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Abstract Given a multidimensional point q , a reverse k
nearest neighbor (RkNN) query retrieves all the data points
that have q as one of their k nearest neighbors. Existing
methods for processing such queries have at least one of
the following deficiencies: they (i) do not support arbitrary
values of k, (ii) cannot deal efficiently with database
updates, (iii) are applicable only to 2D data but not to higher
dimensionality, and (iv) retrieve only approximate results.
Motivated by these shortcomings, we develop algorithms
for exact RkNN processing with arbitrary values of k on
dynamic, multidimensional datasets. Our methods utilize
a conventional data-partitioning index on the dataset and
do not require any pre-computation. As a second step, we
extend the proposed techniques to continuous RkNN search,
which returns the RkNN results for every point on a line seg-
ment. We evaluate the effectiveness of our algorithms with
extensive experiments using both real and synthetic datasets.

Keywords Reverse nearest neighbor · Continuous search ·
Spatial database

1 Introduction

Given a multidimensional dataset P and a point q /∈ P ,
a reverse k nearest neighbor (RkNN) query retrieves all
the points p ∈ P which have q as one of their k nearest
neighbors (NN) [10]. Formally, Rk N N (q) = {p ∈ P |
dist(p, q) < dist(p, p′)}, where dist is a distance metric
(we assume Euclidean distance), and p′ the k-th farthest
NN of p in P . Figure 1 shows a dataset with 4 points
p1, p2, . . . , p4, where each point is associated with a circle
covering its two NNs (e.g., the circle centered at p4 encloses
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p2 and p3). The result of a R2NN query q includes the
“owners” (i.e., p3, p4) of the circles that contain q . Let
k N N (q) be the set of k nearest neighbors of q . Note that
p ∈ k N N (q) does not necessarily imply p ∈ Rk N N (q),
and vice versa. For instance, 2N N (q) = {p1, p3}, but p1
does not belong to R2N N (q). On the other hand, although
p4 ∈ R2N N (q), it is not in 2N N (q).

RkNN search is important both as a stand-alone query
in Spatial Databases, and a component in applications in-
volving profile-based marketing. For example, assume that
the points in Fig. 1 correspond to records of houses on sale,
and the two dimensions capture the size and price of each
house. Given a new property q on the market, the real estate
company wants to notify the customers potentially interested
in q . An effective way is to retrieve the set Rk N N (q), and
then contact the customers that have previously expressed
interest in p ∈ Rk N N (q). Note that a RNN query is more
appropriate than NN search, since Rk N N (q) is determined
by the neighborhood of each data point p and not strictly
by the distance between q and p. For instance, in Fig. 1, al-
though p4 is farther from q than p1, customers interested in
p4 may be more attracted to q (than those of p1) because
they have fewer options matching their preferences. Clearly,
the discussion applies to space of higher (>2) dimensional-
ity, if more factors (e.g., security rating of the neighborhood,
etc.) affect customers’ decisions.

RkNN processing has received considerable attention
[2, 10, 12, 13, 15, 16, 20] in recent years. As surveyed in
Sect. 2, however, all the existing methods have at least one of
the following deficiencies: they (i) do not support arbitrary
values of k, (ii) cannot deal efficiently with database up-
dates, (iii) are applicable only to 2D data but not to higher di-
mensionality, and (iv) retrieve only approximate results (i.e.,
potentially incurring false misses). In other words, these
methods address restricted versions of the problem with-
out providing a general solution. Motivated by these short-
comings, we develop dynamic algorithms (i.e., supporting
updates) for exact processing of RkNN queries with arbi-

trary values of k on multidimensional datasets. Our meth-
ods are based on a data-partitioning index (e.g., R-trees [1],
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Fig. 2 A continuous RNN query

X-trees [3]), and do not require any preprocessing. Similar
to the existing algorithms, we follow a filter-refinement
framework. Specifically, the filter step retrieves a set of can-
didate results that is guaranteed to include all the actual
reverse nearest neighbors; the subsequent refinement step
eliminates the false hits. The two steps are integrated in a
seamless way that avoids multiple accesses to the same in-
dex node (i.e., each node is visited at most once).

As a second step, we extend our methodology to continu-
ous reverse k nearest neighbor (C-RkNN) search, which re-
trieves the RkNNs of every point on a query segment qAqB .
Interestingly, although there are infinite points on qAqB , the
number of distinct results is finite. Specifically, the output of
a C-RkNN query contains a set of <R, T > tuples, where
R is the set of RkNNs for (all the points in) the segment
T ⊆ qAqB . In Fig. 2, for instance, the C-RNN query returns
{<{p1}, [qA, s1)>, <{p1, p4}, [s1, s2)>, <{p4}, [s2, s3)>,
<{p3, p4}, [s3, s4)>, <p3, [s4, qB]>}, which means that
point p1 is the RNN for sub-segment [qA, s1), at s1 point p4
also becomes a RNN, and p4 is the only RNN for [s2, s3),
etc. The points (i.e., s1, s2, s3, s4) where there is a change of
the RNN set are called split points. Benetis et al. [2] solve
the problem for single RNN retrieval in 2D space. Our solu-
tion applies to any dimensionality and value of k.

The rest of the paper is organized as follows. Section 2
surveys related work on NN and RNN search. Section 3
presents a new algorithm for single RNN (k = 1) retrieval,
and Sect. 4 generalizes the solution to arbitrary values of k.
Section 5 discusses continuous RkNN processing. Section 6
contains an extensive experimental evaluation that demon-
strates the superiority of the proposed techniques over the
previous algorithms. Section 7 concludes the paper with di-
rections for future work.

2 Background

Although our solutions can be used with various indexes,
in the sequel, we assume that the dataset is indexed by an
R-tree due to the popularity of this structure in the litera-
ture. Section 2.1 briefly overviews the R-tree and algorithms
for nearest neighbor search. Section 2.2 surveys the previous
studies on RkNN queries.

2.1 Algorithms for NN search using R-Trees

The R-tree [8] and its variants (most notably the R*-
tree [1]) can be thought of as extensions of B-trees in
multidimensional space. Figure 3a shows a set of points
{p1, p2, . . . , p12} indexed by an R-tree (Fig. 3b) assuming
a capacity of three entries per node. Points close in space
(e.g., p1, p2, p3) are clustered in the same leaf node (e.g.,
N3). Nodes are then recursively grouped together with the
same principle until the top level, which consists of a sin-
gle root. An intermediate index entry contains the minimum
bounding rectangle (MBR) of its child node, together with
a pointer to the page where the node is stored. A leaf en-
try stores the coordinates of a data point and (optionally) a
pointer to the corresponding record.

A nearest neighbor query retrieves the data point p that
is closest to q . The NN algorithms on R-trees utilize some
bounds to prune the search space: (i) mindist(N , q), which
corresponds to the minimum possible distance between q
and any point in (the subtree of) node N , (ii) maxdist(N , q),
which denotes the maximum possible distance between q
and any point in N , and (iii) minmaxdist(N , q), which gives
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an upper bound of the distance between q and its closest
point in N . In particular, the derivation of minmaxdist(N , q)
is based on the fact that each edge of the MBR of N contains
at least one data point. Hence, minmaxdist(N , q) equals the
smallest of the maximum distances between all edges (of N )
and q . Figure 3a shows these pruning bounds between point
q and nodes N1, N2.

Existing NN methods are based on either depth-first
(DF) or best-first (BF) traversal. DF algorithms [5, 14] start
from the root and visit recursively the node with the small-
est mindist from q . In Fig. 3, for instance, the first 3 nodes
accessed are (in this order) the root, N1 and N4, where the
first potential nearest neighbor p5 is found. During back-
tracking to the upper levels, DF only descends entries whose
minimum distances (to q) are smaller than the distance of
the NN already retrieved. For example, after discovering p5,
DF backtracks to the root level (without visiting N3 because
mindist(N3, q) > dist(p5, q)), and then follows the path N2,
N6 where the actual NN p11 is found.

The BF algorithm [9] maintains a heap H containing
the entries visited so far, sorted in ascending order of their
mindist. In Fig. 3, for instance, BF starts by inserting the root
entries into H = {N1, N2}. Then, at each step, BF visits the
node in H with the smallest mindist. Continuing the exam-
ple, the algorithm retrieves the content of N1 and inserts its
entries in H , after which H = {N2, N4, N3}. Similarly, the
next two nodes accessed are N2 and N6 (inserted in H after
visiting N2), in which p11 is discovered as the current NN.
At this time, BF terminates (with p11 as the final result) since
the next entry (N4) in H is farther (from q) than p11. Both
DF and BF can be extended for the retrieval of k > 1 nearest
neighbors. Furthermore, BF is “incremental”, i.e., it reports
the nearest neighbors in ascending order of their distances to
the query.

2.2 RNN algorithms

We first illustrate the RNN algorithms using 2D data and
k = 1, and then clarify their applicability to higher dimen-
sionality and k. We refer to each method using the authors’
initials. KM [10] pre-computes, for every data point p, its
nearest neighbor N N (p). Then, p is associated with a vicin-
ity circle centered at it with radius equal to the distance be-
tween p and N N (p). The MBRs of all circles are indexed
by an R-tree, called the RNN-tree. Using this structure, the
reverse nearest neighbors of q can be efficiently retrieved by
a point location query, which returns all circles containing q .
Figure 4a illustrates the concept using four data points; since
q falls in the circles of p3 and p4, RN N (q) = {p3, p4}.

Because the RNN-tree is optimized for RNN, but not
NN search, Korn and Muthukrishnan [10] use an additional
(conventional) R-tree on the data points for nearest neigh-
bors and other spatial queries. In order to avoid the main-
tenance of two separate structures, YL [20] combines the
two indexes in the RdNN-tree. Similar to the RNN-tree, a
leaf entry of the RdNN-tree contains the vicinity circle of
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Fig. 4 Illustration of KM method

a data point. On the other hand, an intermediate entry con-
tains the MBR of the underlying points (not their vicinity
circles), together with the maximum distance from a point
in the subtree to its nearest neighbor. As shown in the exper-
iments of [20], the RdNN-tree is efficient for both RNN and
NN queries because, intuitively, it incorporates all the in-
formation of the RNN-tree, and has the same structure (for
node MBRs) as a conventional R-tree. MVZ [13] is another
pre-computation method that is applicable only to 2D space
and focuses on asymptotical worst case bounds (rather than
experimental comparison with other approaches).

The problem of KM, YL, MVZ (and, in general, all tech-
niques that rely on preprocessing) is that they cannot deal
efficiently with updates. This is because each insertion or
deletion may affect the vicinity circles of several points.
Consider Fig. 4b, where we want to insert a new point p5
in the database. First, we have to perform a RNN query to
find all objects (in this case p3 and p4) that have p5 as their
new nearest neighbor. Then, we update the vicinity circles
of these objects in the index. Finally, we compute the NN of
p5 (i.e., p4) and insert the corresponding circle. Similarly,
each deletion must update the vicinity circles of the affected
objects. In order to alleviate the problem, Lin et al. [12] pro-
pose a technique for bulk insertions in the RdNN-tree.

Stanoi et al. [16] eliminate the need for pre-computing
all NNs by utilizing some interesting properties of RNN re-
trieval. Consider Fig. 5, which divides the space around a
query q into 6 equal regions S1 to S6. Let p be the NN of q
in some region Si (1 ≤ i ≤ 6); it can be proved that either
p ∈ RN N (q) or there is no RNN of q in Si . For instance, in
Fig. 5, the NN of q in S1 is point p2. However, the NN of p2
is p1; consequently, there is no RNN of q in S1 and we do not
need to search further in this region. Similarly, no result can
exist in S2, S3 (p4, p5 are NNs of each other), S5 (the NN of
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Fig. 5 Illustration of SAA method

p3 is p7), and S6 (no data points). The actual RN N (q) con-
tains only p6 (in S4). Based on the above property, SAA [16]
adopts a two-step processing method. First, six‘constrained
NN queries” [6] retrieve the nearest neighbors of q in re-
gions S1 to S6. These points constitute the candidate result.
Then, at a second step, a NN query is applied to find the
NN p′ of each candidate p. If dist(p, q) < dist(p, p′), p
belongs to the actual result; otherwise, it is a false hit and
discarded.

Singh et al. [15] show that the number of regions to
be searched for candidate results increases exponentially
with the dimensionality, rendering SAA inefficient even for
three dimensions. Motivated by this, they propose SFT, a
multi-step algorithm that (i) finds (using an R-tree) a large
number K of NNs of the query q , which constitute the
initial RNN candidates, (ii) eliminates the candidates that
are closer to each other than to q , and (iii) determines the
final RNNs from the remaining ones. The value of K should
be larger than the number k of RNNs requested by every
query. Consider, for instance, the (single) RNN query of
Fig. 6, assuming K = 4. SFT first retrieves the 4 NNs of
q: p6, p4, p5 and p2. The second step discards p4 and
p5 since they are closer to each other than to q . The third
step verifies whether p2 (p6) is a real RNN of q by check-
ing if there is any point in the shaded circle centered at
p2 (p6) crossing q . This involves a “boolean range query”,
which is similar to a range search except that it terminates
as soon as (i) the first data point is found, or (ii) an edge
of a node MBR lies within the circle entirely. For instance,
as minmaxdist(N1, p2) ≤ dist(p2, q), N1 contains at least a
point p with dist(p2, p) < dist(p2, q), indicating that p2 is
a false hit. Since the boolean query of p6 returns empty, SFT
reports p6 as the only RNN. The major shortcoming of the

p1

p2 p3

p4 q
p5 p6

p7boolean range for p6

boolean range for p2

node N1

Fig. 6 Illustration of SFT method

Table 1 Summary of the properties of RNN algorithms

Support Arbitrary
dynamic data dimensionality Exact result

KM, YL No Yes Yes
MVZ No No Yes
SAA Yes No Yes
SFT Yes Yes No

method is that it may incur false misses. In Fig. 6, although
p3 is a RNN of q , it does not belong to the 4 NNs of the
query and will not be retrieved.

Table 1 summarizes the properties of each algorithm.
As discussed before, pre-computation methods cannot ef-
ficiently handle updates. MVZ focuses exclusively on 2D
space, while SAA is practically inapplicable for 3 or more
dimensions. SFT incurs false misses, the number of which
depends on the parameter K : a large value of K decreases
the chance of false misses but increases significantly the pro-
cessing cost. Regarding the applicability of the existing al-
gorithms to arbitrary k, pre-computation methods only sup-
port a specific value (typically 1), used to determine the
vicinity circles. SFT can support the retrieval of RkNNs by
setting a large value of K (�k) and adapting boolean queries
for deciding whether there are at least k objects in a search
region. The extension of SAA to arbitrary k has not been
studied before, but we will discuss it in Sect. 4.3.

The only existing method BJKS [2] for continuous RNN
queries is based on the SAA algorithm. We illustrate the al-
gorithm using Fig. 7, where the dataset consists of points
p1, . . . , p4 and the C-RNN query is the segment qAqB . In
the filter step, BJKS considers (conceptually) every point q
on segment qAqB . For each such point, it divides the data
space into 6 partitions (based on q) and retrieves the NN
of q in each partition. Due to symmetry, let us focus on the
partition bounded by the two upward rays (see Fig. 7). When
q belongs to the segment [qA, a1), the NN of q is p1. The
NN is p2 for q belonging to segment [a1, a2), and p3 for
q in [a2, qB) (position a2 is equally distant to p2 and p3).
For each of the candidates (p1, p2, p3) returned by the filter
phase, the refinement step of BJKS obtains its NN (in the
entire data space), and examines the corresponding vicinity
circle (e.g., the circle for p1 crosses its NN p2). The can-
didate is a final result if and only if its circle intersects the
query segment. In Fig. 7, p2 and p3 are false hits because

qA

p1
p2

s1

p3

p4

qBa2a1

Fig. 7 Illustration of BJKS method
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their circles are disjoint with qAqB . On the other hand, p1 is
the RNN for every point on segment [qA, s1), where s1 is the
intersection between its circle and the query segment. There
is no RNN for any point on [s1, qB]. Since BJKS is based on
SAA, its applicability is restricted to 2D space.

It is worth mentioning that all the above algorithms (as
well as our solutions) aim at monochromatic RNN retrieval
in [10]. Stanoi et al. [17] consider bichromatic RNN search:
given two data sets P1, P2 and a query point q ∈ P1, a
bichromatic RNN query retrieves all the points p2 ∈ P2
that are closer to q than to any other object in P1, i.e.,
dist(q, p2) < dist(p1, p2) for any p1 ∈ P1 and p1 �= q .
If V C(q) is the Voronoi cell covering q in the Voronoi dia-
gram [4] computed from P1, the query result contains all the
points in P2 that fall inside V C(q). Based on this observa-
tion, SRAA [17] first computes V C(q) using an R-tree on
P1, and then retrieves the query result using another R-tree
on P2. This approach is not directly applicable to monochro-
matic search (which involves a single dataset), but the con-
cept of Voronoi cells is related to our solutions, as clarified
in Sect. 3.3.

3 Single RNN processing

In this section, we focus on single RNN retrieval (k = 1).
Section 3.1 illustrates some problem characteristics that
motivate our algorithm, which is presented in Sect. 3.2.
Section 3.3 analyzes the performance of the proposed tech-
niques with respect to existing methods.

3.1 Problem characteristics

Consider the perpendicular bisector ⊥(p, q) between the
query q and an arbitrary data point p as shown in Fig. 8a.
The bisector divides the data space into two half-spaces:

q

p

p'

⊥(p, q)

N 1

(a) Pruning with one point

q

p1

p2

N 2

⊥( q, p
1 )

⊥( q, p
2 )

(b) Pruning with two points

Fig. 8 Illustration of half-space pruning

H Sq(p, q) that contains q , and H Sp(p, q) that contains p.
Any point (e.g., p′) in H Sp(p, q) cannot be a RNN of q
because it is closer to p than to q . Similarly, a node MBR
(e.g., N1) that falls completely in H Sp(p, q) cannot contain
any results. In some cases, the pruning of an MBR requires
multiple half-spaces. For example, in Fig. 8b, although N2
does not fall completely in H Sp1(p1, q) or H Sp2(p2, q), it
can still be pruned since it lies entirely in the union of the
two half-spaces.

In general, if p1, p2, . . . , pnc are nc data points, then any
node N whose MBR falls inside ∪nc

i=1 H Spi (pi , q) cannot
contain any RNN of q . Let the residual polygon Nres P be
the area of MBR N outside ∪nc

i=1 H Spi (pi , q), i.e., the part
of the MBR that may cover RNNs. Then, N can be pruned if
and only if N resP = ∅. A non-empty N resP is a convex poly-
gon bounded by the edges of N and the bisectors ⊥(pi , q)
(1 ≤ i ≤ nc). We illustrate its computation using Fig. 9a
with nc = 3. Initially, N resP is set to N , and then we trim
it incrementally with each bisector in turn. In particular, the
trimming with ⊥(pi , q) results in a new N resP correspond-
ing to the part of the previous N resP inside the half-space
H Sq(pi , q). The shaded trapezoid in Fig. 9a is the N resP af-
ter being trimmed with ⊥(p1, q). Figure 9b shows the final
N resP after processing all bisectors.

The above computation of N resP has two problems. First,
in the worst case, each bisector may introduce an addi-
tional vertex to N resP. Consequently, processing the i-th
(1 ≤ i ≤ nc) bisector takes O(i) time because it may need
to examine all edges in the previous N resP. Thus, the total
computation cost is O(n2

c), i.e., quadratic to the number of
bisectors. Second, this method does not scale with the di-
mensionality because computing the intersection of a half-
space and a hyper-polyhedron is prohibitively expensive in
high-dimensional space [4].

Therefore, we propose a simpler trimming strategy that
requires only O(nc) time. The idea is to bound Nres P by a

q
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3

N

2

⊥( q, p
1 )

N resP

(a) After trimming with ⊥
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⊥( q ) ⊥( , 2 )

mindist ( )qN resP,

(b) The final polygon

Fig. 9 Computing the residual region
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Fig. 10 Computing the residual MBR

residual MBR Nres M . Figure 10 illustrates the residual MBR
computation using the example in Fig. 9. Figure 10a shows
the trimming with ⊥(p1, q) where, instead of keeping the
exact shape of N resP, we compute N resM (i.e., the shaded
rectangle). In general, bisector ⊥(pi , q) updates N resM to
the MBR of the region in the previous N resM that is in
H Sq(pi , q). Figures 10b and c illustrate the residual MBRs
after processing ⊥(p2, q) and ⊥(p3, q), respectively. Note
that the final N resM is not necessarily the MBR of the final
N resP (compare Figs. 10c and 9b). Trimmed MBRs can be
efficiently computed (for arbitrary dimensionality) using the
clipping algorithm of [7].

Figure 11 presents the pseudo-code for the above ap-
proximate trimming procedures. If N resM exists, trim returns
the minimum distance between q and N resM; otherwise, it
returns ∞. Since N resM always encloses N resP, N resM = ∅
necessarily leads to N resP = ∅. This property guarantees
that pruning is “safe”, meaning that trim never eliminates a
node that may contain query results. The algorithm also cap-
tures points as MBRs with zero extents. In this case, it will
return the actual distance between a point and q (if the point
is closer to q than to all other candidates), or ∞ otherwise.

An interesting question is: if N resM �= ∅, can N resP be
empty (i.e., trim fails to prune an MBR that could have been
eliminated if N resP was computed)? Interestingly, it turns
out that the answer is negative in 2D space as illustrated in
the next lemma, which establishes an even stronger result:

Lemma 1 Given a query point q and an MBR N in 2D
space, let N resP be the part (residual polygon) of N satisfy-
ing a set S of half-spaces, and N resM the residual MBR com-
puted (by the algorithm in Fig. 11) using the half-spaces in
S. Then, mindist(N resM, q) = mindist(N resP, q) in all cases.

Proof Presented in the appendix. �


Fig. 11 The trim algorithm

As an illustration of the lemma, note that mindist
(N resP, q) in Fig. 9b is equivalent to mindist(N resM, q) in
Fig. 10c. Our RNN algorithm, discussed in the next section,
aims at examining the nodes N of an R-tree in ascending
order of their mindist(N resP, q). Since N resP is expensive
to compute in general, we decide the access order based
on mindist(N resM, q), which, as indicated by Lemma 1, has
the same effect as using mindist(N resP, q) in 2D space. It
is worth mentioning that the lemma does not hold for di-
mensionalities higher than 2 (in this case, N resM may exist
even if N resP does not [7]). Nevertheless, pruning based on
mindist(N resM, q) is still safe because, as mentioned earlier,
N resM is eliminated only if N resP is empty.

3.2 The TPL algorithm

Based on the above discussion, we adopt a two-step frame-
work that first retrieves a set of candidate RNNs (filter step)
and then removes the false hits (refinement step). As op-
posed to SAA and SFT that require multiple queries for each
step, the filtering and refinement processes are combined
into a single traversal of the R-tree. In particular, our algo-
rithm (hereafter, called TPL) traverses the R-tree in a best-
first manner, retrieving potential candidates in ascending or-
der of their distance to the query point q because the RNNs
are likely to be near q . The concept of half-spaces is used
to prune nodes (data points) that cannot contain (be) candi-
dates. Next we discuss TPL using the example of Fig. 12,
which shows a set of data points (numbered in ascending or-
der of their distance from the query) and the corresponding
R-tree (the contents of some nodes are omitted for clarity).
The query result contains only point p5.

Initially, TPL visits the root of the R-tree and inserts
its entries N10, N11, N12 into a heap H sorted in ascend-
ing order of their mindist from q . Then, the algorithm de-
heaps N10 (top of H ), visits its child node, and inserts into
H the entries there (H = {N3, N11, N2, N1, N12}). Simi-
larly, the next node accessed is leaf N3, and H becomes (af-
ter inserting the points in N3): {p1, N11, p3, N2, N1, N12}.
Since p1 is the top of H , it is the first candidate added to
the candidate set Scnd . The next de-heaped entry is N11. As
Scnd �= ∅, TPL uses trim (Fig. 11) to check if N11 can be

Fig. 12 Illustration of the TPL algorithm
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pruned. Part of N11 lies in H Sq(p1, q) (i.e., trim returns
mindist(N resM

11 , q) �= ∞), and thus it has to be visited.
Among the three MBRs in node N11, N4 and N6 fall

completely in H Sp1(p1, q), indicating that they cannot con-
tain any candidates. Therefore, N4 and N6 are not inserted
in H , but are added to the refinement set Srfn. In general,
all the points and nodes that are not pruned during the fil-
ter step are preserved in Srfn, and will be used in the re-
finement step to verify candidates. On the other hand, N5
(an MBR in node N11) falls partially in H Sq(p1, q), and is
inserted into H using mindist(N resM

5 , q) as the sorting key
(H = {N5, p3, N2, N1, N12}). The rationale of this choice,
instead of mindist(N5, q), is that since our aim is to discover
candidates according to their proximity to q , the node visit-
ing order should not take into account the part of the MBR
that cannot contain candidates.

TPL proceeds to de-heap the top N5 of H , and retrieves
its child node, where point p2 is added to H = {p2, p3, N2,
N1, N12}, and p6 to Srfn = {N4, N6, p6} (p6 is in H Sp1(p1,
q), and hence, cannot be a RNN of q). Then, p2 is removed
from H , and becomes the second candidate, i.e., Scnd =
{p1, p2}. Point p3 (now top of H ), however, is added to Srfn
because it lies in H Sp1(p1, q). Similarly, the next processed
entry N2 is also inserted in Srfn (without visiting node N2).
Part of N1, on the other hand, appears in H Sq(p1, q)∪ H Sq
(p2, q) and TPL accesses its child node, leading to Scnd =
{p1, p2, p5} and Srfn = {N2, N4, N6, p6, p3, p7}. Finally,
N12 is also inserted into Srfn as it falls completely in H Sp2
(p2, q). The filter step terminates when H = ∅.

Figure 13 illustrates the pseudo-code for the filter step.
Note that trim is applied twice for each node N : when N is
inserted into the heap and when it is de-heaped, respectively.
The second test is necessary, because N may be pruned by
some candidate that was discovered after the insertion of N
into H . Similarly, when a leaf node is visited, its non-pruned
points are inserted into H (instead of Scnd ) and processed in

Fig. 13 The TPL filter algorithm

ascending order of their distance to q . This heuristic max-
imizes the chance that some points will be subsequently
pruned by not-yet discovered candidates that are closer to
the query, hence reducing the size of Scnd , and the cost of
the subsequent refinement step.

After the termination of the filter step, we have a set
Scnd of candidates and a set Srfn of node MBRs and data
points. Let Prfn (Nrfn) be the set of points (MBRs) in Srfn.
The refinement step is performed in rounds. Figure 14 shows
the pseudo-code for each round, where we eliminate the
maximum number of candidates from Scnd without visit-
ing additional nodes. Specifically, a point p ∈ Scnd can
be discarded as a false hit, if (i) there is a point p′ ∈ Prfn
such that dist(p, p′) < dist(p, q), or (ii) there is a node
MBR N ∈ Nrfn such that minmaxdist(p, N ) < dist(p, q)
(i.e., N is guaranteed to contain a point that is closer to p
than q). For instance, in Fig. 12, the first condition prunes
p1 because p3 ∈ Prfn and dist(p1, p3) < dist(p1, q).
Lines 2-9 of Fig. 14 prune false hits according to the above
observations.

On the other hand, a point p ∈ Scnd can be reported as
an actual result without any extra node accesses, if (i) there
is no point p′ ∈ Prfn such that dist(p, p′) < dist(p, q) and
(ii) for every node N ∈ Nrfn, it holds that mindist(p, N ) >
dist(p, q). In Fig. 12, candidate p5 satisfies these conditions
and is validated as a final RNN (also removed from Scnd ).
Each remaining point p in Scnd (e.g., p2) must undergo addi-
tional refinement rounds because there may exist points (p4)
in some not-yet visited nodes (N4) that invalidate it. In this
case, the validation of p requires accessing the set p.toVisit
of nodes N ∈ Nrfn that satisfy mindist(p, N ) < dist(p, q).
After computing toVisit for all the candidates, Prfn and Nrfn
are reset to empty.

Next, TPL accesses a node selected from the toVisit of
the candidates. Continuing the running example, after the
first round p1 is eliminated, p5 is reported (as an actual re-
sult), and Scnd = {p2}. The nodes that may contain NNs of
p2 are p2.toVisit = {N4, N12}. We choose to access a lowest

Fig. 14 The refinement-round algorithm
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level node first (in this case N4), because it can achieve
better pruning since it either encloses data points or MBRs
with small extents (therefore, the minmaxdist pruning at line
7 of Fig. 14 is more effective). In case of a tie (i.e., multiple
nodes of the same low level), we access the one that appears
in the toVisit lists of the largest number of candidates.

If the node N visited is a leaf, then Prfn contains the data
points in N , and Nrfn is set to ∅. Otherwise (N is an in-
termediate node), Nrfn includes the MBRs of N , and Prfn
is ∅. In our example, the parameters for the second round
are Scnd = {p2}, Prfn = {p4, p8} (points of N4), and
Nrfn = ∅. Point p4 eliminates p2, and the algorithm termi-
nates. Figure 15 shows the pseudo-code of the TPL refine-
ment step. Lines 2-4 prune candidates that are closer to each
other than the query point (i.e., similar to the second step of
SFT). This test is required only once and therefore, is not in-
cluded in refinement-round in order to avoid repeating it for
every round.

To verify the correctness of TPL, observe that the filter
step always retrieves a superset of the actual result (i.e., it
does not incur false misses), since trim only prunes node
MBRs (data points) that cannot contain (be) RNNs. Every
false hit p is subsequently eliminated during the refinement
step by comparing it with each data point retrieved during
the filter step and each MBR that may potentially contain
NNs of p. Hence, the algorithm returns the exact set of
RNNs.

3.3 Analytical comparison with the previous solutions

TPL and the existing techniques that do not require pre-
processing (SAA, SFT) are based on the filter-refinement
framework. Interestingly, the two steps are independent in
the sense that the filtering algorithm of one technique can
be combined with the refinement mechanism of another.

Fig. 15 The TPL refinement algorithm
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Fig. 16 Superiority of TPL over SAA

For instance, the boolean range queries of SFT can replace
the conventional NN queries in the second step of SAA,
and vice versa. In this section we show that, in addition to
being more general, TPL is more effective than SAA and
SFT in terms of both filtering and refinement, i.e., it re-
trieves fewer candidates and eliminates false hits with lower
cost.

In order to compare the efficiency of our filter step with
respect to SAA, we first present an improvement of that
method. Consider the space partitioning of SAA in Fig. 16a
and the corresponding NNs in each partition (points are
numbered according to their distance from q). Since the an-
gle between p1 and p2 is smaller than 60 degrees and p2 is
farther than p1, point p2 cannot be a RNN of q . In fact, the
discovery of p1 (i.e., the first NN of the query) can prune all
the points lying in the region ∇(p1) extending 60 degrees
on both sides of line segment p1q (upper shaded region in
Fig. 16a). Based on this observation, we only need to search
for other candidates outside ∇(p1). Let p3 be the next NN
of q in the constrained region of the data space (i.e., not in-
cluding ∇(p1)). Similar to p1, p3 prunes all the points in
∇(p3). The algorithm terminates when the entire data space
is pruned. Although the maximum number of candidates is
still 6 (e.g., if all candidates lie on the boundaries of the 6
space partitions), in practice it is smaller (in this example,
the number is 3, i.e., p1, p3, and p6).

Going one step further, the filter step of TPL is even more
efficient than that of the improved SAA. Consider Fig. 16b
where p is the NN of q . The improved SAA prunes the re-
gion ∇(p) bounded by rays l1 and l2. On the other hand, our
algorithm prunes the entire half-space H Sp(p, q), which
includes ∇(p) except for the part below ⊥(p, q). Consider
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the circle centered at q with radius dist(p, q). It can be eas-
ily shown that the circle crosses the intersection point of
⊥(p, q) and l1 (l2). Note that all the nodes intersecting this
circle have already been visited in order to find p (a property
of our filter step and all best-first NN algorithms in general).
In other words, all the non-visited nodes that can be pruned
by ∇(p) can also be pruned by H Sp(p, q). As a corollary,
the maximum number of candidates retrieved by TPL is also
bounded by a constant depending only on the dimensionality
(e.g., 6 in 2D space). Furthermore, TPL supports arbitrary
dimensionality in a natural way, since it does not make any
assumption about the number or the shape of space partitions
(as opposed to SAA).

The comparison with the filter step of SFT depends on
the value of K , i.e., the number of NNs of q that consti-
tute the candidate set. Assume that in Fig. 12, we know
in advance that the actual RNNs of the query (in this case
p5) are among the K = 5 NNs of q . SFT would perform
a 5NN query and insert all the retrieved points p1, . . . , p5
to Scnd , whereas TPL inserts only the non-pruned points
Scnd = {p1, p2, p5}. Furthermore, the number of candidates
in TPL is bounded by the dimensionality, while the choice of
K in SFT is arbitrary and does not provide any guarantees
about the quality of the result. Consider, for instance, the
(skewed) dataset and query point of Fig. 17. A high value of
K will lead to the retrieval of numerous false hits (e.g., data
points in partition S1), but no actual reverse nearest neigh-
bors of q . The problem becomes more serious in higher di-
mensional space.

One point worth mentioning is that although TPL is ex-
pected to retrieve fewer candidates than SAA and SFT, this
does not necessarily imply that it incurs fewer node accesses
during the filter step. For instance, assume that the query
point q lies within the boundary of a leaf node N , and all 6
candidates of SAA are in N . Then, as suggested in [16] the
NN queries can be combined in a single tree traversal, which
can potentially find all these candidates by following a sin-
gle path from the root to N . A similar situation may occur
with SFT if all K NNs of q are contained in the same leaf
node. On the other hand, the node accesses of TPL depend
on the relative position of the candidates and the resulting
half-spaces. Nevertheless, the small size of the candidate set

q

S1

circle containing 
K-NNs of q

false hits

false misses

Fig. 17 False hits and misses of SFT

reduces the cost of the refinement step since each candidate
must be verified.

Regarding the refinement step, it suffices to compare
TPL with SFT, since boolean ranges are more efficient than
the conventional NN queries of SAA. Although Singh et al.
[15] propose some optimization techniques for minimizing
the number of node accesses, a boolean range may still ac-
cess a node that has already been visited during the filter step
or by a previous boolean query. On the other hand, the seam-
less integration of the filter and refinement steps in TPL (i)
re-uses information about the nodes visited during the filter
step, and (ii) eliminates multiple accesses to the same node.
In other words, a node is visited at most once. This inte-
grated mechanism can also be applied to the methodologies
of SAA and SFT. In particular, all the nodes and points elim-
inated by the filter step (constrained NN queries in SAA, a
K NN query in SFT) are inserted in Srfn and our refinement
algorithm is performed directly (instead of NN or boolean
queries).

The concept of bisectors is closely related to Voronoi
cells (VC) used in [17] for bichromatic queries. In fact, a
possible solution for finding RNNs in 2D space is to first ob-
tain the set SV (q) of points from the dataset P , whose bisec-
tors with the query point q contribute to an edge of the VC
covering q (in the Voronoi diagram computed from P ∪{q}).
For example, in Fig. 18, SV (q) equals {p1, p2, p3, p4}, and
V C(q) is the shaded region. Any point (e.g., p5) that does
not belong to SV (q) cannot be a RNN, because it lies outside
V C(q), and must be closer to at least one point (i.e., p2) in
SV (q) than to q . Therefore, in the refinement step, it suffices
to verify whether the points in SV (q) are the true RNNs.

However, this approach is limited to 2D space because
computing Voronoi cells in higher dimensional space is very
expensive [4]. Furthermore, its application to k > 1 re-
quires calculating order-k Voronoi cells, which is complex
and costly even in 2D space [4]. TPL avoids these prob-
lems by retrieving candidates that are not necessarily points
in V C(q), but are sufficient for eliminating the remaining
data. Furthermore, note that some objects in V C(q) may not
be discovered by TPL as candidates. For instance, in Fig. 18,
TPL will process p2 before p3 since the former is closer to
q . After adding p2 to the candidate set, p3 will be pruned
because it falls in the half-space H Sp2(q, p2). In this case,
the candidate set returned by the filter step of TPL includes
only p1, p2, and p4.

Section 4.3 discusses an alternative solution based on the
previous work, and clarifies the superiority of TPL.

q

p1

p2

p3p4

p5

)( q,p2

Fig. 18 The connection between TPL and Voronoi cells
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4 RkNN processing

Section 4.1 presents properties that permit pruning of the
search space for arbitrary values of k. Section 4.2 extends
TPL to RkNN queries. “Section 4.3 discusses an alternative
solution based on the previous work, and clarifies the supe-
riority of TPL.”

4.1 Problem characteristics

The half-space pruning strategy of Sect. 3.1 extends to arbi-
trary values of k. Figure 19a shows an example with k = 2,
where the shaded region corresponds to the intersection
H Sp1(p1, q) ∩ H Sp2(p2, q). Point p is not a R2NN of q ,
since both p1 and p2 are closer to it than q . Similarly, a node
MBR (e.g., N1) inside the shaded area cannot contain any
results. In some cases, several half-space intersections are
needed to prune a node. Assume the R2NN query q and the
three data points of Fig. 19b. Each pair of points generates an
intersection of half-spaces: (i) H Sp1(p1, q) ∩ H Sp2(p2, q)
(i.e., polygon I EC B), (ii) H Sp1(p1, q) ∩ H Sp3(p3, q)
(polygon ADC B), and (iii) H Sp2(p1, q) ∩ H Sp3(p3, q)
(polygon I FG H B). The shaded region is the union of these
3 intersections (i.e., I EC B ∪ ADC B ∪ I FG H B). A node
MBR (e.g., N2) inside this region can be pruned, although it
is not totally covered by any individual intersection area.

In general, assume a RkNN query and nc ≥ k data
points p1, p2, . . . , pnc (e.g., in Fig. 19b nc = 3 and k =
2). Let {σ1, σ2, . . . , σk} be any subset of {p1, p2, . . . , pnc}.
The subset prunes the intersection area ∩k

i=1 H Sσi (σi , q).
The entire region that can be eliminated corresponds to the
union of the intersection areas of all (

nc
k ) subsets. Examin-

ing (
nc
k ) subsets is expensive for large k and nc. In order

Fig. 19 Examples of R2NN queries

Fig. 20 The k-trim algorithm

Fig. 21 Computing Nres M for R2NN processing

to reduce the cost, we restrict the number of inspected sub-
sets using the following heuristic. First, all the points are
sorted according to their Hilbert values; let the sorted or-
der be p1, p2, . . . , pnc . Then, we consider only the inter-
section areas computed from the nc subsets {p1, . . . , pk},
{p2, . . . , pk+1}, . . . , {pnc , . . . , pk−1}, based on the rationale
that points close to each other tend to produce a large prun-
ing area. The tradeoff is that we may occasionally mis-judge
an MBR N to be un-prunable, while N could be eliminated
if all the (

nc
k ) subsets were considered. Similar to trim in

Fig. 11, k-trim aims at returning the minimum distance from
query q to the part Nres P of N that cannot be pruned. Since
Nres P is difficult to compute, we bound it with a resid-
ual MBR Nres M , and k-trim reports the mindist from q to
Nres M . If Nres M does not exist, k-trim returns ∞, and N is
pruned.

The above discussion leads to the k-trim algorithm in
Fig. 20. Initially, Nres M is set to N , and is updated in-
crementally according to each of the nc subsets examined.
Specifically, given a subset {σ1, σ2, . . . , σk}, we first com-
pute, for each point σ j (1 ≤ j ≤ k), the MBR N j for the part
of the current Nres M that falls in H Sq(σ j , q). Then, the new
Nres M becomes the union of the k MBRs N1, N2, . . . , Nk .
We illustrate the computation using Fig. 21 where the cur-
rent Nres M is rectangle ABC D, and the subset being exam-
ined is {p1, p2} (i.e., k = 2). For bisector ⊥(p1, q), we use
the algorithm in [7] to obtain the MBR N1 (polygon AD J I )
for the area of Nres M falling in H Sq(p1, q). Similarly, for
bisector ⊥(p2, q), the algorithm of [7] returns N2 = ADFE
(MBR for the part of Nres M in H Sq(p2, q)). Hence, the new
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Fig. 22 The refinement round of TPL for k > 1

Nres M is the union of N1 and N2, i.e., rectangle ADFE. No-
tice that every point that is in the original Nres M but not in
ADFE cannot be a R2NN of q , because it must lie in both
H Sp1(p1, q) and H Sp2(p2, q).

4.2 The TPL algorithm for RkNN search

To solve a RkNN query, we adopt the framework of Sect. 3.
Specifically, the filter step of TPL initially accesses the
nodes of the R-tree in ascending order of their mindist to the
query q , and finds an initial candidate set Scnd which con-
tains the k points nearest to q . Then, the algorithm decides
the node access order (for the MBRs subsequently encoun-
tered) based on the distance computed by k-trim. MBRs and
data points pruned (i.e., k-trim returns ∞) are kept in the re-
finement set Srfn. The filter phase finishes when all the nodes
that may include candidates have been accessed.

The refinement step is also executed in rounds, which
are formally described in Fig. 22. The first round is invoked
with Prfn and Nrfn that contain the points and MBRs in
Srfn respectively, and we attempt to eliminate (validate) as
many false hits (final RkNNs) from Scnd as possible. The
elimination and validation rules, however, are different from
k = 1 because a point p ∈ Scnd can be pruned (validated)
only if there are at least (fewer than) k points within dis-
tance dist(p, q) from p. Thus, we associate p with a counter
p.counter (initially set to k), and decrease it every time we
find a point p′ satisfying dist(p, p′) < dist(p, q). We elimi-
nate p as a false hit when its counter becomes 0.

Recall that, for k = 1, TPL claims a point p to be a false
hit as long as minmaxdist(p, N ) < dist(p, q) for a node
N ∈ Nrfn. For k > 1, this heuristic is replaced with an alter-
native that utilizes the maxdist between p and N , and a lower
bound for the number of points in N . If maxdist(p, N ) <
dist(p, q), then there are at least f l

min points (in the subtree

of N ) that are closer to p than q , where fmin is the mini-
mum node fanout (for R-trees, 40% of the node capacity),
and l the level of N (counting from the leaf level as level 0).
Hence, p can be pruned if f l

min ≥ p.counter .
After a round, TPL accesses a node N selected from the

toVisit lists of the remaining candidates by the same crite-
ria as in the case of k = 1. Then, depending on whether N
is a leaf or intermediate node, Prfn or Nrfn is filled with the
entries in N , and another round is performed. The refine-
ment phase terminates after all the points in Scnd have been
eliminated or verified. We omit the pseudo-codes of the filter
and main refinement algorithms for k > 1 because they are
(almost) the same as those in Figs. 13 and 15 respectively,
except for the differences mentioned earlier.

4.3 Discussion

Although SAA was originally proposed for single RNN re-
trieval, it can be extended to arbitrary values of k based on
the following lemma:

Lemma 2 Given a 2D RkNN query q, divide the space
around q into 6 equal partitions as in Fig. 5. Then, the k
NNs of q in each partition are the only possible results of q.
Furthermore, in the worst case, all these points may be the
actual RkNNs.

Proof Presented in the appendix. �

As a corollary, for any query point in 2D space, the max-

imum number of RkNNs equals 6k. Figure 23 illustrates the
lemma using an example with k = 2. The candidates of q
include {p1, p2, p4, p5, p6} (e.g., p3 is not a candidate since
it is the 3rd NN in partition S1). Based on Lemma 2, the fil-
ter step of SAA may execute 6 constrained kNN queries [6]
in each partition. Then, the refinement step verifies or elim-
inates each candidate with a kNN search. This approach,
however, has the same problem as the original SAA, i.e. the
number of partitions to be searched increases exponentially
with the dimensionality.

As mentioned in Sect. 2.2, SFT can support RkNN by
setting a large value of K (�k), and adapting a boolean
range query to verify whether there are at least k points
closer to a candidate than the query point q . Similar to the
case of k = 1, various boolean queries may access the same
node multiple times, which is avoided in TPL.

Fig. 23 Illustration of Lemma 2
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5 Continuous RkNN processing

Given a segment qAqB , a CkNN query aims at reporting
the RkNNs for every point on the segment. As discussed in
Sect. 1, the objective is to find a set of split points that par-
tition qAqB into disjoint sub-segments, such that all points
in the same sub-segment have identical RkNNs. Section 5.1
first explains the pruning heuristics, and then Sect. 5.2 illus-
trates the concrete algorithms.

5.1 Problem characteristics

We first provide the rationale behind our solutions assuming
k = 1 and 2D space, before presenting the formal results
for arbitrary k and dimensionality. Consider Fig. 24a, where
we draw lines lA and lB that are vertical to the query seg-
ment, and cross the two end points qA and qB , respectively.
These two lines divide the data space into 3 areas: to the left
of lA, between lA and lB , and to the right of lB . Let p be
a data point to the left of lA. The bisector ⊥(qA, p) inter-
sects the left boundary of the data space at A, and it inter-
sects line lA at B. Then, the polygon ABFE cannot contain
any query result. To understand this, consider an arbitrary
point p1 in ABFE, and any point q on segment qAqB . The
distance between p1 and q is at least dist(p1, qA) (the mini-
mum distance from p1 to the query segment), which is larger
than dist(p1, p) (since p1 is in H Sp(qA, p)). Therefore, p
is closer to p1 than q , i.e., p1 is not a RNN of q . Bisec-
tor ⊥(qB, p), on the other hand, intersects the bottom of the
data space at D and line lB at C . By the same reasoning (of
eliminating ABFE), no point (e.g., p3) in the triangle CG D
can be a query result.

Fig. 24 Pruning regions for continuous RNN

Point p also prunes a region between lines lA and lB .
To formulate this region, we need the locus of points (be-
tween lA and lB) that are equi-distant to p and qAqB . The
locus is a parabola, i.e., the dashed curve in Fig. 24a. All
points (e.g., p2) bounded by lA, lB , and the parabola can be
safely discarded. In fact, for any point q on qAqB , dist(p2, q)
is at least dist(p2, H), where H is the projection of p2
on qAqB . Segment p2 H intersects the parabola at point I
and, by the parabola definition, dist(p, I ) = dist(I, H).
Since dist(p2, H) is the sum of dist(p2, I ) and dist(I, H),
dist(p2, H) = dist(p2, I ) + dist(p, I ) > dist(p, p2) (trian-
gle inequality). Therefore, p is closer to p2 than q , or equiv-
alently, p2 is not a RNN of q .

Therefore, p prunes a region that is bounded by two line
segments AB, C D, and curve BC , i.e., any node N that falls
completely in this region does not need to be accessed. Un-
fortunately, checking whether N lies in this region is inef-
ficient due to the existence of a non-linear boundary BC .
We avoid this problem by examining if N is contained in the
intersection of half-spaces, which has been solved in the pre-
vious sections. Specifically, we decrease the pruning region
by replacing the boundary curve BC with a line segment
BC , resulting in a new region corresponding to the shaded
area in Fig. 24a. All points/MBRs falling in the area can be
safely eliminated because it is entirely contained in the exact
pruning region.

By symmetry, a point p lying to the right of lB produces
a pruning area that can be derived in the same way as in
Fig. 24a. Next, we elaborate the case where p is between lA
and lB (see Fig. 24b). Bisectors ⊥(qA, p) and ⊥(qB, p) de-
fine polygons ABFE and GC DH that cannot contain query
results (the reasoning is the same as eliminating ABFE and
C DG in Fig. 24a). The curve BC in Fig. 24b is a parabola
including points that are equally distant from qAqB and p.
Similar to Fig. 24a, all the points between lA and lB that are
below the parabola can be pruned. To facilitate processing,
we again approximate curve BC with a line segment BC ,
and as a result, the pruning region introduced by p is also a
polygon (the shaded area) bounded by ⊥(qA, p), ⊥(qB, p)
and segment BC .

As a heuristic, the parabolas in Figs. 24a and 24b can
be more accurately approximated using multiple segments
in order to reduce the difference between the approximate
and exact pruning regions. For example, in Fig. 24b, instead
of segment BC , we can bound the approximate pruning re-
gion with segments B I and I C , where I is an arbitrary point
on the parabola. For simplicity, in the sequel, we always ap-
proximate a parabola using a single segment, but extending
our discussion to using multiple segments is straightforward.

In general, for any dimensionality d , the pruning re-
gion defined by a point p is decided by three d-dimensional
planes, two of which are the bisector planes ⊥(qA, p) and
⊥(qB, p), respectively. To identify the third one, we first ob-
tain two d-dimensional planes L A, L B that are perpendicular
to segment qAqB , and cross qA, qB respectively (in Fig. 24
where d = 2, L A and L B are lines lA and lB , respectively).
Planes L A and ⊥(qA, p) intersect into a (d −1)-dimensional
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plane L ′
A, and similarly, L B and ⊥(qB, p) produce a

(d − 1)-dimensional plane L ′
B (in Fig. 24, L ′

A and L ′
B are

points B and C , respectively). As shown in the following
lemma, there exists a d-dimensional plane passing both L ′

A
and L ′

B , and this is the 3rd plane bounding the pruning
region.

Lemma 3 Both L ′
A and L ′

B belong to a d-dimensional
plane satisfying the following equation:

d∑

i=1

(2p[i] − qA[i] − qB[i]) · x[i]

+
d∑

i=1

(
qA[i] · qB[i] − p[i]2

2

)
= 0 (1)

where x[i] denotes the i-th (1 ≤ i ≤ d) coordinate of a
point in the plane, and similarly, p[i], qA[i], qB[i] describe
the coordinates of p, qA, and qB, respectively.

Proof Presented in the appendix. �

The next lemma establishes the correctness of the prun-

ing region formulated earlier.

Lemma 4 Given a query segment qAqB and a data point
p, consider half-spaces H Sp(qA, p), H Sp(qB, p) (decided
by bisectors ⊥(qA, p) and ⊥(qB, p)), and the half-space
H Sp(L) that is bounded by the plane L of Eq. (1) and
contains p. Then, no point in H Sp(qA, p) ∩ H Sp(qB, p) ∩
H Sp(L) can be a RNN of any point q on qAqB.

Proof Presented in the appendix. �

We are ready to clarify the details of pruning an MBR N ,

given a set S of nc points {p1, . . . , pnc}. At the beginning,
we set Nres M (the residual MBR) to N . For each pi (1 ≤
i ≤ nc), we incrementally update Nres M using 3 half-spaces
H1, H2, H3 that are “complement" to those in Lemma 4.
Specifically, H1 and H2 correspond to H SqA(qA, pi ) and
H SqB (qB, pi ) respectively, and H3 is the half-space that is
decided by the d-dimensional plane of Eq. (1) (replacing p
with pi ), and contains qA (H3 can be represented with an
inequality that replaces the “=” in Eq. (1) with “≤”). For
every Hj (1 ≤ j ≤ 3), we apply the clipping algorithm of
[7] to obtain the MBR N j for the part of the previous Nres M

lying in Hj , after which Nres M is updated to ∪3
i=1 N j . To un-

derstand the correctness of the resulting Nres M , notice that
any point p, which belongs to the original Nres M but not
∪3

j=1 N j , does not fall in any of H1, H2, and H3, indicating
that p lies in the pruning region formulated in Lemma 4. If
Nres M becomes empty, no query result can exist in the sub-
tree of N , and N can be eliminated.

The extension to general values of k is straightforward.
Following the methodology of Sect. 4.1, we sort the points
in S according to their Hilbert values. Given the sorted
list {p1, . . . , pnc}, we examine the nc subsets {p1, . . . , pk},
{p2, . . . , pk+1}, . . . , {pnc , . . . , pk−1} in turn, and update

Fig. 25 The trimming algorithm for C-RkNN search

Nres M incrementally after each examination. Specifically,
given a subset {σ1, σ2, . . . , σk}, we obtain, for each point
σi (1 ≤ i ≤ k), three half-spaces Hi1, Hi2, Hi3 as described
earlier for the case of k = 1. For each of the 3k half-spaces
Hi j (1 ≤ i ≤ k, 1 ≤ j ≤ 3), we compute the MBR Ni j

for the part of (the previous) Nres M in Hi j . Then, the new
Nres M (after examining {σ1, σ2, . . . , σk}) equals the union
of the 3k MBRs Ni j (1 ≤ i ≤ k and 1 ≤ j ≤ 3). Figure 25
presents the trimming algorithm for any value of k. This al-
gorithm returns ∞ if the final Nres M after considering all
the nc subsets of S is empty. Otherwise (Nres M �= ∅), it re-
turns the minimum distance between Nres M and the query
segment qAqB (see [2] for computing the distance between
a segment and a rectangle for arbitrary dimensionality).

5.2 The C-TPL algorithm

We proceed to elaborate the proposed algorithm, C-TPL,
for C-RkNN queries. As with TPL, C-TPL also has a fil-
ter and a refinement step for retrieving and verifying can-
didates, respectively. However, unlike conventional RkNN
search where the actual NNs of the verified candidates do
not need to be retrieved, as illustrated shortly, this is neces-
sary for C-RkNN retrieval in order to obtain the split points.
Therefore, C-TPL includes a third phase, the splitting step,
for computing the split points. In the sequel, we explain C-
TPL using a 2D example with k = 1. Since C-TPL is similar
to TPL, our discussion focuses on clarifying the differences
between the two algorithms.

Consider Fig. 26a, which shows part of a dataset and the
MBRs of the corresponding R-tree in Fig. 26c. The filter
step of C-TPL visits the entries in ascending order of their
mindist to qAqB , and maintains the encountered entries in a
heap H . The first few nodes accessed are the root, N1, and
N4, leading to H = {p1, N2, N5, p3, N3, N6}. Then, p1 is
removed from H , and becomes the first candidate in Scnd .
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Fig. 26 Illustration of the C-TPL algorithm

By the reasoning of Fig. 24a, p1 prunes polygon CLRFD,
where segments CL and RF lie on ⊥(p1, qA) and ⊥(p1, qB)
respectively, and point L (R) is on the line perpendicular to
qAqB passing qA (qB).

Since Scnd is not empty, for every MBR/point de-heaped
subsequently, C-TPL attempts to prune it using the algo-
rithm c-k-trim of Fig. 25. Continuing the example, C-TPL
visits node N2, where N9 cannot contain any query result (it
falls in polygon CLRFD, i.e., c-k-trim returns mindist(qAqB,
Nres M

9 ) = ∞), and is added to the refinement set Srfn. On
the other hand, N7 and N8 (MBRs in node N2) are inserted
to H (= {N7, N5, p3, N3, N6, N8}), using mindist(qAqB,
Nres M

7 ) and mindist(qAqB, Nres M
8 ) as the sorting keys. The

algorithm proceeds by accessing N7, taking p2 (found in
N7) as the second candidate (which eliminates polygon
HMQEG), and inserting N5, p3, p5 to Srfn (they fall in the
union of polygons CLRFD and HMQEG). Then, C-TPL
visits nodes N3, N10, includes p4 as a candidate (which
prunes polygon AB J K I ), and adds all the remaining
entries in H to Srfn = {N9, N5, N6, N8, N11, p3, p5, p7},
terminating the filter step.

We illustrate the refinement step using Fig. 26b (which
shows some data points hidden from Fig. 26a). A candidate
p is a final result if and only if no other data point exists in
the circle centered at p with a radius mindist(qAqB, p) (the
shaded areas represent the circles of the 3 candidates p1,
p2, p4). C-TPL invalidates a candidate immediately if its
circle contains another candidate. In Fig. 26b, since no can-
didate can be pruned this way, C-TPL associates each candi-
date with a value NNdist, initialized as its distance to another
nearest candidate. In particular, p1.NNdist = p2.NNdist =
dist(p1, p2) (they are closer to each other than to p4), and
p4.NNdist = dist(p4, p1).

The remaining refinement is performed in rounds. The
first round is invoked with Prfn = {p3, p5, p7} and Nrfn =
{N9, N5, N6, N8, N11} including the points and MBRs in
Srfn, respectively. For every point p ∈ Prfn, C-TPL checks
(i) if it falls in the circle of any candidate (i.e., eliminat-
ing the candidate), and (ii) if it can update the NNdist of
any candidate. In our example, no point in Prfn satisfies
(i), but p1.NNdist is modified to dist(p1, p3) (i.e., p3 is
the NN of p1 among all the data points seen in the re-
finement step). Similarly, p2.NNdist and p4.NNdist become
dist(p2, p5) and dist(p4, p7), respectively.

For each MBR N ∈ Nrfn, C-TPL first examines whether
its minmaxdist to a candidate is smaller than the radius of
the candidate’s shaded circle. In Fig. 26b, the right edge of
N11 lies inside the circle of p4, which discards p4 as a false
hit (N11 is guaranteed to contain a point that is closer to p4
than q). Then, C-TPL populates the toVisit list of each re-
maining candidate with those MBRs intersecting its circle,
i.e., toVisit(p1) = N5 and toVisit(p2) = ∅ (indicating that
p2 is a final result). In TPL, nodes of Nrfn that do not appear
in any toVisit list can be discarded, while C-TPL collects
(among such nodes) into a set Ssplt those that may contain
the NN of a candidate. In our example, Ssplt contains N6 and
N8 because mindist(N6, p1) and mindist(N8, p1) are smaller
than the current p1.NNdist and p2.NNdist, respectively. Note
that N5 is not collected (even though mindist(p1, N5) <
p1.NNdist) because it belongs to p1.toVisit.

The refinement round finishes by selecting a node (i.e.,
N5) from the toVisit lists to be visited next, using the same
criteria as in TPL. The next round is carried out in the same
way with an empty Nrfn and a Prfn containing the points p8,
p9 in N5. Both of them fall out of the circle of p1 (i.e., they
cannot invalidate p1). Furthermore, they do not affect the
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NNdist of the current candidates. Since all toVisit lists are
empty, the refinement step is completed, and confirms p1
and p2 as the final results.

C-TPL now enters the splitting step which obtains the
true NNdist for every candidate with respect to the entire
dataset. Towards this, it performs a best-first NN search for
every confirmed candidate in turn, using the nodes preserved
in Ssplt = {N6, N1}. For every data point encountered dur-
ing the NN search of one candidate, C-TPL also attempts to
update the NNdist for the other candidates. Assume that in
Fig. 26, the algorithm performs the NN search for p1 first,
and processes the MBRs of Ssplt in ascending order (i.e.,
{N6, N1}) of their mindist to p1. Since mindist(p1, N6) <
p1.NNdist, node N6 is visited. Although the points p3 and
p10 in N6 do not affect p1.NNdist, p2.NNdist (originally
equal to dist(p2, p5)) is decreased to dist(p2, p3). Since
p1.NNdist = dist(p1, p3) is smaller than the mindist be-
tween p1 and the next entry N1 in Ssplt , the NN search of p1
finishes. Next, a similar search is performed for p2 (using
the remaining MBRs in Ssplt ), accessing N8 and finalizing
p2.NNdist to dist(p2, p6).

To decide the split points, C-TPL draws 2 circles cen-
tering at p1 and p2 with radii equal to p1.NNdist and
p2.NNdist, respectively. As shown in Fig. 26, these cir-
cles intersect qAqB at s1 and s2. Hence, the final result
of the C-RNN query is: {<{p1}, [qA, s1)>, <∅, [s1, s2)>,
<{p2}, [s2, qB]>} (points in [s1, s2) do not have any RNN).

Extending C-TPL for k = 1 to other values of k requires
modifications similar to those discussed in Sect. 4.2 (for ex-
tending TPL to k > 1). First, in the filter step, c-k-trim can
be applied for pruning only after Scnd has included at least
k points. Second, in the refinement step, the NNdist corre-
sponds to the distance between the candidate and its k-th NN
among all the points that have been examined in refinement.1

Furthermore, a candidate p can be invalidated (verified) if
there are at least (less than) k points in the circle centered at
p with radius mindist(qAqB, p). Third, in the splitting step,
a kNN search is needed for each verified candidate. The de-
tailed implementations of the above modifications are illus-
trated in Figs. 13 (replacing q with qAqB , and trim with c-
k-trim), 27 and 28, which present the pseudo-codes for the
filter, refinement, and splitting steps respectively, covering
arbitrary k and dimensionality.

We close this section by explaining how BJKS (origi-
nally designed for k = 1) can be extended to the case of
k > 1, based on the adapted SAA in Sect. 4.3. Conceptually,
for every point q on the query segment qAqB , the filter step
of BJKS retrieves as candidates the k NNs of q in each of the
6 partitions around q . All the NN searches can be performed
in a single traversal of the R-tree using the technique of [2].
For each candidate p, the refinement step obtains its k-th NN
(in the entire data space) p′, and confirms p as a result only
if the circle centered at p with radius dist(p, p′) intersects

1 Since points are not encountered in ascending order of their dis-
tances to a candidate, in order to maintain NNdist, C-TPL also keeps
the coordinates of the k NNs for each candidate, as illustrated in
Fig. 27.

Fig. 27 The refinement algorithm of C-TPL

qAqB . Finally, the split points on qAqB can be computed in
the same way as C-TPL, i.e., taking the intersection between
the circle of p and qAqB . The extended BJKS, however, is
also restricted to 2D space, due to the limitation of SAA.

6 Experiments

In this section, we experimentally evaluate the efficiency
of the proposed algorithms, using a Pentium IV 3.4GHz
CPU. We deploy 5 real datasets2, whose statistics are sum-
marized in Table 2. Specifically, LB, NA, and LA contain
2D points representing geometric locations in Long Beach
County, North America, and Los Angeles, respectively.

2 LB, NA, and LA can be downloaded from http://www.census.gov/
geo/www/tiger, Wave from http://www.ndbc.noaa.gov, and Color from
http://www.cs.cityu.edu.hk/∼taoyf/ds.html.
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Fig. 28 The splitting step algorithm of C-TPL

Wave includes the measurements of wave directions at the
National Buoy Center, and Color consists of the color his-
tograms of 65k images. For all datasets, each dimension of
the data space is normalized to range [0, 10000]. We also
create synthetic data following the uniform and Zipf distri-
butions. The coordinates of each point in a uniform dataset
are generated randomly in [0, 10000], whereas, for a Zipf
dataset, the coordinates follow a Zipf distribution skewed
towards 0 (with a skew coefficient3 0.8). In both cases, a
point’s coordinates on various dimensions are mutually in-
dependent.

Every dataset is indexed by an R*-tree [1] where the
node size is fixed to 1k bytes (we choose a smaller page
size to simulate practical scenarios where the dataset cardi-
nality is much larger). Accordingly, the node capacity (i.e.,
the maximum number of entries in a node) equals 50, 36,
28, and 23 entries for dimensionalities 2, 3, 4, and 5, re-
spectively. The query cost is measured as the sum of the I/O
and CPU time, where the I/O time is computed by charging
10ms for each page access. We present our results in two
parts, focusing on conventional RkNN search in Sect. 6.1
and continuous retrieval in Sect. 6.2, respectively.

6.1 Results on conventional RkNN queries

We compare TPL against SAA (for 2D data) and SFT be-
cause, as discussed in Sect. 2.2, these are the only meth-

3 When the skew coefficient equals 1, all numbers generated by the
Zipf distribution are equivalent. When the coefficient equals 0, the Zipf
distribution degenerates to uniformity.

Table 2 Statistics of the real datasets used

LB NA LA Wave Color

Dimensionality 2 2 2 3 4
Cardinality 123k 569k 1314k 60k 65k

ods applicable to dynamic datasets. Our implementation of
SAA incorporates the optimization of [16] that performs the
6k constrained NN queries4 (in the filter step) with a single
traversal of the R-tree. Recall that the filter phase of SFT per-
forms a K NN search where K should be significantly larger
than k. In the following experiments, we set K to 10d · k,
where d is the dimensionality of the underlying dataset5,
e.g., K = 20 for a RNN query on a 2D dataset. We remind
that SFT is approximate, i.e., false misses cannot be avoided
unless K is as large as the dataset size.

The experiments in this section aim at investigating the
influence of these factors: data distribution, dataset cardinal-
ity, dimensionality, value of k, and buffer size. In particular,
the first three factors are properties of a dataset, the next one
a query parameter, and the last factor is system-dependent. A
“workload" consists of 200 queries with the same k whose
locations follow the distribution of the underlying dataset.
Each reported value in the following diagrams is averaged
over all the queries in a workload. Unless specifically stated,
the buffer size is 0, i.e., the I/O cost is determined by the
number of nodes accessed.

Figure 29 evaluates the query cost (in seconds) of alter-
native methods as a function of k using the real datasets. The
cost of each method is divided in two components, corre-
sponding to the overhead of the filter and refinement steps,
respectively. The number on top of each column indicates
the percentage of I/O time in the total query cost. For TPL,
we also demonstrate (in brackets) the average number of
candidates retrieved by the filter step. These numbers are
omitted for SAA (SFT) because they are fixed to 6k (10d ·k).
SAA is not tested on Wave and Color because the datasets
have 3 and 4 dimensions, respectively.

Clearly6, TPL is the best algorithm for all datasets, es-
pecially for large k. In particular, the maximum speedup of
TPL over SAA (SFT) is 37 (10), which occurs for LB (NA)
and k = 16. Notice that TPL is especially efficient in the
refinement step. Recall that TPL performs candidate ver-
ification using directly the refinement set (containing the
points and nodes pruned) from the filter step, avoiding du-
plicate accesses to the same node. Furthermore, most candi-
dates are invalidated directly by other candidates or points in

4 Stanoi et al. [16] discuss only RNN search (k = 1). For k > 1, we
use the extension of SAA presented in Sect. 4.3.

5 In the experiments of [15], SFT used K = 50 even for k = 1. We
use a relatively lower K to reduce the cost of this method.

6 The cost is different from the results reported in the short version
[18] of this paper, where query points uniformly distributed in the data
space, instead of following the underlying data distribution. Further-
more, all methods consume less CPU time because we used a more
powerful machine.
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Fig. 29 RkNN cost vs. k (real data)

the refinement set. The remaining candidates can be verified
by accessing a limited number of additional nodes.

The performance of SAA is comparable to that of TPL in
the filter step, because SAA retrieves a small number (com-
pared to the node capacity) of NNs of the query point q ,
which requires visiting only the few nodes around q . How-
ever, SAA is expensive in the refinement phase since it in-
vokes one NN search for every candidate. SFT is most costly
in filtering because it retrieves numerous (10d ·k) candidates;
its refinement is more efficient than SAA (due to the supe-
riority of boolean range queries over NN search), but is still
less effective than TPL. All the algorithms are I/O bounded.
However, as k increases, the CPU cost of TPL occupies a
larger fraction of the total time (indicated by its decreasing
I/O percentage as k grows) due to the higher cost of k-trim
which needs to process more half-spaces.

The next set of experiments inspects the impact of
the dimensionality. Towards this, we deploy synthetic
datasets (Uniform and Zipf) containing 512k points of

dimensionalities 2–5. Figure 30 compares the cost of TPL
and SFT (SAA is not included because it is restricted to
2D only) in answering R4NN queries (the parameter k = 4
is the median value used in Fig. 29). The performance of
both algorithms degrades because, in general, R-trees be-
come less efficient as the dimensionality grows [19] (due
to the larger overlap among the MBRs at the same level).
Furthermore, the number of TPL candidates increases, lead-
ing to higher cost for both the filter and refinement phases.
Nevertheless, TPL is still significantly faster than SFT.

To study the effect of the dataset cardinality, we use 3D
Uniform and Zipf datasets whose cardinalities range from
128k to over 2 million. Figure 31 measures the performance
of TPL and SFT (in processing R4NN queries) as a function
of the dataset cardinality. TPL incurs around a quarter of
the overhead of SFT in all cases. The step-wise cost growth
corresponds to an increase of the tree height (from 4 to 5).
Specifically, for Uniform (Zipf) data, the increase occurs at
cardinality 1024k (2048k).
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Fig. 30 RkNN cost vs. dimensionality (k = 4, cardinality = 512k)

The last set of experiments in this section examines the
performance of alternative methods in the presence of a
LRU buffer. We process R4NN queries on the 2D synthetic
datasets with cardinality 512k, varying the buffer size from
0% to 10% of the R-tree size. Given a workload, we measure
the average cost of the last 100 queries (i.e., after “warming
up” the buffer with the first 100 queries). Figures 32a and
32b demonstrate the results for Uniform and Zipf data, re-
spectively. The refinement step of SAA and SFT requires
multiple NN/boolean searches that repetitively access sev-
eral nodes (e.g., the root of the R-tree), and a (small) buffer
ensures loading such nodes from the disk only once, leading
to dramatic reduction in the overall cost. Similar phenomena
are not observed for TPL because it never accesses the same
node twice in a single query. For buffer sizes larger than 2%,
the cost of all algorithms is decided by their filter phase, and
SAA becomes more efficient than SFT. TPL again outper-
forms its competitors in all cases.

6.2 Results on continuous RkNN queries

Having demonstrated the efficiency of TPL for conventional
RNN search, we proceed to evaluate C-TPL for continu-
ous retrieval. The only existing solution BJKS [2] assumes
k = 1. For k > 1, we compare C-TPL against the extended
version of BJKS explained at the end of Sect. 5.2. In addition
to the parameter k, the query performance is also affected by
the length l of the query segment. We generate a segment by
first deciding its starting point qA following the underlying
data distribution, and then selecting the ending point qB ran-
domly on the circle centered at qA with radius l. A workload
contains 200 queries with the same k and l.

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

query cost (sec)
filter refinement 

90%

96%
(33)

91%

96%
(33)

92%

96%
(34)

92%

96%
(34)

93%

96%
(33)

SFT TPL SFT TPL SFT TPL SFT TPLSFT TPL
128k 256k 512k 1024k 2048k

cardinality

(a) Uniform

0

0.4

0.8

1.2

1.6

2

91%

96%
(32)

91%

96%
(32)

91%

96%
(33)

91%

96%
(33)

94%

96%
(33)

query cost (sec)
filter refinement 

SFT TPL SFT TPL SFT TPL SFT TPLSFT TPL
128k 256k 512k 1024k 2048k

cardinality

(b) Zipf

Fig. 31 RkNN cost vs. cardinality (k = 4, dimensionality = 3)
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Fig. 32 RkNN cost vs. buffer size (k = 4, dimensionality = 2)
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Fig. 33 C-RkNN cost vs. k (real data, l = 100)

The first set of experiments fixes l to 100 (recall that
each axis of the data space has length 10000), and measures
the cost of BJKS and C-TPL as a function of k, using the
real datasets. Figure 33 illustrates the results (BJKS is not
applicable to Wave and Color). Similar to the previous
diagrams, the percentage of the I/O time in the total cost
is shown on top of each column. We also demonstrate the
average number of candidates returned by the filter step of
C-TPL and BJKS in brackets. C-TPL is the better method
in all the experiments, and its comparison with BJKS is
similar to that between TPL and SAA in Fig. 29. Compared
to conventional RkNN search, the number of candidates
retrieved by C-TPL is much higher, which increases the
overhead of trimming, and explains why the CPU cost of
C-TPL accounts for a larger fraction of the total query
time than TPL. Setting k to the median value 4, Fig. 34
examines the performance of BJKS and C-TPL by varying

l from 10 to 200. As l increases, both algorithms retrieve
more candidates and incur higher overhead. C-TPL still
outperforms BJKS significantly.

Next we study the effects of dimensionality and cardi-
nality on the performance of C-TPL. Figure 35 plots the
results as a function of the dimensionality using synthetic
datasets containing 512k points and workloads with k = 4
and l = 100. C-TPL is more expensive in high dimensional
space because of the degradation of R-trees, and the larger
number of query results. In Fig. 36, we focus on 3D space,
and evaluate the performance for various dataset sizes. Sim-
ilar to Fig. 30, the cost growth demonstrates a step-wise be-
havior due to the increase of the R-tree height at 1024k and
2048k for Uniform and Zipf, respectively.

Finally, we demonstrate the influence of LRU buffers
on BJKS and C-TPL. As with the settings of Fig. 32, the
two algorithms are used to process R4NN queries on a 2D
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Fig. 34 C-RkNN cost vs. l (real data, k = 4)

dataset with cardinality 512k, as the buffer size changes
from 0% to 10% of the size of the corresponding R-tree.
For each workload, only the cost of the last 100 queries is
measured. Figures 37 illustrates the overhead as a function
of the buffer size, demonstrating phenomena similar to those
in Fig. 32. Specifically, BJKS improves significantly given a
small buffer, but C-TPL is consistently faster regardless of
the buffer size.

7 Conclusions

Existing methods for reverse nearest neighbor search focus
on specific aspects of the problem, namely static datasets,
retrieval of single (k = 1) RNNs or 2D space. This paper

proposes TPL, the first general algorithm for exact RkNN
search on dynamic, multidimensional datasets. TPL follows
a filter-refinement methodology: a filter step retrieves a set of
candidate results that is guaranteed to include all the actual
reverse nearest neighbors; the subsequent refinement step
eliminates the false hits. The two steps are integrated in a
seamless way that eliminates multiple accesses to the same
index node. An extensive experimental comparison verifies
that, in addition to applicability, TPL outperforms the previ-
ous techniques, even in their restricted focus. Furthermore,
it leads to a fast algorithm for answering continuous RkNN
queries (again, for arbitrary k and dimensionality).

A promising direction for future work concerns the ex-
tension of the general framework of TPL to alternative ver-
sions of the problem. One such example refers to metric
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Fig. 37 C-RkNN cost vs. buffer size (k = 4, dimensionality = 2)

space where the triangular inequality has to be used (in-
stead of bisectors) for pruning the search space. We also plan
to investigate the application of the proposed methodology
to other forms of RNN retrieval, particularly, bichromatic
[10, 17] and aggregate [11] RNN queries. Finally, it would
be interesting to develop analytical models for estimating (i)
the expected number of RNNs depending on the data prop-
erties (e.g., dimensionality, distribution, etc.) and (ii) the ex-
ecution cost of RNN algorithms. Such models will not only
facilitate query optimization, but may also reveal new prob-
lem characteristics that could lead to even better solutions.

Appendix: proofs for lemmas

Lemma 1 Given a query point q and an MBR N in 2D space, let
N resP be the part (residual polygon) of N satisfying a set S of half-
spaces, and N resM the residual MBR computed (by the algorithm
in Fig. 11) using the half-spaces in S. Then, mindist (N resM, q) =
mindist (N resP, q) in all cases.

Proof Since N resM always contains N resP, if N resM is empty, N resP is
also empty, in which case mindist (N resP, q) = mindist (N resM, q) =
∞. Hence, it suffices to discuss the possibility where N resM exists. We
use the name “contact” for the point in N resM (N resP) nearest to q . The
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following analysis shows that the contacts of N resM and N resP are the
same point, which, therefore, validates the lemma.

We achieve this by induction. First, if S is empty, both N resP and
N resM are equal to the original MBR N , and obviously, their contacts
are identical. Assuming that N resP and N resM have the same contact
for all sets S whose cardinalities are no more than m (≥ 0), next we
prove that they have the same contact for any set S with a cardinality
m + 1. Let R P (RM ) be the residual polygon (MBR) with respect to
the first m half-spaces in S, and cP (cM ) be the contact of R P (RM ).
By the inductive assumption, cP = cM . Since RM is a rectangle, cM

appears either at a corner or on an edge of RM . We discuss these two
cases separately.

Case 1: (cM is a corner of RM ): Without loss of generality, assume
that the coordinates of cM are larger than or equal to those of q on both
dimensions. Denote h as the (m+ 1)-st half-space in S (recall that h
contains q). If cM satisfies h, then cM and cP remain the contacts of
N resM and N resP respectively, i.e., the final residual MBR and polygon
(after applying all the half-spaces in S) still have the same contact.

Now let us consider the scenario that cM violates h. Hence, the
boundary of h (a line) must intersect segment cM q , and cross either
the left or bottom edge of RM (if not, RresM becomes empty). Due to
symmetry, it suffices to consider that line h intersects the left edge, as
in Fig. 38a. The intersection point is exactly the contact cresM of N resM

(note that the part of RM lower than cresM will not appear in N resM).
Thus, it remains to prove that this intersection is also the contact cresP

of N resP.
Observe that cresP must lie inside the shaded area, due to the fact

that R P (which contains cresP) is entirely bounded by RM . Actually,
cresP definitely falls on the part of line h inside RM . To prove this,
assume, on the contrary, that cresP is at some position (e.g., c1) above
line h. Then, the segment connecting c1 and cP intersects line h at a
point c2. Since both c1 and cP belong to R P , and R P is convex, c2 also
lies in R P , indicating that c2 belongs to N resP, too (N resP is the part of
R P qualifying half-space h). Point c2, however, is closer to q than c1,
contradicting the assumption that c1 is the contact cresP of N resP.

It follows that if cresP �= cresM (e.g., cresP = c2 in Fig. 38a), then
the x-coordinate of cresP must be larger than that of cresM, which, in
turn, is larger than that of q . As cresM is closer to q than c2, the hy-
pothesis that cresM is not the contact of N resP also implies that cresM

does not belong to N resP, meaning that cresM does not fall in a half-
space h′ (one of the first m planes) in S. However, since both cM (the
contact of the residue MBR RM after applying with the first m planes)
and c2 qualify h′, the boundary of h′ must cross segment cresMc2 and
cM cresM, but not cM q . This is impossible (see Fig. 38a), thus verifying
cresP = cresM.

Case 2: (cM is on an edge of RM ): Assume that cM (= cP ) lies on
the left edge of RM as illustrated in Fig. 38b (the scenarios where cM is
on other edges can be proved in the same manner). As in Case 1, if cM

satisfies the (m + 1)-st half-space h in S, both cM and cP remain the
contacts of N resM and N resP, respectively. Otherwise, line h intersects
segment cM q , and may cross the left edge of RM above or below cM .
Due to symmetry, let us focus on the scenario where h intersects the

Fig. 38 Illustration of the proof of Lemma 1

q

Fig. 39 The worst case of SAA

left edge at a point above cM (Fig. 38b), which is the contact cresM of
N resM. The goal is to show that cresM is also the contact cresP of N resP.
Since RM completely encloses R P , cresP falls in the shaded triangle of
Fig. 38b. Then, cresP = cresM can be established in exactly the same
way as in Case 1 (notice that the relative positions of q , cM , cresM, h,
and the shaded area are identical in Figs. 38a and 38b).

Note that Lemma 1 is also useful to “constrained k nearest neigh-
bor search” [6], which finds the k data points in a polygonal constraint
region that are closest to a query point q (recall that such queries
are the building-block for SAA and its extended version discussed in
Sect. 4.3). As shown in [6], the best-first algorithm can process a con-
strained kNN search optimally (i.e., accessing only the nodes of an
R-tree that need to be visited by any algorithm), provided that it is pos-
sible to compute the minimum distance from q to the part of an MBR
N inside the polygon. Lemma 1 provides an efficient way for obtaining
this distance in 2D space, which is equal to the mindist from q to the
residue MBR of N , after trimming N using the half-spaces bounding
the constraint region.

Lemma 2 Given a 2D RkNN query q, divide the space around q into
6 equal partitions as in Fig. 39. Then, the k NNs of q in each partition
are the only possible results of q. Furthermore, in the worst case, all
these points may be the actual RkNNs.

Proof We first prove the first part of the lemma: if a point p is not
among the k NNs of q in a partition, p cannot be a query result. Its cor-
rectness for k = 1 has been established in [16], which also shows an
interesting corollary: if p′ is the closest NN of q in the same partition
S that contains p, then dist(p, p′) < dist(p, q). Utilizing these prop-
erties, in the sequel, we will prove that, if the first part of the lemma
is true for k = m (where m is an arbitrary integer), it also holds for
k = m + 1. In fact, if p′ is removed from the dataset, we know that
p is not among the m NNs of q in S. By our inductive assumption,
there exist at least m points (different from p′) that are closer to p than
q . Since we already have dist(p, p′) < dist(p, q), there are at least
m + 1 points in the original dataset closer to p than q , i.e., p is not a
R(m + 1)NN of q .

In order to prove the second part of the lemma (i.e., the number of
RkNNs in 2D space can be 6k), it suffices to construct such an example.
Consider the 6 rays that partition the data space around q . On each
ray, we place k points in ascending order of their distances to q as
follows: the first point has distance 1 to q , and every subsequent point
has distance 1 to the previous one. Figure 39 shows such an example
for k = 2. These 6k points constitute a dataset where all the points
have q as one of their k NNs. �


Lemma 3 Both L ′
A and L ′

B belong to a d-dimensional plane satisfy-
ing the following equation:

d∑

i=1

(2p[i] − qA[i] − qB [i]) · x[i]

+
d∑

i=1

(
qA[i] · qB [i] − p[i]2

2

)
= 0 (2)
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where x[i] denotes the i-th (1 ≤ i ≤ d) coordinate of a point in the
plane, and similarly, p[i], qA[i], qB [i] describe the coordinates of p,
qA, and qB, respectively.

Proof We prove the lemma only for L ′
A because the case of L ′

B is
similar. We achieve this by representing L ′

A using the coordinates of
p, qA, and qB . For this purpose, we obtain the equation of L A:

d∑

i=1

((qB [i] − qA[i]) · x[i]) −
d∑

i=1

((qB [i] − qA[i]) · qA[i]) = 0 (3)

and the equation of ⊥(qA, p):

d∑

i=1

((qA[i] − p[i]) · x[i]) −
d∑

i=1

qA[i]2 − p[i]2

2
= 0 (4)

Therefore, L ′
A includes the points x that satisfy Eqs. (3) and (4) si-

multaneously. Hence, all the d-dimensional planes7 that cross L ′
A are

captured by:

d∑

i=1

(qB [i] − qA[i])x[i] −
d∑

i=1

(qB [i] − qA[i])qA[i]

+ λ

(
d∑

i=1

(qA[i] − p[i])x[i] −
d∑

i=1

qA[i]2 − p[i]2

2

)
= 0 (5)

where various planes are distinguished with different λ (an arbitrary
real number). The plane of Eq. (2) corresponds to setting λ = 2. �

Lemma 4 Given a query segment qAqB and a data point p, consider
half-spaces H Sp(qA, p), H Sp(qB , p) (decided by bisectors ⊥(qA, p)
and ⊥(qB , p)), and the half-space H Sp(L) that is bounded by the
plane L of Eq. (1) and contains p. Then, no point in H Sp(qA, p) ∩
H Sp(qB , p) ∩ H Sp(L) can be a RNN of any point q on qAqB.

Proof Let L A (L B ) be a d-dimensional plane that is perpendicu-
lar to qAqB and crosses qA (qB ). Plane L A defines two half-spaces:
H SqB (L A) that contains qB , and H S¬qB (L A) that does not (e.g., in
Fig. 24a, H SqB (L A)/H S¬qB (L A) is the area on the right/left of line
lA). Similarly, L B also introduces two half-spaces H SqA (L B) and
H S¬qA (L B), respectively. Note that H S¬qB (L A), H S¬qA (L B), and
H SqB (L A) ∩ H SqA (L B) are 3 disjoint regions whose union consti-
tutes the entire data space. For a point p′ that falls in H S¬qB (L A)
or H S¬qA (L B), its minimum distance to segment qAqB equals
dist(qA, p′) or dist(qB , p′), respectively. For a point p′ that lies in
H SqB (L A)∩H SqA (L B), however, the distance from p′ to qAqB equals
the distance from p′ to its projection on qAqB .

As shown in the proof of Lemma 3, L A, ⊥(qA, p), and L in-
tersect at the same (d − 1)-dimensional plane, and similarly, L B ,
⊥(qB , p), and L intersect at another (d − 1)-dimensional plane. Since
L A and L B are parallel to each other, they divide H Sp(qA, p) ∩
H Sp(qB , p) ∩ H Sp(L) into 3 disjoint regions: (i) H Sp(qA, p) ∩
H S¬qB (L A), (ii) H Sp(qB , p) ∩ H S¬qA (L B), and (iii) H SqB (L A) ∩
H SqA (L A) ∩ H Sp(L). For example, in Fig. 24a, the 3 regions are
polygons ABFE, C DG, and BCG F , respectively. Let p′ be a point
in region (i), which satisfies dist(p, p′) < dist(qA, p′) (because p′ is
in H Sp(qA, p)). Since dist(qA, p′) is the minimum distance from p′
to qAqB (recall that p′ is in H S¬qB (L A)), for any point q on qAqB , it
holds that dist(p, p′) < dist(q, p′), meaning that p′ cannot be a RNN
of q . By symmetry, no point p′ in region (ii) can be the RNN of any
point on qAqB .

The remaining part of the proof will show that no point p′ in re-
gion (iii) can be a query result either. We first prove this in 2D space,

7 Strictly speaking, Eq. (5) does not include ⊥(qA, p). We ignore
this special case because it does not affect the subsequent discussion.
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Fig. 40 Illustration of the proof in 2D space

where region (iii) is the area bounded by lines lA, lB , and segment
BC in Fig. 24a. Our analysis distinguishes two cases, depending on
whether p′ lies on or below segment BC , respectively. Figure 40a
demonstrates the first case (p′ is on BC), where A is the projection
of p′ on qAqB . Our goal is to establish, for any point q on qAqB , the
inequality dist(p, p′) ≤ d(p′, q) (which indicates p′ is not a RNN of
q). Next, we derive an ever stronger result: dist(p, p′) is actually no
more than d(p′, A), which is a lower bound for d(p′, q).

Denote r as the ratio between the lengths of segments Bp′ and
p′C , i.e., r = dist(B, p′)/dist(p′, C). Then:

dist(p′, A) = r · dist(qB , C) + (1 − r) · dist(qA, B) (6)

Let D be the intersection between segment pC and a line that passes p′

and is parallel to Bp. Since dist (p,D)
dist (p,C)

= dist (B,p′)
dist (B,C)

= r and dist (p′,D)
dist (p,B)

=
dist (p′,C)
dist (B,C)

= 1 − r , we have:

dist (p, D) = r · dist (p, C) (7)

dist (p′, D) = (1 − r) · dist (p, B) (8)

Since B and C are on the bisectors ⊥(qA, p) and ⊥(qB , p) respec-
tively, it holds that dist (p, B) = dist (qA, B) and dist (p, C) =
dist (qB , C), leading to:

dist(p′, A)

= r · dist (p, C) + (1 − r) · dist(p, B) (by Eq. (6))

= dist (p, D) + dist (p′, D) (by Eqs. (7) and (8))

≥ dist (p, p′) (by triangle inequality)

The equality in the above formula holds only if p′ is at B or C .
Next, we discuss the second case, namely, point p′ appears below

segment BC (meanwhile, between lines lA and lB ), shown in Fig. 40b
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where A is again the projection of p′ on qAqB . Similar to the first
case, we aim at proving dist (p, p′) < dist (p′, A) (which results in
dist (p, p′) ≤ dist (p′, q) for any point q on segment qAqB ). Let D
be the intersection between segments BC and p′ A. As proved earlier,
dist (p, D) ≤ dist (D, A), and hence:

dist (p, D) + dist (p′, D) ≤ dist (D, A)

+dist (p′, D) = dist (p′, A) (9)

By triangle inequality, the left part of the above inequality is larger
than dist (p, p′), thus verifying dist (p, p′) < dist (p′, A). Although
the position of p in Figs. 40a and 40b is to the left of lA, it is not hard
to observe that the above analysis holds for any position of p.

So far we have proved that, in 2D space, no point in region (iii),
i.e., H SqB (L A) ∩ H SqA (L A) ∩ H Sp(L) can be a query result. Now
we proceed to show that this is also true for arbitrary dimensionality
d , through a careful reduction to the 2D scenario. Specifically, let us
construct a coordinate system as follows. The origin of the system is
point qA, and the first axis coincides with segment qAqB . This axis and
point p decide a 2D sub-space, and in this sub-space, the line perpen-
dicular to qAqB is taken as the second axis. Then, the remaining d − 2
dimensions are decided arbitrarily with the only requirement that all
the resulting d dimensions are mutually orthogonal. The rationale for
introducing such a coordinate system is that the coordinates of p, qA,
and qB are 0 on all the dimensions except the first two, i.e., they lie on
the d-dimensional plane Lc: x[3]+ x[4]+ · · · + x[d] = 0. As a result,
Eq. (2), the representation of plane L , is simplified to (note the upper
limits of the two summations):

2∑

i=1

(2p[i] − qA[i] − qB [i]) · x[i]

+
2∑

i=1

(
qA[i] · qB [i] − p[i]2

2

)
= 0 (10)

The above formula implies that (i) L is perpendicular to Lc, and (ii)
every point x in the half-space H Sp(L) (i.e., the half-space bounded
by L containing p) satisfies the inequality that results from changing
the equality sign in Eq. 10 to “≥”. Another benefit from the constructed
coordinate system is that planes L A and L B are described concisely by
equations x1[1] = 0 and x1[1] = qB [1], respectively (qB [1] is the
coordinate of qB on the first axis).

Consider any point p′ that is in H SqB (L A)∩H SqA (L A)∩H Sp(L);
let A be its projection on qAqB . As mentioned earlier, qA and qB
belong to plane Lc, and hence, A also lies on this plane, implying
A[i] = 0 for 3 ≤ i ≤ d . To prove that p′ is not a RNN of any point
on qAqB , (following the reasoning in the 2D case) we will show that
dist (p, p′) ≤ dist (p′, A). Since

dist (p, p′) =
d∑

i=1

(p[i] − p′[i])2

=
2∑

i=1

(p[i] − p′[i])2 +
d∑

i=3

p′[i]2

(p[i] = 0 for 3 ≤ i ≤ d) (11)

and

dist (p′, A) =
d∑

i=1

(p′[i] − A[i])2

=
2∑

i=1

(p′[i] − A[i])2 +
d∑

i=3

p′[i]2 (12)

it suffices to show that �2
i=1(p[i] − p′[i])2 ≤ �2

i=1(p[i] − A[i])2.
Proving this inequality can be reduced to the 2D case we solved earlier,

by projecting L A, L B , L , and p′ into a 2D sub-space that involves only
the first 2 dimensions. Specifically, the projection of L A (L B ) is a line
lA (lB ) that crosses qA (qB ), and is perpendicular to segment qAqB .
The projection of L is a line l that intersects lA (lB ) at a point equi-
distant to p and qA (qB ). Finally, p′ is projected into a point between
lA and lB that falls either on l, or on the same side of l as p. This leads
to the situation in Fig. 40a or 40b, where l is the line passing segment
BC . Thus, we complete the proof.
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