
Range Updates and Range Sum Queries

on Multidimensional Points with Monoid Weights

Shangqi Lu and Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong

Hong Kong, China
{sqlu,taoyf}@cse.cuhk.edu.hk

June 15, 2023

Abstract

Let P be a set of n points in Rd where each point p ∈ P carries a weight drawn from a
commutative monoid (M,+, 0). Given a d-rectangle rupd (i.e., an orthogonal rectangle in Rd)
and a value ∆ ∈ M, a range update adds ∆ to the weight of every point p ∈ P ∩ rupd; given
a d-rectangle rqry, a range sum query returns the total weight of the points in P ∩ rqry. The
goal is to store P in a structure to support updates and queries with attractive performance
guarantees. We describe a structure of Õ(n) space that handles an update in Õ(Tupd) time and

a query in Õ(Tqry) time for arbitrary functions Tupd(n) and Tqry(n) satisfying Tupd · Tqry = n.
The result holds for any fixed dimensionality d ≥ 2. Our query-update tradeoff is tight up to a
polylog factor subject to the OMv-conjecture.

Keywords: Range Updates, Range Sum Queries, Data Structures, Lower Bounds

Corresponding Author: Yufei Tao

Acknowledgements: This research was partially supported by GRF projects 14203421 and
14207820 from HKRGC.

1

1 Introduction

This paper studies range sum queries on multidimensional points where the point weights are drawn
from a commutative monoid and can be modified by range updates. Specifically, let P be a set of n
points in Rd for some constant d ≥ 1. Denote by (M,+, 0) an arbitrary commutative monoid1 where
each element inM is called a weight. Each point p ∈ P carries a weight w(p) ∈ M; initially, the
weights are 0 for all the points. We want to store P in a data structure to support two operations
with attractive performance guarantees:

• Range (sum) query: given a d-rectangle2 rqry, the query returns the total weight of all the
points p ∈ P ∩ rqry (where sum is defined using the monoid’s operator +);

• Range update: given a d-rectangle rupd and a weight ∆ ∈M, the update adds ∆ to the weight
of every point p ∈ P ∩ rupd.

We will refer to the above as the “range sum with range updates” (RSRU) problem. Our
complexity analysis assumes the standard unit-cost RAM model and holds on all commutative
monoids (M,+, 0) satisfying: (i) each weight w ∈M can be stored in one word, and (ii) w1 + w2

can be computed in constant time for any w1, w2 ∈M.

1.1 Previous Results

Supporting range queries and range updates has important implications in Geographical Information
Systems (GIS), online analytical processing (OLAP), and database management systems (DBMS);
the reader may refer to [16,19,22,24] for the relevant applications.

For d = 1, the RSRU problem admits a folklore structure3 of O(n) space that supports each
query and update in O(log n) time. The problem becomes rather challenging as soon as d reaches 2.
For any d ≥ 2, the standard range tree [2, 10] uses Õ(n) space and answers a query in Õ(1) time
(throughout the paper, the notation Õ(.) suppresses a polylog n factor). It also supports a “point
update” — an update whose rectangle rupd degenerates into a point — in Õ(1) time. Given an
update with an arbitrary rupd, however, the range tree issues a point update for each p ∈ P ∩ rupd
and thus can incur a cost of Õ(n).

For d ≥ 2, Lau and Ritossa [19, Lemma 1.2] developed an O(n)-space structure that supports
each query and update in Õ(n1−1/d) time. They also showed a connection to the OMv-conjecture [12]
(full version [13]), which has been widely utilized to characterize the hardness of problems involving
dynamic data structures [1, 3–9,11,13–15,17,18,20,21,23]:

In online matrix-vector multiplication (OMv), an algorithm A is allowed to preprocess
an n × n Boolean matrix M in poly(n) time and then, in the online phase, needs to
compute Mvi for n × 1 Boolean vectors v1, ...,vn (additions and multiplications are
defined according to the Boolean semi-ring, where addition corresponds to the logical
OR operation, and multiplication represents the logical AND operation). The vectors are
supplied in succession, i.e., vi+1 arrives only after A has output Mvi. The cost of A is
the total time it spends in the online phase. The OMv-conjecture states that no algorithm
can guarantee a cost of O(n3−δ) no matter how small the constant δ > 0 is.

1A commutative monoid (M,+, 0) is defined by a set M, an operator +: M×M → M obeying associativity and
commutativity, and an identity element 0 ∈ M satisfying 0 + w = w for every w ∈ M.

2Defined as [a1, b1]× ...× [ad, bd].
3https://cp-algorithms.com/data_structures/segment_tree.html.

2

Space Update, Query Ref Remark

Õ(n) Õ(n), Õ(1) [2] d ≥ 2

O(n) Õ(
√
n), Õ(

√
n) Lmm. 1.2 [19] d = 2

O(n) Õ(n1−1/d), Õ(n1−1/d) Lmm. 1.2 [19] d ≥ 3

Õ(n) any Õ(Tupd), Õ(Tqry) satisfying Tupd · Tqry = n new d ≥ 2

− max{Tupd, Tqry} = O(n1/2−δ) impossible Thm. 7.1 [19] monoid (R,+, 0), d = 2
cond. on OMv-conjecture

− O(na), O(nb) with a+ b < 1 impossible new monoid (R,+, 0), d = 2
(a, b are constants) cond. on OMv-conjecture

Table 1: A comparison of our and previous results on the RSRU problem

For d = 2, Lau and Ritossa [19, Theorem 7.1] proved that, subject to the OMv-conjecture, no
structure with update time Tupd and query time Tqry can guarantee max{Tupd, Tqry} = O(n1/2−δ),
regardless of the constant δ > 0. Hence, their aforementioned structure can no longer be improved
significantly in 2D space.

The results of [19] leave two intriguing questions. First, the hardness result does not shed much
light on the tradeoff between Tupd and Tqry. For example, if we insist on Tqry = Õ(1), is it possible
to improve the update cost Õ(n) of the range tree by a polynomial factor? Conversely, if Tupd must
be Õ(1), what is the best query time achievable? As yet another example, can we hope to obtain
Tupd = Õ(n0.5) and Tqry = Õ(n0.49), thereby improving only the query time of [19] polynomially?
The second question concerns the scenario of d ≥ 3, where there remains a large gap between the
upper and (conditional) lower bounds of [19]. We will answer all these questions in this paper.

The RSRU problem has a degenerated array version that has received special attention. In
that version, P := [m]d where m ≥ 1 is an integer (given an integer x ≥ 1, [x] represents the set
{1, 2, ..., x}). In other words, P has exactly n = md points, and each point’s coordinate is an integer
in [m] on every dimension; equivalently, P can be regarded as a d-dimensional array. This RSRU
variant can be settled by a structure of O(n) space that supports a query and an update both in
O(logd+1 n) time [24]. Furthermore, if the monoid is multiplicative4, the query and update time can
be reduced to O(logd n) [24]; see also [16, 22] for (array-RSRU) structures designed for the monoid
(R,+, 0) (that is, each weight is a real value).

We note that Lau and Ritossa [19] and Mishra [24] have also studied more general problems
where updates and queries may apply different operators on M. In our work, only one operator is
considered, i.e., +.

1.2 New Results

For the RSRU problem, we establish a smooth trade-off between the update and query time under
fixed dimensions d ≥ 2:

Theorem 1. For the RSRU problem, there is a structure of Õ(n) space that supports an update
in Õ(Tupd) time and a query in Õ(Tqry) time for arbitrary functions Tupd(n) ≥ 1 and Tqry(n) ≥ 1
satisfying Tupd · Tqry = n. The result holds for any constant dimension d ≥ 2.

4A monoid (M,+, 0) is multiplicative if, for any weight w ∈ M and any integer c ≥ 1, c · w := w + w + ...+ w︸ ︷︷ ︸
c

can

be calculated in constant time.

3

By setting Tupd = Tqry =
√
n, we obtain a structure of Õ(n) space that handles an update/query

in Õ(
√
n) time for any d. Compared to [19], for d = 2 we obtain the same update and query time

(up to a polylog factor), whereas for d ≥ 3 our update and query time is better by a polynomial
factor. The theorem, interestingly, also captures the range tree as a special case with Tupd = n
and Tqry = 1. By adjusting Tupd and Tqry, one can obtain a series of structures with different
update-query tradeoffs that were not known previously. Our structures are drastically different from
the ones in [19] and do not deteriorate with d (ignoring polylog factors).

We further prove that Theorem 1 is nearly tight subject to the OMv-conjecture.

Theorem 2. Consider the RSRU problem defined on d = 2 and the monoid (R,+, 0). Fix any
constant c satisfying 0 ≤ c < 1 and an arbitrarily small constant δ > 0. Subject to the OMv-conjecture,
the following holds for any structure constructible in poly(n) time:

• if the update time Tupd = O(nc), then the query time Tqry cannot be O(n1−c−δ);

• if Tqry = O(nc), then Tupd cannot be O(n1−c−δ).

The above clearly implies the impossibility of max{Tupd, Tqry} = O(n1/2−δ), as was already
proved in [19]. On the other hand, our conditional lower bounds are much more informative; for
example, they reveal, somewhat unexpectedly, the range tree — with Tqry = Õ(1) and Tupd = Õ(n)
— can no longer be improved significantly without breaking the OMv-conjecture. Putting together
Theorems 1 and 2, we now have a complete picture on the query-update tradeoff achievable for the
RSRU problem under any fixed dimension up to a sub-polynomial factor. Table 1 summarizes the
comparison of our and previous results.

1.3 New Techniques

Our structures stem from a new observation on the inherent characteristics of the RSRU problem.
The observation, described below, is interesting in its own right and illustrates what separates the
RSRU problem from its array variant (defined in Section 1.1).

For any point p ∈ Rd, we use p[i] (i ∈ [d]) to represent its coordinate on dimension i. Similarly,
given a d-rectangle r := [a1, b1] × ... × [ad, bd], we use r[i] to represent its i-th projection [ai, bi].
Given a subset S ⊆ [d], we define an S-rectangle r as a d-rectangle where r[i] := (−∞,∞) for every
i ∈ [d] \ S, namely, r can have a bounded range r[i] only on the dimensions i ∈ S.

Given an update with rectangle rupd and some weight, we call it a U -update for some U ⊆ [d] if
rupd is a U -rectangle. Likewise, given a query with rectangle rqry, we call it a Q-query for some
Q ⊆ [d] if rqry is a Q-rectangle.

Definition 1. Fix two (possibly overlapping) subsets U and Q of [d]. A (U,Q)-structure is a
structure that supports only U -updates and Q-queries.

Our objective in the RSRU problem is to design a ([d], [d])-structure. We are now ready to state
our characteristic observation:

Theorem 3. For the RSRU problem, suppose that, given any disjoint U ⊆ [d] and Q ⊆ [d], there is

a (U,Q)-structure of Õ(n) space that guarantees update time Tupd and query time Tqry. Then, there
is a ([d], [d])-structure of Õ(n) space that handles an update in O(Tupd · logd n) time and a query in
O(Tqry · logd n) time.

4

The theorem indicates that the core of RSRU lies in dealing with updates and queries that
concern disjoint sets of dimensions. For example, in 2D space, the core boils down to supporting
U = {1} and Q = {2}, namely, every update rectangle rupd is a vertical slab while every query
rectangle rqry is a horizontal slab. Interestingly, this is precisely what separates general RSRU
from its array variant. As we will see, when P is a 2D array, there is a trivial (U,Q)-structure of
O(1) space ensuring O(log n) update and query time (the time can even be reduced to O(1) if the
monoid is multiplicative); in contrast, when P is a generic set of Euclidean points, the hardness in
Theorem 2 applies!

Theorem 3 has yet another notable implication: it “trivializes” the array version of RSRU and
allows us to recover all the existing results from [16,22,24] (reviewed in Section 1.1) with a simple
structure. The details can be found in Appendix A.

2 A Dimension Elimination Technique

This section is devoted to proving Theorem 3. Our strategy is to incrementally remove a common
dimension of U and Q until the two dimension sets become disjoint, at which point we can apply
the U -Q disjoint structure stated in the theorem’s assumption statement. The core is to establish
the following lemma.

Lemma 4. Consider any overlapping subsets U and Q of [d]. Let i ∈ [d] be an arbitrary dimension
in U ∩Q. Suppose that we have a (U \ {i}, Q)-structure and a (U,Q \ {i})-structure both of which
use O(n logc n) space (where c ≥ 0 is a constant) and support an update in O(Tupd) time and a
query in O(Tqry) time. Then, there is a (U,Q)-structure of O(n logc+1 n) space that handles an
update in O(Tupd log n) time and a query in O(Tqry log n) time.

Before proving the lemma, let us first see how it leads to Theorem 3.

Proof of Theorem 3. We will establish a more general claim: fix any integer k ∈ [0, d]; for
any subsets U and Q of [d] such that |U ∩Q| = k, there is a (U,Q)-structure of Õ(n) space that
guarantees update and query time O(Tupd log

k n) and O(Tqry log
k n), respectively. When k = 0,

U and Q are disjoint and the claim directly follows from the theorem’s assumption. Next, we
will prove the claim for k = k0 + 1, assuming the claim’s correctness on k = k0 ≥ 0. Identify an
arbitrary i ∈ U ∩Q; i must exist because |U ∩Q| = k0 + 1 ≥ 1. By the inductive assumption, there
exist a (U \ {i}, Q)-structure and a (U,Q \ {i})-structure, both of which use Õ(n) space and ensure
update time O(Tupd log

k0 n) and query time O(Tqry log
k0 n). We now apply Lemma 4 to obtain a

(U,Q)-structure of Õ(n) space with update and query time O(Tupd log
k0+1 n) and O(Tqry log

k0+1 n)
time, respectively. This completes the proof.

The rest of the section serves as a proof of Lemma 4. Section 2.1 will describe our structure as
well as the update and query algorithms. Section 2.2 will present our analysis.

Basic Notations and Concepts. Let U and Q be the dimension sets in Lemma 4. Assume,
w.l.o.g., that the value i in the lemma is 1, i.e., 1 ∈ U ∩ Q. For convenience, we will refer to
dimension 1 as the “x-dimension”. Accordingly, given a point p ∈ Rd, its “x-coordinate” is p[1]. We
will represent an update as (rupd,∆), where rupd is a d-rectangle and ∆ is a weight inM; recall that
the update adds ∆ to the weight of every point p ∈ P ∩ rupd. We will use rupd[2 : d] to denote the
projection of rupd onto dimensions 2, 3, ..., d, namely, rupd[2 : d] is a (d− 1)-dimensional rectangle.

5

Given a set S of n real values, a binary search tree (BST) on S is a binary tree T such that (i)
T has height O(log n), (ii) T has n leaves each storing a different value in S as its key, (iii) every
internal node has two children, (iv) for each internal node, the elements of S in its left subtree are
strictly less than those in its right subtree, and (v) each internal node stores a key, which is the
smallest element of S in its right subtree. For each leaf/internal node u, denote its key as key(u).
The parent of a non-root node u is represented as parent(u) and the root of T as root(T).

We associate each node u of T with a slab σ(u) defined recursively as follows. If u = root(T),
then σ(u) := (−∞,∞). Otherwise, let v := parent(u). If u is the left child of v, σ(u) :=
σ(v) ∩ (−∞, key(v)); otherwise, σ(u) := σ(v) ∩ [key(v),∞). Slabs have several easy-to-verify
properties:

• If node v is an ancestor of node u, then σ(u) ⊆ σ(v).

• If u and v have no ancestor-descendant relationships, then σ(u) and σ(v) are disjoint.

• For each node u, σ(u) ∩ S is the set of elements stored in the subtree of u.

2.1 Structure and Algorithms

Denote by S the set of distinct x-coordinates of the points in P . Build a BST T on S. For each
node u of T , define

Pu := {p ∈ P | p[1] ∈ σ(u)}

namely, the set of points p ∈ P whose x-coordinates are in the slab σ(u) of u. We associate each u
with a (U \ {1}, Q)-structure and a (U,Q \ {1})-structure both constructed on Pu. Recall that the
two structures are already available by the assumption of Lemma 4. We will call each of them a
secondary structure on Pu. This completes the description of our (U,Q)-structure.

Each p ∈ P is in O(log n) secondary structures. For each secondary structure Υ, define

weight of p in Υ :=
∑

(rupd,∆)∈UΥ:p∈rupd

∆

where UΥ is the set of updates5 ever performed on Υ.

Canonical and Internal Path Nodes of an Interval. To pave the way for our discussion,
next we define what are the “canonical nodes” and the “internal path nodes” of an interval
I := [x1, x2], where both x1 and x2 belong to S. Let z1 and z2 be the leaves whose keys equal x1
and x2, respectively. Denote by π1 (resp., π2) the path from root(T) to z1 (resp., z2).

• We call u an internal path node of I if u is an internal node on π1 or π2.

• We call u a canonical node of I if

– u = z1 or z2, or

– parent(u) is in π1 ∪ π2, u itself is not in π1 ∪ π2, and σ(u) is covered by I.

Let CI be the set of canonical nodes of I. We must have |CI | = O(log n).

5More specifically, each update (rupd,∆) ∈ U should be treated as a pair with an id because two updates can have
the same (rupd,∆).

6

z2
z1

u∗

I

Figure 1: White dots are the internal path nodes of I and black dots are the canonical nodes of I.

As another way to understand CI , one can first identify the lowest node u∗ ∈ π1 ∩ π2 (this is the
node where π1 and π2 diverge). If u∗ is a leaf, it means π1 = π2 and u∗ is the only node in CI . Now
consider the case where u∗ is an internal node. Let us descend the path π′

1 from u∗ to z1. Every
time we descend into the left child of a node v ̸= u∗ on π′

1, we add to CI the right child of v (nothing
is added if we descend into the right child of v). Perform also a symmetric process for the path from
u∗ to z2. The CI at this moment contains all the canonical nodes. See Figure 1 for an illustration.

Update Algorithm. Consider a U -update (rupd,∆) on our (U,Q)-structure (remember the
structure only needs to support U -updates). W.l.o.g., assume that the x-range of rupd has the form
[x1, x2] where both x1 and x2 belong to S.6 We carry out the update using the following algorithm.

update (rupd,∆)
1. Iupd ← rupd[1] /* the x-range of rupd */
2. r′upd ← (−∞,∞)× rupd[2 : d] /* r′upd replaces the x-range with (−∞,∞) */

3. for each internal path node u of Iupd do
4. perform an update (rupd,∆) on the (U,Q \ {1})-structure of Pu

5. for each canonical node u of Iupd do
6. perform an update (r′upd,∆) on the (U \ {1}, Q)-structure of Pu

It is worth pointing out that r′upd is a U \ {1}-rectangle. Hence, the update (r′upd,∆) at Line 6 is
permitted on the (U \ {1}, Q)-structure of Pu. See Figure 2(a) for an illustration.

Proposition 1. Let Υ be a structure updated at Line 4 or 6 of update. Suppose that it is a
secondary structure of Pu. For each p ∈ Pu, its weight in Υ increases by ∆ if and only if p ∈ rupd.

Proof. This is obvious if Υ is a (U,Q \ {1})-structure of Pu (Line 4). Consider, instead, Υ as
a (U \ {1}, Q)-structure of Pu (Line 6). It follows that u is a canonical node of Iupd and hence
p[1] ∈ Iupd. By the assumption of Lemma 4, Υ increases the weight of p if and only if p ∈ r′upd. Our
claim holds because p ∈ r′upd if and only if p ∈ rupd.

Query Algorithm. Consider a Q-query with search rectangle rqry on our (U,Q)-structure.
W.l.o.g., we assume that the x-range of rqry has the form [x1, x2] where both x1 and x2 belong to S.
Our query algorithm is shown below.

6This assumption can be easily fulfilled by performing predecessor/successor search in O(logn) time.

7

z2
z1

u∗
update (U,Q \ {1})-str

update (U \ {1}, Q)-str

at

at

Iupd

z2
z1

u∗

Iqry

query (U,Q \ {1})-str

query (U \ {1}, Q)-str
at

at
query (U \ {1}, Q)-str

(a) Update (b) Query

Figure 2: Illustration of the update and query algorithms

query (rqry)
1. Iqry ← rqry[1]; r

′
qry ← (−∞,∞)× rqry[2 : d]

2. OUT← 0
3. for each internal path node u of Iqry do
4. OUT← OUT + output of the query rqry on the (U \ {1}, Q)-structure of Pu

5. for each canonical node u of Iqry do
6. OUT← OUT + output of the query r′qry on the (U \ {1}, Q)-structure of Pu

7. OUT← OUT + output of the query r′qry on the (U,Q \ {1})-structure of Pu

8. return OUT

The reader should note that r′qry is a Q \ {1}-rectangle and hence also a Q-rectangle. Therefore, the
queries at Lines 6 and 7 are permitted. See Figure 2(b) for an illustration.

Proposition 2. Let Υ be a structure searched at Line 4, 6, or 7 of query. Suppose that it is
a secondary structure of Pu. For each p ∈ Pu, its weight in Υ is added into OUT if and only if
p ∈ rqry.

Proof. This is obvious if Υ is a (U \ {1}, Q)-structure at Line 4. If Υ is a (U \ {1}, Q)-structure at
Line 6 or a (U,Q \ {1})-structure at Line 7, u must be a canonical node of Iqry and hence p[1] ∈ Iqry.
By the assumption of Lemma 4, when Υ is searched with r′qry, its output incorporates the weight of
p if and only if p ∈ r′qry. Our claim holds because p ∈ r′qry if and only if p ∈ rqry.

2.2 Analysis

Space and Time Complexities. The update time and query time are clearly O(Tupd log n) and
O(Tqry log n), respectively. The secondary structures of a node u in T occupy space O(|Pu| logc n).
As each point p ∈ P appears in the Pu of O(log n) nodes u, the total space of our (U,Q)-structure
is O(n logc+1 n).

Correctness. It remains to prove that all queries are answered correctly. Let us start with a
concept crucial for our argument: update atom. Formally, each update (rupd,∆) generates an atom
(rupd,∆, p) for every p ∈ P ∩ rupd. The atom describes the fact that the update should increase
w(p) by ∆. Conceptually, the effect of (rupd,∆) is achieved by “executing” all of its atoms.

Given a query with search rectangle rqry, we will show that the output OUT of algorithm query

is exactly
∑

p∈P∩rqry w(p). Define

8

• U as the set of updates that have ever been performed on our (U,Q)-structure;

• A as the collection of atoms generated by the updates in U .

Each atom (rupd,∆, p) ∈ A is said to be relevant if p ∈ rqry. For each p ∈ P , it holds that

w(p) =
∑

(rupd,∆,p)∈A

∆

which yields ∑
p∈P∩rqry

w(p) =
∑

p∈P∩rqry

(∑
(rupd,∆,p)∈A

∆
)
=

∑
relevant (rupd,∆,p)∈A

∆. (1)

Let Υ be a secondary structure searched at Line 4, 6, or 7 of query(rqry). Denote by u the node
that Υ is associated with. Define:

• UΥ as the set of updates (rupd,∆) ∈ U such that algorithm update(rupd,∆) modifies Υ at
either Line 4 or 6;

• AΥ as the collection of atoms (rupd,∆, p) generated by the updates in UΥ satisfying p ∈ Pu.

We will refer to AΥ as the atom set of Υ. By Proposition 1, it holds for each point p ∈ Pu:

weight of p in Υ :=
∑

(rupd,∆,p)∈AΥ

∆.

By Proposition 2, when searched in algorithm query(rqry), Υ returns:∑
p∈Pu∩rqry

weight of p in Υ =
∑

p∈P∩rqry

(∑
(rupd,∆,p)∈AΥ

∆
)
=

∑
relevant (rupd,∆,p)∈AΥ

∆.

It follows from the above discussion that

OUT =
∑

searched Υ

(∑
relevant (rupd,∆,p)∈AΥ

∆
)
. (2)

Our mission is to draw equivalence between (1) and (2). We achieve the purpose with the
following lemma.

Lemma 5. Every relevant atom (rupd,∆, p) ∈ A appears in the atom set AΥ of exactly one secondary
structure Υ searched by query(rqry).

Proof. Consider any relevant atom (rupd,∆, p) ∈ A. Let Iqry := rqry[1]. By definition of relevance,
p ∈ rqry. Among the canonical nodes of Iqry, there is exactly one node — denoted as uqry —
satisfying the condition that p[1] falls in the slab σ(uqry) of uqry. Similarly, let Iupd := rupd[1].
By definition of atom, p ∈ rupd. Among the canonical nodes of Iupd, there is exactly one node —
denoted as uupd — satisfying p[1] ∈ σ(uupd). Nodes uqry and uupd must have an ancestor-descendant
relationship.

Fix a secondary structure Υ searched by query(rqry) (at Line 4, 6, or 7). The next two facts
follow from how update(rupd,∆) and query(rqry) execute (as illustrated in Figure 2).

Fact 1. Suppose that Υ is the (U \ {1}, Q)-structure of node v. Then, (rupd,∆, p) appears in
AΥ if and only if

9

• v = uupd, and

• v is an ancestor of uqry (this includes the case v = uqry).

In particular, the second bullet holds because query(rqry) does not search the secondary structures
of any proper descendant of uqry.

Fact 2. Suppose that Υ is the (U,Q \ {1})-structure of v. Then, (rupd,∆, p) appears in AΥ if
and only if

• v = uqry, and

• v is an internal path node of Iupd.

We proceed by discussing two cases separately:

Case 1: uupd is a proper descendant of uqry. Atom (rupd,∆, p) cannot belong to the atom
set of any (U \ {1}, Q)-structure Υ searched by query(rqry). Otherwise, Υ must be associated
with uupd (first bullet of Fact 1), but then the second bullet of Fact 1 contradicts uupd being a
proper descendant of uqry. On the other hand, as a proper ancestor of uupd, uqry must be an
internal path node of Iupd. Fact 2 thus shows that (rupd,∆, p) exists in the atom set of only one
(U,Q \ {1})-structure searched by query(rqry): the one at node uqry.

Case 2: uupd is an ancestor of uqry. Atom (rupd,∆, p) cannot belong to the atom set of any
(U,Q \ {1})-structure Υ searched by query(rqry). To see why, suppose that such a Υ exists. By
Fact 2, Υ must be associated with node uqry, and uqry must be an internal path node of Iupd. This
is impossible because uupd (being a canonical node of Iupd) cannot have any descendant that is an
internal path node of Iupd. Finally, Fact 1 shows that (rupd,∆, p) appears in the atom set of only
one (U \ {1}, Q)-structure searched by query(rqry): the one at node uupd.

This completes the proof of Lemma 4.

3 U-Q Disjoint Structures

Equipped with Theorem 3, we can now concentrate on designing (U,Q)-structures with disjoint U
and Q. We will prove:

Lemma 6. Fix an integer k ≥ 1 and consider the RSRU problem under dimensionality d = k.
Suppose that, for any disjoint U,Q ⊆ [d], there is a (U,Q)-structure of Õ(n) space supporting an
update in Õ(Tupd) time and a query in Õ(Tqry) time for any functions Tupd(n) ≥ 1 and Tqry(n) ≥ 1
satisfying Tupd · Tqry = n. Then, the following holds for dimensionality d = k + 1: for any disjoint
U,Q ⊆ [d], we can build a (U,Q)-structure of Õ(n) space supporting an update in Õ(Tupd) and a
query in Õ(Tqry) time for any functions Tupd(n) ≥ 1 and Tqry(n) ≥ 1 satisfying Tupd · Tqry = n.

Before delving into the proof, let us see how the lemma leads to Theorem 1.

Proof of Theorem 1. At d = 1, it is easy to obtain a ([1], [1])-structure of O(n) space and
O(log n) = Õ(1) update and query time (see Section 1.1). The structure can serve as the basis
solution for k = 1 and any Tupd(n) ≥ 1, Tqry(n) ≥ 1 with Tupd ·Tqry = n. Lemma 6 then asserts that,
for any constant d and any disjoint U,Q ⊆ [d], we can build a (U,Q)-structure that uses Õ(n) space
and handles an update in Õ(Tupd) and a query in Õ(Tqry) time for any Tupd(n) ≥ 1, Tqry(n) ≥ 1
satisfying Tupd · Tqry = n. Combining this with Theorem 3 establishes Theorem 1.

10

The rest of the subsection serves as a proof of Lemma 6. Let us first eliminate the case of U = ∅.
In this scenario, the rectangle rupd of an update is fixed to Rd and hence all points in P have the
same weight. It suffices to maintain the w(p∗) of an arbitrary p∗ ∈ P . In addition, build a standard
range count structure on P such that uses Õ(n) space and, given a rectangle rqry, outputs |P ∩ rqry|
in Õ(1) time; the range tree [10] fulfills our purpose here. To answer a query with rectangle rqry, we
first obtain c := |P ∩ rqry| and then return c ·w(p∗). The query time is Õ(1), noticing that c ·w(p∗)
can be calculated in O(log c) time7.

Next, we assume U ̸= ∅ and, w.l.o.g., consider that (i) U contains the x-dimension (i.e., dimension
1), (ii) n := |P | is a power of two, and (iii) the points in P have distinct coordinates on each
dimension. Fix any Tupd(n) ≥ 1 and Tqry(n) ≥ 1 satisfying Tupd · Tqry = n.

Structure. We will describe a binary tree T of O(log Tqry) levels and O(Tqry) nodes. Each
node u in T is associated with a subset Pu ⊆ P and an interval σ(u) as its slab. If u = root(T),
Pu := P and σ(u) := (−∞,∞). In general, if |Pu| ≤ Tupd, u is a leaf of T . Otherwise, we split Pu

evenly into P1 and P2 at some value x such that P1 (resp., P2) includes all the points of Pu whose
x-coordinates are less (resp., greater) than x. The left and right children of u are associated with
P1 and P2, respectively, and have slab σ(u) ∩ (−∞, x) and σ(u) ∩ [x,∞), respectively. The total
number of nodes in T is O(n/Tupd) = O(Tqry).

Each internal node u in T is associated with a (U\{1}, Q)-structure Tu on Pu. Since (U\{1})∩Q =
∅ and |(U \ {1}) ∪Q| ≤ k, we already know how to construct such a structure (see the assumption
of Lemma 6). We parameterize Tu such that it supports an update on Pu in Õ(Tupd) time and
answers a query on Pu in Õ(|Pu|/Tupd) time; its space is Õ(|Pu|).

For each leaf z in T , create a d-dimensional range tree Tz on Pz (thus a ([d], [d])-structure). As
discussed in Section 1.1, Tz uses Õ(|Pz|) space, answers a [d]-query on Pz in Õ(1) time, and supports
a [d]-update on Pz in Õ(|Pz|) = Õ(Tupd) time.

Each p ∈ P appears in O(log Tqry) secondary structures Υ. For every such Υ, define

weight of p in Υ :=
∑

(rupd,∆)∈UΥ:p∈rupd

∆

where UΥ is the set of updates ever performed on Υ.

Non-path Canonical Nodes and Path Leaves of an Interval. We now adapt the concepts
“canonical” and “path nodes” from Section 2.1 to our context here. Consider an interval I := [x1, x2].
Let z1 and z2 be the leaves of T such that x1 ∈ σ(z1) and x2 ∈ σ(z2). Denote by π1 (resp., π2) the
path from root(T) to z1 (resp., z2).

• We call each of z1 and z2 a path leaf of I.

• We call u a non-path canonical node of I if parent(u) is in π1 ∪ π2, u itself is not in π1 ∪ π2,
and σ(u) is covered by I.

See Figure 3 for an illustration.

Update. Consider an update (rupd,∆). Define Iupd := rupd[1] and r′upd := (−∞,∞)× rupd[2 :
d]. At each non-path canonical node u of Iupd, perform an update (r′upd,∆) on Tu. At each path
leaf z of Iupd, perform an update (rupd,∆) on Tz.

7E.g., 15w = w + 2w + 4w + 8w, where 4w (resp. 8w) can be derived from 2w (resp. 4w) in constant time.

11

z2z1 I

Figure 3: White dots are the path leaves of I and black dots are the non-path canonical nodes.

Query. Given a query with rectangle rqry, we simply access every node u in T and issue a
query with the same rectangle rqry on the secondary structure Tu. Then, we return the sum of the
weights returned by those structures.

Analysis. It should have become straightforward that our structure uses Õ(n) space overall
and supports an update in Õ(Tupd) time. Next, we analyze the query time. As T has O(Tqry)
leaves and a query spends Õ(1) time on each leaf, the time spent on all the leaves is Õ(Tqry). Let
us now attend to the internal nodes. Consider the i-th level of T .8. There are O(2i) internal
nodes and |Pu| = O(n/2i) for every such node u. The time spent on all the level-i nodes is Õ(2i ·
(n/2i)/Tupd) = Õ(n/Tupd) = Õ(Tqry). As T has Õ(1) levels, the overall query cost is Õ(Tqry).

It remains to show the correctness of our (k + 1)-dimensional structure. For this purpose, let us
first observe:

Proposition 3. For any p ∈ P , w(p) =
∑

node u in T :p∈Pu
(weight of p in Tu).

Proof. The proposition obviously holds after the structure has just been constructed. Consider an
update (rupd,∆). Define Iupd := rupd[1]. Denote by z1, z2 the two path leaves of Iupd and by C the
set of non-path canonical nodes of Iupd. It is easy to verify:

• for any distinct nodes u, v in {z1, z2} ∪ C, Pu and Pv are disjoint;

•
⋃

u∈{z1,z2}∪C(Pu ∩ rupd) = P ∩ rupd.

For each point p ∈ P ∩rupd, there is a unique node u ∈ {z1, z2}∪C satisfying p ∈ Pu. Our update
procedure increases the weight of p in Tu by ∆ and does not change its weight in any other secondary
structure. On the other hand, if p /∈ rupd, the procedure will not change its weight in any secondary
structure. Therefore, if the proposition holds before the update, it still does afterwards.

Fix any query with rectangle rqry. For each node u in T , denote by OUTu the answer returned
by the structure Tu. The value OUTu equals

∑
p∈Pu∩rqry (weight of p in Tu). The final answer

returned is ∑
node u in T

∑
p∈Pu∩rqry

weight of p in Tu =
∑

p∈P∩rqry

(∑
node u in T :p∈Pu

weight of p in Tu
)

=
∑

p∈P∩rqry

w(p)

where the last equality used Proposition 3. With this, we have established the correctness of our
structure and thus conclude the proof of Lemma 6.

8The root is at level 0 and the level number increases by 1 each time we descend into a child.

12

4 Hardness of RSRU

This section will establish Theorem 2. Let us first review the γ-uMv problem from [12,13]:

Fix a constant γ > 0, and choose two integers n1 and n2 satisfying n1 = ⌊nγ
2⌋. In the

γ-uMv problem, an algorithm A is allowed to preprocess an n1 × n2 Boolean matrix M in
poly(n1, n2) time, after which A receives a 1×n1 Boolean vector u and an n2× 1 Boolean
vector v, and needs to compute uMv (additions and multiplications are defined according
to the Boolean semi-ring, where addition corresponds to the logical OR operation, and
multiplication represents the logical AND operation). The cost of A is the time it spends
on computing uMv.

The following result is due to Henzinger et al. [12, 13]:

Lemma 7 ([12,13]). Fix an arbitrary constant γ > 0. Subject to the OMv-Conjecture, no algorithm
can solve the γ-uMv problem with cost O(n1−δ

1 · n2 + n1 · n1−δ
2), no matter how small the constant

δ > 0 is.

Given an RSRU structure defying Theorem 2, we will show how to utilize it to develop an
algorithm to beat Lemma 7. We use M[i, j] to denote the entry of M at the i-th row and j-th
column, u[i] to denote the i-th component of u, and v[j] to denote the j-th component of v, where
i ∈ [n1] and j ∈ [n2].

Proof of the First Bullet of Theorem 2. Consider the RSRU problem under d = 2 and
monoid (R,+, 0) and let constants c ∈ [0, 1) and δ > 0 be chosen as in Theorem 2. Define U := {1}
and Q := {2}. We will prove that, subject to the OMv-conjecture, no (U,Q)-structure constructible
in poly(n) time can guarantee update time O(nc) and query time O(n1−c−δ). This will imply the
first bullet of the theorem.

Assume that such a structure Υ exists. Set γ := 1−c−δ/2
c+δ/2 . Next, we will describe an algorithm

for the γ-uMv problem. In preprocessing, we create a set P of 2D points as follows: P has a
point (i, j) if and only if M[i, j] = 1 for each i ∈ [n1] and j ∈ [n2]. Initialize w(p) := 0 for all
p ∈ P and then create a (U,Q)-structure Υ on P . The preprocessing time is poly(n1, n2) because
|P | ≤ n1 · n2. Given vectors u and v, we compute uMv by issuing at most n1 U -updates and at
most n2 Q-queries. For each i ∈ [n1], if u[i] = 1, we perform an update with rectangle (rupd, 1) with
rupd := [i, i]× (−∞,∞) on P , which effectively adds 1 to the weight of every point p ∈ P satisfying
p[1] = i. Then, for each j ∈ [n2], if v[j] = 1, we perform a query with rqry := (−∞,∞)× [j, j] on P ,
which effectively checks whether any point p ∈ P with p[2] = j has a positive w(p). The reader can
verify that uMv = 1 if and only if at least one of the queries returns a non-zero value.

To analyze the cost, set λ := n
1/(c+δ/2)
2 . As n1 = ⌊nγ

2⌋, we have n1 = Θ(λ1−c−δ/2) and
n2 = Θ(λc+δ/2). The number of points in P is O(n1 · n2) = O(λ); hence, Υ ensures update time
O(λc) and query time O(λ1−c−δ). As the algorithm performs at most n1 updates and at most n2

queries, the total cost is

O(n1 · λc + n2 · λ1−c−δ) = O(λ1−δ/2) = O((n1 · n2)
1−δ/2)

where the last step used λ = Θ(n1 · n2). This contradicts Lemma 7.

13

Proof of the Second Bullet of Theorem 2. As before, define U := {1} and Q := {2}. We
will prove that, subject to the OMv-conjecture, no (U,Q)-structure constructible in poly(n) time
can guarantee update time O(n1−c−δ) and query time O(nc). This will imply the second bullet of
the theorem.

Assume that such a structure exists. We deploy it to tackle γ-uMv in the same way as before where

γ := c+δ/2
1−c−δ/2 . To analyze the cost, set λ := n

1/(1−c−δ/2)
2 . As n1 = ⌊nγ

2⌋, we have n1 = Θ(λc+δ/2),

n2 = Θ(λ1−c−δ/2), and |P | = O(n1 · n2) = O(λ). The structure handles an update and query
in O(λ1−c−δ) and O(λc) time, respectively. Because at most n1 updates and at most n2 queries
are performed, our algorithm’s cost is O(n1 · λ1−c−δ + n2 · λc) = O(λ1−δ/2) = O((n1 · n2)

1−δ/2),
contradicting Lemma 7.

Remark. We can extend the above lower bound to any monoid (M,+, 0) as long as there is a
value e∗ ∈M satisfying

∑c
i=1 e

∗ ̸= 0 for any c ∈ [1, n]. The only modification is in the online phase:
for each i ∈ [n1] with u[i] = 1, add e∗ (rather than 1) to w(p) for all the points p ∈ P satisfying
p[1] = i. Then, we have uMv = 1 if and only if at least one of the at most n2 queries defined as
before returns a non-zero value.

5 Conclusions

Supporting range updates and range sum queries on multidimensional points is vital for a multitude
of applications in Geographic Information Systems (GIS) and database systems. This paper presents
an in-depth investigation of the balance between achievable update times and query times. We
specifically design a data structure with Õ(n) space (where n represents the number of points in the
input set) capable of handling updates in Õ(Tupd) time and queries in Õ(Tqry) time for arbitrary
functions Tupd(n) and Tqry(n) satisfying Tupd · Tqry = n. Additionally, we demonstrate that the
trade-off of Tupd · Tqry = n is tight up to a polylog(n) factor (subject to the OMv-conjecture),
regardless of the amount of space consumed by a data structure, as long as the structure can be
built in poly(n) time.

A promising direction for future work is to study how to minimize the polylog factors in
our update and query times. Throughout this study, we have not devoted considerable focus to
reducing these factors, with the exception of a specific scenario where the input points constitute
a multidimensional array. Further exploration in this area may lead to the development of more
efficient and optimized data structures, offering attractive performance in practical systems.

Appendix

A A Simpler Structure for the Array Variant of RSRU

Henceforth, we will focus on the array version of RSRU, defined in Section 1.1, where P is a
d-dimensional array [m]d for some integer m ≥ 1 (as a result, n = md). Our goal is to show:

Theorem 8. For the array variant of RSRU, there is a structure of O(n) space that supports
each query and update in O(logd+1 n) time. The query and update complexities can be improved to
O(logd n) if the underlying monoid is multiplicative.

14

Recall that a monoid (M,+, 0) is multiplicative if c · w := w + w + ...+ w︸ ︷︷ ︸
c

can be calculated in

constant time for any weight w ∈M and any integer c ≥ 1. The monoid (R,+, 0) studied in [16,22]
is multiplicative; hence, the theorem subsumes the results in [16, 22] (reviewed in Section 1.1).
For arbitrary commutative monoids, the extra O(log n) factor arises from the need to compute a
multiplication c · w in O(log c) time; the integer c never exceeds n in our algorithms. In [24], Yang
and Wan claimed a structure with query and update time O(logd n), but a careful look at their
definition reveals that their monoid is multiplicative; for non-multiplicative monoids, their query
and update time both slow down by an O(log n) factor. Hence, Theorem 8 recovers the result of [24]
as well. Our structures are drastically different from those in [16,22,24].

A.1 The Counterpart of Theorem 3

The characteristics of RSRU revealed by Theorem 3 extend to the array version as well:

Theorem 9. For the array variant of RSRU, suppose that, given any disjoint U ⊆ [d] and Q ⊆ [d],
there is a (U,Q)-structure of O(1) space that guarantees update time Tupd and query time Tqry.
Then, there is a ([d], [d])-structure of O(n) space that handles an update in O(Tupd · logd n) time
and a query in O(Tqry · logd n) time.

To prove the theorem, we need the lemma below that echoes Lemma 4.

Lemma 10. Consider any two overlapping subsets U and Q of [d]. Let i ∈ [d] be an arbitrary
dimension in U ∩Q. Suppose that we have a (U \ {i}, Q)-structure and a (U,Q \ {i})-structure both
of which use O(m|U∩Q|−1) space and support an update in O(Tupd) and a query in O(Tqry) time.
Then, there is a (U,Q)-structure of O(m|U∩Q|) space that handles an update in O(Tupd log n) time
and a query in O(Tqry log n) time.

Proof. Due to symmetry, we assume i = 1. Let S be the set of distinct x-coordinates of the points in
P . |S| = m because P is an array. We use the same reduction in the proof of Lemma 4 to obtain a
(U,Q)-structure. Recall that T is a BST on S and Pu := {p ∈ P | p[1] ∈ σ(u)} for every node u in T .
Associate each u with a (U \ {1}, Q)-structure and a (U,Q \ {1})-structure both constructed on Pu.
The update and query algorithms require no changes and finish in O(Tupd log n) and O(Tqry log n)
time, respectively. Since T has O(m) nodes and the space at each node is O(m|U∩Q|−1), the total
space is O(m|U∩Q|).

Equipped with the above lemma, we will now prove a general claim: fix any integer k ∈ [0, d];
for any subsets U and Q of [d] such that |U ∩Q| = k, there is a (U,Q)-structure of O(mk) space
that guarantees update and query time O(Tupd log

k n) and O(Tqry log
k n), respectively. Theorem 9

then follows because md = n.

When k = 0, U and Q are disjoint and the claim holds from the theorem’s assumption. Next, we
will prove the claim for k = k0 +1, assuming the claim’s correctness on k = k0 ≥ 0. Fix an arbitrary
i ∈ U ∩ Q. By the inductive assumption, there exist a (U \ {i}, Q)-structure and a (U,Q \ {i})-
structure, both of which use O(mk0) space and ensure update and query time O(Tupd log

k0 n) and
O(Tqry log

k0 n) time, respectively. We now apply Lemma 10 to obtain a (U,Q)-structure of O(mk0+1)
space with update and query time O(Tupd log

k0+1 n) and O(Tqry log
k0+1 n) time, respectively. This

completes the proof.

15

A.2 U-Q Disjoint Structures

Since P is a d-dimensional array [m]d, henceforth, we consider only d-rectangles of the form
[a1, b1] × ... × [ad, bd], where ai ∈ [m] and bi ∈ [m] for all i ∈ [d]. Accordingly, a U -rectangle is
redefined as a d-rectangle r satisfying r[i] = [1,m] for every i ∈ [d] \ U , and similarly, a Q-rectangle
r is a d-rectangle satisfying r[i] = [1,m] for every i ∈ [d] \Q.

We will show:

Lemma 11. Consider the array version of RSRU. For any disjoint U ⊆ [d] and Q ⊆ [d], there is a
(U,Q)-structure of O(1) space that supports an update and a query in O(log n) time. The update
and query time can be improved to O(1) if the underlying monoid (M,+, 0) is multiplicative.

Combining Theorem 9 with the above lemma establishes Theorem 8. The rest of the subsection
serves as a proof of Lemma 11.

Case 1: Q = ∅. In other words, the query rectangle rqry always covers the whole [m]d. It
suffices to maintain the total weight of all the points: s :=

∑
p∈P w(p). A query obviously can

be settled in O(1) time. Given an update (rupd,∆), we first calculate the number c of points
in P covered by rupd. As P is a multidimensional array, this can be done in O(1) time because
c =

∏
i∈[d] |rupd[i] ∩ [m]|.9 Then, we increase s by c ·∆, which takes O(log n) time, or O(1) time if

the monoid is multiplicative.

Case 2: Q ̸= ∅. W.l.o.g., we will assume Q = [ℓ] for some integer ℓ ∈ [1, d]; hence, U ⊆ [ℓ+1, d].
Given an ℓ-tuple t := (x1, x2, ..., xℓ) ∈ [m]ℓ, let P (t) := {t} × [m]d−ℓ, i.e., the set of points p ∈ P
satisfying p[i] = xi for all i ∈ [ℓ]. Define

w(t) :=
∑

p∈P (t)

w(p).

Proposition 4. For any ℓ-tuples t and t′, it always holds that w(t) = w(t′).

Proof. Consider any update (rupd,∆). As rupd is a U -rectangle, rupd[i] = [1,m] for each i ∈ [ℓ].
The number c of points in P (t) ∩ rupd is

∏
i∈[ℓ+1,d] |rupd[i] ∩ [m]|. Likewise, |P (t′) ∩ rupd| =∏

i∈[ℓ+1,d] |rupd[i]∩ [m]| = c. Hence, both w(t) and w(t′) will increase by c ·∆ after the update. The

claim follows because w(t) = w(t′) = 0 in the beginning (i.e., before the first update).

Our structure simply maintains the w(t∗) for an arbitrary ℓ-tuple t∗. Given a Q-query with
rectangle rqry, we first obtain in constant time the number c1 of ℓ-tuples t := (x1, ..., xℓ) satisfying
xi ∈ rqry[i] for every i ∈ [ℓ].10 By Proposition 4 and the fact rqry[i] = [1,m] for every i ∈ [ℓ+ 1, d]
(rqry is a Q-rectangle), the query answer is exactly c1 · w(t∗), which can be computed in O(log n)
time. Given an update (rupd,∆), we obtain in constant time the number c2 of points in P (t∗)
covered by the U -rectangle rupd,

11 and then increase w(t∗) by c2 ·∆ in O(log n) time. Both the
update and query time can be reduced to O(1) if the monoid is multiplicative.

This completes the proof of Lemma 11.

9If rupd[i] = [ai, bi], then |rupd[i] ∩ [m]| = bi − ai + 1.
10c1 =

∏
i∈[ℓ] |rqry[i] ∩ [m]|.

11c2 =
∏

i∈[ℓ+1,d] |rupd[i] ∩ [m]|.

16

References

[1] Amir Abboud and Søren Dahlgaard. Popular conjectures as a barrier for dynamic planar graph
algorithms. In Proceedings of Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 477–486, 2016.

[2] Jon Louis Bentley. Decomposable searching problems. Information Processing Letters (IPL),
8(5):244–251, 1979.

[3] Thiago Bergamaschi, Monika Henzinger, Maximilian Probst Gutenberg, Virginia Vassilevska
Williams, and Nicole Wein. New techniques and fine-grained hardness for dynamic near-additive
spanners. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1836–1855, 2021.

[4] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering conjunctive queries
under updates. In Proceedings of ACM Symposium on Principles of Database Systems (PODS),
pages 303–318, 2017.

[5] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering ucqs under updates
and in the presence of integrity constraints. In Proceedings of International Conference on
Database Theory (ICDT), pages 8:1–8:19, 2018.

[6] Christoph Berkholz and Maximilian Merz. Probabilistic databases under updates: Boolean
query evaluation and ranked enumeration. In Proceedings of ACM Symposium on Principles of
Database Systems (PODS), pages 402–415, 2021.

[7] Katrin Casel and Markus L. Schmid. Fine-grained complexity of regular path queries. In
Proceedings of International Conference on Database Theory (ICDT), pages 19:1–19:20, 2021.

[8] Raphaël Clifford, Allan Grønlund, Kasper Green Larsen, and Tatiana Starikovskaya. Upper
and lower bounds for dynamic data structures on strings. In Proceedings of Symposium on
Theoretical Aspects of Computer Science (STACS), pages 22:1–22:14, 2018.

[9] Soren Dahlgaard. On the hardness of partially dynamic graph problems and connections to
diameter. In Proceedings of International Colloquium on Automata, Languages and Programming
(ICALP), pages 48:1–48:14, 2016.

[10] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. Springer-Verlag, 3rd edition, 2008.

[11] Maximilian Probst Gutenberg, Virginia Vassilevska Williams, and Nicole Wein. New algorithms
and hardness for incremental single-source shortest paths in directed graphs. In Proceedings of
ACM Symposium on Theory of Computing (STOC), pages 153–166, 2020.

[12] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak.
Unifying and strengthening hardness for dynamic problems via the online matrix-vector
multiplication conjecture. In Proceedings of ACM Symposium on Theory of Computing (STOC),
pages 21–30, 2015.

[13] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak.
Unifying and strengthening hardness for dynamic problems via the online matrix-vector
multiplication conjecture. CoRR, abs/1511.06773, 2015.

17

[14] Monika Henzinger, Andrea Lincoln, Stefan Neumann, and Virginia Vassilevska Williams.
Conditional hardness for sensitivity problems. In Innovations in Theoretical Computer Science
(ITCS), pages 26:1–26:31, 2017.

[15] Monika Henzinger, Andrea Lincoln, and Barna Saha. The complexity of average-case dynamic
subgraph counting. Electronic Colloquium on Computational Complexity, page 157, 2021.

[16] Nabil Ibtehaz, M. Kaykobad, and M. Sohel Rahman. Multidimensional segment trees can do
range updates in poly-logarithmic time. Theoretical Computer Science, 854:30–43, 2021.

[17] Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Maintaining
triangle queries under updates. ACM Transactions on Database Systems (TODS), 45(3):11:1–
11:46, 2020.

[18] Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Trade-offs in static and dynamic
evaluation of hierarchical queries. In Proceedings of ACM Symposium on Principles of Database
Systems (PODS), pages 375–392, 2020.

[19] Joshua Lau and Angus Ritossa. Algorithms and hardness for multidimensional range updates
and queries. In Innovations in Theoretical Computer Science (ITCS), pages 35:1–35:20, 2021.

[20] Hung Le, Lazar Milenkovic, Shay Solomon, and Virginia Vassilevska Williams. Dynamic
matching algorithms under vertex updates. In Innovations in Theoretical Computer Science
(ITCS), pages 96:1–96:24, 2022.

[21] Shangqi Lu and Yufei Tao. Towards optimal dynamic indexes for approximate (and exact)
triangle counting. In Proceedings of International Conference on Database Theory (ICDT),
pages 6:1–6:23, 2021.

[22] Pushkar Mishra. On updating and querying sub-arrays of multidimensional arrays. CoRR,
abs/1311.6093, 2013.

[23] Yufei Tao and Ke Yi. Intersection joins under updates. Journal of Computer and System
Sciences (JCSS), 124:41–64, 2022.

[24] Jason Yang and Jun Wan. On updating and querying submatrices. CoRR, abs/2010.13180,
2020.

18

