ℓ = 2 (Q = 4-cycle), the
space is Õ(nm) which is the maximum number of wedges in G. For ℓ > 2, the space is Õ(m⌈(ℓ+1)/2⌉)
which is the maximum number of ℓ-paths in G.

1.3 Related Work

The preceding sections have covered the most relevant existing results. We will now proceed to
discuss other related work.

Pattern searching has been extensively studied in one-off computation. We refer the reader
to [3, 8, 10,17,18,27,28,30,37,50] and [2, 11,17,24–26,33,36,38,39], as well as the references therein,
for algorithms on counting and listing, respectively. Those algorithms can be applied in Problem
1 and 2 after Gq has been generated. Our focus in this work is to avoid a full generation of Gq

because doing so can take Ω(m) time.

In the other extreme, one can precompute the set S of occurrences of Q in G. The size of S is
O(mρ∗) (AGM bound), assuming that Q has a constant size. By resorting to standard computational
geometry techniques [19], we can store S in structures of Õ(mρ∗) space to answer a query of Problem
1 in Õ(1) time and a query of Problem 2 with an Õ(1) delay. For Problem 1, Theorem 1.4 achieves
a better space bound on every Q with ρ∗ ≥ 2. When ρ∗ < 2, Q has at most three vertices: a 1-path
(single edge), a wedge, or a triangle. We have resolved the wedge and triangle cases (Theorem 1.1
and 1.3), while Problem 1 is trivial for Q = 1-path. For Problem 2, Theorem 1.5 captures the above
extreme idea as a special case with ∆ = Õ(1) and offers a tunable space-query tradeoff.

A relational event graph, introduced by Bannister et al. [6], is a graph G = (V,E) where every

edge e ∈ E carries a real-valued timestamp. For an interval q = [x1, x2], let G
edge
q be the subgraph

of G induced by all the edges whose timestamps are covered by q. A pattern searching query
counts/lists the occurrences of a pattern Q in Gedge

q . See [6, 14, 15] for several data structures
designed for such queries. Similar as it sounds, pattern searching on a relational event graph is
drastically different from Problem 1 and 2 such that there is little overlap — in neither results nor
techniques — between our solutions and those in [6, 14,15].

Delay minimization is an important topic in the literature of joins and conjunctive queries;
see [5,9,12,13,20–23,34,35,41,43–45] and their references. Regarding our problems, we are not aware
of previous work giving a result better than what has already been mentioned. Our formulation
of range join listing (Section 1.2.2) suggests that the presence of query predicates can pose new
challenges on joins (also conjunctive queries) from the indexing’s perspective. Deep and Koutris [20]
proved a result equivalent to Theorem 1.5 (up to an Õ(1) factor) on Problem 2, but only in the
special scenario where a query concerns the whole G, i.e., fixing the query range q to (−∞,∞).

2 Preliminaries

In this section, we will describe several technical tools to be deployed in our solutions.

Structures for Multidimensional Points. We will utilize some well-known geometry data
structures as introduced below. The reader does not need to be bothered with the details of these
structures because we will apply them as “black boxes”. Let P be a set of n points in d-dimensional
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space Rd where d is a constant. Given a rectangle q of the form [x1, y1] × [x2, y2] × ... × [xd, yd],
a range reporting query enumerates the points in P ∩ q. We can create a range tree [7, 19] on P ,
which uses Õ(n) space and permits us to answer such a query with an Õ(1) delay. When d = 2, we
can replace the range tree with a Chazelle’s structure [16] which retains the aforementioned query
performance but reduces the space consumption to O(n).

We will also need range sum queries on P in the scenario where each point in P is 2D (i.e.,
d = 2) and carries a real-valued weight. Given a rectangle q = [x1, y1]× [x2, y2], such a query reports
the total weight of the points in P ∩ q. We can again build a Chazelle’s structure of [16] on P which
occupies O(n) space and answers a query in Õ(1) time.

From “Delays with Duplicates” to “Delays under Distinctness”. Let us consider a duplicate-
removal scenario often encountered in designing algorithms with small delays. Suppose that we have
an algorithm A for enumerating a set S of elements. With a delay of ∆, A can report an element
e ∈ S, but cannot guarantee that e has never been reported before. The good news, on the other
hand, is that A can output the same element at most α times for some α ≥ 1 .

By modifying a buffering technique in [47], we can convert A into an algorithm that enumerates
only the distinct elements of S with a delay of O(α ·∆ log |S|). Conceptually, divide the execution
of A into epochs, each of which runs for α ·∆ time6. As A runs, we use a buffer B to stash the
set of distinct elements that have been found by A but not yet reported. Every time A finds an
element e ∈ S, we check whether e has ever existed in B (this takes O(log |S|) time, using a binary
search tree maintained on all the elements that have ever been found so far). If so, e is ignored;
otherwise, it is added to B. At the end of each epoch, we output an arbitrary element from B and
remove it from B. Finally, after A has terminated, we simply output the remaining elements in B.

B always contains at least one element at the end of each epoch. To see why, consider the end of
the t-th epoch for some t ≥ 1. At this moment, A has been running for t · α ·∆ time and therefore
must have reported t · α elements, which may not be distinct. However, as each element can be
reported at most α times, there must be at least t (distinct) ones among those t · α elements. Since
we have reported only t− 1 elements in the preceding epochs, B must still have at least one element
at the end of epoch t. It is now straightforward to verify that the modified algorithm has a delay of
O(α ·∆ log |S|) in enumerating the distinct elements of S.

3 Problem 1: Matching Upper and Lower Bounds

This section will establish the conditional lower bound in Theorem 1.2 and its matching upper bound
in Theorem 1.4. Our discussion on the upper bound will also establish Theorem 1.3. Throughout
the paper, we will assume that the vertices of G have distinct attribute values. The assumption
loses no generality because one can break ties by vertex id.

3.1 Lower Bound

Suppose that Problem 1 under Q = wedge admits a structure that uses Õ(m2−δ/λ2) space and
answers a query in Õ(λ) time for some λ ≥ 1. We will design a structure for set disjointness that uses
Õ(N2−δ/λ2) space and answers a query in Õ(λ) time. Recall that the data input to set disjointness
consists of s ≥ 2 sets S1, ..., Ss with a total size of N . Define U =

⋃s
i=1 Si.

6Recall that “time” in the RAM model is defined as the number of atomic operations (e.g., addition, multiplication,
comparison, accessing a memory word, etc.) executed. Each epoch is essentially a sequence of α ·∆ such operations.

7



Create a graph G = (V,E) as follows. V has 2s+ |U| vertices, including 2s set vertices and |U|
element vertices. Each set Si (i ∈ [1, s]) defines two set vertices, whose attribute values are set to i
and s+ i, respectively. Each element in U defines an element vertex with the same attribute value
s+ 1/2. Set E contains 2N edges: for each element e ∈ Si, add to E two edges each between the
element vertex of e and a set vertex of Si. Now, create a Problem-1 structure under Q = wedge on
G. The structure occupies Õ(N2−δ/λ2) space.

Consider a set disjointness query with set ids a and b. Assuming w.l.o.g. a < b, we issue
four Problem-1 wedge-counting queries on G with intervals q1 = [a, s + b], q2 = [a + 1, s + b],
q3 = [a, s+b−1], and q4 = [a+1, s+b−1], respectively. Let c1, c2, ..., c4 be the counts returned. We
declare Sa ∩ Sb non-empty if and only if c1 − c2 − c3 + c4 > 0. The query time is Õ(λ). Appendix A
proves the algorithm’s correctness. This completes the proof of Theorem 1.2.

3.2 Upper Bound

Next, we will attack Problem 1 by allowing Q to be an arbitrary pattern graph. Consider any
occurrence of Q in G. Let u (resp. v) be the vertex in this occurrence with the smallest (resp.
largest) attribute. We register the occurrence at the pair (u, v). Denote by cu,v the number of
occurrences registered at (u, v).

For a query with q = [x1, x2], an occurrence registered at (u, v) appears in Gq (i.e., the subgraph
of G induced by Vq) if and only if Au ≥ x1 and Av ≤ x2. We can therefore convert the problem to
range sum on 2D points. For each pair (u, v) ∈ V × V , create a point (Au, Av) with weight cu,v. Let
P be the set of points created; clearly, |P | = O(n2). The query result is simply the total weight of
all the points in P covered by the rectangle [x1,∞)× (−∞, x2] (a range sum operation). We can
store P in a Chazelle’s structure (see Section 2) that occupies O(|P |) = O(n2) space and performs
a range sum operation in Õ(1) time. This establishes Theorem 1.4.

Improvement for Cliques. The space of our structure can be lowered to O(m) when Q is a clique.
The crucial observation is that registering an occurrence at (u, v) implies {u, v} ∈ E. We add to
P only the points (Au, Av) with a non-zero cu,v (points with zero weights do not affect a range
sum operation). This reduces the size of P to at most m and, hence, the space of the Chazelle’s
structure to O(m). We thus complete the proof of Theorem 1.3.

4 Problem 1: Wedges

The section will explain how to achieve the guarantees in Theorem 1.1 for Problem 1 under Q =
wedge. We will represent a wedge occurrence in G = (V,E) as wedge(u, v, w) where u, v, and w are
vertices in V , and {u, v} and {v, w} are edges in E. Let us introduce a slightly different problem:

Colored Range Wedge Counting. Define G = (V,E) and Av for each v ∈ V as in Problem
1. Each vertex in V is colored black or white. Given an interval q, a query returns the number
of occurrences wedge(u, v, w) such that Au ∈ q, Aw ∈ q, and v is black.

Note that no requirements exist on Av and the colors of u and w.

Let C be a set of subsets of V . We call C a canonical collection if

• (P4-1) each vertex of V appears in Õ(1) subsets in C;
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• (P4-2) for any interval q, we can partition Vq (i.e., the set of vertices in V with attribute values
in q) into Õ(1) disjoint subsets, each being a member of C. The ids of these subsets can be
obtained in Õ(1) time.

It is rudimentary to find a canonical collection C satisfying
∑

U∈C |U | = Õ(n).7 We will work with
such a C henceforth. In Appendix B, we prove:

Lemma 4.1. Consider the colored range wedge counting problem. For any real value λ ∈ [1,
√
m],

there is a structure of Õ(m2/λ2) space that answers a query in Õ(λ) time.

Equipped with the above, we now return to Problem 1 with Q = wedge.

Structure. For each U ∈ C (where U is a subset of V ), we create a graph GU by adding edges in
three steps:

1. Initialize GU as an empty graph with no vertices and edges.

2. For every vertex u ∈ U , we add all its edges in G (i.e., the original data graph) to GU . The
addition of an edge {u, v} creates vertex v in GU if v is not present in GU yet.

3. Finally, color a vertex in GU black if it comes from U , or white otherwise.

We now build a structure of Lemma 4.1 on GU , which uses Õ(|EU |2/λ2) space where EU is the set
of edges in GU . By Property P4-1, each edge {u, v} of G can be added to the EU of Õ(1) subsets
U ∈ C. It thus follows that

∑
U∈C |EU | = Õ(m). The structures of all U ∈ C occupy Õ(m2/λ2)

space in total.

Query. Consider now a (Problem-1) query with interval q. By Property P4-2, in Õ(1) time we can
pick h = Õ(1) members U1, ..., Uh from C to partition Vq. For each i ∈ [1, h], issue a colored range
wedge counting query with interval q on GUi . We return the sum of the h queries’ outputs. The
overall query time is h · Õ(λ) = Õ(λ).

To verify correctness, first observe that every wedge(u, v, w) counted by the colored query on GUi

satisfies: Au ∈ q, Aw ∈ q (definition of colored range wedge counting), and Av ∈ q (because v being
black means v ∈ Ui ⊆ Vq). Conversely, every occurrence wedge(u, v, w) satisfying {Au, Av, Aw} ⊆ q
is counted only once: by the colored query on GUi where Ui is the only subset (among all i ∈ [1, h])
containing v. Indeed, for any Uj with j ̸= i, v is either absent in GUj or is white; in neither case
can the wedge be counted. Correctness now follows.

5 Problem 2: Arbitrary Subgraphs

We now proceed to tackle Problem 2 for an arbitrary query pattern Q. We will, in fact, solve the
range join problem defined in Section 1.2.2. As shown in Appendix D, it is relatively easy to convert
our structure to prove Theorem 1.5.

For a relation R ∈ R (recall that R is the set of input relations; see Section 1.2.2) its scheme,
scheme(R), is the set of attributes in R. Let X =

⋃
R∈R scheme(R). The input size N can now be

7It suffices to build a binary search tree T on the vertices’ attribute values. Each node in T defines a subset in C,
which consists of every v ∈ V whose attribute Av is stored in the node’s subtree. It is well known (see, e.g., [46]) that,
for any interval q, there exist O(logn) canonical nodes in T whose subtrees are disjoint and together contain all and
only the attribute values in q. Those nodes can be found in O(logn) time and satisfy Property P4-2 with respect to
Vq.
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expressed as
∑

R∈R |R|. We will assume, w.l.o.g., that (i) the relations in R have distinct schemes,
(ii) N is a power of 2, and (iii) each attribute X ∈ X has a domain dom(X) comprising the integers
in [1, N ]. Given an interval q = [x1, x2], a query lists every tuple t in join(R) — the natural join
result on R — satisfying t[X] ∈ q for all X ∈ X , where t[X] is the tuple’s value under attribute X.
We want to design a structure of small space to answer such queries with a small delay.

It will be convenient to work with a hypergraph G = (X , E) where E = {scheme(R) | R ∈ R}.
Given an edge e ∈ E , we use Re to denote the (only) relation R ∈ R whose scheme is e. For a
function W that assigns a non-negative weight W (e) to every e ∈ E , its lump-sum is

∑
e∈E W (e).

The function W is a fractional edge covering if
∑

e∈E:X∈eW (e) ≥ 1 holds on every attribute X ∈ X .
The fractional edge covering number ρ∗ of G is the smallest lump-sum of all fractional edge coverings.
Henceforth, we will use W to represent an optimal assignment function with lump-sum ρ∗.

The section’s main result is:

Theorem 5.1. For the range join problem (see Section 1.2.2), given any ∆ ≥ 1, there is a structure
of Õ(N +Nρ∗/∆) space that answers a query with an Õ(∆) delay.

5.1 A Generalization of the AGM Bound

The classical AGM bound [4] states that |join(R)| ≤
∏

e∈E |Re|W (e). Next, we will present a more
general version of this inequality.

Set d = |X | and impose an arbitrary ordering on the d attributes: X1, X2, ..., Xd. Given intervals
I1, I2, ..., Id where Ii ⊆ dom(Xi) for each i ∈ [1, d], define B(I1, ..., Id) as the d-dimensional box
I1 × ...× Id. For a relation R ∈ R, we use R⋉B(I1, ..., Id) to represent the set of tuples t ∈ R such
that t[Xi] ∈ Ii for every i satisfying Xi ∈ scheme(R).

We prove in Appendix C:

Lemma 5.2. Let I i, i ∈ [1, d], be a set of disjoint intervals in dom(Xi). Then:∑
I1∈I1

∑
I2∈I2

...
∑

Id∈Id

∏
e∈E

|Re ⋉B(I1, ..., Id)|W (e) ≤
∏
e∈E

|Re|W (e). (1)

To see how (1) captures the AGM bound, consider the special I i with size |dom(Xi)|, namely,
each interval in I i is a value in dom(Xi) and vice versa. Thus, |Re ⋉B(I1, ..., Id)| is either 0 or 1
such that the left hand side of (1) is precisely |join(R)|. The real power of (1), however, comes from
allowing I i to be an arbitrary set of disjoint intervals, a feature crucial for us to prove Theorem 5.1.

A remark is in order about why Lemma 5.2 is not trivial. It would be if the term
∏

e∈E |Re ⋉
B(I1, ..., Id)|W (e) in (1) was replaced by the output size of the join on the relations in {Re ⋉
B(I1, ..., Id) | e ∈ E}. By the AGM bound, the term

∏
e∈E |Re ⋉B(I1, ..., Id)|W (e) is an upper bound

on the size of the join {Re⋉B(I1, ..., Id) | e ∈ E}. The non-trivial goal is to show that the summation
of all those upper bounds (i.e., the left hand side of (1)) still cannot exceed

∏
e∈E |Re|W (e).

5.2 Range Join

This subsection serves as a proof of Theorem 5.1. Given an ℓ ≥ 0, we call an interval a level-ℓ dyadic
interval if it has the form [i · 2ℓ + 1, (i+ 1) · 2ℓ] for some integer i ≥ 0. Because N is a power of 2,
for each ℓ ∈ [0, log2N ], we can partition [1, N ] into N/2ℓ disjoint level-ℓ dyadic intervals.
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A dyadic combination is a sequence of d dyadic intervals (I1, ..., Id); recall that d = |X |. The
combination defines a (natural) join instance on the relations in {Re ⋉ B(I1, ..., Id) | e ∈ E}. We
will denote the instance as RI1,...,Id . Define

AGM(I1, ..., Id) =
∏
e∈E

|Re ⋉B(I1, ..., Id)|W (e). (2)

The AGM bound assures us that |join(RI1,...,Id)| ≤ AGM(I1, ..., Id).

Structure. A dyadic combination (I1, ..., Id) with a non-empty join(RI1,...,Id) is said to be heavy if
AGM(I1, ..., Id) > ∆, or light otherwise. For each heavy combination, we build a structure of [20]
that can enumerate the tuples in join(RI1,...,Id) with an Õ(∆) delay. The structure’s space is
bounded by O(AGM(I1, ..., Id)/∆).8

We argue that the structures on all the heavy (dyadic) combinations use Õ(Nρ∗/∆) space in
total. Fix d arbitrary level numbers ℓ1, ..., ℓd each between 0 and log2N . For i ∈ [1, d], let I i

be the set of all level-ℓi dyadic intervals. The total space occupied by the structures of all heavy
combinations (I1, ..., Id) ∈ I1 × ...× Id is

1

∆

∑
(I1,...,Id)∈I1×...×Id

AGM(I1, ..., Id). (3)

up to an Õ(1) factor. The above includes a term for every light combination but such terms can only
over-estimate the space. Each I i is a set of disjoint intervals in dom(Xi). Applying the definition
in (2) and Lemma 5.2, we can see that (3) is bounded by Nρ∗/∆, noticing that the right hand side
of (1) is at most Nρ∗ .

In the above analysis, we have fixed a set of ℓ1, ..., ℓd. As each ℓi has O(logN) choices, all
together there are O(logdN) = Õ(1) different sets of ℓ1, ..., ℓd. We can now conclude that the overall
space is Õ(Nρ∗/∆).

Finally, we need a hash table to check in constant time whether a dyadic combination is heavy.
The hash table occupies Õ(Nρ∗/∆) space because our earlier analysis implies a bound Õ(Nρ∗/∆)
on the number of heavy dyadic combinations. The overall space of our entire structure is therefore
Õ(N +Nρ∗/∆), where the term Õ(N) counts the space for storing the relations of R.

Query. Consider a range join query with interval q = [x1, x2]. We consider, w.l.o.g., that x1 and
x2 are integers in [1, N ]. In Õ(1) time, we can partition the box B(q, ..., q︸ ︷︷ ︸

t

) into O(logdN) = Õ(1)

disjoint boxes, each in the form B(I1, ..., Id) where (I1, ..., Id) is a dyadic combination; we say that
(I1, ..., Id) is canonical for q. The query result is⋃

canonical (I1, ..., Id)

join(RI1,...,Id).

The results join(RI1,...,Id) of all the canonical (I1, ..., Id) are disjoint. If a canonical (I1, ..., Id) is
heavy, we enumerate join(RI1,...,Id) with an Õ(∆) delay using the structure of [20] on (I1, ..., Id).
Otherwise, we apply a worst-case optimal join algorithm [39, 40, 48] to compute join(RI1,...,Id).

8Strictly speaking, the space should also account for the relations in RI1,...,Id . In our context, it suffices to store
the relations of R once and generate the relations in RI1,...,Id when answering a query. Appendix D has additional
details about [20].
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The algorithm finishes in Õ(AGM(I1, ..., Id)) time, which is Õ(∆) by definition of light dyadic
combination. Our algorithm guarantees a delay of Õ(∆). This completes the proof of Theorem 5.1.

Remark. In [36], Khamis et al. used dyadic intervals in their algorithm for one-off computation
of join(R). Their main technical issue was to select “good” dyadic boxes (i.e., boxes of the form
B(I1, ..., Id)) to cover the tuples in join(R) once. That issue is non-existent in our context, where the
primary obstacle is to argue that the total space given in (3) is affordable. We overcame the obstacle
using Lemma 5.2, which, though perpahs no longer surprising given all the existing variations of the
AGM bound, deserves a careful treatment that, we believe, has not appeared before.

6 Problem 2: Triangles

This section will describe a structure for Problem 2 under Q = triangle. We will first attack, in
Section 6.1 and 6.2, two fundamental problems whose solutions are vital to establishing Theorem 1.6,
the proof of which is presented in Section 6.3.

6.1 The Range Triangle Edges Problem

This subsection will discuss the following standalone problem.

Range Triangle Edges (RTE). Let G be an undirected graph with m edges. Given an
interval q = [x1, x2], a query returns: (i) all the edges appearing in at least one triangle of Gq;
and (ii) Θ(m∗) triangles where m∗ is the number of edges reported in (i).

We will develop a structure of O(m) space that can answer a query in Õ(m∗) time. Furthermore,
the query can enumerate the m∗ edges and the Θ(m∗) triangles both with a delay ∆.

Let us represent a triangle occurrence in G as triangle(u, v, w) where u, v, and w are the triangle’s
vertices. Ordering is important: we will always adhere to the convention Au < Av < Aw. Given
an interval q, we denote by E∗

q the set of edges showing up in at least one triangle of Gq. Hence,
m∗ = |E∗

q |. If triangle(u, v, w) appears in Gq, we call {u, v} a type-1 edge, {v, w} a type-2 edge,
and {u,w} a type-3 edge. The total number of edges of all three types is between m∗ and 3m∗.9.
Next, we explain how to extract the edges of each type in Gq.

Type 1 and 2. We will discuss only type 1 because type 2 is symmetric. For each edge {u, v} in G
(assume, w.l.o.g., Au < Av), identify a sentinel vertex w∗ for {u, v} as follows:

• w∗ = null if G has no occurrence of the form triangle(u, v, w);

• otherwise, w∗ has the smallest attribute among all the vertices w making a triangle occurrence
triangle(u, v, w) in G.

Consider any interval q = [x1, x2]. Observe that {u, v} is a type-1 edge for q if and only if
x1 ≤ Au and Aw∗ ≤ x2. This motivates us to convert type-1 edge retrieval to range reporting on
2D points (introduced in Section 2). Towards the purpose, create a set P of points, which has
a point (Au, Aw∗) for every {u, v} whose sentinel w∗ is not null. Attach edge {u, v} to the point
(Au, Aw∗) so that the former can be fetched along with the latter. The size of P is at most m.
Given q = [x1, x2], we can find all the type-1 edges by enumerating the points of P inside the

9An edge can be of different types in various triangle occurrences.
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rectangle [x1,∞)× (−∞, x2]. Hence, we can store P in a Chazelle’s structure (see Section 2) that
has O(|P |) = O(m) space and ensures an Õ(1) delay in reporting the type-1 edges of any q.

Type 3. A similar approach works for type 3. Let {u,w} be an edge appearing in at least one
occurrence triangle(u, v, w) in G. It is a type-3 edge of q = [x1, x2] if and only if x1 ≤ Au and
Aw ≤ x2. By adapting the earlier discussion in a straightforward manner, we conclude that there is
a structure of O(m) space allowing us to retrieve all the type-3 edges with an Õ(1) delay.

Listing Θ(m∗) Triangles. The above has explained how to retrieve E∗
q , but an RTE query still

needs to report Θ(m∗) triangles. Next, we remedy the issue by slightly modifying our solution so
far.

Recall that, in dealing with type 1, we attached the edge {u, v} to the point (Au, Aw∗) generated
from the edge. Now, we attach triangle(u, v, w∗) to (Au, Aw∗) as well. This way, when (Au, Aw∗)
is found, we obtain both {u, v} and triangle(u, v, w∗) for free. After applying the same idea to
type-2 and type-3, we can assert that, whenever the query algorithm finds a type-1, -2, or -3 edge,
it must have also found a triangle in Gq. Therefore, the algorithm can report the triangles in Gq

with an Õ(1) delay, although the same triangle may be reported up to three times10. By applying
the duplicate-removal technique in Section 2, we now have an algorithm that can enumerate Θ(m∗)
distinct triangles with an Õ(1) delay. The number of distinct triangles reported is at least m∗/3
and at most 3m∗.

6.2 The Small-Delay Triangle Listing Problem

In this subsection, we will concentrate on a standalone problem defined as follows.

Small-Delay Triangle Listing (SDTL). G is an undirected graph with m edges, each of
which appears in at least one triangle. We are given Ω(m) free triangles and O(m) forbidden
triangles. Design an algorithm to enumerate all the triangles of G — except for the forbidden
ones — with a small delay (free triangles must be enumerated). No preprocessing is allowed.

We will settle the problem with an algorithm of delay Õ(m
ω−1
ω+1 ).

Suppose that G has OUT triangles in total. Our starting point is an algorithm of Bjorklund et

al. [11] which is able to list k triangles in α ·m
3(ω−1)
ω+1 k

3−ω
ω+1 time, where α = Õ(1), for a parameter

k ∈ [Ω(m),OUT]. As far as the algorithm of [11] is concerned, we can consider OUT known because

it can be found in O(m2ω/(ω+1)) time [3] which is O(m
3(ω−1)
ω+1 k

3−ω
ω+1 ). The algorithm of Bjorklund et

al. does not have a small delay, but we will turn it into one that does.

We run the algorithm of Bjorklund et al. [11] with geometrically-increasing k and, in each run,
report only some, but not all, of the triangles. How many triangles are reported in each run is
decided strategically to keep the delay small. Let S0

no be the set of forbidden triangles and S0
yes the

set of free triangles in the beginning. Set k0 = |S0
no |+ |S0

yes |. When running the algorithm of [11]
for the i-th time, we set its parameter k to ki = min{3ik0,OUT}. We enforce the invariant that,
when run i starts, there are always a set Si−1

no of forbidden triangles and a set Si−1
yes of free triangles.

The set Si−1
yes will be reported with a small delay during the i-th run (details to be clarified shortly).

10An occurrence triangle(u, v, w) can be reported only when {u, v}, {v, w}, or {u,w} is output as a type-1, -2, or -3
edge, respectively.
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Specifically, suppose that the i-th run finds a set Si
raw of ki triangles (some of which have been

output in previous runs). We generate the forbidden and free sets for the next run as follows:

Si
no = Si−1

no ∪ Si−1
yes and then Si

yes = Si
raw \ Si

no .

Run i finishes in α ·m
3(ω−1)
ω+1 k

3−ω
ω+1

i time. We instruct the run to output a triangle from Si−1
yes every

α ·
m

3(ω−1)
ω+1 k

3−ω
ω+1

i

|Si−1
yes |

(4)

atomic operations. We will show |Si−1
yes | = Ω(ki), with which the delay in (4) can be bounded as:

Õ

m
3(ω−1)
ω+1

k
2ω−2
ω+1

i

 = Õ
(
m

ω−1
ω+1

)
(5)

where the equality used ki ≥ k0 = Ω(m).

For i = 1, |Si−1
yes | = Ω(k0) follows directly from the definition of the SDTL problem (i.e., we have

Ω(m) free triangles to start with). To prove |Si−1
yes | = Ω(ki) for i ≥ 2, we derive:

|Si−1
no | ≤ |S0

no |+ |S0
yes |+

i−2∑
j=1

|Sj
raw | = k0 +

i−2∑
j=1

3j · k0 =
i−2∑
j=0

3j · k0 <
3i−1k0

2
.

Therefore:

|Si−1
yes | ≥ |Si−1

raw | − |Si−1
no | > ki−1 − 3i−1k0/2 = ki−1/2 = Ω(ki).

We now conclude that the delay of our algorithm is as given in (5).

6.3 Proof of Theorem 1.6

We are ready to explain how to solve Problem 2 with Q = triangle. In preprocessing, we build an
RTE structure (Section 6.1) on G. Now, consider a (Problem-2) query with interval q. We start by
issuing an RTE query to retrieve E∗

q , i.e., the set of edges appearing in at least one triangle of Gq.
This, in effect, generates G∗

q , which is the subgraph of Gq induced by the edges in E∗
q . In addition,

the RTE query has also enumerated a set S of Θ(m∗) triangles in Gq, where m∗ = |E∗
q |. The size of

S falls in [m
∗

3 , 3m∗].

Our remaining mission is to enumerate the triangles in G∗
q that are outside S. Note that G∗

q is a
graph with m∗ edges and at least Θ(m∗) triangles. This motivates us to convert the mission to the
SDTL problem, which has been solved in Section 6.2. However, the SDTL problem requires Θ(m∗)
free triangles and O(m∗) forbidden triangles as part of the input. Unfortunately, we do not seem to
have these triangles at the moment.

We overcome this obstacle by, interestingly, dividing S into Syes and Sno , such that Syes (resp.
Sno) serves as the set of free (resp. forbidden) triangles. Recall that the RTE query algorithm,
denoted as A, is designed to enumerate an edge in E∗

q with a delay ∆ = Õ(1) and a triangle in S also
with a delay ∆. Therefore, it must finish within tmax = max{∆·(|E∗

q |+1),∆·(|S|+1)} ≤ ∆·(3m∗+1)
time. We can now apply the buffering technique in Section 2 with α = 18 to turn A into an algorithm
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that outputs a triangle at the end of each epoch, which has a length 18∆. The total number of
epochs is at most tmax

18∆ ≤ 3m∗+1
18 . Thus, when A finishes, we have output at most (3m∗ + 1)/18

triangles, whereas the buffer B (defined in Section 2) still has at least |S|− 3m∗+1
18 = Θ(m∗) triangles.

We can, thus, set Syes to the content of B when A finishes, and Sno to the set of triangles already
output.

We can now apply the SDTL algorithm on G∗
q and, thus, complete the proof of Theorem 1.6.

7 Problem 2: Near-Constant Delays

This section will focus on two instances of Problem 2 where it is possible to achieve Õ(1) delays with
space substantially smaller than Theorem 1.5. We will discuss first Q = ℓ-star in Section 7.1 and then
Q = 2ℓ-cycle in Section 7.2. We will focus on explaining how to enumerate a perhaps-not-distinct
occurrence with an Õ(1) delay, while ensuring each occurrence to be output only a constant number
of times. Owing to the duplicate-removal method in Section 2, we can modify the algorithms to
enumerate only distinct occurrences with Õ(1) delays.

7.1 ℓ-Stars

Recall that an ℓ-star is a tree with only one non-leaf node, which we will refer to as the star’s center.
Consider a query with interval q. We refer to a node u as a q-center if Gq has at least one ℓ-star
occurrence with u as the center. Once u is found, it becomes a trivial matter to enumerate all the
ℓ-stars having u as the center with an Õ(1) delay. Specifically, we can first (use a binary search tree
to) retrieve all the neighbors v of u in G satisfying Av ∈ q. From those neighbors, any ℓ distinct
vertices form an ℓ-star together with u (as the center). It is rudimentary to ensure an Õ(1) delay in
enumerating all those stars.

Next, we concentrate on designing a structure to enumerate the q-centers with an Õ(1) delay.
Consider an arbitrary ℓ-star in G with center u. Sort the star’s ℓ+ 1 vertices in ascending order
of attribute and look for the position of u. If u is the r-th smallest, we will refer to the star as a
rank-r ℓ-star and u as a rank-r q-center.

Now, fix an r ∈ [1, ℓ+ 1]. We will describe a structure to support the following operation:

Given an interval q, find all the rank-r q-centers, i.e., all vertices u ∈ V s.t. Gq has a rank-r
ℓ-star with u as the center.

Consider any rank-r ℓ-star in G having u as the center. Let us write out the star’s vertices as
v1, ..., vr−1, u, vr+1, ..., vℓ in ascending order of attribute. For a q = [x1, x2], the ℓ-star appears in
Gq if and only if x1 ≤ Av1 and Avℓ ≤ x2. Refer to v1 as a left r-sentinel of u and to vℓ as a right
r-sentinel of u. From all the left r-sentinels of u (one from each rank-r ℓ-star with center u), identify
the one v∗1 with the largest attribute. Similarly, from all the right r-sentinels of u, identify the one
v∗ℓ with the smallest attribute. Observe that u is a rank-r q-center if and only if x1 ≤ Av∗1

and
Av∗ℓ

≤ x2. We can therefore convert the retrieval of rank-r q-centers into range reporting on 2D
points (review Section 2), in the same way as illustrated in Section 6.1. Following Section 2, we
can create a Chazelle’s structure on n points — each point created for a vertex u ∈ V in the way
explained — that has O(n) space and, given any q, can list the rank-r q-centers with an Õ(1) delay.
This completes the proof of Theorem 1.7.
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7.2 2ℓ-Cycles

We will start with an assumption: all queries specify a fixed q = (−∞,∞), namely, there is effectively
only one query, which enumerates all the 2ℓ-cycles in G. The assumption allows us to explain the
core ideas with the minimum technical details and will be removed eventually.

Queries with q = (−∞,∞). Given a 2ℓ-cycle occurrence, we refer to the vertex u in the cycle
having the smallest attribute as the occurrence’s anchor. Let v be the vertex in the cycle such
that cutting the cycle at u and v gives two ℓ-paths connecting u and v. We will refer to v as the
occurrence’s inverse anchor, the pair (u, v) as an anchor pair, and the two aforementioned paths as
cycle ℓ-paths. The number of cycle ℓ-paths is at most #Pℓ (recall that #Pℓ is the total number of
ℓ-paths).

The problem may appear deceivingly simple: can’t we answer a query by simply concatenating,
for each anchor pair (u, v), every two cycle ℓ-paths from u to v? This does not work because the
two cycle ℓ-paths may share common vertices other than u and v, in which case the concatenation
does not yield a 2ℓ-cycle! This motivates a crucial notion: two cycle ℓ-paths are interior disjoint if
they (i) have the same anchor pair (u, v), and (ii) do not share any common vertex except u and
v. Concatenating two cycle ℓ-paths from u to v spawns a 2ℓ-cycle if and only if those paths are
interior disjoint. The challenge we are facing at this moment is the following problem.

Design a structure to support the following operation: given a cycle ℓ-path π from anchor u to
inverse anchor v, list all the cycle ℓ-paths interior disjoint with π with an Õ(1) delay.

We will overcome the challenge with a structure of Õ(#Pℓ) space.

Our main observation is that the operation can be converted to range reporting on (ℓ − 1)-
dimensional points (review Section 2). To explain, let us consider any cycle ℓ-path π from anchor
u to inverse anchor v. After excluding u and v, the path has ℓ − 1 vertices, which we list as
w1, w2, ..., wℓ−1 in ascending order of attribute11. Convert π into an (ℓ − 1)-dimensional point
(Aw1 , ..., Awℓ−1

). Let Pu,v be the set of points thus obtained from all the cycle ℓ-paths with (u, v) as
the anchor pair.

Now, consider another cycle ℓ-path π′ from u to v. List the vertices of π′ other than u and v
as w′

1, w
′
2, ..., w

′
ℓ−1 also in ascending order of attribute. If π′ is interior disjoint with π, each Aw′

i

(i ∈ [1, ℓ− 1]) must fall in one of the ℓ open intervals:

(−∞, Aw1), (Aw1 , Aw2), ..., (Awℓ−2
, Awℓ−1

), (Awℓ−1
,∞). (6)

Therefore, (Aw′
1
, ..., Aw′

ℓ−1
) — the point converted from π′ — must fall in one of the following

ℓℓ−1 = O(1) rectangles: q1 × q2 × ...× qℓ−1, where each qi (i ∈ [1, ℓ− 1]) is taken independently from
one of the intervals in (6). As per Section 2, by creating a range tree on Pu,v of Õ(|Pu,v|) space, we
can enumerate all the points in such a rectangle with an Õ(1) delay.

The conclusion from the above is that, for each anchor pair (u, v), we can create a range tree
of Õ(|Pu,v|) space which, given any cycle ℓ-path cycle π from u to v, permits the enumeration of
every cycle ℓ-path π′, which is interior disjoint with π, with an Õ(1) delay. The structures of all the
anchor pairs use in total

∑
anc. pair (u, v) Õ(|Pu,v|) = Õ(#Pℓ) space.

With the challenge conquered, listing all the 2ℓ-cycles becomes an easy matter. We simply
look at each cycle ℓ-path π, retrieve every ℓ-path π′ interior disjoint with π, and make a cycle by
concatenating π and π′. The delay in cycle reporting is Õ(1) (each 2ℓ-cycle can be reported twice).

11The order should not be confused with the order by which the vertices appear in π.
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Arbitrary Queries. Next, we remove the constraint q = (−∞,∞) and tackle queries with arbitrary
q. A new issue now arises: a query can no longer afford to look at all the cycle ℓ-paths. We say that
a cycle ℓ-path from anchor u to inverse anchor v contributes to Gq if it makes a 2ℓ-cycle in Gq with
another interior disjoint cycle ℓ-path. We need a way to list only the contributing cycle ℓ-paths.

Fix any cycle ℓ-path π with anchor pair (u, v). Let Sπ be the set of 2ℓ-cycles in G that include π
and have (u, v) as the anchor pair. Take an arbitrary cycle from Sπ. By definition of anchor, u has
the smallest attribute among the cycle’s vertices. Let w be the vertex in the cycle with the largest
attribute. For q = [x1, x2], the cycle appears in Gq if and only if x1 ≤ Au and Aw ≤ x2. Let w

∗ be
the vertex with the smallest attribute among all such w’s. It becomes evident that π contributes to
the Gq of q = [x1, x2] if and only if x1 ≤ Au and Aw∗ ≤ x2. We can therefore convert the retrieval
of contributing cycle ℓ-paths to range reporting on 2D points, using the method in Section 6.1. The
resulting structure (a Chazelle’s structure) stores a point converted from every cycle ℓ-path and
uses O(#Pℓ) space. Give any q, we can list the cycle ℓ-paths contributing to Gq with an Õ(1) delay.

Suppose that we have found a contributing cycle ℓ-path π with anchor pair (u, v). As before, we
proceed to find the cycle ℓ-paths π′ interior disjoint with π. The new requirement here, however, is
that π′ needs to be contributing as well. Recall that, in the q = (−∞,∞) scenario, we converted
the task to range reporting on (ℓ− 1)-dimensional points. To deal with arbitrary q = [x1, x2], we
will increase the dimension by one.

To explain, in a fashion like before, let us list out the vertices of π — after excluding u and
v — as w1, ..., wℓ−1 in ascending order of attribute. Denote by wmax the vertex in π with the
largest attribute (wmax can be v). Convert π to an ℓ-dimensional point (Aw1 , ..., Awℓ−1

, Awmax). Let
(Aw′

1
, ..., Aw′

ℓ−1
, Aw′

max
) be the point converted from π′ in the same manner. As we already know

Au ∈ [x1, x2] (recall that π is a contributing path), π′ is a path we want if and only if it satisfies the
conditions below:

• Aw′
i
(1 ≤ i ≤ ℓ− 1) falls in one of the ℓ intervals in (6);

• Aw′
max

≤ x2.

Thus, the point (Aw′
1
, ..., Aw′

ℓ−1
, Aw′

max
) must fall in one of the following ℓℓ−1 = O(1) rectangles:

q1 × q2 × ...× qℓ−1 × (−∞, x2], where each qi (i ∈ [1, ℓ− 1]) is an interval taken independently from
(6). By the above reasoning, for each anchor pair (u, v), we create a set Pu,v of ℓ-dimensional points,
each converted from a cycle ℓ-path with anchor pair (u, v), and then build a range tree on Pu,v. The
range trees of all anchor pairs use

∑
anc. pair (u, v) Õ(|Pu,v|) = Õ(#Pℓ) space in total.

We now elaborate on the overall algorithm for answering a (Problem-2) query with parameter q.
First, enumerate all the cycle ℓ-paths contributing to Gq with an Õ(1) delay; call this the outer
enumeration. Every time such a path π — say with anchor pair (u, v) — is obtained, we suspend
outer enumeration and utilize the range tree on Pu,v to find all the paths π′ discussed previously
with an Õ(1) delay. Upon the delivery of a π′, concatenate it with π and output the 2ℓ-cycle
obtained. After exhausting all such π′, we resume outer enumeration. This concludes the proof of
Theorem 1.8.
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Appendix

A Correctness of the Reduction in Section 3.1

In our construction, Si (i ∈ [1, s]) corresponds to two set vertices with attribute values i and
i+ s, respectively. To facilitate derivation, we make a copy of each set: define Si = Si−s for each
i ∈ [s+ 1, 2s]. In the rest of the proof, we hold the view that each Si (i ∈ [1, 2s]) corresponds to
only one set vertex, the one with attribute value i.

Consider a wedge occurrence with vertices u, v, and w where the edges are {u, v} and {v, w}.
We classify it as one of the two types below:

• (type e-s-e) u and w are element vertices and v is a set vertex;

• (type s-e-s) u and w are set vertices and v an element vertex.

Lemma A.1. For any interval q = [x, y] satisfying 1 ≤ x < s+ 1/2 < y ≤ 2s, we have

• the number of e-s-e wedges in Gq is
∑

i∈[x,y]
(|Si|

2

)
;

• the number of s-e-s wedges in Gq is
∑

i∈[x,y],j∈[i+1,y] |Si ∩ Sj |.

Proof. To prove the first bullet, define an e-s-e tuple as (e1, Si, e2) where i ∈ q and e1 and e2 are
distinct elements in Si. The number of such tuples is

∑y
i=x

(|Si|
2

)
. Our construction ensures a

one-one correspondence between e-s-e tuples and e-s-e wedges in Gq.

To prove the second bullet, define an s-e-s tuple as (Si, e, Sj) where x ≤ i < j ≤ y and
e ∈ Si ∩ Sj . The number of such tuples is

∑
i∈[x,y],j∈[i+1,y] |Si ∩ Sj |. Our construction ensures a

one-one correspondence between s-e-s tuples and s-e-s wedges in Gq.

To find out whether Sa ∩ Sb is empty, our reduction issues four Problem-1 queries with intervals
q1 = [a, s+ b], q2 = [a+ 1, s+ b], q3 = [a, s+ b− 1], and q4 = [a+ 1, s+ b− 1], respectively. The
above lemma is applicable to all these intervals. For i ∈ [1, 4], let c′i (resp. c

′′
i ) be the number of e-s-e

(resp. s-e-s) wedges in Gqi ; this means that ci, the total number of wedges in Gqi , equals c′i + c′′i .
According to Lemma A.1, we have:

c′1 − c′2 − c′3 + c′4

=
∑

i∈[a,s+b]

(
|Si|
2

)
−

∑
i∈[a+1,s+b]

(
|Si|
2

)
−

∑
i∈[a,s+b−1]

(
|Si|
2

)
+

∑
i∈[a+1,s+b−1]

(
|Si|
2

)
= 0

and

c′′1 − c′′2 − c′′3 + c′′4

=

 ∑
i∈[a,s+b]

j∈[i+1,s+b]

|Si ∩ Sj | −
∑

i∈[a+1,s+b]
j∈[i+1,s+b]

|Si ∩ Sj |

−

 ∑
i∈[a,s+b−1]

j∈[i+1,s+b−1]

|Si ∩ Sj | −
∑

i∈[a+1,s+b−1]
j∈[i+1,s+b−1]

|Si ∩ Sj |


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=
∑

j∈[a+1,s+b]

|Sa ∩ Sj | −
∑

j∈[a+1,s+b−1]

|Sa ∩ Sj |

= |Sa ∩ Ss+b|
= |Sa ∩ Sb|.

We thus conclude that c1 − c2 − c3 + c4 = |Sa ∩ Sb|.

B Proof of Lemma 4.1

Let us first consider a variant of the set disjointness problem.

Weighted Set Intersection Size. We have s ≥ 2 sets S1, S2, ..., Ss. Each Si (i ∈ [1, s]) is
associated with a function weightSi

which assigns to each element e ∈ Si a value weightSi
(e).

Given distinct set ids a, b ∈ [1, s], a query returns

size(Sa, Sb) =
∑

e∈Sa∩Sb

weightSa
(e) · weightSb

(e). (7)

Let N =
∑s

i=1 |Si|. For any λ ∈ [1,
√
N ], it is straightforward to build a structure of O(N2/λ2)

space answering a query in O(λ) time. Call Si (i ∈ [1, s]) a large set if |Si| > λ, or a small set
otherwise. The number of large sets is at most N/λ. For each pair (i, j) ∈ [1, s]× [1, s], i ̸= j, such
that Si and Sj are both large, we store size(Si, Sj); the space needed is O(N2/λ2). Given a query
with parameters a and b, return size(Sa, Sb) directly if Sa and Sb are both large. Otherwise, assume,
w.l.o.g., that Sa is small. We compute Sa ∩ Sb in O(λ) time using a hash table (for each e ∈ Sa,
check if e ∈ Sb). The result size(Sa, Sb) can then be obtained easily.

Equipped with the above, next we describe a structure for the colored range wedge counting
problem to prove Lemma 4.1.

Structure. First obtain a canonical collection C of V (defined in Section 4) satisfying
∑

U∈C |U | =
Õ(n). For each U ∈ C — recall that U is a subset of V — construct a weighted set as follows:

• SU = the set of black vertices adjacent to at least one vertex in U ;

• for each b ∈ SU , weightSU
(b) = the number of vertices in U adjacent to b.

These weighted sets constitute an instance of the weighted set intersection size problem. Build a
structure described earlier on the instance using the given parameter λ. The lemma below implies
that the structure occupies Õ(m2/λ2) space.

Lemma B.1.
∑

U∈C |SU | = Õ(m).

Proof. Each b ∈ SU is adjacent to a vertex u ∈ U . Pay a dollar to the edge {b, u} for each such
pair (b, u). Since an edge can receive a dollar only if it has a vertex in U , it can receive up to two
dollars12. |SU | is no more than the number of dollars paid. Do the above for all U ∈ C. Each edge
in G can receive Õ(1) dollars in total because every vertex appears in Õ(1) subsets in C (Property
P4-1 of C; see Section 4).

12Two is possible: this happens when b and u are both black and both appear in U .
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For any distinct U,U ′ ∈ C, define size(SU , SU ′) as in (7). On the other hand, for each U ∈ C,
define

size(SU , SU ) =
∑
b∈SU

(
weightSU

(b)

2

)
.

We store the value size(SU , SU ) for all U . The total space is Õ(m2/λ2).

Before proceeding, the reader should note the following subtle fact about the function size(., .):

Fact B-1: size(SU , SU ′) is the number of occurrences wedge(u, v, w) in G such that u ∈ SU ,
w ∈ SU ′ , and v is black.

The fact holds even if U = U ′.

Query. Given a query with interval q, in Õ(1) time we can pick h = Õ(1) members U1, ..., Uh from
C that form a partition of Vq (Property P4-2 of C). The query returns∑

i,j∈[1,h]:i≤j

size(SUi , SUj ). (8)

Each size(SUi , SUj ) is either explicitly stored or can be obtained from the weighted set intersection

size structure in O(λ) time. The overall query time is therefore Õ(λ).

Fact B-1 and U1, ..., Uh forming a partition of Vq assure us that (8) counts only occurrences
wedge(u, v, w) in G such that Au ∈ q, Aw ∈ q, and v is black. To complete the correctness argument,
we still need to show that (8) counts every such occurrence exactly once. Indeed, there exist unique
a, b ∈ [1, h] such that a ≤ b, u ∈ Ua, and w ∈ Ub. The wedge is counted only by the term in (8) with
i = a and j = b.

C Proof of Lemma 5.2

Let us first review Hölder’s Inequality. Fix some positive integers α and β. Let

• xi,j , for each i ∈ [1, α] and j ∈ [1, β], be non-negative real numbers;

• yj , for each j ∈ [1, β], be non-negative real numbers satisfying
∑β

j=1 yj ≥ 1.

Under the convention 00 = 0, Hölder’s inequality states that:

α∑
i=1

β∏
j=1

x
yj
i,j ≤

β∏
j=1

(
α∑

i=1

xi,j

)yj

. (9)

A proof can be found in [29].

We now return to the context of Lemma 5.2. Given any j ∈ [1, d−1] and (I1, I2, ..., Ij) ∈ I1×...Ij ,
we will use B(I1, I2, ..., Ij) as a short-form for the d-dimensional box

B(I1, ..., Ij , dom(Xj+1), ..., dom(Xd)).

As a special case, define B(∅) = B(dom(X1), ..., dom(Xd)).
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Lemma C.1. For any j ∈ [1, d], we have∑
Ij∈Ij

∏
e∈E

|Re ⋉B(I1, ..., Ij)|W (e) ≤
∏
e∈E

|Re ⋉B(I1, ..., Ij−1)|W (e).

Proof. Define

Ej = {e ∈ E | Xj ∈ e}.

Since
∑

e∈Ej W (e) ≥ 1 (W is a fractional edge covering), from Hölder’s inequality (9) we have∑
Ij∈Ij

∏
e∈Ej

|Re ⋉B(I1, ..., Ij)|W (e)

≤
∏
e∈Ej

( ∑
Ij∈Ij

|Re ⋉B(I1, ..., Ij)|
)W (e)

≤
∏
e∈Ej

∣∣∣Re ⋉B
(
I1, ..., Ij−1, dom(Xj)

)∣∣∣W (e)

=
∏
e∈Ej

|Re ⋉B(I1, ..., Ij−1)|W (e) (10)

where the second inequality used the fact that Ij is a set of disjoint intervals in dom(Xj).

For each e ∈ E \ Ej , Re ⋉ B(I1, ..., Ij) does not depend on Ij and can be rewritten as Re ⋉
B(I1, ..., Ij−1). We can thus derive:∑

Ij∈Ij

∏
e∈E

|Re ⋉B(I1, ..., Ij)|W (e)

=
∑
Ij∈Ij

( ∏
e∈E\Ej

|Re ⋉B(I1, ..., Ij)|W (e) ·
∏
e∈Ej

|Re ⋉B(I1, ..., Ij)|W (e)
)

=
∏

e∈E\Ej

|Re ⋉B(I1, ..., Ij)|W (e) ·
∑
Ij∈Ij

∏
e∈Ej

|Re ⋉B(I1, ..., Ij)|W (e)

≤
∏

e∈E\Ej

|Re ⋉B(I1, ..., Ij−1)|W (e) ·
∏
e∈Ej

|Re ⋉B(I1, ..., Ij−1)|W (e)

=
∏
e∈E

|Re ⋉B(I1, ..., Ij−1)|W (e).

where the inequality used (10).

21



We can prove Lemma 5.2 with d applications of Lemma C.1:∑
I1∈I1

...
∑

Id∈Id

∏
e∈E

|Re ⋉B(I1, ..., Id)|W (e)

≤
∑

I1∈I1

...
∑

Id−1∈Id−1

∏
e∈E

|Re ⋉B(I1, ..., Id−1)|W (e)

≤
∑

I1∈I1

...
∑

Id−2∈Id−2

∏
e∈E

|Re ⋉B(I1, ..., Id−2)|W (e)

≤ ...

≤
∑

I1∈I1

∏
e∈E

|Re ⋉B(I1)|W (e)

≤
∏
e∈E

|Re|W (e).

D Proof of Theorem 1.5

The reader should read this proof after having finished Section 5. The basic idea is to convert
Problem 2 to range join. Let X (resp. E) be the set of vertices (resp. edges) in the pattern graph
Q. The reader should not confuse X and E with V and E: the latter two are defined on the data
graph G. For each edge e ∈ E , construct a relation Re with two attributes by inserting, for each
edge {u, v} in G, two tuples (u, v) and (v, u). This defines a join instance R = {Re | e ∈ E} with
input size N = 2m · |E| = O(m).

Every occurrence of Q corresponds to a constant number of tuples in join(R). Motivated by
this, given a Problem-2 query with interval q, we issue a range join query on R with q, which
guarantees retrieving all the occurrences. The issue, however, is that not every tuple in join(R)
gives rise to an occurrence. To see this, consider Q = 4-cycle and, hence, R has four relations with
schemes (X1, X2), (X2, X3), (X3, X4), and (X4, X1), respectively. Let {u, v} be an arbitrary edge
in E; tuples (u, v), (v, u), (u, v), and (v, u) exist in the four relations, respectively. Thus, join(R)
contains a tuple (u, v, u, v) that does not correspond to any occurrence.

The issue can be eliminated by slightly modifying the structure of [20], which we review next.
Consider an arbitrary set R of relations (with any number of attributes) defined in Section 5. Deep
and Koutris [20] proved the existence of a set B of boxes such that:

• each box has the form B(I1, ..., Id) where Ii is an interval in dom(Xi) for i ∈ [1, d];

• the boxes are disjoint and their union is B(dom(X1), dom(X2), ...,dom(Xd));

• for each box B(I1, ..., Id), the join instance RI1,...,Id has a non-empty result;

• each box B(I1, ..., Id) satisfies AGM(I1, ..., Id) ≤ ∆;

• |B| = O(Nρ∗/∆).

The structure of [20] simply stores B itself and uses O(Nρ∗/∆) space13. To enumerate join(R), the
algorithm of [20] looks at each B(I1, ..., Id) ∈ B and applies a worst-case optimal join algorithm
[39,40,48] to compute join(RI1,...,Id) in Õ(AGM(I1, ..., Id)) = Õ(∆) time. This guarantees a delay
of Õ(∆).

13Obviously, the relations of R also need to be stored separately.
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We now adapt the structure to list all the occurrences of Q in G (fixing q = (−∞,∞)). Construct
R from G and Q as before. Apply [20] to find a set B with all the properties explained earlier.
Then, inspect each box B(I1, ..., Id) ∈ B in turn and remove it from B if all the occurrences of Q
producible from join(RI1,...,Id) can already be produced from the boxes inspected earlier. The size
of B can only decrease and therefore is still bounded by O(Nρ∗/∆). To find the occurrences, apply
a worst-case optimal join algorithm on each box in B. As each box generates at least one new
occurrence, we guarantee a delay of Õ(∆).

To support (Problem-2) queries with arbitrary q, use the adapted structure to replace that of [20]
in the solution presented in Section 5.2. All the analysis still holds through. We thus complete the
proof of Theorem 1.5.
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