
Semi-Group Range Sum Revisited:

Query-Space Lower Bound Tightened

Xiaocheng Hu† Yufei Tao† Yi Yang‡ Shuigeng Zhou‡

†Chinese University of Hong Kong ‡Fudan University

{xchu,taoyf}@cse.cuhk.edu.hk {yyang1,sgzhou}@fudan.edu.cn

Abstract

Let D be a set of n elements e1, ..., en drawn from a commutative semigroup. Given two
integers x, y satisfying 1 ≤ x ≤ y ≤ n, a range sum query returns the sum of the y − x + 1
elements ex, ex+1, ... , ey. The goal of indexing is to store D in a data structure so that all such
queries can be answered efficiently in the worst case.

This paper proves a new lower bound in the semigroup model on the tradeoff between space
and query time for the above problem. We show that, if the query time needs to be at most an
integer t, a structure must use







Ω




n log

⌊(t−2)/2⌋ stars

︷︸︸︷
∗...∗ n




 for t ≥ 4

Ω(n log logn) for t = 3
Ω(n logn) for t = 2

space. The bound is asymptotically tight for every t ≥ 2, and is matched by an existing
structure. Previously, the best lower bounds either had a substantially smaller non-linear factor
[Yao, 1982], or were tight only for constant t [Alon and Schieber, 1987].

Our lower bound is asymptotically tight bidirectionally, namely, it also answers the following
question: if the space needs to be bounded by an integer m, what is the best query time
achievable? The techniques behind our lower bound are drastically different from those of [Yao,
1982] and [Alon and Schieber, 1987], and reveal new insight on the characteristics of the problem.

Keywords: Range Sum Queries, Semi-Group, Lower Bound, Length Decomposition Property

Corresponding Author

Yufei Tao
taoyf@cse.cuhk.edu.hk
Tel: +852-39438437
Fax: +852-26035024

1 Introduction

Let D be a set of n elements e1, ..., en drawn from a commutative semigroup (G,⊕). Given two
integers x, y satisfying 1 ≤ x ≤ y ≤ n, a range sum query, denoted as [x, y], returns the sum

ex ⊕ ex+1 ⊕ ...⊕ ey.

The goal of indexing is to store D in a data structure so that all such queries can be answered
efficiently in the worst case. This is a fundamental problem in computer science with a huge variety
of applications, and has received considerable attention (see Section 1.1 for a list of representative
works in theoretical computer science).

We study the problem in the standard semigroup model [5]. In this model, a partial sum is a
pair (D, s), where D is a subset of the input set D, and s = ⊕e∈D e is the sum of those elements
in D. A data structure T of space m and query time t is defined to be a set of m partial sums
satisfying the following condition: for any range sum query [x, y], T has no more than t partial
sums (D1, s1), ..., (Dt, st) such that:

• D1, ...,Dt are disjoint

• the union of D1, ...,Dt is exactly {ex, ..., ey}.

The above two properties allow the structure to answer the query by returning s1 ⊕ s2 ⊕ ...⊕ sk.

In this paper, we aim to understand the tradeoff between space m and query time t. Specifically,
we want to derive:

1. Space lower bound Space(t): the minimum amount of space required to guarantee query time
t.

2. Query lower bound Query(m): the minimum achievable query time by using m space.

Note that a lower bound of either type implies a lower bound of the other type. For example, the
space lower bound Space(t) immediately implies that Query(m) is at least the smallest t satisfying
Space(t) ≤ m.

A Math Convention. Denote by N the set of natural numbers. Given a function f : N → N,
we define f (0)(x) = x, and f (i+1)(x) = f(f (i)(x)) for integer i ≥ 0. Also, define f∗(x) to be the

smallest h such that f (h)(x) ≤ 256. Finally, for each integer k ≥ 1, define f

k+1 stars
︷︸︸︷
∗...∗ (x) = g∗(x)

where g(x) = f

k stars
︷︸︸︷
∗...∗ (x).

1.1 Previous Results

To answer query [x, x] (1 ≤ x ≤ n), there is no other way but to use the partial sum ({ex}, ex).
Hence, trivially, any structure must store at least n partial sums, regardless of query time. On the
other hand, to ensure query time t = 1, a structure must store the results of all the

(n
2

)
possible

queries directly, necessitating
(n
2

)
space.

The query-space tradeoff for t ≥ 2 is much more elusive. In a classic paper [11], Yao proved a
query lower bound Query(m), and showed the asymptotic tightness of his bound by describing a
structure that uses m space (for any m ≥ n), and ensures O(Query(m)) query time.

1

What is interesting is the flip side of the coin. To achieve query time t, the aforementioned
structure of Yao’s demands space







O




n log

⌊(t−2)/2⌋ stars
︷︸︸︷
∗...∗ n




 for t ≥ 4

O(n log log n) for t = 3
O(n log n) for t = 2

(1)

On the other hand, Yao’s query lower bound implies the following space lower bound for t ≥ 2:

Space(t) =







Ω



n log

t−2 stars
︷︸︸︷
∗...∗ n



 for t ≥ 3

Ω(n log log n) for t = 2

Note that there is a (large) gap in the above space lower and upper bounds. Later, Alon and
Schieber [1] tightened the lower bound for constant t:

Space(t) =







Ω




n log

⌊(t−2)/2⌋ stars
︷︸︸︷
∗...∗ n




 for constant t ≥ 4

Ω(n log log n) for t = 3
Ω(n log n) for t = 2

Till now, a tight space bound for non-constant t has remained open, in spite of the fact that no
structure better than Yao’s has ever been proposed.

Range sum queries can be naturally extended to higher dimensions, where the dataset consists
of n points in d-dimensional space (for some fixed d ≥ 2); and each point is associated with a weight

from a commutative semigroup. Given an axis-parallel rectangle, a query returns the sum of the
weights of the points falling in the rectangle. Using a range tree with fanout logǫ n for some small
constant ǫ > 0, it is easy to achieve n logO(1) n space and O((log n/ log log n)d−1) query time. This
already matches a lower bound proven by Chazelle [4].

The range sum problem has also been studied in the dynamic settings. A range tree can be
used in this scenario to ensure O((log n)d) time per insertion, deletion, and query. From the lower
bound side, Fredman [5] showed that, for any structure that supports deletions, the maximum of
its insertion, deletion, and query times must be Ω((log n)d). In the semi-dynamic case where only
insertions and queries are allowed, Chazelle [4] proved that the maximum of the insertion and query
times must be Ω((log n/ log log n)d). Hampapuram and Fredman [6] improved the lower bound to
Ω(log n) for the special case d = 1, which is tight.

The problem becomes harder when the query range is a d-dimensional half-space or a sim-
plex, where a structure with linear or near linear space typically has query time polynomial in n.
See [3, 9] for upper bounds and [2] for lower bounds. Recent studies have also touched upon other
computation models, e.g., the group model in [7, 10] and the cell-probe model in [8, 10].

2

1.2 Our Results

The main result of this paper (Theorem 1) is a new space lower bound (for the range-sum problem)
for all t ≥ 2:

Space(t) =







Ω




n log

⌊(t−2)/2⌋ stars
︷︸︸︷
∗...∗ n




 for t ≥ 4

Ω(n log log n) for t = 3
Ω(n log n) for t = 2

(2)

This improves both of the existing space lower bounds [1, 11], and matches the space upper bound
as shown in (1).

Furthermore, we prove (Theorem 3) that our space lower bound in (2) also implies the query
lower bound (up to a constant factor) established in [11], as long as 2n space is provided. In other
words, our space-query tradeoff is the first one that is tight bidirectionally. As a consequence, now
the range sum problem has been fully understood in the semi-group model—both the space and
query lower bounds match the guarantees of the structure in [11].

Main Technical Novelty. Our techniques are drastically different from both Yao’s [11] and Alon
and Schieber’s [1]. In fact, our derivation reveals a somewhat surprising property—which we call
the length decomposition property—inherent in the problem’s characteristics:

The Length Decomposition Property. For a partial sum (D, s), let i (or j) be the
smallest (or largest, resp.) integer k such that ek ∈ D; we refer to j − i+ 1 as the length

of the partial sum. We show that, for any t ∈ [2, n], it is always possible to divide the
length range [1, n] into a set I of







Θ




log

⌊(t−2)/2⌋ stars
︷︸︸︷
∗...∗ n




 for t ≥ 4

Θ(log log n) for t = 3
Θ(log n) for t = 2

disjoint intervals such that a structure must store, for each interval I ∈ I, Ω(n) partial
sums whose lengths are in I.

The space lower bound in (2) is an immediate corollary of this property. We believe that the
property captures the essence of the range sum problem, and is the key reason why our space-query
tradeoff is tighter than the previous ones [1, 11].

3

2 Preliminaries

2.1 A Variant of Ackermann Function and Its Inverse

Let us first define a variant of the Ackermann function. For each integer t ≥ 2, define function
At : N → N as

At(x) =







0 if x = 0

256 if x = 1

16x+1 if t = 2 and x ≥ 2

44
x

if t = 3 and x ≥ 2

At−2(At(x− 1)) otherwise

(3)

It is fundamental to show that, for t ≥ 2 and x ≥ 0:

• At(x) ≤ At+1(x);

• At(x) < At(x+ 1);

• If x ≥ 1, then At(x) > x.

Since At(x) is strictly ascending with x, we can define its inverse function. For each integer t ≥ 2,
define function αt : N → N as

αt(x) = min{h ∈ N | At(h) ≥ x}.

The following facts are also fundamental for t ≥ 2:

• For any x ∈ N, αt(x) ≤ αt(x+ 1);

• If x > 0, then αt(x) > 0;

• If x ≥ 256, then αt(x) < x.

• αt(x) has the following (more intuitive) form:

αt(x) =







Θ




log

⌊(t−2)/2⌋ stars
︷︸︸︷
∗...∗ x




 for t ≥ 4

Θ(log log x) for t = 3
Θ(log x) for t = 2

Also, there is an important connection between functions αt+2(x) and α∗
t (x):

Lemma 1. For each t ≥ 2 and x > 0, α∗
t (x) + 1 ≤ αt+2(x) ≤ α∗

t (x) + 2.

Proof. See appendix.

4

2.2 Interval Covers

We say that a set S of intervals covers an interval [x, y], if the union of the intervals in S is exactly
[x, y]. For example, S = {[5, 8], [6, 11], [10, 12]} covers [5, 12].

Set n be an integer at least 1. Let I be a set of integer intervals in the domain from 1 to n.
I is an (n, t)-cover if, for every interval [x, y] where x, y are integers satisfying 1 ≤ x ≤ y ≤ n,
there exists a subset I(x, y) of I such that (i) I(x, y) covers [x, y], and (ii) |I(x, y)| ≤ t. If multiple
subsets exist, then I(x, y) can be designated to be any of them. We refer to |I| as the space of I.

If there is a range sum structure T on n elements with space m and query time t, then there
must exist an (n, t)-cover of space at most m. To see this, simply construct a set I of intervals from
T as follows. For every partial sum (D, s) ∈ T , suppose that i (or j) is the smallest (or largest,
resp.) integer k such that element ek ∈ D; we add the interval [i, j] to I. It is not hard to see that
I is an (n, t)-cover with space at most m.

3 A New Space Lower Bound for Range Sum

This section serves as a proof for our first main result:

Theorem 1. For any range sum structure on n elements with space m and query time t, where
n ≥ 1 and t ≥ 2, it holds that m ≥ n · αt(n)/256.

1

We will instead establish a lower bound on interval covers. Denote by St(n) the minimum space
of an (n, t)-cover for t ≥ 2 and n ≥ 1. We will prove the following lemma, which implies Theorem 1
by the discussion in Section 2.2:

Lemma 2. For t ≥ 2 and n ≥ 1, St(n) ≥
1

256n · αt(n).

Clearly, the only way to cover the query interval [x, x] (1 ≤ x ≤ n) is to use a singleton set
{[x, x]}. Hence, any (n, t)-cover must contain all the n singleton sets, regardless of t. Therefore,
St(n) ≥ n always holds, making Lemma 2 trivially true when αt(n) ≤ 256. Assuming αt(n) > 256,
we will first prove the lemma for the base cases t = 2 and 3 in Sections 3.1 and 3.2, respectively.
Then, we will prove the general case t ≥ 4 in Section 3.3.

It is worth pointing out that, for constant t, Alon and Schieber [1] have given a lower bound on
St(n) that is different from ours in Lemma 2 by up to a constant factor (which depends on t). Our
proof, however, aims to establish the length decomposition property stated in Section 1.2, for which
purpose we must resort to more sophisticated ideas (the argument in [1] fails to prove the property).
As we will see in Section 3.3, the property is imperative for proving Theorem 1 at arbitrary (in
particular, non-constant) t. Therefore, Sections 3.1 and 3.2 offer the additional benefit of allowing
the reader to “warm-up” with simpler cases of t = 2, 3 in her/his journey towards understanding
the property for any t. Indeed, the property follows from Lemma 3 (for t = 2), Lemma 4 (for
t = 3), and Lemma 6 (for t ≥ 4).

Terminology. Let us introduce some concepts to facility the presentation. We refer to each integer
in [1, n] as a position. Given an integer interval [i, j], we define its length to be j − i+ 1, and call
i (or j) its starting (or ending, resp.) position. Recall that, for every interval [x, y] satisfying
1 ≤ x ≤ y ≤ n, an (n, t)-cover I must designate a subset I(x, y) that covers [x, y]. We refer to
[x, y] as a query, and say that the query consumes the intervals in I(x, y).

1The constant factor 256 is chosen to simplify the proof. Shrinking its value is possible but out of the scope of

this paper.

5

3.1 Base Case t = 2

Let us first prove a crucial lemma:

Lemma 3. Let I be an (n, 2)-cover where α2(n) > 256, and l an integer in [1, n/4]. Then, I
contains at least n/8 intervals whose lengths are in the range [l, 2l − 1].

Proof. We say that an interval [i, j] ∈ I is a target interval if its length is in [l, 2l − 1]; otherwise,
[i, j] is a non-target interval. A non-target interval [i, j] ∈ I is said to be long if its length is at least
2l, or short otherwise. For each position p ∈ [1, n], if there is a target interval starting or ending at
p, we say that p is a marked position; otherwise, p is an unmarked position.

Let [x, y] be a query of length 2l−1. |I(x, y)| ≤ 2 because t = 2. On the one hand, I(x, y) does
not contain any long interval, because such an interval is already longer than [x, y]. On the other
hand, I(x, y) cannot contain only short intervals, because the total length of two short intervals is
at most 2l− 2. It follows that I(x, y) contains at least one target interval. Since |I(x, y)| ≤ 2, this
target interval either starts at x or ends at y. Therefore, either x or y must be a marked position.

The total number of queries of length 2l − 1 is n − (2l − 1) + 1 ≥ n/2. Since (i) every such
query starts/ends at a marked position but (ii) each marked position can be an endpoint of at most
two such queries, there are at least n/4 marked positions. As each target interval marks only 2
positions, I contains at least n/8 target intervals.

To complete the proof of Lemma 2 for t = 2, notice that when α2(n) > 256, α2(n) = ⌈log16 n⌉−1.
Set h = ⌊log2 n⌋ − 1, which is at least α2(n)/32. For each i ∈ [0, h − 1], define li = 2i, which falls
in [1, n/4]. By Lemma 3, any (n, 2)-cover I must contain at least n/8 intervals whose lengths are
in the range [li, 2li − 1], for each i ∈ [0, h − 1]. Since these ranges are disjoint, I must contain at
least nh/8 ≥ n · α2(n)/256 intervals.

3.2 Base Case t = 3

The next lemma is the counterpart of Lemma 3, but requires a more sophisticated argument.

Lemma 4. Let I be an (n, 3)-cover where α3(n) > 256, and l an odd integer in [3, n1/4]. Then,

there are at least n/32 intervals in I whose lengths are in the range [l, l2 − 1].

Proof. Set r = (l− 1)/2 ≥ 1. For each i ∈ [1, r], let Ii be the set of the intervals in I whose lengths
are in the range [(2i − 1)l, (2i + 1)l − 1]. Also, let I0 be the set of intervals in I strictly shorter
than length l. Denote by m1, ...,mr the sizes of I1, ...,Ir, respectively. Since I1, ...,Ir are disjoint,
it suffices to show that

∑r
i=1 mi ≥ n/32.

We first show a lower bound on m1. Let Q1 be the set of all the queries with length 3l − 1.
Clearly, |Q1| = n − (3l − 1) + 1 ≥ n/2. Each query [x, y] ∈ Q1 must be covered by a set I(x, y)
of at most 3 intervals in I0 ∪ I1, since all the other intervals are longer than the query. Since the
query has length 3l − 1, at least one interval in I(x, y) must have length at least l, meaning that
[x, y] consumes at least one interval in I1. However, as each query in Q1 has length 3l− 1 and each
interval in I1 has length at least l, an interval in I1 can be consumed by at most (3l−1)− l+1 = 2l
queries of Q1. Therefore,

m1 ≥
|Q1|

2l
≥

n

4l
. (4)

For each i ∈ [2, r], let Qi be the set of all the queries with length (2i + 1)l − 1. It holds that
|Qi| ≥ n/2. Each query [x, y] ∈ Qi must be covered by a set I(x, y) of at most 3 interval in

6

I0 ∪ ... ∪ Ii. Let Q′
i be the subset of the queries in Qi that do not consume any intervals from Ii,

namely:
Q′

i = {[x, y] ∈ Qi | I(x, y) ∩ Ii = ∅}.

An argument similar to the earlier one on Q1 shows that, every query in Qi \ Q′
i consumes an

interval in Ii, and every interval in Ii can be consumed by at most 2l queries in Qi \Q
′
i. Hence,

mi ≥
|Qi| − |Q′

i|

2l
≥

n/2− |Q′
i|

2l
. (5)

Next, we give an upper bound on |Q′
i|, which will lead to a lower bound for mi. For each integer

p ∈ [1, n], define p as a marked position if an interval in I1∪ ...∪Ii−1 starts or ends at p; otherwise,
p is an unmarked position.

We claim that, for each query [x, y] ∈ Q′
i, either x or y must be marked. Suppose that this is

not true. Consider the (at most 3) intervals in I(x, y). One of them must start at x, and must be
from I0 (by the fact that x is unmarked). Similarly, I(x, y) also has an interval in I0 that ends
at y. However, the total length of these two intervals is at most 2l − 2. To cover [x, y], which has
length (2i + 1)l − 1, the length of the remaining interval in I(x, y) must be at least (2i − 1)l + 1.
So I(x, y) must contain an interval in Ii, which is a contradiction.

The number of marked positions is at most 2|I1 ∪ ... ∪ Ii−1| = 2
∑i−1

j=1mj. As each marked
position can be an endpoint of at most two queries in Q′

i, it follows that

|Q′
i| ≤ 4

i−1∑

j=1

mj. (6)

By combining (4), (5) and (6), we have:

r∑

i=1

mi ≥
r∑

i=1

n/2− 4(
∑i−1

j=1mj)

2l
≥

nr

4l
−

2r

l

r∑

i=1

mi

⇒ (1 + 2r/l)
r∑

i=1

mi ≥
nr

4l

⇒
r∑

i=1

mi ≥
nr

4l(1 + 2r/l)
.

By plugging in r = 1
2(l − 1) ∈ [l/4, l/2], we have that

∑r
i=1 mi ≥

nl/4
4l(1+2(l/2)/l) ≥ n/32.

To complete the proof of Lemma 2 for t = 3. When α3(n) > 256, α3(n) = ⌈log4 log4 n⌉. Define
integer h = ⌊log2 log3 n⌋ − 1, which is at least α3(n)/8. For each i ∈ [0, h− 1], let li = 32

i
, which is

an odd integer in the range [3, n1/4]. By Lemma 4, any (n, 3)-cover contains at least n/32 intervals
whose lengths are in [li, l

2
i − 1]. Since these ranges are disjoint, it follows that any (n, 3)-cover

contains at least nh/32 ≥ n · α3(n)/256 intervals.

3.3 General Case t ≥ 4

We will now prove the correctness of Lemma 2 for t ≥ 4 by induction. Suppose that the lemma
holds for some t ≥ 2, namely, for every n > 0, St(n) ≥

1
256n · αt(n). Our objective is to prove:

∀n > 0, St+2(n) ≥
1

256
n · αt+2(n). (7)

7

Our proof uses the same strategy as deployed in the proofs of Lemmas 3 and 4. We will break
[1, n] into h = Ω(αt+2(n)) disjoint intervals, and argue that, for each interval I, any (n, t+2)-cover
must contain Ω(n) intervals whose lengths are in I. The following technical lemma is crucial in our
construction:

Lemma 5. For any integers t ≥ 2 and l ≥ 256, 6l ·At(64l) < At(At(l)).

Proof. See appendix.

We will focus on αt+2(n) > 256 because otherwise (7) is trivially true. Set h = ⌊(α∗
t (n)−16)/2⌋,

which is at least 100 by Lemma 1. For each i ∈ [0, h], define integer li = A
(2i)
t (256). In our setup,

it holds that l0 = 256, and lh ≤ n/2. Thus, by Lemma 5, we have for each i ∈ [0, h − 1]:

6li ·At(64li) < At(At(li)) = li+1.

Hence, we can produce h disjoint ranges: [li, 6li ·At(64li)] for each i ∈ [0, h− 1]. We will prove the
following lemma in the next subsection:

Lemma 6. Let t, n, l, λ be integers such that t ≥ 2, αt+2(n) > 256, l ≥ 256 and λ = 6l · At(64l) <
n/2. Then, any (n, t + 2)-cover must contain at least n/64 intervals whose lengths are in range

[l, λ].

By the above lemma, any (n, t+2) cover contains at least n/64 intervals in each of the h ranges
produced. Hence, St+2(n) ≥ 1

64nh. Then (7) follows from the fact that when αt+2(n) > 256,
αt+2(n) ≤ α∗

t (n) + 2 ≤ 4h.

3.4 Proof of Lemma 6

We will first prove the following fact:

Lemma 7. Let t, l and λ be integers such that t ≥ 2, l ≥ 256 and λ = 6l · At(64l). Then, any

(λ, t+ 2)-cover must contain at least λ/32 intervals of lengths at least l.

Proof. Let I be a (λ, t+ 2)-cover. We call an interval in I a target interval if its length is at least
l, or a dwarf otherwise. Cut the range [1, λ] into r = λ/3l disjoint intervals—called segments—of
length 3l, namely, the first segment is [1, 3l], the next one is [3l+1, 6l], and so on (note that λ is a
multiple of 3l). Each segment is further divided into 3 parts:

• Left buffer, which consists of the first l positions in the segment;

• Right buffer, which consists of the last l positions in the segment;

• Pivot region, which consists of the remaining l positions in the middle.

A position p ∈ [1, λ] is marked if there exists a target interval in I that starts or ends at p;
otherwise, p is unmarked. We say that a segment is saturated if all the l positions in its pivot
region are marked; otherwise, the segment is unsaturated. We separate two cases depending on the
number of saturated segments.

In the easy case where there are at least 3r/16 saturated segments, since each saturated segment
contains at least l marked positions, there are at least 3rl/16 marked positions in total. Each target
interval can mark only 2 positions, and hence, there are at least 3

32rl =
1
32λ target intervals.

8

Now consider the hard case where less than 3r/16 segments are saturated. Let n′ be the number
of unsaturated segments, which is at least 13r/16 > λ/4l. We will handle this case by inducing
from I an (n′, t)-cover I ′, on which our induction hypothesis can be applied. Formally, name all
the unsaturated segments from left to right as σ1, ..., σn′ . Starting with an empty I ′, we inspect
each interval [i, j] ∈ I as follows:

• if [i, j] intersects at least one unsaturated interval, add [i′, j′] to I ′ (if it is not already there),
where i′ (or j′) is such that σi′ (or σj′ , resp.) is the leftmost (or rightmost, resp.) unsaturated
segment intersecting [i, j]. In this case, we say that [i′, j′] is spawned by [i, j].

• otherwise, do nothing for [i, j].

We will prove in Lemma 8 later that I ′ must be an (n′, t)-cover.

By our inductive hypothesis, |I ′| ≥ St(n
′) ≥ 1

256n
′ ·αt(n

′). As a dwarf interval in I can intersect
at most two segments, the interval in I ′ spawned by a dwarf has length either 1 or 2. Therefore, at
most 2n′ intervals in I ′ are spawned by dwarf intervals; all the remaining ones must be spawned
by target intervals. Hence, the number of target intervals in I is at least

|I ′| − 2n′ ≥
1

256
n′ · (αt(n

′)− 512)

≥
1

256
·
λ

4l
·

(

αt

(⌊
λ

4l

⌋)

− 512

)

≥
λ

1024l
· (αt(At(64l)) − 512)

=
λ

1024l
· (64l − 512)

≥
1

32
λ.

Lemma 8. The I ′ constructed in the proof of Lemma 7 is an (n′, t)-cover.

Proof. Apparently, I ′ contains all the singleton intervals [1, 1], ..., [n′, n′] (every singleton interval in
I spawns a singleton interval in I ′). It remains to show that every query [x′, y′] (1 ≤ x′ < y′ ≤ n′) is
covered by at most t invertals in I ′. Since σx′ is an unsaturated segment, there exists an unmarked
position x in the pivot region of σx′ . Similarly, there exists an unmarked position y in the pivot
region of σy′ . Since I is an (n, t + 2)-cover, [x, y] can be covered by a set I(x, y) of no more than
t + 2 intervals in I. Note that every interval in I(x, y) has spawned at most one interval in I ′.
Denote by I ′(x′, y′) the set of those (at most t + 2) spawned intervals. It is clear that I ′(x′, y′)
covers [x′, y′].

It suffices to show that, there are two redundant intervals in I ′(x′, y′), such that even if they
are removed, the remaining (at most t) intervals still cover [x′, y′]. There must be an interval [x, z]
(for some z) in I(x, y) that starts at x. Since x is an unmarked position, [x, z] must be a dwarf
(whose length is less than l). As x is in the pivot region of σx′ , position z + 1 must be also in σx′ ;
otherwise, [x, z] should span the right buffer of σx′ and have length at least l, which is impossible
for a dwarf. Thus, there must be another interval in I(x, y) that starts inside σx′ , and contains
position z + 1. Now consider their spawned intervals in I ′(x′, y′). Both spawned intervals must
start at x′; and furthermore, the one created from [x, z] must be [x′, x′]. So [x′, x′] is redundant
for covering [x′, y′]. With a similar argument, we can find another redundant interval [y′, y′] in
I ′(x′, y′) (recall that x′ < y′), which completes the proof.

9

Completing the Proof of Lemma 6. Let I be an (n, t + 2)-cover. Cut the range [1, n] into
g = ⌊nλ⌋ disjoint chunks of length λ, namely, the first chunk is [1, λ], the next chunk is [λ+ 1, 2λ],
and so on2. For each chunk, let I ′ be the set of intervals in I that are completely inside the chunk.
Clearly, I ′ has to be a (λ, t+2)-cover. By Lemma 7, I ′ contains at least 1

32λ intervals whose lengths
are in [l, λ]. Therefore, the number of intervals in I whose lengths are in [l, λ] is at least

g ·
1

32
λ ≥

n

2λ
·
1

32
λ =

1

64
n.

4 Implying Yao’s Query Lower Bound from Theorem 1

As explained in Section 1, a space lower bound implies a query lower bound, and vice versa. In [11],
Yao presented a tight query lower bound which, however, implies a loose space lower bound. In this
section, we will show that our space lower bound (Theorem 1) actually implies Yao’s query lower
bound. This means that our space-query tradeoff is tight bidirectionally, as claimed in Section 1.2.

Let us first introduce Yao’s query lower bound in [11]. His variant of Ackermann function is
A : N× N → N where:

A(x, y) =







2y if x = 0

0 if y = 0

2 if y = 1

A(x− 1,A(x, y − 1)) otherwise

.

There is a relationship between his variant and ours as defined in (3):

Lemma 9. For any integers t ≥ 2 and x ≥ 8, A(4t, x) ≥ At(64x).

Proof. See appendix.

Let Z+ be the set of positive integers. The inverse of A is a : Z+ × Z
+ → Z

+ where

a(m,n) = min{h ∈ Z
+ | A(h, 4⌈m/n⌉) > log2 n}.

Yao proved the following query lower bound:

Theorem 2 ([11]). For any range sum structure on n elements with space m, where n > 0 and

m ≥ n, it holds that Query(m) = Ω(a(m,n) + n/(m− n+ 1)).

Note that the term n/(m−n+1) is effective only if m is very close to n. For m ≥ 2n, the lower
bound becomes Query(m) = Ω(a(m,n)).

Theorem 3. Theorem 1 implies Theorem 2 when m ≥ 2n.

Proof. By Theorem 1, the query time t satisfies that

αt(n) ≤ 256m/n ≤ 256⌈m/n⌉.

By definition, At(αt(n)) ≥ n. Hence,

At(256⌈m/n⌉) ≥ n.

Since m ≥ 2n, 4⌈m/n⌉ ≥ 8. By Lemma 9, A(4t, 4⌈m/n⌉) ≥ n > log2 n. By the definition of
a(m,n), we have that a(m,n) ≤ 4t, which completes the proof.

2The last n− gλ positions are not in any chunk if n does not divide λ.

10

5 Conclusions

Range sum queries are one of the most fundamental and important type of queries in computer
science. There has been considerable research aiming to understand the tradeoff between the space
consumption and the query cost of a data structure. Previously, there was a gap between the upper
and lower bounds in the space consumption when the objective query cost is non-constant (which
is fairly realistic in practice). In this paper, we close the gap by deriving the complete tradeoff. In
particular, our lower bounds are asymptotically tight bidirectionally, namely, it gives both (i) the
lowest space cost against any target query time, and (ii) the lowest query cost against any target
space budget.

References

[1] Noga Alon and Baruch Schieber. Optimal preprocessing for answering on-line product queries.
Technical Report TR 71/87, Tel-Aviv University, 1987.

[2] Sunil Arya, David M. Mount, and Jian Xia. Tight lower bounds for halfspace range searching.
Discrete & Computational Geometry, 47(4):711–730, 2012.

[3] Timothy M. Chan. Optimal partition trees. In SoCG, pages 1–10, 2010.

[4] Bernard Chazelle. Lower bounds for orthogonal range searching II. the arithmetic model.
JACM, 37(3):439–463, 1990.

[5] Michael L. Fredman. A lower bound on the complexity of orthogonal range queries. JACM,
28(4):696–705, 1981.

[6] Haripriyan Hampapuram and Michael L. Fredman. Optimal biweighted binary trees and the
complexity of maintaining partial sums. SIAM J. of Comp., 28(1):1–9, 1998.

[7] Kasper Green Larsen. On range searching in the group model and combinatorial discrepancy.
In FOCS, pages 542–549, 2011.

[8] Kasper Green Larsen. The cell probe complexity of dynamic range counting. In STOC, pages
85–94, 2012.

[9] Jiri Matousek. Range searching with efficient hiearchical cutting. Discrete & Computational

Geometry, 10:157–182, 1993.

[10] Mihai Patrascu. Lower bounds for 2-dimensional range counting. In STOC, pages 40–46, 2007.

[11] Andrew Chi-Chih Yao. Space-time tradeoff for answering range queries (extended abstract).
In STOC, pages 128–136, 1982.

Appendix

A Proof of Lemma 1

Let h = αt+2(n), which is at least 1. Our objective is to show α∗
t (n) ∈ [h − 2, h − 1]. It holds by

definition that
At+2(h− 1) < n ≤ At+2(h).

11

We first show that α∗
t (n) ≤ h− 1. By expanding the recursive definition of At+2(h), we get

At+2(h) = At(At+2(h− 1)) = ... = A
(h−1)
t (At+2(1)) = A

(h−1)
t (256) ≥ n.

Therefore,

α
(h−1)
t (n) ≤ α

(h−1)
t (A

(h−1)
t (256)) = 256,

which implies that α∗
t (n) ≤ h− 1.

Now we show that α∗
t (n) > h− 3, which is trivial if h ≤ 2. If h ≥ 3, by definition we have that

A
(h−3)
t (α

(h−3)
t (n)) ≥ n > At+2(h− 1) = A

(h−2)
t (256) > A

(h−3)
t (256).

Therefore, α
(h−3)
t (n) > 256, which implies that α∗

t (n) > h− 3.

B Proof of Lemma 5

When t = 2 and t = 3, the correctness of the lemma is straightforward. Assume t ≥ 4. It is easy
to show that 6l ≤ At(64l) for any l ≥ 256. Now consider the inequality in the lemma. For the left
hand side, we have that

6l ·At(64l) ≤ (At(64l))
2 = 16log4 At(64l) ≤ 16At(64l).

For the right hand side,

At(At(l)) = At−2(At(At(l)− 1)) ≥ A2(At(At(l)− 1))

= 16At(At(l)−1)+1 > 16At(At(l)−1).

Therefore, it suffices to show that

16At(64l) ≤ 16At(At(l)−1) ⇐ At(64l) ≤ At(At(l)− 1)

⇐ 64l ≤ At(l)− 1,

which is true as long as t ≥ 4 and l ≥ 256.

C Proof of Lemma 9

For each integer t ≥ 2, define propositions p(t) and q(t) as follows:

p(t): for each integer x ≥ 8, At(64x) ≤ A(4t, x)
q(t): for each integer x ≥ 256, At(x) ≤ A(4t, x).

It suffices to show that p(t) and q(t) are true for all t ≥ 2.

The following statements directly follow from the definitions of the two variants of the Acker-
mann functions:

• A(x, y) is non-descending with x and strictly ascending with y;

• 128x ≤ A(8, x− 1) ≤ A(4t+ 8, x− 1), for all t ≥ 2;

• p(2), q(2), p(3) and q(3) are true.

12

Assume inductively that p(t) and q(t) are true for some t ≥ 2. It suffices to prove p(t + 2) and
q(t+ 2). For p(t+ 2), we have that

At+2(64x) = A
(64x−1)
t (256)

≤ A(4t,A(4t, ...,A(4t, 256)))
︸ ︷︷ ︸

64x− 1 instances of A

= A(4t+ 1, 64x + 254)

≤ A(4t+ 7, 128x)

≤ A(4t+ 7,A(4t + 8, x− 1))

= A(4t+ 8, x).

q(t+ 2) can be proved analogously.

13

