
Building An Optimal Point-Location Structure

in O(sort(n)) I/Os

Xiaocheng Hu Cheng Sheng Yufei Tao

Chinese University of Hong Kong
Hong Kong

September 9, 2018

Abstract

We revisit the problem of constructing an external memory data structure on a planar
subdivision formed by n segments to answer point location queries optimally in O(logB n) I/Os.
The objective is to achieve the I/O cost of sort(n) = O(n

B logM/B
n
B), where B is the number of

words in a disk block, and M being the number of words in memory. The previous algorithms
are able to achieve this either in expectation or under the tall cache assumption of M ≥ B2. We
present the first algorithm that solves the problem deterministically for all values of M and B
satisfying M ≥ 2B.

Keywords: Point Location Queries, Bulkloading, External Memory, Computational Geometry

Corresponding Author’s Address
Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong
Shatin, New Territories, Hong Kong
Email: taoyf@cse.cuhk.edu.hk
Tel: +852-39438437

1 Introduction

In the point location problem, we want to preprocess a subdivision of R2 formed by n segments such
that, given a query point q, we can find efficiently the face of the subdivision containing q. See
Figure 1a for an example. This is one of the most fundamental problems in computer science, and
plays a vital role in numerous applications of spatial databases.

In the literature, nearly all the methods (e.g., [3, 5, 6, 7, 8, 11, 15, 21], to mention just a few)
solving this problem target the vertical ray shooting (VRS) problem defined as follows. The input is
a set S of n non-intersecting line segments in R2, namely, for any two segments s1, s2 ∈ S: (i) either
their intersection is empty, or (ii) the intersection is an endpoint of s1 or s2. Given a point q, a
VRS query finds the highest segment s ∈ S “below” q. Formally, if we shoot a ray downwards from
q, s is the first segment of S hit by the ray; see Figure 1b. We want to store S in a data structure
such that all such queries can be answered efficiently.

1.1 Computation Model

Our discussion will focus on the standard external memory (EM) model [4]. A machine is equipped
with M words of memory, and a disk that has been formatted into blocks of size B words. An I/O
operation either reads a disk block into the memory, or writes B words in memory to a disk block.
The cost of an algorithm is measured in the number of I/Os performed (CPU calculation is for free).
The space of a structure is the number of disk blocks occupied. The values of M and B satisfy
M ≥ µB, where µ ≥ 2 is a sufficiently large constant.1 Finally, define sort(n) = O(nB logM/B

n
B),

which is the I/O cost of sorting n elements [4].

1.2 The Quest for An Optimal Structure Constructible in O(sort(n)) I/Os

Adapting an internal-memory structure [23], Arge, Danner, and Teh [7] described a structure of
linear space O(n/B) that answers a VRS query in O(logB n) I/Os. The same structure can also be
used to solve the point location problem with the same space and query complexities (by tagging
each segment with the face above it). Both complexities are optimal2.

The grand challenge, however, is construction. Arge, Danner, and Teh [7] gave an algorithm to
build their structure using O(n logB n) I/Os. Reducing this cost to O(sort(n)) has been an intriguing
problem ever since, especially given the fundamental nature of the point location problem: a solution
will immediately improve the structures for several other problems. Somewhat surprisingly, this
problem still remains open in its most generic form, but several solutions have come very close to
its final settlement:

• Bender et al. [12] developed an algorithm in the cache-oblivious model that solves the problem
in O(sort(n)) I/Os, under the tall-cache assumption, namely, M ≥ B2.

1In the original model formuation in [4], M can be as small as 2B. However, any algorithm that works on M = µB
with constant µ > 2 can be adapted to work on M = 2B with only a constant blowup in space and I/O cost. For
this purpose, it suffices to treat each block as µ “micro-blocks”, each with B/µ words. Each “logical I/O” now reads
or writes a micro-block. A memory of 2B words can accommodate µB “micro-blocks”, plus B more words that can
be used to perform the “physical I/Os” (which are still done in B words each). Whenever a logical I/O is needed
on a micro-block, a physical I/O occurs on the block containing the micro-block. Hence, any algorithm with I/O
complexity O(sort(n)) under M = µB now incurs O(µn

B
log µM

B

µn
B

) = O(sort(n)) I/Os on M = 2B.
2An Ω(logB n) query lower bound can be established via a reduction from predecessor search [22].

1

q
q

q q
C

(a) Point Location (b) VRS (c) Segment intersection (d) NN search (e) Circular Counting

Figure 1: Indexing problems considered in this paper: in (a), the answer is the shaded region; in (b)
and (c), the answers are the bold segments; in (d), the answer is the circled cross; in (e), the answer
can be any number between 3(1− ε) and 3(1 + ε).

• Perhaps as a folklore, by resorting to ε-nets [19], one may obtain a randomized algorithm with
expected cost O(sort(n)), by combining random sampling with I/O-efficient algorithms for
computing the trapezoidal map and solving the red-blue segment intersection problem [9].

• More subtly, the problem can be settled in O(sort(n)) I/Os, provided that it is possible
to find a so-called M-partition on a planar graph (which is a balanced multiway separator;
see definition in [20]) of n edges with the same I/O complexity. Unfortunately, the known
algorithms [20, 24] for computing M -partitions all make the tall-cache assumption.

In summary, currently there does not exist a deterministic algorithm for building an optimal VRS
structure in O(sort(n)) I/Os for all values of M and B satisfying M ≥ 2B (thus eliminating the
tall-cache assumption). Note that, besides the obvious scientific merits, overcoming the tall-cache
constraint also benefits the data structures that depend on fast VRS construction—now those
structures fail to hold unconditionally in the EM model: they must all carry the unpleasant condition
“only if M ≥ B2”.

Meanwhile, O(sort(n))-cost deterministic construction (of an optimal VRS structure) are known
for special types of inputs. When all the segments in S are horizontal (i.e., parallel to the x-axis),
two algorithms—due to Goodrich et al. [18] and Achakeev and Seeger [1], respectively—are available
for this purpose. On the other hand, de Berg et al. [16] explained how to do so when the segments
in S (i) have “low-density”, or (ii) define a “fat” subdivision of R2 (see [16] for the meanings of the
quoted terms). Unfortunately, the techniques in [1, 16, 18] rely heavily on the special nature of S,
and are not powerful enough to deal with general S.3

1.3 Our Results

We present a deterministic algorithm to construct an optimal VRS (hence, optimal point-location)
structure in O(sort(n)) I/Os on general n non-intersecting segments for all values of M and B
allowed by the EM model, settling the open problem.

A crucial idea is to convert, using topological segment sorting [9], the input set S of segments
to a set SH of horizontal segments in a rank space. This appears quite natural in retrospect: we
already know from the literature how to efficiently create an optimal VRS structure on horizontal
segments. The main issue, however, is that a query point in the original space cannot be directly
compared to the segments in SH . We resolve the issue by creating light-weight secondary structures
that allow us to carry out the comparisons indirectly in the original space, and then, map the

3In particular, as pointed out in [12], the algorithm of [18] incurs O(n logB n) I/Os on a general S.

2

comparison results back to the rank space. Interestingly, we achieve the purpose by using the
expensive-to-construct structure of [7] directly as a black box.

The finding yields new semi-dynamic structures—which support insertions but not deletions—
with insertion cost O(1

B1−δ polylogB n), where δ < 1 can be an arbitrarily small positive constant.
The following is a short representative list of such problems that are of immediate interest to
database systems.

VRS (and Point Location). For this problem, we obtain a structure that uses O(n/B) space,
answers a query in O(log2B n) I/Os, and supports an insertion in O(1

B1−δ log2B n) I/Os amortized.

Currently, the best fully dynamic (i.e., supporting both insertions and deletions) structure
[6] uses O(n/B) space, ensures O(log2B n) query cost, and performs an update in O(logB n) I/Os
amortized, while no improvement is known for the semi-dynamic case.

Vertical Segment Intersection. In this problem, we want to store a set S of n non-intersecting
segments in R2 such that, given a vertical query segment q (i.e., parallel to the y-axis), we can
report all the segments in S intersecting q efficiently. See Figure 1c for an example, and [14] for a
detailed account of the problem’s database applications.

We obtain a semi-dynamic structure of O(n/B) space that answers a query in O(log2B n+ k/B)
I/Os (where k is the number of reported segments), and supports an insertion in O(1

B1−δ log2B n)
I/Os amortized.

Currently, the best semi-dynamic structure [14] uses O((n/B) logB) space, answers a query in
O(log2B n+ log(n/B) + IL∗(B) + k/B),4 supports an insertion in O(logB n+ logB+ 1

B log2B n) I/Os.

Nearest Neighbor (NN) Search. This is one of the most important problems in spatial databases.
We want to store a set P of n points in R2 so that, given a query point q, we can efficiently report
the point p ∈ P whose Euclidean distance to q is the smallest; see Figure 1d.

We obtain a semi-dynamic structure of O(n/B) space that answers a query in O(log2B n) I/Os,
and supports an update in O(1

B1−δ log2B n) I/Os amortized.

Currently, the best semi-dynamic structure obtained by combining [8, 18] uses O(n/B) space,
answers a query in O(log3B n) I/Os, and supports an update in O(1

B1−δ log2B n) I/Os amortized.

Approximate Circular Counting. In this problem, we want to store a set P of n points in R2

so that, given a circle C, we can efficiently report the size k = |P ∩C| up to an error of εk, where
ε < 1 is a fixed positive value; see Figure 1e. These queries’ relevance to spatial databases is evident;
e.g., in urban planning we would be interested in: “how many hospitals are there within 50km from
the town center?”.

We obtain a semi-dynamic structure that uses Oε((n/B) log n) space5, answers a query with
high probability in Oε(log2B n · log n) I/Os, and supports an insertion in Oε(

1
B1−δ log3B n) expected

I/Os amortized.

In spite of its importance, the problem does not seem to have been studied previously under the
EM model. Adapting the best semi-dynamic structure in RAM (combining [2, 13]), one can get a

4IL∗(B) is the number of times that we need to repeatedly apply log∗ operation on B before the value becomes
O(1).

5Oε hides a factor polynomial to 1/ε.

3

structure that uses Oε(n/B) space, but answers a query in Oε(log2 n) I/Os (base is 2), and supports
an update in Oε(log2 n) expected I/Os amortized6. Although our structure does not always improve
this result, it gives an alternative tradeoff which may be interesting in the realistic scenario where n
is no more than a polynomial of B.

2 Preliminaries

Conventions on the Input. Let S be the input set of n non-intersecting segments in R2. We
assume that S contains the segment (−∞,∞)×−∞, so that no vertical ray-shooting query can
return an empty answer. For simplicity, we assume that the endpoints of the segments in S are in
general position: no two endpoints share the same x-coordinate. This assumption can be eliminated
with standard tie-breaking methods (more specifically: breaking ties by y-coordinate). We further
assume that, each segment s ∈ S is “open” on its right endpoint, namely, the right endpoint does
not belong to s. For example, if s has endpoints (1, 2) and (3, 6), we regard s as the set of points
{(t, 2t) | 1 ≤ t < 3}. Given a query point q = (x, y), we ensure returning the correct answer (on the
original input) by moving q to the left by an infinitesimal distance δ, and returning the answer with
respect to the resulting point (x− δ, y).

B-Tree. Let S be a set of n real values. We define a B-tree T on S as follows. T is a tree
parameterized by a leaf capacity b and internal fanout f . Each leaf node z of T contains between b/c
and b elements of S (for some constant c ≥ 4), unless z is the root of T , in which case the number
of elements in z can be anywhere from 1 to b. Every element of S appears in one and only one leaf.

Consider an internal node u of T with g child nodes v1, v2, ..., vg. If u is the root, it must hold
that 2 ≤ g ≤ f ; otherwise, f/c ≤ g ≤ f . Denote by sub(u) the subtree rooted at u. Node u stores g
routers e1, e2, ..., eg satisfying:

• e1 is always a dummy placeholder M.

• Each ei for i ≥ 2 must be an element in S; we refer to e2, e3, ..., eg as non-dummy routers.

• For each i ∈ [2, g]: all the leaf elements in sub(vi−1) are strictly smaller than ei, while all the
leaf elements in sub(vi) are at least ei.

We require that every element e ∈ S can serve as a router at most once. In other words, e appears
in the entire T at least once but at most twice: once definitely in a leaf node, and perhaps another
time in an internal node. All leaves are at the same level 0. In general, the parent of a level-i node
is said to be at level i+ 1.

Persistent B-Tree. Let S be a set of n non-intersecting segments in R2. We will regard the x-axis
as the time dimension. Let s ∈ S be a segment with left and right endpoints (x1, y1) and (x2, y2),
respectively. We define L(s) = [x1, x2), and call it the lifespan of s. Given an x-coordinate (a.k.a., a
timestamp) t ∈ L(s), we define s(t) to be the y-coordinate of the intersection of s and the vertical line
x = t. We say that s is alive at any timestamp t ∈ L(s). Define S(t) = {s(t) | s ∈ S ∧ s alive at t},
that is, S(t) collects the y-coordinates of all the intersections of the segments in S with the vertical
line x = t.

6The structure solves a more general problem called approximate half-space counting in R3.

4

time

s1

s2

s3

s4

s5

s6

s7

1 2 3 4 5 6 7 8 9 10 11 12 13 14

z1 z2 z4

z3

z5

(△, [6, 11))

(s1, [1, 3))

(s2, [2, 5))

(s3, [4, 5))

(s4, [5, 6))

(s2, [5, 6))

(s3, [5, 6))

(s2, [6, 11))

(s6, [7, 11))

(s5, [6, 8))

(s4, [6, 11))

(s7, [9, 10))

(s3, [6, 11))

(s4, [11, 12))

(s6, [11, 14))

(s3, [11, 13))

(s5, [6, 8))

(s2, [8, 11))

z1 z2 z3 z4 z5

u

L(z1) = [1, 5) L(z2) = [5, 6) L(z3) = [6, 11) L(z4) = [6, 11) L(z5) = [11, 14)

L(u) = [6, 11)

(a) (b)

Figure 2: A persistent B-tree example. Figure (a) shows an input set S of 7 segments: s1, s2, ..., s7;
Figure (b) shows the corresponding persistent B-tree T . Each shaded area in Figure (a) shows
the region in R2 that a leaf node is “responsible for”. The bold elements and edges in Figure (b)
illustrate T (9) which is a B-tree on S(9) (see the box with solid edges in Figure (a)).

Also parameterized by a leaf capacity b and internal fanout f , a persistent B-tree T on S is a
directed acyclic graph with parallel edges allowed (i.e., there can be multiple edges between two
nodes). Figure 2 shows an example, which the reader may consult in reading the formal definitions
below. Every node u in T is associated with a time interval L(u) (in the form [t1, t2)), called the
lifespan of u. If u has no outgoing edges, it is a leaf node; otherwise, it is an internal node.

A leaf node u stores a set of leaf elements e of the form (seg(e), L(e)), where seg(e) is a segment
s ∈ S, and L(e) a time interval satisfying L(e) ⊆ L(s)∩L(u). Consider now an internal node u. For
each outgoing edge (u, v) of u in T , u stores an internal element e of the form (seg(e), L(e), ptr(e)),
where

• seg(e) can be either a segment s ∈ S or a dummy placeholder M.

• L(e) is a time interval satisfying L(e) ⊆ L(u)∩L(v). Furthermore, if seg(e) is a segment s ∈ S
(i.e., seg(e) is not dummy), it must additionally hold that L(e) ⊆ L(s).

• ptr(e) a pointer referencing v.

A leaf node has at most b elements, whereas an internal node has at most f elements (this implies
that an internal node has out-degree at most f). For each leaf/internal element e such that seg(e)
is a segment s ∈ S, define e(t) = s(t) for any t ∈ L(e). Similarly, if e is an internal element with
seg(e) = ∆, define e(t) = −∞ for any t ∈ L(e).

We say that a node u (or an element e therein) is alive at a timestamp t if t ∈ L(u) (or t ∈ L(e),
resp.). Likewise, we say that an edge (u, v) in T is alive at t if its corresponding internal element
(stored in u) is alive at t. Define T (t) to be the subgraph of T that consists of only the nodes and
edges alive at time t. It is required that T (t) must be a tree. In particular, it must be a B-tree
when we look at it in the following manner. First, from each node u ∈ T (t), ignore all the elements
not alive at t. Second, replace each leaf element (seg(e), L(e)) with value e(t), and treat an internal
element (seg(e), L(e), ptr(e)) as a router e(t). After this conversion, T (t) must be a B-tree on S(t)
with leaf parameter b and internal fanout f . We refer to T (t) as the snapshot B-tree of T .

5

If a node u is the root of T (t) for an arbitrary t ∈ L(u), then u must be the root of T (t) for all
t ∈ L(u)—this implies that u must have indegree 0; and hence, we call it a root of T . Note that
there can be multiple roots (recall that T is a dag). That T (t) must be a B-tree on S(t) for each t
implies that the roots must have disjoint lifespans (e.g., the persistent B-tree in Figure 2b has 4
roots: z1, z2, u, and z5). Finally, T is level consistent: for any node u in T , the level of u in the
snapshot B-tree T (t) is always the same for all t ∈ L(u). In other words, we can label the levels of
T still in the bottom up manner (even though T is a dag): leaves are at level 0; and if a node v is
at level i and an edge (u, v) exists, then node u is at level i+ 1.

Lemma 1 ([7]). We can build a persistent B-tree with leaf capacity b ≥ B and internal fanout
f ≥ B on n non-intersecting segments in R2 using O(n(bB + f

B logf
n
b)) I/Os. The tree consumes

O(n/B) space, and has O(n/b) leaf nodes and O(n/f) internal nodes. It supports a VRS query in
O(bB + f

B logf
n
b) I/Os.

Proof. The algorithm in [7], which incrementally processes the endpoints of the segments in S in
ascending order of x-coordinate, almost achieves the purpose (noticing that reading a leaf and an
internal node now takes O(b/B) and O(f/B) I/Os, respectively). The only difference lies in the
definition of a B-tree: while we require that every element in the input set must appear in one leaf
node, this may not be the case in [7]. The difference can be easily eliminated with straightforward
modification of the algorithm in [7].

β-Subdivision. Let SH be a set of n horizontal segments in R2 with distinct y-coordinates. In
other words, each segment in SH has the form [x1, x2)× y; and no two segments have an identical
value for y. Given a value β ∈ [B,

√
MB], we define a β-subdivision of SH as a set R of rectangles

satisfying the following properties:

• R has O(n/β) rectangles of the form r = [x1, x2)× [y1, y2); note that both x- and y-projections
of r are open on the right.

• The rectangles in R partition R2, i.e., they are mutually disjoint, and their union is R2.

• For each rectangle r ∈ R, we define SH(r) = {s∩ r | s ∈ SH ∧ s intersects r}; namely, for
each segment s ∈ SH intersecting r, SH(r) collects the portion of s within r. It must hold
that SH(r) has no more than β segments.

• For each rectangle r ∈ R, define L(r) as the projection of r onto the x-axis. We say that r is
alive at timestamp t if t ∈ L(r). Then:

– Either SH(r) has Ω(β) segments,

– or r is the only rectangle of R alive at timestamp t, for all t ∈ L(r).

See Figure 3 for an example with β = 3 on a segment set SH = {s′1, s′2, ..., s′7}, where each
shaded region is a rectangle in R.

Lemma 2. For any β ∈ [B,
√
MB], we can compute a β-subdivision of a set of n horizontal

segments in R2 using O(sort(n)) I/Os. Furthermore, in the same I/O complexity, we can obtain
SH(r) for each r ∈ R.

Proof. It is known (e.g., see [17]) that a β-subdivision R can be obtained from the set of leaf nodes
of a persistent B-tree on SH whose leaf capacity equals β. Each leaf node u defines a rectangle in

6

s′1

s′2

s′3

s′4

s′5

s′6

s′7

1 2 3 4 5 6 7 8 9 10 11 12 13 14

r1 r2 r3

r4

r5

Figure 3: An example of a 3-subdivision

R. Hence, any algorithm capable of building such a persistent B-tree on horizontal intervals can
be deployed to produce a β-subdivision. The algorithm in [1] (see also [18]) does so in O(sort(n))
I/Os.7

To prove the second sentence of the lemma, essentially we are facing the following problem: given
a set SH of n horizontal segments and a set R of O(n/β) rectangles, output all pairs (s, r) ∈ SH ×R
such that s intersects r. This problem can be solved in O(sort(n) + k/B) I/Os by distribution
sweep [18], where k is the number of reported pairs. The definition of β-subdivision ensures that
k = O(n).

3 The Proposed Algorithm

This section will present our solution to building an optimal VRS structure on a set S of n
non-intersecting segments in O(sort(n)) I/Os.

3.1 The Easy Case: Shallow Inputs

We say that S is shallow if |S(t)| ≤ M/c for all t ∈ R where c is a sufficiently large constant. In
other words, S contains at most M/c segments that are alive at any timestamp.

Lemma 3. Given a shallow S where the endpoints of the segments in S have been sorted by
x-coordinate, using O(n/B) I/Os, we can build a persistent B-tree T of leaf capacity and internal
fanout B on S.

Proof. It suffices to use the incremental-update algorithm of [7]. Let t be the timestamp of the
next endpoint to be inserted/deleted. Since S is shallow, the entire T (t) (i.e., the currently alive
snaptshot B-tree) fits in memory (the constant c accounts for the space overhead of T (t) besides
storing S(t)). Hence, we can perform the insertion/deletion in memory with no I/Os.

3.2 Resorting to Topological Segment Sorting

Topological segment sorting on S is a process that assigns each segment s ∈ S a rank, which is a
distinct integer in [1, n] denoted as rank(s). The ranks must be consistent with the relative ordering

7The algorithm of [1] is described with a default leaf capacity of B, but one can replace that with any β ∈ [B,
√
MB]

without affecting the algorithm’s correctness. In fact, since what we need here is only the leaf level, the algorithm of
[1] can be simplified considerably by ignoring all of its details on producing the non-leaf levels of a persistent B-tree.

7

of the segments’ intersections with any vertical line. Specifically, consider an arbitrary vertical line
` : x = t, and two segments s1, s2 ∈ S intersecting `. If s1 intersects ` at a point lower than that of
s2, then it must hold that rank(s1) < rank(s2). Topological segment sorting can be performed in
O(sort(n)) I/Os [9].

Let s be a segment in S with endpoints (x1, y1) and (x2, y2). We denote by H(s) the horizontal
segment s′ = [x1, x2)× rank(s). Conversely, we denote by H−1(s′) the original segment s. Define

SH = {H(s) | s ∈ S}.

For convenience, we refer to the R2 space containing the segments in S as the original space, while
the R2 containing the segments of SH as the rank space.

Set β =
√
MB. We use Lemma 2 to compute a β-subdivision R of SH in O(sort(n)) I/Os.

Consider an arbitrary rectangle r ∈ R. Let us focus on SH(r); as mentioned previously, for each
segment s′ ∈ SH intersecting r, SH(r) contains the portion of s′ in r. We obtain a set S(r) of
segments by converting the segments in SH(r) back to the original space: for every such s′, let
s = H−1(s′); and we add to S(r) the portion of s during the time interval L(r) (i.e., the x-projection
of r).

After obtaining the SH(r) of all r ∈ R in O(sort(n)) I/Os (Lemma 2), we can produce all the
S(r) easily in the same I/O complexity by pairing each segment s′ ∈ SH(r) with its corresponding
segment s ∈ S using their ids.

As an example, let the input S consist of the 7 segments in Figure 2a. The segments in Figure 3
constitute one possible set SH . Consider, for instance, rectangle r1 in Figure 3, where SH(r1)
contains the portions of s′1, s

′
2, s
′
3 inside r1. The corresponding S(r1) contains the portions of

s1, s2, s3 inside z1 in Figure 2a.

It follows from the definition of β-subdivision that |S(r)| = |SH(r)| ≤ β. We create a persistent
B-tree T (r) with leaf capacity B and branching parameter B on each S(r) (i.e., one separate tree
for each r). Since β < M , the entire S(r) can be loaded into memory, so that we can build T (r) in
memory using O(1 + |S(r)|/B) I/Os. As R (by definition) has O(n/β) rectangles in total, overall
we spend O(n/B) I/Os building all the T (r).

We will answer a VRS query with query point q using the T (r) of exactly one r ∈ R. More
specifically, we will do so by identifying the rectangle r ∈ R such that solving q on S(r) gives
precisely the same answer as solving q on S. In turn, this purpose is achieved by building a search
structure on top of the β-subdivision, as explained in the next subsections.

3.3 Persistent B-tree in the Rank Space

Recall that R—the β-subdivision computed in Section 3.2—is a set of rectangles. For each rectangle
r = [x1, x2)× [y1, y2), define the horizontal segment [x1, x2)× y1 as the bottom segment of r, and
denote it as bottom(r). Define E = {bottom(r) | r ∈ R}.

We use Lemma 1 to create a persistent B-tree T H with leaf capacity B and branching parameter
F =

√
MB on E (in the rank space). Since E has only O(n/β) segments, the cost of constructing

T H is

8

s′1

s′4

s′2

s′3

s′5

s′6

s′7

s′8

r

L(r)

s1

s4

s2

s3

s5

s6

s7

s8

L(r)
s1

s4

s2

s3

s5

s6

s7

s8

I

(a) (b) (c)

Figure 4: Lower envelope example. Figure (a) shows the segments in SH(r) of a rectangle r ∈ R,
while Figure (b) shows the segments in S(r). The bold segments in Figure (c) constitute envelope(r, I)
for the demonstrated interval I.

O

(
n

β

F

B
logF

n

β

)
= O

(
n

B
logMB

n√
MB

)
(by
√
MB > B) = O

(n
B

logMB

n

B

)
= O

(n
B

logM/B

n

B

)
.

At first glance, it may appear that T H is already ready for query processing. Given a VRS with
point q, shouldn’t we be able to use T H to identify highest edge η ∈ E below q? After that, can’t
we jump to the rectangle r such that η = bottom(r), and solve the query within r? With another
moment’s thought, one would realize what is wrong: q and E are in different spaces (i.e., original
and rank spaces, respectively)! In other words, q cannot be directly compared to the edges in E.

We nevertheless will pursue this seemingly unpromising direction. Our idea is to associate each
node u in T H with a secondary structure that will help us resolve the comparisons between q and
the elements in u. This is done by carrying out the comparisons in the original space, and then
“mapping” the results back to the rank space, where the query can proceed to an appropriate child
node of u in T H . In the next subsection, we will introduce a crucial notion that makes this strategy
work.

3.4 Lower Envelope

Fix a rectangle r in the β-subdivision R. Consider the set S(r) of segments (see Section 3.2 for
the definition of S(r)). Suppose that we are given a time interval I = [x1, x2) such that I ⊆ L(r)
(recall that L(r) is the x-projection of r). For every timestamp t ∈ I, define ymin(t) as the smallest
s(t) of all the segments s ∈ S(r) alive at time t. If we increase t from x1 infinitesimally close to x2,
the value of ymin(t) traces out a sequence of segments, which we refer to as the lower envelope of r
during I, and denote it as envelope(r, I). See Figure 4 for an example.

Lemma 4. Both the following are true:

• For any t ∈ I, the vertical line x = t intersects envelope(r, I) at only one point.

• |envelope(r, I)| ≤ 2β.

9

(seg(e2), L(e2))

L(z)

(seg(e4), L(e4))

(seg(e3), L(e3))

(seg(e1), L(e1))

envelop(r2, L(e2))

L(z)

envelop(r1, L(e1))

envelop(r3, L(e3))
envelop(r4, L(e4))

q1

q2

(a) (b)

Figure 5: Illustration of envelope(z). Figure (a) shows the leaf elements of a leaf node in T H , and
Figure (b) shows the segments in envelope(z).

Proof. The first bullet follows immediately from the definition of envelope(r, I). To prove the second,
note that S(r) has at most β segments, which have at most 2β distinct endpoints in total—let X
be the set of these endpoints’ x-coordinates. The second bullet thus follows from the fact that the
segments in envelope(r, I) have distinct x-coordinates, each of which must come from X.

3.5 Augmenting T H with Secondary Persistent Trees

We are now ready to explain the secondary structures for T H .

Leaf Node. Let z be a leaf node in T H . Suppose that it stores g elements e1, e2, ..., eg. Recall that
each element ei (1 ≤ i ≤ g) in z has the form (seg(ei), L(ei)), where seg(ei) here is a bottom segment
in E, which we denote as ηi. Also recall that ηi comes from a rectangle in R. Let r1, r2, ..., rg be
the rectangles in R such that ηi = bottom(ri) for each i ∈ [1, g].

Define

envelope(z) =

g⋃
i=1

envelope(ri, L(ei)).

See Figure 5 for an example.

The following is an important observation:

Lemma 5. envelope(z) is a shallow set of O(βB) segments. In O(sort(|envelope(z)|) + β) I/Os,
we can construct envelope(z) and have the endpoints of the segments therein sorted by x-coordinate.

Proof. T H has leaf capacity B. Hence, at any time t ∈ L(z), there are at most B alive elements in
z. Each of these elements produces exactly one alive segment in envelope(z). The size bound on
|envelope(z)| follows from Lemma 4.

Recall that we have already computed the S(r) of every r ∈ R. To obtain envelope(z), identify
the relevant g ≤ B rectangles r1, r2, ..., rg. For each ri, compute envelope(ri, L(ei)) by loading the
whole S(ri) in memory—recall that |S(ri)| ≤ β < M—in

O(1 + |S(ri)|/B) = O(1 + β/B)

10

I/Os. This results in total I/O cost O(β). Sorting the endpoints in envelope(z) adds another
O(sort(|envelope(z)|) I/Os.

We can then apply Lemma 3 to construct a persistent B-tree T(z) with leaf parameter B and
internal fanout B on envelope(z) using

O(1 + |envelope(z)|/B) = O(β)

I/Os.

For each leaf element e of T(z), let s = seg(e); note that s is a segment in envelope(z). Suppose
that s comes from envelope(ri, L(ei)) for some i ∈ [1, g], we record the index value i along with e.
This allows us to jump to ri in answering a VRS query. More specifically, suppose that, given a
query point q, we have already reached T(z), from which we find s to be the highest segment in
envelope(z) below q. The index value i permits us to locate the persistent B-tree T (ri) (built in
Section 3.2), where the query answer will be found. For instance, in Figure 5b, query point q1 will
lead to the access of T (r1), while q2 will lead to T (r3).

Internal Node. Consider an internal node u of T H . Suppose that u has g elements e1, e2, ..., eg.
Recall that ei (1 ≤ i ≤ g) has the form (seg(ei), L(ei), ptr(ei)). Further recall that seg(ei) is

• either a dummy placeholder M,

• or a bottom segment ηi in E (recall that E is the set of bottom segments of the rectangles in
R); let ri be the rectangle in R such that ηi = bottom(ri).

For each i ∈ [1, g], let vi be the child node of u referenced by ptr(ei).

Define envelope(u) as the union of the following for all i ∈ [1, g]:

• a dummy segment L(ei)×−∞, if seg(ei) is dummy;

• envelope(ri, L(ei)), otherwise.

The following lemma gives a property on u analogous to Lemma 5:

Lemma 6. envelope(u) is a shallow set of O(βF) segments. In O(sort(|envelope(u)|)+Fβ/B) I/Os,
we can construct envelope(u) and have the endpoints of the segments therein sorted by x-coordinate.

Proof. Similar to the previous proof, except that u can have up to F elements.

We apply Lemma 3 to construct a persistent B-tree T(u) with leaf parameter B and internal
fanout B on envelope(u) using

O(1 + |envelope(u)|/B) = O(βF/B)

I/Os.

For each leaf element e of T(u), let s = seg(e). We associate with e a pointer determined based
on s:

• If s comes from envelope(ri, L(ei)) for some i ∈ [1, g]. Store ptr(ei) with e.

• Otherwise, s comes from the dummy segment L(ei)×−∞ for some i ∈ [1, g]. Store ptr(ei)
with e.

11

These pointers allow us to jump to the appropriate child node vi of u using 1 I/O in answering a
VRS query, once s is identified.

Space. We have completed the description of our construction algorithm. Let us now analyze the
space consumption of the final structure. It suffices to focus on the secondary structures of T H
because the rest parts of the structure obviously occupy O(n/B) space. The persistent B-tree on a
leaf node of T H consumes O(β) space, while that of an internal node consumes O(βF/B) space.
Recall that T H is built on E, which has O(n/β) segments. By Lemma 1, T H has O(n/(βB)) leaf
nodes and O(n/(βF)) internal nodes. Hence, overall all the secondary structures use O(n/B) space.

Bounding the Construction Cost. From Lemmas 5, 6 and the numbers of leaf/internal nodes
in T H , we know that the total construction cost is bounded by

O

(
n

βB
β +

n

βF

βF

B
+

∑
each level i of T H

∑
level-i nodes u

sort(|envelope(u)|)

)

= O

(
n/B +

∑
each level i of T H

∑
level-i nodes u

sort(|envelope(u)|)

)
. (1)

Lemma 7. ∑
leaf nodes z of T H

|envelope(z)| = O(n) (2)

∑
internal nodes u of T H

|envelope(u)| = O(n). (3)

Proof. For each rectangle r in the β-subdivision R, define envelope∗(r) = envelope(r, L(r)); recall
that L(r) is the x-projection of r. Clearly, envelope∗(r) has at most β segments. Since |R| = O(n/β),
we know that

∑
r∈R |envelope

∗(r)| = O(n).

Fix a rectangle r ∈ R. Denote by η the bottom segment of r. Let e1, e2, ..., eλ(r) be all the

elements at the leaf level of T H satisfying seg(ei) = η (1 ≤ i ≤ λ(r)), where λ(r) is the number of
such elements. Note that these elements must have disjoint lifespans. This implies that the segments
in envelope∗(r) can contribute at most |envelope∗(r)|+ λ(r) to the summation in (2). Therefore,∑

leaf nodes z

|envelope(z)| ≤
∑
r ∈ R

(|envelope∗(r)|+ λ(r))

= O(n)

where the last equality used the fact that the total number of leaf elements in T H is O(n/β).

To prove (3), redefine λ(r) to be the number of elements ei (1 ≤ i ≤ λ(r)) from all the internal
levels of T H satisfying seg(ei) = η. Again, these elements must have disjoint lifespans because the
same element can serve as a router only once in any snapshot B-tree (see our B-tree definition in
Section 2). Then, (3) follows from the same argument for (2), noticing that the total number of
elements at all internal nodes of T H is O(n/β).

We thus conclude from (1) that the overall construction cost of T H and its secondary structures
is O(sort(n)).

12

3.6 Query

It remains to clarify how to use our structure (as built in Sections 3.2-3.5) to answer a VRS query
in O(logB n) I/Os. Let q = (x, y) be the query point. As mentioned earlier, we will search T H to
identify a rectangle r in the β-subdivision, and then, solve the query using the persistent B-tree
T (r) on r.

First, identify the root of the snapshot B-tree T H(x) responsible for timestamp x. This can be
done in O(logB n) I/Os by a B-tree on the lifespans of the roots of T H . In general, suppose that we
are currently in an internal node u of T H(x). Our mission is to descend to the correct child of u,
among those alive at x. To do so, we perform a VRS query using q on the secondary persistent tree
T(u). Suppose that this query retrieves a segment s; let e be the leaf element of T(u) whose seg(e)
gives this answer s. We then descend to the child node (of u) that is recorded along with e.

The processing at a leaf node z of T H(x) is similar. We perform a VRS query using q on T(z).
Suppose that the search ends up at a leaf element e of T(z). We then jump to the rectangle r ∈ R
that is associated with e. Finally, in r, we perform another VRS query using q on T (r), and return
directly this answer.

To analyze the cost, notice that the VRS query at each level of T H(x) costs O(logB(βF)) =
O(logB(MB)) I/Os. On the other hand, T H(x) has O(logF (n/β)) = O(logMB n) levels. Therefore,
the queries at all levels demand O(logB(MB) · logMB n) = O(logB n) I/Os. Finally, the query on
T (r) requires another O(logB β) = O(logBM) I/Os. We have now established our main theorem:

Theorem 1. We can build an O(n/B)-size structure on n non-intersecting segments in R2 using
O(sort(n)) I/Os, such that a VRS query can be answered in O(logB n) I/Os.

4 Applications

Next, we explain several new results that are made possible by Theorem 1.

For decomposable problems [13]8, the external logarithmic method of [8] can be used to make a
static structure constructable in O(nB logα n) I/Os semi-dynamic. The resulting structure handles
an insertion in O(1

B1−δ logα+1
B n) I/Os amortized for any positive constant δ < 1.9 The space

consumption remains the same (as the static structure), but the query time deteriorates by a factor
of O(logB n). By applying the method to Theorem 1, we obtain a semi-dynamic structure of O(n/B)
space that answers a VRS query in O(log2B n) I/Os, and supports an insertion in O(1

B1−δ log2B n)
I/Os amortized.

Vertical Segment Intersection. Let S be a set of n non-intersecting segments. Our structure in
Theorem 1 can be readily deployed to answer a vertical segment intersection query in O(logB n+k/B)
I/Os, where k is the number of reported segments. Nevertheless, next we describe an alternative
solution demanding one more persistent B-tree but permitting a much simpler query algorithm.

Consider a query segment connecting points p1 = (x, y1) and p2 = (x, y2) with y1 ≤ y2. By
issuing two VRS queries, we can find the segment s1 immediately above p1, and the segment s2

8Suppose that we have a problem Π on an input set S. Π is decomposable if we can partition S into S1, S2, ..., Sγ
such that, once we have the answer on each Si (1 ≤ i ≤ γ), we can obtain the answer of S using O(γ) additional I/Os.

9A weaker insertion cost of O(logα+1
B n) was claimed in [8]. However, it should be folklore that the cost can

be easily improved to as we stated here (for readers familiar with the technique: by creating a structure on
B,B1+δ/2, B1+δ, B1+3δ/2, ... elements, respectively).

13

immediately below p2. Then, we convert the original vertical segment intersection query into the
rank space (obtained by topological segment sorting; see Section 3.2). Specifically, let r1 and r2
be the ranks of s1 and s2, respectively; let q′ be the vertical segment connecting (x, r1) and (x, r2).
Then, we retrieve all the segments s ∈ S such that H(s) intersects q′. This can be done easily in
O(logB n+k/B) I/Os using an additional persistent B-tree on SH . Applying the external logarithmic
method gives a semi-dynamic structure of O(n/B) space that answers a query in O(log2B n+ k/B)
I/Os, and supports an insertion in O(1

B1−δ log2B n) I/Os amortized.

Nearest Neighbor Search. By building a point-location structure on the voronoi diagram (VD)
of n points in R2, one can answer a NN query in O(logB n) I/Os. The structure uses O(n/B)
space, and can be built in O(sort(n)) I/Os by leveraging Theorem 1 and an algorithm in [18] for
computing a VD I/O-efficiently. Applying the external logarithmic method (notice that NN search
is decomposable) gives a semi-dynamic structure of O(n/B) space that answers a NN query in
O(log2B n) I/Os, and supports an insertion in O(1

B1−δ log2B n) I/Os amortized.

Approximate Circular Counting. Let P be a set of n points in R2; given a circle C, a circular
emptiness query reports whether P ∩C is empty, i.e., a boolean answer is returned. Such a query
is essentially NN search in disguise. Specifically, let q be the center of C. We can first retrieve
the NN, say point p, of q in P, and then, compare the distance between p and q to the radius of
C. Therefore, we have a structure of O(n/B) space that answers a circular emptiness query in
O(logB n) I/Os, and can be constructed in O(sort(n)) I/Os.

Aronov and Har-Peled [10] showed a general reduction from approximate range counting to
range emptiness. Applying their technique to the above structure for circular emptiness gives a
structure of O((n/B) log n) space that answers an approximate circular counting query with high
probability in O(logB n · log n) I/Os, and can be constructed in O(sort(n) · log n) I/Os. Combining
this with the external logarithmic method yields a structure of O((n/B) log n) space that answers a
query with high probability in O(log2B n · log n) I/Os, and supports an insertion in O(1

B1−δ log3B n)
I/Os amortized.

References

[1] Daniar Achakeev and Bernhard Seeger. Efficient bulk updates on multiversion B-trees. Pro-
ceedings of the VLDB Endowment (PVLDB), 6(14):1834–1845, 2013.

[2] Peyman Afshani and Timothy M. Chan. On approximate range counting and depth. Discrete
& Computational Geometry, 42(1):3–21, 2009.

[3] Pankaj K. Agarwal, Lars Arge, Gerth Stølting Brodal, and Jeffrey Scott Vitter. I/O-efficient
dynamic point location in monotone planar subdivisions. In Proceedings of the Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 11–20, 1999.

[4] Alok Aggarwal and Jeffrey Scott Vitter. The input/output complexity of sorting and related
problems. Communications of the ACM (CACM), 31(9):1116–1127, 1988.

[5] Lars Arge, Gerth Stølting Brodal, and Loukas Georgiadis. Improved dynamic planar point
location. In Proceedings of Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 305–314, 2006.

[6] Lars Arge, Gerth Stølting Brodal, and S. Srinivasa Rao. External memory planar point location
with logarithmic updates. Algorithmica, 63(1-2):457–475, 2012.

14

[7] Lars Arge, Andrew Danner, and Sha-Mayn Teh. I/O-efficient point location using persistent
B-trees. ACM Journal of Experimental Algorithmics, 8, 2003.

[8] Lars Arge and Jan Vahrenhold. I/O-efficient dynamic planar point location. Computational
Geometry, 29(2):147–162, 2004.

[9] Lars Arge, Darren Erik Vengroff, and Jeffrey Scott Vitter. External-memory algorithms for
processing line segments in geographic information systems. Algorithmica, 47(1):1–25, 2007.

[10] Boris Aronov and Sariel Har-Peled. On approximating the depth and related problems. SIAM
Journal of Computing, 38(3):899–921, 2008.

[11] Hanna Baumgarten, Hermann Jung, and Kurt Mehlhorn. Dynamic point location in general
subdivisions. J. Algorithms, 17(3):342–380, 1994.

[12] Michael A. Bender, Richard Cole, and Rajeev Raman. Exponential structures for efficient cache-
oblivious algorithms. In International Colloquium on Automata, Languages and Programming
(ICALP), pages 195–207, 2002.

[13] Jon Louis Bentley and James B. Saxe. Decomposable searching problems I: Static-to-dynamic
transformation. Journal of Algorithms, 1(4):301–358, 1980.

[14] Elisa Bertino, Barbara Catania, and Boris Shidlovsky. Towards optimal indexing for segment
databases. In Proceedings of Extending Database Technology (EDBT), pages 39–53, 1998.

[15] Siu-Wing Cheng and Ravi Janardan. New results on dynamic planar point location. SIAM
Journal of Computing, 21(5):972–999, 1992.

[16] Mark de Berg, Herman J. Haverkort, Shripad Thite, and Laura Toma. I/O-efficient map overlay
and point location in low-density subdivisions. In International Symposium on Algorithms and
Computation (ISAAC), pages 500–511, 2007.

[17] Jochen Van den Bercken, Bernhard Seeger, and Peter Widmayer. A generic approach to bulk
loading multidimensional index structures. In Proceedings of Very Large Data Bases (VLDB),
pages 406–415, 1997.

[18] Michael T. Goodrich, Jyh-Jong Tsay, Darren Erik Vengroff, and Jeffrey Scott Vitter. External-
memory computational geometry. In Proceedings of Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 714–723, 1993.

[19] David Haussler and Emo Welzl. Epsilon-nets and simplex range queries. Discrete & Computa-
tional Geometry, 2:127–151, 1987.

[20] Anil Maheshwari and Norbert Zeh. I/O-efficient planar separators. SIAM Journal of Computing,
38(3):767–801, 2008.

[21] Mark H. Overmars. Range searching in a set of line segments. In Proceedings of Symposium on
Computational Geometry (SoCG), pages 177–185, 1985.

[22] Mihai Patrascu and Mikkel Thorup. Time-space trade-offs for predecessor search. In Proceedings
of ACM Symposium on Theory of Computing (STOC), pages 232–240, 2006.

[23] Neil Sarnak and Robert Endre Tarjan. Planar point location using persistent search trees.
Communications of the ACM (CACM), 29(7):669–679, 1986.

15

[24] Freek van Walderveen, Norbert Zeh, and Lars Arge. Multiway simple cycle separators and
i/o-efficient algorithms for planar graphs. In Proceedings of the Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 901–918, 2013.

16

