
Data & Knowledge Engineering 63 (2007) 315–335

www.elsevier.com/locate/datak
Efficient top-k processing in large-scaled
distributed environments

Keping Zhao a, Yufei Tao b,*, Shuigeng Zhou c

a Microsoft China, 3 Hong Qiao Road, Shanghai 200030, China
b Department of Computer Science and Engineering, Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong

c Department of Computer Science and Engineering, Fudan University, 220 Handan Road, Shanghai 200433, China

Received 5 October 2006; received in revised form 30 January 2007; accepted 2 March 2007
Available online 2 April 2007
Abstract

The rapid development of networking technologies has made it possible to construct a distributed database that
involves a huge number of sites. Query processing in such a large-scaled system poses serious challenges beyond the scope
of traditional distributed algorithms. In this paper, we propose a new algorithm BRANCA for performing top-k retrieval
in these environments. Integrating two orthogonal methodologies ‘‘semantic caching’’ and ‘‘routing indexes’’, BRANCA is
able to solve a query by accessing only a small number of servers. Our algorithmic findings are accompanied with a solid
theoretical analysis, which rigorously proves the effectiveness of BRANCA. Extensive experiments verify that our tech-
nique outperforms the existing methods significantly.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Top-k; Distributed database; Caching
1. Introduction

The rapid development of communication technology has significantly reduced the cost of maintaining a
fast and reliable network. This, in turn, provides the opportunity of constructing a large-scaled distributed
database, where the underlying data is partitioned onto a sizable number (e.g., thousands) of sites. Query pro-
cessing in such systems encounters numerous difficult issues that do not exist in a conventional distributed sys-
tem, where the number of sites is much smaller. In particular, we can no longer assume that the participating
servers are aware of each other, as is a prerequisite of most text-book distributed solutions. In particular, in
many applications, a server only keeps information about its neighboring servers in a topology, such that add-
ing/removing a server requires updating the information only in a small part of the network.
0169-023X/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.datak.2007.03.012

* Corresponding author. Tel.: +852 26098437; fax: +852 26035024.
E-mail addresses: kepingz@microsoft.com (K. Zhao), taoyf@cse.cuhk.edu.hk (Y. Tao), sgzhou@fudan.edu.cn (S. Zhou).
URL: http://www.cse.cuhk.edu.hk/~taoyf (Y. Tao).

mailto:kepingz@microsoft.com
mailto:taoyf@cse.cuhk.edu.hk
mailto:sgzhou@fudan.edu.cn
http://www.cse.cuhk.edu.hk/~taoyf

316 K. Zhao et al. / Data & Knowledge Engineering 63 (2007) 315–335
We are interested in top-k processing in such scenarios. As an example, consider a real-property information

system that integrates the records of houses recently sold in a state. The records are periodically (e.g., every
week) appended by realty agencies, and conform to a universal relational schema such as PROPERTY(address,
size, NSR, NAQ, . . .), where NSR and NAQ represent ‘‘neighborhood security rating’’ and ‘‘neighborhood air
quality’’, respectively. The objective is to efficiently answer queries of the form:

SELECT address FROM PROPERTY

ORDER BY 0.3 Æ size+0.5 Æ NSR+0.2 Æ NAQ DESC
STOP AFTER 10

which returns the top-10 houses maximizing a function that computes a weighted sum of the columns of
PROPERTY (e.g., the weight on NSR is 0.5). The system should support queries with any weighting.

1.1. Problem definition

We consider a distributed database that integrates a large number of servers in a network. Our discussion
assumes the existence of a logical topology, which is an acyclic graph with each vertex corresponding to a ser-
ver. Such a topology should be distinguished with the underlying physical topology (which refers to the phys-
ical connections among servers). The acyclic graph can be easily implemented, by requiring each vertex to
remember the IP addresses of its adjacent vertices. In the sequel, all occurrences of ‘‘topology’’ refer to the
logical topology.

The database contains a relation R with d numeric ranking attributes. Given a tuple o, we denote its value
on the ith (1 6 i 6 d) attribute as o[i]. Without loss of generality, we assume that each o[i] falls in the range
[0,1]; equivalently, the d-dimensional vector ~o ¼ fo½1�; o½2�; . . . ; o½d�g distributes in the unit ranking space

[0,1]d. Each server X stores a horizontal partition of R, denote it as X.ds, which is a subset of the data in
R. Therefore, R equals ¨each server XX.ds. Each server can store an arbitrary fraction of R. This is different from
many P2P systems [31,33,25], where each server is responsible for retaining only tuples falling in a particular
region (i.e., the server’s ‘‘jurisdiction region’’) of the ranking space.

A server can issue a top-k query at any time, which, in addition to the parameter k, specifies a d-dimen-
sional vector ~q ¼ fq½1�; q½2�; . . . ; q½d�g, where q[i] is a positive weight on the ith attribute. The vector defines
a preference function f~q, which computes a score f~qðoÞ for every tuple o
f~qðoÞ ¼~q �~o ¼
Xd

i¼1

q½i� � o½i� ð1Þ
The objective is to find the k tuples in R with the highest scores, and transmit them to the server initiating the
query.

1.2. Motivation and contributions

Although distributed top-k processing has been very well studied (see Section 6 for a survey), the existing
methods assume vertical partitioning (where each server stores an entire column of the relation), and thus are
inapplicable in our context. The only top-k solution on horizontally partitioned data is due to Balke et al. [1],
who present an algorithm that minimizes the number of tuple transfers. Unfortunately, the minimization does
not necessarily result in the least network communication, because two servers may need to exchange many
messages before a tuple is transmitted. To alleviate the problem, Balke et al. [1] develop an index which
can return the query result earlier, if the same query has been processed before. While the index is useful in
the settings of [1], it is not in our problem where two queries are rather unlikely to be equivalent (note that
equivalence implies that both queries have identical weights on all attributes).

Motivated by this, we develop branch caching (BRANCA), an efficient technique for supporting top-k que-
ries in large-scaled distributed databases. The core of BRANCA is the integration of two orthogonal method-
ologies: (i) ‘‘semantic caching’’ [32] of query results, which are extensively applied in mobile computing, and

K. Zhao et al. / Data & Knowledge Engineering 63 (2007) 315–335 317
(ii) ‘‘routing indexes’’ [12], which constitute a popular technique for fast query processing over the Internet.
Specifically, semantic caching improves conventional cache-replacement schemes (such as ‘‘least recently
used’’), by retaining data that is more likely to be retrieved by subsequent queries. A routing index, on the
other hand, tags additional information to each entry in a routing table, which serves as a brief summary
of the data in the subnet corresponding to that entry. In BRANCA, each participating server caches data
fetched from various subnets in the past top-k search. Given a new query, the cache allows a server to forward
the query only to a small part of the network that may contain the final results. We accompany our algorith-
mic findings with a solid theoretical analysis to prove the effectiveness of BRANCA.

The rest of the paper is organized as follows. Section 2 explains the fundamental concept of ‘‘branch
caches’’. Section 3 presents the query algorithm of BRANCA, while Section 4 analyzes its performance. Sec-
tion 5 elaborates the maintenance of branch caches during query processing. Section 6 reviews the previous
studies related to this paper, and clarifies their differences from our work. Section 7 contains an extensive
experimental evaluation that validates the efficiency of BRANCA in practice. Finally, Section 8 concludes
the paper with directions for future work.

2. Branch caches

Let X be any server in the underlying topology, and e an edge adjacent to X. The topology becomes two
disjoint subgraphs if e is removed. We say that the subgraph, which does not contain X, is a branch subgraph of
X, and denoted as X.bsg(e). When the context is clear, we will use X.bsg(e) also to represent the set of tuples of
R that are stored in this subgraph.

Apparently, a server X has as many branch subgraphs as the number of its neighbors in the topology. For
each subgraph X.bsg(e) (where e is an edge linking X to one of its neighbors), X maintains a branch cache

X.bc(e), which retains the results of the previous top-k queries, with respect to the data in X.bsg(e). Specifically,
each item in X.bc(e) has the form
f~q; k; resultð~q; kÞg

where~q is the query vector of a past top-k inquiry, and resultð~q; kÞ the set of k tuples in X.bsg(e) achieving the
highest scores for the preference function f~q (Eq. (1)). We emphasize that the tuples in resultð~q; kÞ are not the
top-k result in the entire network – they are only the result in a branch subgraph.

We illustrate the above concepts using Fig. 1, assuming that relation R has d = 2 ranking attributes. Server
A, for instance, has two neighbors: B and another server connected by edge e1 (omitted from the example).
Hence, A has two branch subgraphs: (i) A.bsg(e1), which includes all the servers in set S1, and (ii) A.bsg(AB),
containing B and set S2. Accordingly, A maintains two branch caches A.bc1 and A.bc2 for subgraphs A.bsg(e1)
S1

A.bc2

AA.bc1
S2

.

BB.bc1 B.bc2

o7 0.3 0.9
A.ds

o3 0.9 0.9
B.ds

The content of B.bc1

is omitted.

edge e1 edge e2

B.bc2

q k result(q,k)

A.bc1

A.bc2

q k result(q,k)

{0.6,0.4} 2 {o4(0.9,0.25),
o5(0.6,0.4)}

{o3(0.9,0.9)}
q k result(q,k)

{0.6,0.4} 1

{0.7,0.3} 3
{o3(0.9,0.9),
o4(0.9,0.25),
o5(0.6, 0.4)}

{o1(0.1,0.4)}{0.7,0.3} 1
{o2(0.4,0.1)}{0.3,0.7} 1

{o6(0.2,0.6)}{0.3,0.7} 1

I1

I2

I3

I4

I5

I6

Fig. 1. Branch cache examples.

318 K. Zhao et al. / Data & Knowledge Engineering 63 (2007) 315–335
and A.bsg(AB), respectively. Fig. 1 also demonstrates the content of these caches. The first item (denoted as I1

in the example) of A.bc1 indicates that, among all the data stored in S1, the tuple maximizing f{0.7, 0.3} is o1 (its
values for the two ranking attributes are 0.1 and 0.4, respectively). Similarly, judging from the second item I4

in A.bc2, we can assert that tuples o3, o4, and o5 have the highest scores for function f{0.7, 0.3} in the subgraph
A.bsg(AB).

Likewise, B also has two branch subgraphs, and the same number of branch caches. Fig. 1 demonstrates the
details of B.bc2 (we omit the items in B.bc1 since they are not relevant to the following discussion). Notice that
the entries in A.bc1, A.bc2, B.bc2 indicate that at least three queries have been processed before, and they have
different~q and k. Note that it is possible for various caches to retain information about different queries (which
is decided by a cache-replacement strategy explained in Section 5).

3. Top-k processing with BRANCA

BRANCA performs top-k retrieval based on the following rationale. First, it attempts to derive as many
results as possible from the branch caches (of the servers that have been contacted), and terminates the search
as soon as no other tuple can have a higher score than the current results. Second, the algorithm allows every
server that participated in the query execution to benefit, by incorporating useful information into its own
caches, in order to reduce the cost of future queries. In the sequel, we will first describe the strategy from a
high level (Section 3.1), and then clarify the details of pruning (Section 3.2).

3.1. The high level algorithm

Fig. 2 presents the pseudo-code of top-k search with BRANCA. Next, we explain the algorithm using the
running example of Fig. 1.

Example 4.1. Consider that server A issues a query with ~q ¼ f0:5; 0:5g and k = 2. The function in Fig. 2 is
invoked as TOPK(A, {0.5, 0.5}, 2,;). Statements 2–4 collect the set S of objects that belong to either A.ds, or
any of the branch caches of A. In Fig. 1, the content of A.ds, which involves a single object o7, is illustrated on
top of the figure. Clearly, S = {o1,o2,o3,o4,o5,o7}. Then, the algorithm obtains the k (=2) tuples o3, o7 from S

that maximize the preference function f{0.5, 0.5} (Statement 5), and place them in rslt (={o3,o7}).
Fig. 2. The top-k algorithm.

K. Zhao et al. / Data & Knowledge Engineering 63 (2007) 315–335 319
Next, TOPK (Statements 6–9) inspects whether each branch subgraph of A can be eliminated from further
consideration. This is accomplished by function PRUNE-BRANCH which, as analyzed in the next section,
makes the decision according to the data in rslt and the corresponding branch cache. Continuing the example:

• (The first application of PRUNE-BRANCH) For the neighbor of A in S1 (see Fig. 1), PRUNE-BRANCH (State-
ment 8) is invoked with parameters A.bc1, {0.5, 0.5}, 2, {o3,o7}. The function returns true (the reason will be
clear after the next section), meaning that if a tuple o in S1 belongs to the final top-k set, o must necessarily
appear in A.bc1. Hence, S1 does not need to be explored.

• (The second application) For the neighbor B of A, PRUNE-BRANCH is invoked with parameters A.bc2,
{0.5, 0.5}, 2, {o3,o7}. This time, PRUNE-BRANCH returns false, and hence, B is added to listcontact.

For each server Y in listcontact, TOPK simultaneously requests the top-k result rsltY in the branch subgraph
A.bsg(AY). In Fig. 1, listcontact has a single server B, and thus, A sends the query to B. This is performed at
Statement 11, which has the form rsltB = TOPK(B, {0.5, 0.5}, 2,A) here.

The execution of TOPK on server B proceeds in the same manner as described earlier, except that the branch
connected by edge AB is ignored (note the part ‘‘different from Z’’ in Statements 3 and 7). Specifically, at
Statements 1–5, it obtains a set rslt containing two objects {o3,o4} in B.ds [B.bc2 that maximize f{0.5, 0.5}

(i.e., B.bc1 is not taken into account). Then,

• (The third application) At Statement 8 (for the neighbor of B in S2), PRUNE-BRANCH is invoked with
parameters B.bc2, {0.5,0.5}, 2, and {o3,o4}. The function returns true, pruning the branch subgraph S2.

Therefore, listcontact = ; at Statement 10, and Statements 11–13 are not executed. Since the branch caches of
B do not have any changes, Statement 14 has no effect. TOPK finishes on server B, and returns {o3,o4}.

Now the control returns to Statement 11 at server A, with rsltB (i.e., the rsltY in the statement) set to
{o3,o4}. The algorithm proceeds by incorporating (Statement 12) the two objects of rsltB into rslt. Since rslt

was {o3,o7} before A relayed the query to B, after incorporating rsltB, rslt becomes {o3,o7,o4}. At Statement
13, rsltB is inserted in A.bc1, creating an item {{0.5, 0.5}, 2,{o3,o4}} in A.bc1. If, after the insertion, the space
allocated for caching is exhausted, a cache-replacement algorithm (the topic of Section 5) is invoked to
expunge the least useful information, taking into account all branch caches of A (Statement 14). Finally,
the query results are the two objects o3, o7 in rslt that maximize f{0.5, 0.5}.

The performance of TOPK is determined by the effectiveness of PRUNE-BRANCH, which was applied three
times in the above execution. In the next section, we will discuss the pruning details for each application.

3.2. Pruning with branch caching

Before explaining PRUNE-BRANCH, we first tackle a relevant problem. Specifically, let X be a server, X.bsg

any of its branch subgraphs, and X.bc the branch cache responsible for X.bsg. Given a query vector ~q and a

value k, can any tuple o in X.bsg satisfy the following conditions simultaneously: (i) o has a score f~qðoÞ > k,
and (ii) o does not appear in X.bc?

The answer to the above question is directly related to the pruning strategies of PRUNE-BRANCH. To under-
stand this, imagine that we have a top-k query ~q, and k is the kth highest score observed from all the tuples
that have been accessed. Now server X wants to decide whether the subgraph X.bsg may have any tuple o that
has not been considered, but its score is higher than k. If o does not exist, X.bsg can be safely pruned, because
no data there can possibly update our current top-k set. Note that o should not belong to X.bc. This is because
X.bc is contained locally in X, and thus, all the data in X.bc has already been considered. Therefore, we need to
search X.bsg only if our target question has a positive answer.

Without loss of generality, we assume that X.bc includes c cache items:
f~q1; k1; resultð~q1; k1Þg; . . . ; f~qc; kc; resultð~qc; kcÞg

For each i 2 [1,c], denote ki as the lowest score (with respect to f~qi

) of the ki tuples in resultð~qi; kiÞ. For instance,
c = 2 for the branch cache B.bc2 in Fig. 1. According to the first item in B:bc2; ~q1 ¼ f0:3; 0:7g; k1 ¼ 1;

320 K. Zhao et al. / Data & Knowledge Engineering 63 (2007) 315–335
resultð~q1; k1Þ ¼ fo6g, and k1 ¼ f~q1
ðo6Þ ¼ 0:48. Similarly, by the second item of B:bc2; ~q2 ¼ f0:6; 0:4g;

k2 ¼ 2; resultð~q2; k2Þ ¼ fo4; o5g. Between o4 and o5, the latter has a lower score for f~q2
, leading to k2 ¼

f~q2
ðo5Þ ¼ 0:52.
The vector ~qi and value ki (1 6 i 6 c) decide a d-dimensional plane Hð~qi; kiÞ, whose equation is ~qi �~x ¼ ki,

where~x is a variable in the (d-dimensional) ranking space. Hð~qi; kiÞ divides the ranking space into two half-
spaces: one contains the origin of the space, and the other does not. We represent these half-spaces as
H�ð~qi; kiÞ and Hþð~qi; kiÞ, respectively. Formally, H�ð~qi; kiÞ covers all the points~x satisfying
~qi �~x 6 ki ð2Þ

and for Hþð~qi; kiÞ:
~qi �~x > ki ð3Þ

Intuitively, H�ð~qi; kiÞ (or Hþð~qi; kiÞ) consists of all the points in the ranking space whose scores of f~qi

are at
most (or larger than) ki. Similarly,~q and k (as in our target problem stated at the beginning of this section) also
determine a half-space Hþð~q; kÞ covering all the points~x with the property:
~q �~x > k ð4Þ
We have:

Lemma 1. Let Hþð~q1; k1Þ;Hþð~q2; k2Þ; . . . ;Hþð~qc; kcÞ, and Hþð~q; kÞ be the half-spaces described earlier. If

Hþð~q; kÞ is completely enclosed in
Hþð~q1; k1Þ [Hþð~q2; k2Þ [� � � [Hþð~qc; kcÞ ð5Þ

then there is no tuple o in X.bsg such that (i) f~qðoÞ > k and (ii) o does not appear in X.bc.

Proof. We prove the lemma by contradiction. Assume that there exists such a tuple o. According to condition
(i), o appears in Hþð~q; kÞ. According to condition (ii), o is not in any Hþð~qi; kiÞ for all i 2 [1, c] (otherwise, o

would be in the result of some query cached in X.bc, and hence, should appear in X.bc). Thus, we have decided
that o falls in Hþð~q; kÞ, but not in the region of Formula 5. This contradicts the fact that Hþð~q; kÞ is com-
pletely enclosed in the region of Formula 5. h

In the following discussion, we refer to the region represented by Formula 5 as the pruning region of branch
cache X.bc. Examining whether Hþð~q; kÞ falls entirely in the pruning region (so that the subgraph X.bsg can
be pruned) is a Linear Programming (LP) problem. To clarify this, we need an alternative form of Lemma 1.

Corollary 1. If
H�ð~q1; k1Þ \H�ð~q2; k2Þ \ � � � \H�ð~qc; kcÞ \Hþð~q; kÞ ¼ ; ð6Þ

then there is no tuple o in X.bsg such that (i) f~qðoÞ > k and (ii) o does not appear in X.bc.

Proof. The corollary is correct because, Hþð~q; kÞ is contained in the region of Formula 5 if and only if Eq. (6)
is true. h

If Eq. (6) does not hold, it follows that there exists a point ~x in the ranking space, such that ~x satisfies c

(linear) constraints given by Inequality (2) (for 1 6 i 6 c), and the constraint of Inequality (4). Finding such
~x or claiming its absence can be achieved using a standard LP algorithm. In our implementation, we adopt the
Simplex algorithm [18]. Based on the above analysis, Fig. 3 presents the pseudo-code of PRUNE-BRANCH. We
will illustrate the algorithm, as well as Lemma 1, by clarifying the details of its three applications in Example
4.1 (using the servers of Fig. 1).

Example 4.2 (Pruning details in Example 4.1). The first application of PRUNE-BRANCH occurs after TOPK,
when executed at server A, obtains rslt = {o3,o7}, which are the two objects in A.ds [A.bc1 [A.bc2 that
maximize f{0.5, 0.5}. Here, PRUNE-BRANCH is invoked with parameters A.bc1,~q ¼ f0:5; 0:5g, k = 2, and rslt =
{o3,o7}. Statement 1 of Fig. 3 calculates k = f{0.5, 0.5}(o7) = 0.6, which is the lowest score of the tuples in rslt for
the query vector~q. As in Inequality 4,~q and k determine a half-space Hþð~q; kÞ (Statement 2). In Fig. 4a, where

Fig. 3. The PRUNE-BRANCH algorithm.

Fig. 4. Illustration of the three applications of PRUNE-BRANCH in Fig. 1.

K. Zhao et al. / Data & Knowledge Engineering 63 (2007) 315–335 321
the square represents the ranking space, the half-space Hþð~q; kÞ is the portion of the space above the dashed line
Hð~q; kÞ. The line crosses o7, and corresponds to the equation 0.5 Æ x[1] + 0.5 Æ x[2] = 0.6.

At Statement 3, c equals 2, the number of items in A.bc1. Then, Statements 4–6 compute two half-spaces.
The first one Hþð~q1; k1Þ is decided by Item I1 of A.bc1 according to Inequality 3, where ~q1 ¼ f0:7; 0:3g, and k1

is the score 0.19 of o1 for f{0.7, 0.3}. The other half-space Hþð~q2; k2Þ is derived from Item I2 of A.bc2, having
~q2 ¼ f0:3; 0:7g, and k2 equal to the score 0.19 of o2 for f{0.3, 0.7}. In Fig. 4a, Hþð~q1; k1Þ and Hþð~q2; k2Þ are
the part of ranking space above Lines Hð~q1; k1Þ and Hð~q2; k2Þ, respectively.

The grey area of Fig. 4a shows the region represented by Hþð~q1; k1Þ [Hþð~q2; k2Þ. Since Hþð~q; kÞ falls
entirely in this area, Lemma 1 indicates that the subgraph A.bsg(e1) (see Fig. 1) can be eliminated from further
consideration. Hence, PRUNE-BRANCH returns true at Statement 8.

The second execution of PRUNE-BRANCH is invoked with the same parameters as the previous execution,
except that the first parameter becomes A.bc2. Following the reasoning of Fig. 4a and b demonstrate the rel-
evant half-spaces. As with the previous execution, Hþð~q; kÞ is again decided by~q ¼ f0:5; 0:5g and k equals the
score 0.6 of o7. For Line Hð~q1; k1Þ, ~q1 is {0.6,0.4} (in Item I3 of Fig. 1) and k1 is the score 0.9 of o3 for f{0.6, 0.4}.
Similarly, for Line Hð~q2; k2Þ, ~q2 is {0.7, 0.3} (in Item I4) and k2 equals the score 0.54 of o5 for f{0.7, 0.3}. As in
Fig. 4b, part of Hþð~q; kÞ lies outside the grey area. As a result, PRUNE-BRANCH returns false (accordingly, A

contacts its neighbor B, as described in Example 4.1).
The last application of PRUNE-BRANCH happens at server B, after TOPK has obtained rslt = {o3,o4} from

B.ds [B.dc2. This application is invoked with parameters B.bc2, ~q ¼ f0:5; 0:5g, k = 2, and rslt = {o3,o4}.
Fig. 4c shows the relevant half-spaces. In particular, for Line Hð~q; kÞ, although~q is the same as in the previous
two applications, k changes to the score 0.575 of o4 for f~q (because rslt here is different from those in the pre-
vious applications). For Line Hð~q1; k1Þ, ~q1 is {0.3,0.7} (in Item I5) and k1 is the score 0.48 of o6 for f{0.3, 0.7}.
For Line Hð~q2; k2Þ, ~q2 is {0.6, 0.4} (in Item I6) and k2 is the score 0.52 of o5 for f{0.6, 0.4}. PRUNE-BRANCH elim-
inates B.bsg(e2), because the shaded area of Fig. 4c covers Hþð~q; kÞ.

322 K. Zhao et al. / Data & Knowledge Engineering 63 (2007) 315–335
4. Theoretical evidence of the effectiveness of branch caching

As demonstrated in the experiments, after a number of queries, BRANCA is able to solve the subsequent top-

k inquiries with little network communication, namely, the results are found from the branch caches of a very
small number of servers. Next, we provide the theoretical reasoning behind this phenomenon.

We introduce the concept of query space, which is a d-dimensional plane passing the maximum points on
the d ranking dimensions, respectively. In Fig. 5a (d = 2), the query space is the diagonal line as illustrated,
while Fig. 5b demonstrates a 3D example where the plane is the triangle.

It is well-known [35] that the magnitude of a query vector (i.e., its distance to the origin) does not affect the
top-k result, as long as the direction of the vector remains fixed. For instance, in Fig. 5a, the line of vector ~q1

crosses the diagonal at point A, and hence, a query at A produces the same top-k tuples as ~q1. In this way, we
can convert any query vector to a point in the query space with an equivalent top-k set (e.g., ~q2 is mapped to
point B). Note that the points in the query space essentially distribute in a (d � 1)-dimensional space, that is, a
(d � 1)-dimensional vector is sufficient for determining the top-k set of a relation with d ranking attributes.

To simplify analysis, we first consider that all queries are top-1 search (i.e., k = 1), before discussing the
general scenario. Assume that, in Fig. 5a, ~q1 and ~q2 are two queries in a branch cache X.bc, and both of them
return o (i.e., o is the top-1 tuple of ~q1 and ~q2 in the subgraph X.bsg, for which X.bc is responsible). Consider a
query~q whose converted point C falls on segment AB. As will be proved in Lemma 2, (i) the top-1 tuple of~q in
X.bsg is also o, and very importantly, (ii)~q can be directly answered using X.bc, without having to search X.bsg.

Indeed, the shaded area in Fig. 5a shows the pruning region (Formula 5) decided by ~q1 and ~q2 (e.g.,
Hð~q1; k1Þ is the line that passes o and is perpendicular to ~q1). The region above the dashed line is the half-space
Hþð~q; kÞ, where k is the score of o for f~q. Since Hþð~q; kÞ is entirely covered by the pruning region, by Lemma
1, the subgraph X.bsg can be eliminated.

Next, we generalize the above discussion to arbitrary dimensionalities.

Lemma 2. Assume that X.bc is a branch cache responsible for a subgraph X.bsg. Let ~q1 and ~q2 be two queries (in

the query space) that are cached in X.bc, and their top-1 tuples are both o. For any top-1 query~q in the segment
~q1~q2, (i) the result of ~q is also o, and (ii) TOPK (Fig. 2) does not need to explore X.bsg in answering ~q.

Proof. Since ~q is in the segment ~q1~q2, it can be represented as x � ~q1 þ ð1� xÞ � ~q2 for some x 2 [0,1]. Let
k1 ¼ f~q1

ðoÞ; k2 ¼ f~q2
ðoÞ, and k ¼ f~qðoÞ. Hence
k ¼~q �~o ¼ ðx � ~q1 þ ð1� xÞ � ~q2Þ � o ¼ x � ~q1 �~oþ ð1� xÞ � ~q2 �~o ¼ x � k1 þ ð1� xÞ � k2
Consider any vector~x in Hþð~q; kÞ. Since ~q �~x > k, we have
ðx � ~q1 þ ð1� xÞ � ~q2Þ �~x > x � k1 þ ð1� xÞ � k2
leading to
x � ð~q1 �~x� k1Þ þ ð1� xÞð~q2 �~x� k2Þ > 0
q1

o

q2

A

B

C

H(q2

query
space

H(q,)

q

0 0

1
A

0
1

1

1

query
space

B

C

ED

F

(a) 2D (b) 3D

, 2)

H(q1 , 1)

Fig. 5. The theory behind pruning a subgraph.

K. Zhao et al. / Data & Knowledge Engineering 63 (2007) 315–335 323
As both x and 1 � x are larger than or equal to 0, at least one of the following two inequalities holds:
~q1 �~x > k1 and ~q2 �~x > k2. This means that ~x falls in the region of Hþð~q1; k1Þ [Hþð~q2; k2Þ. Note that ~x is
an arbitrary point in Hþð~q; kÞ; therefore:
Hþð~q; kÞ �Hþð~q1; k1Þ [Hþð~q2; k2Þ ð7Þ
We are ready to prove statement (i) in the target lemma. Assume, on the contrary, that there exists a tuple o
0

whose score (with respect to query ~q) is larger than the score k of o. It means that ~q � o0 > k. By the above
reasoning, either ~q1 � o0 > k1 or ~q2 � o0 > k2, that is, o

0
is the top-1 tuple of either q1 or q2. This contradicts

the fact that tuple o is the top-1 tuple for both ~q1 and ~q2.
To establish statement (ii), recall that, before exploring any branch subgraph, our TOPK algorithm first

obtains the tuple with the highest score among all branch caches. Let the highest score for~q be k
0
, which is at

least k (since o belongs to a branch cache). Hence, Hþð~q; k0Þ �Hþð~q; kÞ, which, together with Formula 7,
indicates that
Hþð~q; k0Þ �Hþð~q1; k1Þ [Hþð~q2; k2Þ
By Lemma 1, if X.bsg contains the top-1 tuple for~q, this tuple must exist in X.bc; hence, X.bsg is not visited by
our algorithm. h

For instance, assume that queries A and B in Fig. 5a return the same top-1 tuple o. The above lemma indi-
cates that o is also the top-1 tuple of any query~q that lies on segment AB in the query space. Furthermore, if
both A and B appear in a branch cache X.bc, in answering~q, our TOPK algorithm does not need to access the
branch subgraph that X.bc is responsible for.

The next corollary generalizes Lemma 2 to arbitrary dimensional ranking spaces.

Corollary 2. Consider that all queries are represented in the query space. Let Q be the set of queries {~q1, ~q2; . . .}
cached in X.bc that have the same top-1 result. Then, TOPK does not need to search X.bsg in answering any top-1

query ~q covered by the convex hull of Q.

Proof. Consider an arbitrary~q in the convex hull of Q, which is a (d � 1)-dimensional polyhedron, and d is the
number of ranking attributes (recall that the query space can be regarded as a (d � 1)-dimensional space). Let
us shoot a ray from ~q1 (or any vector in Q) passing~q. The ray crosses the convex hull at a point~p1. Next, we
will show that TOPK does not need to search X.bsg in answering a query at~p1, which establishes the correct-
ness of the corollary according to Lemma 2 (treating ~p1 as an implicit cache item in X.bc).

In fact, the face of the convex hull containing ~p1 is a (d � 2)-dimensional polyhedron. Let us recursively
apply the above reasoning to reduce dimensionality. Specifically, we arbitrarily select a vertex of the
polyhedron (the vertex is an element in Q), and shoot another ray from it to ~p1, crossing the polyhedron at
point ~p2. The face of the polyhedron enclosing ~p2 is a (d � 3)-dimensional polyhedron. If the procedures are
carried out repetitively, eventually we obtain a point ~pd�2 on the segment connecting two vectors in Q. By
Lemma 2, TOPK does not need to search X.bsg in answering a query at~pd�2. As a result, TOPK does not need
to search X.bsg in answering a query at any of ~pd�3; . . . ;~p1, thus completing the proof. h

The corollary indicates that, whenever a server X needs to explore a subgraph X.bsg for a query~q, the pruning

power of its branch cache increases (after including the result of~q), because~q will expand the convex hull of the
cached queries.

To illustrate this, consider Fig. 5b again, where A, B, C, D, and E belong to the query space (the triangle),
and they are five items in X.bc having the same top-1 tuple o. The convex hull of these five points is quadri-
lateral ABCD. Corollary 1 indicates that, for any query in this quadrilateral, our TOPK algorithm can answer
it without accessing X.bsg.

On the other hand, assume that a user issues a query F outside the quadrilateral, whose top-1 result is also
o. To process F, TOPK needs to visit X.bsg, after which F will be cached in X.bc. In the future, all queries in the
pentagon ABCFD can be directly solved using X.bc (without accessing X.bsg), that is, the set of prunable que-
ries has increased from quadrilateral ABCD to the pentagon.

324 K. Zhao et al. / Data & Knowledge Engineering 63 (2007) 315–335
Notice that in this example E is a ‘‘redundant’’ cache item, since the pruning power remains the same even if
it is discarded (E is not a vertex of the convex hull). It will be removed by an algorithm proposed in the next
section.

So far we have assumed that a branch cache contains only top-1 queries. If the cached queries have higher
values of k, the pruning effect for top-1 search is even stronger, because in general a top-k (k > 1) cache item
leads to a larger pruning region (Formula 5). Finally, the above discussion can be extended to top-k pruning
with arbitrary k. In particular, Lemma 2 and Corollary 1 still hold by replacing ‘‘top-1’’ with ‘‘top-k’’, and o

with k objects o1, . . . ,ok.

5. Cache replacement

Given a branch cache X.bc of X, we denote vol(X.bc) as the volume of its pruning region (given by Formula
5). Lemma 1 indicates that, the effectiveness of X.bc is determined by vol(X.bc). For example, A.bc1 (of Fig. 1)
is expected to be more effective than A.bc2 because the shaded region in Fig. 4a has a larger area than that in
Fig. 4b.

We say that an item in X.bc is redundant if its removal does not affect vol(X.bc). For instance, the first item of
A.bc2 in Fig. 1 is redundant since, as shown in Fig. 4b, Hþð~q1; k1Þ lies completely inside the shaded region. For-
mally, (following the notations in the previous section), let X.bc contain c items I1 ¼ f~q1; k1; resultð~q1; k1Þg; . . . ;
Ic ¼ f~qc; kc, resultð~qc; kcÞg. Then, the jth (1 6 j 6 c) item Ij is redundant if
ðHð~qj; kjÞ [Hþð~qj; kjÞÞ \
\

i2½1;j�1�

[½jþ1;c�

H�ð~qi; kiÞ ¼ ;
ð8Þ
where line Hð~qj; kjÞ and half-spaces Hþð~qj; kjÞ;H�ð~qi; kiÞ are as defined in Section 3.2. Examining whether an
item is redundant can be cast as a linear programming problem, in the same way as checking the integrity of
Eq. (6). The next lemma shows that redundant items are indeed useless in query processing.

Lemma 3. Let I ¼ f~q; k; resultð~q; kÞg be a redundant item in X.bc, which is responsible for the branch subgraph

X.bsg. Then, (i) all the tuples stored in resultð~q; kÞ must appear in the other items of X.bc; (ii) for any query, if the

TOPK algorithm (Fig. 2) prunes X.bsg, the subgraph can also be pruned even if I does not exist in X.bc.

Proof. Without loss of generality, assume that I1 is the redundant item. Thus, Formula 8 holds with j = 1.
Consider any tuple o in resultð~q1; k1Þ. Since o 2Hð~q1; k1Þ [Hþð~q1; k1Þ, by Formula 8, o must be in one of

the c � 1 half-spaces Hþð~q2; k2Þ; . . . ;Hþð~qc; kcÞ. Without loss of generality, suppose that o is in Hþð~q2; k2Þ,
i.e., fq2

ðoÞ > k2. This means that o is in the top-k2 set for query vector ~q2, i.e., o appears in X.bc, establishing
statement (i) of the target lemma.

To prove statement (ii), assume that TOPK prunes X.bsg for an arbitrary top-k query ~q. According to
Lemma 1, we have
Hþð~q; kÞ �
[

i2½1;c�
Hþð~qi; kiÞ
where k is the kth largest score of the tuples in X.ds and all the branch caches of X. Let us remove I1. Accord-
ing to statement (i), the value of k remains unchanged. Furthermore, by Formula 8, Hþð~q1; k1Þ is entirely cov-
ered by

S
i2½2;c�H

þð~qi; kiÞ, indicating
[

i2½1;c�
Hþð~qi; kiÞ ¼

[

i2½2;c�
Hþð~qi; kiÞ
Hence, Hþð~q; kÞ is fully covered by
S

i2½2;c�H
þð~qi; kiÞ, and, by Lemma 1, X.bsg is pruned. h

For example, as mentioned earlier, Item I3 of A.bc2 in Fig. 1 is redundant (I3 is the first item of A. bc2, as illus-
trated in the figure). According to the above lemma, the object o3 in I3 must appear in other items of A.bc2.

K. Zhao et al. / Data & Knowledge Engineering 63 (2007) 315–335 325
Indeed, o3 is included in the second item I4. Lemma 3 also points out that I3 can be expunged without affecting
the performance of any query.

Therefore, in case the permissible cache space of a server X has been exceeded, we should first evict the
redundant items from all the branch caches. For the remaining items, our goal is to discard those that would
cause the smallest degradation in the cache quality of X. For this purpose, we introduce a metric bcQuality for
evaluating the quality:
bcQualityðX Þ ¼ min
m

i¼1
fvolðX :bciÞg ð9Þ
where m is the number of branch caches in X (also the number of its neighbors), and X.bc1, . . . ,X.bcm represent
these caches. The intuition behind the definition is that, by maximizing bcQuality(X), we ensure good quality
for the worst branch-cache (i.e., the one having the smallest volume vol(X.bci)), and therefore, minimize the
chance that a neighboring server needs to be contacted in answering a query.

Fig. 6 formally presents the pseudo-code of CACHE-REPLACE for handling cache-space overflows.
CACHE-REPLACE takes a parameter sizetar, which is a system constant smaller than the maximum cache size
of a server. The algorithm evicts enough cache items, such that the space consumption of the remaining items
is no more than sizetar. In the sequel, we elaborate the details using an example.

Example 4.3. Assume that, in Fig. 1, server A incurs a space overflow, and CACHE-REPLACE is invoked with
a spacetar that allows retaining only two cache items. Statements 1–4 of Fig. 6 first eliminate the redundant
items in A. Since only I3 is redundant, Statement 5 inserts the remaining items into Scache = {I1, I2, I4}. The
next statement initializes an empty set Srmv, which will contain the items to be removed at the end of CACHE-
REPLACE.

Then, Statements 7–9 perform greedy iterations until enough items have been evicted from Scache to meet
the requirement of spacetar. In each iteration, the algorithm picks the item (among the remaining elements in
Scache) whose removal results in the smallest decrease in bcQuality. To continue our example, among the three
items I1, I2, I4 in Scache, discarding either of the first two does not reduce bcQuality (which is decided by the
shaded area in Fig. 4b). Eliminating I4, however, brings bcQuality down to 0, because A.bc2 would be empty.
Hence, assuming that item I at Statement 8 is set to I2 (breaking the tie with a random choice), the algorithm
terminates by retaining I1 and I4 in A.bc1 and A.bc2, respectively.

It is natural to wonder whether Statements 1–4 can be omitted, since a redundant item leads to zero
decrease in bcQuality, and hence, will be selected by Statement 7 anyway. To see why the removal of the
redundant items is beneficial, consider a scenario where there are 100 such items before CACHE-REPLACE

starts, whereas the value of sizetar requires eliminating only 20 items to fix the space overflow. Without State-
ments 1–4, after CACHE-REPLACE finishes, there would be still 80 redundant items in the branch caches. Our
algorithm in Fig. 6, on the other hand, will discard all these 100 redundant items, thus postponing the next
overflow without harming the pruning effectiveness.
Fig. 6. The CACHE-REPLACE algorithm.

326 K. Zhao et al. / Data & Knowledge Engineering 63 (2007) 315–335
It remains to clarify the computation of vol(X.bc) for a branch cache X.bc. The region corresponding to
Formula 5 can be a complex concave hyper-polygon in high-dimensional space, whose exact volume calcula-
tion requires expensive CPU-overhead. Fortunately, CACHE-REPLACE does not demand precise volumes; it
performs well also with accurate estimates of bcQuality. Therefore, we estimate vol(X.bc) using the following
Monte-Carlo approach. First, a points are randomly generated in the ranking space. Then, we count the num-
ber b of these points~x that are in the region of Formula 5. After this, vol(X.bc) is approximated as b

a.
Although so far we have assumed that the underlying relation R is static, our technique can be easily

extended to support a dynamic R that may be updated (by each individual server) with insertions and deletions.
As with the solution of [1], we may associate each cache item with an expiry time, and discard the entry after it
expires. Obviously, if updates are frequent, the quality of the query results may be compromised. Nevertheless,
this is a well-known tradeoff that can be tackled using various heuristics [12]. For example, a possible solution is
to require all updates to be applied only at regular intervals (e.g., at the midnight of a day). In this case, all
caches are cleared at the boundary time of two intervals, and guaranteed to be valid during each interval.

6. Related work

Top-k retrieval has been extensively investigated in the database and information retrieval areas. In this
section, we review the existing results, and clarify how they are relevant/different to/from our work. We clas-
sify the previous methods in three categories. Sections 6.1 and 6.2 survey the solutions on distributed relations
that are vertically and horizontally partitioned, respectively. Then, Section 6.3 discusses the methods in cen-
tralized databases.

6.1. Solutions on vertically partitioned data

The solutions of this category address the following scenario. A relation R is vertically partitioned, such
that each of its attributes is stored at one server (i.e., each tuple on a server has the form {object id, attribute
value}). The objects on each server are sorted in descending order of their corresponding attribute values. A
top-k query can be issued by any server, and the goal is to minimize the communication across different servers
in computing the query result. Clearly, this scenario is entirely different from our problem settings, where R is
horizontally partitioned across a significantly larger number of servers.

The existing algorithms [4–6,8,10,14,16,17,19,22,23,27,28,30,34,37] for vertically partitioned relations adopt
the ‘‘threshold-based’’ technique originally proposed by Fagin [15]. They differ, however, in the types of acces-
ses allowed at each server (e.g., sequential or random accesses), and the types of objects that can be handled in
the underlying applications. Since these algorithms cannot be applied to our problem, we do not discuss them
in detail.

6.2. Solutions on horizontally partitioned data

The previous work most related to ours is due to Balke et al. [1], and referred to as BNST in the sequel
following the author’s initials. They aim at reducing the number of objects transmitted among servers, as
opposed to our approach that minimizes the number of messages. Their objective is reasonable for applica-
tions where an object (such as a document, an image, or a video) has a large size, such that forwarding an
object is significantly more expensive than sending multiple regular messages. Thus, it pays off to allow servers
to exchange frequently information about the ‘‘status’’ of query execution, as long as the communication
avoids unnecessary object transmission. In our settings, however, each object is extremely small, because it
is merely a simple tuple in a relation, containing an alphanumeric value for each attribute. Therefore, trans-
mission of a tuple entails (almost) the same overhead as an empty message.

We explain the idea of BNST using the example of Fig. 7a, where the topology contains four servers A, B, C,
and D. Their local data sets are demonstrated in tables A.ds, B.ds, C.ds and D.ds, respectively. Assume that A

issues a top-2 query q. The right column of each table contains the objects’ scores with respect to q (e.g., the score
of o1 is 0.5). Server A initializes a top-result list containing empty entries eA, eB and eC. During query processing, eA

keeps the next best result in A.ds, and eB (eC) maintains the next best result in the subtree rooted at server B (C).

A

D

CB

eA

e'D

eCeB

e'C

A.ds
0.5
0.3

o1

o2

B.ds
0.7
0.4

o3

o4

C.ds
0.6
0.5

o5

o6

D.ds
0.9
0.4

o7

o8

o

H1

H2

B

C

q2

O

A

q1

o'

(a) BNST (b) PREFER

Fig. 7. Illustration of BNST and PREFER.

K. Zhao et al. / Data & Knowledge Engineering 63 (2007) 315–335 327
A first computes the top-1 result in its local dataset A.ds (i.e., o1), and fills entry eA with o1. Then, A requests
the next best objects from servers B and C, respectively. Since B is a leaf server in the topology, it directly
returns the best object o3 in its local database. After receiving o3, A records it in eB.

On the other hand, when server C receives the request from A, it also initializes a top result list containing
empty entries e0C and e0D, which maintain the next best objects in C and D, respectively. To continue our exam-
ple, C fills e0C with the top-1 object o5 in C.ds, and forwards a request to D. The leaf server D directly returns
the top-1 object o7 in its local database. C stores o7 in e0D. Since o7 has a larger score than o5 kept in e0C, o7 is
returned to A, after which C re-sets e0D to ;.

After receiving o7, A keeps it in eC. Since o7 has a larger score than objects o1, o3 kept in eA, eB, respectively,
o7 is reported as the final top-1 object. Accordingly, eC is re-set to ;. The process of retrieving the top-2 object
is similar. Specifically, since eC is empty, A issues another request to C. As e0D is also empty, C contacts D

again. D returns o8 (i.e., the second best object in D.ds) to C, which keeps it in e0D and compares its score with
that of o5 in e0C. As o5 has a higher score, it is sent to A. A keeps o5 in eC, and reports the object o3 in its top-
result list with the highest score as the second query result.

The above algorithm contacts all the servers at least once. To remedy the drawback, BNST adopts an index
which may terminate a query without sending messages to the entire network. However, as mentioned in Sec-
tion 1.2, early terminate is possible only if the same query has been processed before. Therefore, the index is
not useful in our problem, where there are an infinite number of potential queries differing in their weights.

6.3. Solutions in centralized databases

PREFER [20] is an efficient system for top-k retrieval. It sorts all the tuples in descending order of their
scores, with respect to a certain query vector. Then, given any other query, PREFER processes it by scanning
the tuples in their sorted order, and terminating the scan as soon as no tuple in the unscanned part of the data-
set can be in the query result. In the sequel, we illustrate its idea for k = 1. Since, as mentioned in Section 4, the
magnitude of a query vector does not affect its result (only the direction matters), we consider that all queries
are normalized to have unit magnitude.

In Fig. 7b, assume that the tuples have been sorted according to ~q1, and o is the first tuple in the sorted list
(i.e., o is the top-1 tuple for ~q1). Based on the score definition as in Eq. 1, the score of a tuple equals the length
of the segment connecting its projection on the query vector and the origin. For example, the score of o for ~q1

equals the length of segment OA, where A is the projection of o on ~q1.
Assume that a user issues a query ~q2. Let us draw a line H1 that passes o and is perpendicular to vector ~q2.

The line crosses the right boundary of the data space at point B. Let us shoot another line H2 passing B that is
perpendicular to ~q1. H2 intersects ~q1 at point C. A crucial observation is that if the score of a point o

0
for ~q1 is

lower than the length of segment OC, then o
0
cannot be the top-1 result of ~q2. This is because o

0
lies below H2,

whereas the top-1 result of ~q2 must fall in the shaded triangle. Hence, PREFER simply scans the objects in
descending order of their scores for ~q1, and stops as soon as an object below H2 is encountered. Among
the visited objects, the one with the highest score for ~q2 is reported.

328 K. Zhao et al. / Data & Knowledge Engineering 63 (2007) 315–335
Obviously, the effectiveness depends on how similar ~q1 and ~q2 are. Therefore, PREFER duplicates the
underlying dataset multiple times, and sorts each copy (called a ‘‘materialized view’’) according to a different
query. Given a user query q, PREFER answers it using the view whose sorting vector is the most similar to q.
Yi et al. [36] discuss the dynamic maintenance of these views. Recently, Das et al. [13] extend the heuristics of
PREFER to answer a top-k query by leveraging multiple views simultaneously.

Among other work, the ‘‘STOP AFTER’’ operator is defined in [7] for formulating top-k queries with SQL.
Chang et al. [9] propose the Onion technique, which was mentioned at the end of Section 3.2. Tsaparas et al.
[35] present a ranked index based on the concept of ‘‘k-dominating set’’. They also develop a branch-and-
bound algorithm based on R-trees [2]. Chaudhuri and Gravano [11] suggest a method that converts a top-
k query to range search using data statistics. Nastev et al. [29] introduce an algorithm for processing complex
joins over ranked inputs. In [21,24,26,11], the authors discuss integration of the ranking operator into rela-
tional databases, and the relevant optimization issues.

The above solutions are not directly applicable to the problem addressed in this paper, since they demand
all servers to have a copy of the entire dataset. This is not realistic, as it necessitates the transmission of a mas-
sive number of tuples.

7. Experiments

This section experimentally evaluates the effectiveness of the proposed algorithms. We simulate a distrib-
uted environment using a machine with a 2.8 Ghz Pentium 4 processor. Specifically, the network organizes
servers into a binary tree. The number of servers (i.e., network size) varies from 100 to 10,000. Each server
stores the same number of tuples (the overall distributed relation is the union of the data at all servers).
The relation has d attributes, where d ranges from 2 to 4. Each tuple can be regarded as a point in a d-dimen-
sional space with domain [0,1] on each axis.

We test two distributions: Gaussian and Zipf. In a Gaussian dataset, each coordinate of a point follows a
Gaussian distribution with mean 0.5 and variance 0.25. In a Zipf dataset, data is skewed towards the ‘‘max-
imal corner’’ of the data space (the corner has 1 as the coordinate on all axes). The skewness coefficient equals
0.8 (if the skewness equals 1, all the data degenerates into a single point; if it is 0, the distribution becomes
uniform). All the dimensions are mutually independent.

Each top-k query is generated as follows. The query vector contains d positive weights, each of which ran-
domly distributes in [0, 1]. k is another random value in [1,kmax], where kmax is an experiment parameter varied
from 10 to 50. Each query is issued by a random server in the network. The query cost is dominated by the
communication overhead. In practice, the overhead is determined by the number of network messages, which
in turn is proportional to the number of servers contacted in query processing.1 Hence, we measure the cost as
the number of contacted servers.

We adopt the simplex implementation in the GNU Linear Programming Kit,2 for solving the linear pro-
gramming problems in checking Eqs. (6) and (8). As mentioned in Section 5, our cache-replacement algorithm
requires the Monte-Carlo approach to calculate the volumes of pruning regions. For this purpose, we fix the
parameter a to 105, which guarantees the precision of numerical evaluation. Every time a cache overflow
occurs, 20% of the cache is emptied, i.e., the parameter sizetar (see Section 5) equals 80% of the cache size.

We present the experimental results in two parts. In the next section, we study the characteristics of
BRANCA with respect to several data and query parameters. Then, Section 7.2 compares BRANCA with
the only existing solution BNST (reviewed in Section 6.2) for solving top-k queries in large-scaled distributed
environments.
1 If x servers are contacted, the total number of messages equals 4x. For example, if server A sends a query to server B, B should first
acknowledge the receipt of the message, before relaying the query to its neighbors. Similarly, when B returns the result to A, A sends
another message to acknowledge receiving the result. Hence, totally four messages are required.

2 Available at http://www.gnu.org/software/glpk/glpk.html.

http://www.gnu.org/software/glpk/glpk.html

K. Zhao et al. / Data & Knowledge Engineering 63 (2007) 315–335 329
7.1. Characteristics of BRANCA

In this section, each server stores 10,000 tuples. Unless specifically stated, we use a network with 1000 serv-
ers, i.e., the entire distributed relation has a cardinality of 10 million. The first set of experiments evaluates the
improvement of query cost as time evolves, using a relation with d = 3 attributes. Each server is allowed the
same amount of cache space, measured in the largest number of tuples that can be accommodated. We exam-
ine three cache sizes 500, 1000, and 2000. The parameter kmax equals 30.

Focusing on Gaussian data, Fig. 8a shows the cost of BRANCA (in terms of how many servers are con-
tacted) for the first 10,000 queries in the system. Initially, when all the caches are empty, processing a query
requires contacting all the servers in the network. However, the cost decreases drastically after only a small
number of queries. This observation has two implications. First, it indicates that the proposed heuristics have
good pruning power even with small caches. Second, the pruning effectiveness increases continuously as the
caches are filled with more items, confirming the analysis of Section 4. As time progresses, the query cost even-
tually stabilizes when the caches of all servers are full. In particular, with cache size 2000, eventually a query
needs to contact only three servers (out of 1000).

Fig. 8b shows the same results for the Zipf dataset, revealing similar observations, except that the query
overhead is even lower. This is due to the fact that a significant part of a Zipf dataset lies very close to the
maximal corner; hence, the number of different query results is smaller. Therefore, given the same amount
of cache space, the pruning effect is stronger than in Fig. 8a.

Next, we study the amount of workload on individual servers, using the settings in the previous experi-
ments. After 10,000 queries, we measure the number of times that a server needs to contact a neighbor in pro-
cessing the next 1000 queries. Fig. 9a shows the results over the Gaussian dataset, for cache sizes 500, 1000,
1

 10

 100

 1000

10k8k6k4k2k1
number of queries processed

number of servers contacted

cache size 500

cache size 1000

cache size 2000
1

 10

 100

 1000

10k8k6k4k2k1
number of queries processed

number of servers contacted

cache size 500
cache size 1000

cache size 2000

(a) Gaussian (b) Zipf

Fig. 8. Query cost vs. time (network size = 1000, d = 3, kmax = 30).

1

0.1

0.01

0.001

0
10008006004002001

node ID

number of neighbor contacts

cache size 2000

cache size 1000

cache size 500

0.1

0.01

0.001

0
10008006004002001

node ID

number of neighbor contacts

cache size 2000
cache size 1000

cache size 500

(a) Gaussian (b) Zipf

Fig. 9. Workload of individual servers (network size = 1000, d = 3, kmax = 30).

330 K. Zhao et al. / Data & Knowledge Engineering 63 (2007) 315–335
and 2000, respectively. The y-axis captures the number of neighbor contacts by each server, averaged over
1000 queries. The x-axis represents the server IDs (from 1 to 1000), sorted in descending order of their contact
times.

It is clear that all the servers have light workload. In particular, for cache sizes at least 1000, 95% of the
servers contact their neighbors less than 0.01 times in a query (i.e., totally 10 times for 1000 queries). In
any case, even the ‘‘busiest’’ server needs no more than 0.2 contacts per query. Fig. 9b demonstrates the results
for Zipf data. The cost is lower than the Gaussian case, due to the reasons analyzed earlier for Fig. 8b. For
example, for cache size 2000, all servers perform less than 0.01 neighbor contacts per query, and half of the
servers do not need to contact any neighbor at all.

We proceed to examine the efficiency of our cache-replacement strategy. The efficiency depends on two fac-
tors: the cost of handling one cache overflow, and the overflow frequency. In particular, the first factor is
affected by the dimensionality d of the dataset, and the value of kmax for the queries. Fig. 10 evaluates their
effect using Gaussian data (the results for Zipf data are similar and omitted). Fixing kmax to 30, Fig. 10a plots
the average cost of resolving an overflow as a function of d. The cost increases with d for two reasons. First,
solving the linear programming problem (for removal of redundant cache items) is more expensive in high-
dimensional space. Second, the overhead of checking whether a point lies in a half-space is linear to d.
Fig. 10b exhibits the computation cost for different kmax, setting d to 3. The cost decreases with kmax. To
understand this, note that the space occupied by the cache item of a top-k query is proportional to k. Hence,
for a large kmax, the average space consumption of an item is higher; given the same cache size, the number of
items that can be retained is smaller, leading to faster cache replacement. All cache overflows are handled in
less than 1 s.

To study the overflow frequency, we set d and kmax to 3 and 30, respectively. After the system has stabilized
(i.e., after 10,000 queries, as shown in Fig. 8), we issue 5 · 105 queries, and record, for each server, the average
number of queries between its two consecutive overflows as its ‘‘overflow interval’’. Fig. 11a and b present the
average overflow interval of all servers as the network size varies from 100 to 10,000, for Gaussian and Zipf
distributions, respectively. The interval is longer for a larger network size. For the same number of queries, the
chance that a server is contacted becomes smaller when the number of servers increases. As a result, the cache
size of a server grows more slowly, thus postponing the next cache overflow. In particular, for the cache size
2000 and network sizes at least 1000, on average a server has an overflow every more than 104 queries.

To summarize, after initialization, the query cost of BRANCA rapidly stabilizes at a very low level, even if
the cache is relatively small compared to the dataset. This phenomenon confirms the effectiveness of our prun-
ing mechanism. Furthermore, management of the cache content entails little overhead.

7.2. Comparison with BNST

Having demonstrated the characteristics of BRANCA, we proceed to compare its efficiency against BNST.
The parameters inspected include the network size, kmax, dimensionality d, and the number of tuples stored in
0.01

 0.1

 1

4D3D2D
dataset dimensionality

computation cost (sec)
cache size 2000
cache size 1000

cache size 500

 0.01

 0.1

 1

5040302010
kmax

computation cost (sec)
cache size 2000
cache size 1000
cache size 500

Fig. 10. Cost of cache replacement (network size = 1000).

105

104

103

102

10

1
100001000100

network size

number of queries between overflows

cache size 2000
cache size 1000

cache size 500
105

104

103

102

10

1
100001000100

network size

number of queries between overflows

cache size 2000
cache size 1000

cache size 500

(a) Gaussian (b) Zipf

Fig. 11. Cache overflow frequency of a server (network size = 1000, d = 3, kmax = 30).

K. Zhao et al. / Data & Knowledge Engineering 63 (2007) 315–335 331
a server, whose default values equal 1000, 30, 3, and 10,000, respectively. We measure the query cost (i.e., the
number of servers contacted) of each method after each server has issued 10 queries on average (e.g., if the
network size is 100, totally 1000 queries have been processed), so that the cost represents the method’s stabi-
lized performance. Each result in the following diagrams is the average overhead of 10,000 queries.

Fig. 12a and b illustrate the results for Gaussian and Zipf data respectively, when the network size varies
from 100 to 10,000, with the other parameters set to their default values. In all cases, BRANCA outperforms
its competitor significantly, by a factor more than an order of magnitude. As discussed in Section 6.2, BNST
needs to contact all the servers to answer a query, and hence, its cost is linear to the network size. On the other
hand, with cache size at least 1000, BRANCA contacts less than 10 servers per query even in the largest
network.

In Fig. 12a, the cost of BRANCA grows with the network size, while it is almost unaffected in Fig. 12b.
When the network size increases, each branch cache is responsible for a subgraph containing a larger number
of data points. As a result, for Gaussian distribution, the number of possible top-k results becomes higher,
which weakens the pruning effect of our heuristics, and leads to higher query cost. For Zipf data, the number
of result combinations does not change significantly (recall that, in a Zipf dataset, points are skewed towards
the maximum corner), resulting in steady query performance as the network size grows.

The next set of experiments evaluates the influence of kmax. Using default values for the other parameters,
Fig. 13a plots the query cost as a function of kmax for Gaussian data. BRANCA is again considerably faster.
As expected, its cost increases with kmax. As mentioned in Section 7.1, a large kmax reduces the number of
items in a cache, and hence, negatively affects the pruning effectiveness. Interestingly, if caches are suffi-
ciently large, the impact of kmax is limited. For example, when the cache size equals 2000, the average number
of servers contacted in a query increases by less than 1 as kmax varies from 10 to 50, indicating that a cache
with this size is able to capture most top-k results for k 6 50. Fig. 13b presents the results for Zipf data, also
104

103

102

10

1
100001000100

network size

number of servers contacted

BRANCA with cache size 2000
BRANCA with cache size 1000
BRANCA with cache size 500

BNST

104

103

102

10

1
100001000100

network size

number of servers contacted

BRANCA with cache size 2000
BRANCA with cache size 1000
BRANCA with cache size 500

BNST

(a) Gaussian (b) Zipf

Fig. 12. Query cost vs. network size (kmax = 30, d = 3).

104

103

102

10

1
5040302010

kmax

number of servers contacted
BRANCA with cache size 2000
BRANCA with cache size 1000
BRANCA with cache size 500

BNST

104

103

102

10

1
5040302010

kmax

number of servers contacted
BRANCA with cache size 2000
BRANCA with cache size 1000

BRANCA with cache size 500
BNST

(a) Gaussian (b) Zipf

Fig. 13. Query cost vs. kmax (network size = 1000, d = 3).

332 K. Zhao et al. / Data & Knowledge Engineering 63 (2007) 315–335
demonstrating the above phenomena, except that the difference between BRANCA and BNST becomes even
more obvious.

Fig. 14 shows the results when d changes from 2 to 4. The efficiency of BRANCA is lower as the dimen-
sionality increases. This is not surprising because, in high dimensional space, there are more possible result
combinations, and hence, a larger cache is necessary to achieve the same query cost. Note that BRANCA
is extremely effective for 2D data. For example, even with the smallest cache size, each query requires contact-
ing less than two servers, for both Gaussian and Zipf data. In all experiments, when the cache size reaches
2000, the query cost is limited to below 20 server contacts.
104

103

102

10

1
4D3D2D

dataset dimensionality

number of servers contacted
BRANCA with cache size 2000
BRANCA with cache size 1000

BRANCA with cache size 500
BNST

104

103

102

10

1
4D3D2D

dataset dimensionality

number of servers contacted
BRANCA with cache size 2000
BRANCA with cache size 1000

BRANCA with cache size 500
BNST

(a) Gaussian (b) Zipf

Fig. 14. Query cost vs. dataset dimensionality (network size = 1000, kmax = 30).

104

103

102

10

1
100m10m1m100k

dataset size

number of servers contacted

BRANCA with cache size 2000
BRANCA with cache size 1000

BRANCA with cache size 500
BNST

104

103

102

10

1
100m10m1m100k

dataset size

number of servers contacted

BRANCA with cache size 2000
BRANCA with cache size 1000
BRANCA with cache size 500

BNST

(a) Gaussian (b) Zipf

Fig. 15. Query cost vs. dataset cardinality (network size = 1000, kmax = 30, d = 3).

K. Zhao et al. / Data & Knowledge Engineering 63 (2007) 315–335 333
Finally, we fix the network size, kmax and d to their default values, but vary the number of tuples stored at
each server from 100 to 100,000, generating distributed relations with cardinalities from 100k to 100m. Fig. 15
plots the query overhead as a function of dataset cardinality. For Gaussian data, BRANCA incurs higher cost
for larger datasets, while the impact of cardinality is not significant for Zipf distribution. This is consistent
with the results in Fig. 12 (note that increasing the network size also leads to larger datasets). BRANCA again
outperforms BNST by orders of magnitude.

In summary, our technique can process top-k queries very efficiently in large-scaled environments. Except
in one experiment (involving 4D data as in Fig. 14), when the cache size equals 2000, each query requires the
cooperation of less than five servers, even in a network with 10,000 servers. Furthermore, BRANCA also dem-
onstrates good scalability with respect to the dataset distribution, cardinality, and number k of results
requested.

8. Conclusions and future work

In this paper, we tackle top-k processing in the scenario where a relation is horizontally partitioned across a
very large number of servers. Traditional distributed top-k algorithms are inadequate because they either
assume vertical partitioning, or (in most cases) must contact all the servers at least once in answering a query.
We propose an alternative approach BRANCA, which combines semantic caching with routing indexes to sig-
nificantly reduce query cost. Our solutions have solid theoretical foundation, and their effectiveness is verified
with extensive experiments.

For future work, we plan to adapt BRANCA for supporting other query types in both relational and non-
relational domains. For example, it is interesting to study ‘‘skyline’’ retrieval [3], which is highly related to the
top-k problem studied in this paper, because a skyline contains all the tuples that may be the top-1 result of
any monotone preference function. Another promising topic is nearest neighbor search, where each server
contains a set of multi-dimensional points, and the objective is to find the point (among the data of all servers)
closest to a query point.

Acknowledgements

Yufei Tao was supported by Grant CUHK 1202/06 from the Research Grant Council of the HKSAR gov-
ernment. Shuigeng Zhou was supported by the National Natural Science Foundation of China (grant number
90612007) and the Shuguang Scholar Program of Shanghai Education Development Foundation.

References

[1] W.-T. Balke, W. Nejdl, W. Siberski, U. Thaden, Progressive distributed peer-to-peer top-k retrieval in peer-to-peer networks, in: Proc.
of International Conference on Data Engineering (ICDE), 2005, pp. 174–185.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, B. Seeger, The R*-tree: An efficient and robust access method for points and rectangles, in:
Proc. of ACM Management of Data (SIGMOD), 1990, pp. 322–331.

[3] S. Borzsonyi, D. Kossmann, K. Stocker, The skyline operator, in: Proc. of International Conference on Data Engineering (ICDE),
2001, pp. 421–430.

[4] N. Bruno, S. Chaudhuri, L. Gravano, Top-k selection queries over relational databases: Mapping strategies and performance
evaluation, ACM Transactions on Database Systems (TODS) 27 (2) (2002) 153–187.

[5] N. Bruno, L. Gravano, A. Marian, Evaluating top-k queries over web-accessible databases, in: Proc. of International Conference on
Data Engineering (ICDE), 2002, pp. 369–380.

[6] P. Cao, Z. Wang, Efficient top-k query calculation in distributed networks, in: Proc. of ACM Symposium on Principles of Distributed
Computing (PODC), 2004, pp. 206–215.

[7] M.J. Carey, D. Kossmann, On saying ‘‘enough already!’’ in SQL, in: Proc. of ACM Management of Data (SIGMOD), 1997, pp. 219–
230.

[8] K.C. Chang, S. Hwang, Minimal probing: Supporting expensive predicates for top-k queries, in: Proc. of ACM Management of Data
(SIGMOD), 2002, pp. 346–357.

[9] Y.-C. Chang, L. Bergman, V. Castelli, C.-S. Li, M.-L. Lo, J.R. Smith, The Onion Technique: Indexing for linear optimization queries,
in: Proc. of ACM Management of Data (SIGMOD), 2000, pp. 391–402.

[10] S. Chaudhuri, G. Das, V. Hristidis, G. Weikum, Probabilistic ranking of database query results, in: Proc. of Very Large Data Bases
(VLDB), 2004, pp. 888–899.

334 K. Zhao et al. / Data & Knowledge Engineering 63 (2007) 315–335
[11] S. Chaudhuri, L. Gravano, Evaluating top-k selection queries, in: Proc. of Very Large Data Bases (VLDB), 1999, pp. 397–410.
[12] A. Crespo, H. Garcia-Molina, Routing indices for peer-to-peer systems, in: Proc. of International Conference on Distributed

Computing Systems (ICDCS), 2002.
[13] G. Das, D. Gunopulos, N. Koudas, D. Tsirogiannis, Answering top-k queries using views, in: Proc. of Very Large Data Bases

(VLDB), 2006, pp. 451–462.
[14] R. Fagin, Fuzzy queries in multimedia database systems, in: Proc. of ACM Symposium on Principles of Database Systems (PODS),

1998, pp. 1–10.
[15] R. Fagin, Combining fuzzy information from multiple systems, J. Comput. Syst. Sci. 58 (1999) 83–99.
[16] R. Fagin, A. Lotem, M. Naor, Optimal aggregation algorithms for middleware, J. Comput. Syst. Sci. 66 (2003) 614–656.
[17] R. Fagin, E.L. Wimmers, Incorporating user preferences in multimedia queries, in: Proc. of International Conference on Database

Theory (ICDT), 1997, pp. 247–261.
[18] S.I. Gass, Linear Programming: Methods and Applications, fifth ed., McGraw-Hill, Inc., 1984.
[19] U. Guntzer, W.-T. Balke, W. Kiebling, Optimizing multi-feature queries for image databases, in: Proc. of Very Large Data Bases

(VLDB), 2000, pp. 419–428.
[20] V. Hristidis, N. Koudas, Y. Papakonstantinou, Prefer: a system for the efficient execution of multi-parametric ranked queries, in:

Proc. of ACM Management of Data (SIGMOD), 2001, pp. 259–270.
[21] F. Ilyas, G. Aref, K. Elmagarmid, Supporting top-k join queries in relational databases, The VLDB Journal 13 (3) (2004) 207–221.
[22] I. Ilyas, W. Aref, A. Elmagarmid, Joining ranked inputs in practice, in: Proc. of Very Large Data Bases (VLDB), 2002, pp. 950–961.
[23] I. Ilyas, W. Aref, A. Elmagarmid, Supporting top-k join queries in relational databases, in: Proc. of Very Large Data Bases (VLDB),

2003, pp. 754–765.
[24] I.F. Ilyas, R. Shah, W.G. Aref, J.S. Vitter, A.K. Elmagarmid, Rank-aware query optimization, in: Proc. of ACM Management of

Data (SIGMOD), 2004, pp. 203–214.
[25] H.V. Jagadish, B.C. Ooi, Q.H. Vu, Baton: a balanced tree structure for peer-to-peer networks, in: Proc. of Very Large Data Bases

(VLDB), 2005, pp. 661–672.
[26] C. Li, K.C. Chang, I.F. Ilyas, S. Song, Ranksql: Query algebra and optimization for relational top-k queries, in: Proc. of ACM

Management of Data (SIGMOD), 2005, pp. 131–142.
[27] A. Marian, N. Bruno, L. Gravano, Evaluating top-k queries over web-accessible databases, ACM Transactions on Database Systems

(TODS) 29 (2) (2004) 319–362.
[28] S. Michel, P. Triantafillou, G. Weikum, Klee: A framework for distributed top-k query algorithms, in: Proc. of Very Large Data

Bases (VLDB), 2005, pp. 637–648.
[29] A. Natsev, Y.-C. Chang, J.R. Smith, C.-S. Li, J.S. Vitter, Supporting incremental join queries on ranked inputs, in: Proc. of Very

Large Data Bases (VLDB), 2001, pp. 281–290.
[30] S. Nepal, M.V. Ramakrishna, Query processing issues in image (multimedia) databases, in: Proc. of International Conference on Data

Engineering (ICDE), 1999, pp. 22–29.
[31] S. Ratnasamy, P. Francis, M. Handley, R.M. Karp, S. Shenker, A scalable content-addressable network, in: Proc. of ACM

Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM), 2001, pp.
161–172.

[32] Q. Ren, M.H. Dunham, V. Kumar, Semantic caching and query processing, IEEE Transactions on Knowledge and Data Engineering
15 (1) (2003) 192–210.

[33] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, H. Balakrishnan, Chord: A scalable peer-to-peer lookup service for internet
applications, in: Proc. of ACM Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMM), 2001, pp. 149–160.

[34] M. Theobald, G. Weikum, R. Schenkel, Top-k query evaluation with probabilistic guarantees, in: Proc. of Very Large Data Bases
(VLDB), 2004, pp. 648–659.

[35] P. Tsaparas, T. Palpanas, Y. Kotidis, N. Koudas, D. Srivastava, Ranked join indices, in: Proc. of International Conference on Data
Engineering (ICDE), 2003, pp. 277–288.

[36] K. Yi, H. Yu, J. Yang, G. Xia, Y. Chen, Efficient maintenance of materialized top-k views, in: Proc. of International Conference on
Data Engineering (ICDE), 2003, pp. 189–200.

[37] H. Yu, H.-G. Li, P. Wu, D. Agrawal, A.E. Abbadi, Efficient processing of distributed top- queries, in: Proc. of Database and Expert
Systems Applications (DEXA), 2005, pp. 65–74.

Keping Zhao obtained his master degree in Computer Science from Fudan University. His research interests focus
on complex query optimization in Peer-to-Peer networks. After graduation, he worked as a Research Assistant in
the City University of Hong Kong. Currently, he is a Software Design Engineer of Microsoft China.

K. Zhao et al. / Data & Knowledge Engineering 63 (2007) 315–335 335
Yufei Tao holds a Ph.D. degree in Computer Science from the Hong Kong University of Science and Technology,
and did his post doc as a visiting scientist in the Computer Science Department of the Carnegie Mellon University,
during September 2002–August, 2003. In the next 3 years, he was an Assistant Professor at the City University of
Hong Kong. Since September 2006, he has been an Assistant Professor at the Department of Computer Science
and Engineering, the Chinese University of Hong Kong. He is the winner of the Hong Kong Young Scientist
Award 2002, conferred by the Hong Kong Institution of Science. His research interests include database query
optimization, and data privacy protection.

Shuigeng Zhou is a Professor in Department of Computer Science and Engineering, Fudan University, Shanghai,
China. He received his Bachelor degree of Electronic Engineering from Huazhong University of Science and

Technology (HUST) in 1988, his Master degree of Electronic Engineering from University of Electronic Science
and Technology of China (UESTC) in 1991, and his Ph.D. of Computer Science from Fudan University in 2000.
He served in Shanghai Academy of Spaceflight Technology from 1991 to 1997, as an Engineer and a Senior
Engineer (since August 1995), respectively. He was a post-doctoral researcher in State Key Lab of Software
Engineering, Wuhan University from 2000 to 2002. His research interests include data management in P2P and
sensor networks, data mining and information retrieval. He has published more than 100 papers in domestic and
international journals and conferences. Currently he is member of IEEE and IEICE.

	Efficient top-k processing in large-scaled distributed environments
	Introduction
	Problem definition
	Motivation and contributions

	Branch caches
	Top-k processing with BRANCA
	The high level algorithm
	Pruning with branch caching

	Theoretical evidence of the effectiveness of branch caching
	Cache replacement
	Related work
	Solutions on vertically partitioned data
	Solutions on horizontally partitioned data
	Solutions in centralized databases

	Experiments
	Characteristics of BRANCA
	Comparison with BNST

	Conclusions and future work
	Acknowledgements
	References

