
15

Range Search on Multidimensional
Uncertain Data

YUFEI TAO and XIAOKUI XIAO

Chinese University of Hong Kong

and

REYNOLD CHENG

Hong Kong Polytechnic University

In an uncertain database, every object o is associated with a probability density function, which de-
scribes the likelihood that o appears at each position in a multidimensional workspace. This article
studies two types of range retrieval fundamental to many analytical tasks. Specifically, a nonfuzzy
query returns all the objects that appear in a search region rq with at least a certain probability
tq . On the other hand, given an uncertain object q, fuzzy search retrieves the set of objects that are
within distance εq from q with no less than probability tq . The core of our methodology is a novel
concept of “probabilistically constrained rectangle”, which permits effective pruning/validation of
nonqualifying/qualifying data. We develop a new index structure called the U-tree for minimizing
the query overhead. Our algorithmic findings are accompanied with a thorough theoretical analy-
sis, which reveals valuable insight into the problem characteristics, and mathematically confirms
the efficiency of our solutions. We verify the effectiveness of the proposed techniques with extensive
experiments.

Categories and Subject Descriptors: H.2.2 [Database Management]: Physical Design—Access
Methods; H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Uncertain databases, range search

ACM Reference Format:
Tao, Y., Xiao, X., and Cheng, R. 2007. Range search on multidimensional uncertain data. ACM
Trans. Datab. Syst. 32, 3, Article 15 (August 2007), 54 pages. DOI = 10.1145/1272743.1272745
http://doi.acm.org/10.1145/1272743.1272745

This work was sponsored by two CERG grants from the Research Grant Council of the HKSAR
government. Specifically, Y. Tao and X. Xiao were supported by Grant CUHK 1202/06, and R. Cheng
by Grant PolyU 5138/06E.
Authors’ addresses: Y. Tao and X. Xiao, Department of Computer Science and Engineering, Chinese
University of Hong Kong, New Territories, Hong Kong; email: {taoyf; xkxiao}@cse.cuhk.edu.hk; R.
Cheng, Department of Computing, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong
Kong; email: csckcheng@comp.polyu.edu.hk.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 0362-5915/2007/08-ART15 $5.00 DOI 10.1145/1272743.1272745 http://doi.acm.org/
10.1145/1272743.1272745

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Article 15 / 2 • Y. Tao et al.

1. INTRODUCTION

Traditionally, a database describes objects with precise attribute values. Real-
world entities, however, are often accompanied with uncertainty. Common
sources of uncertainty include measurement errors, incomplete information
(typically, missing data), variance in estimation from a random sample set, and
so on. Furthermore, uncertainty may even be manually introduced in order
to preserve privacy, which is the methodology behind “k-anonymity” [Sweeney
2002] and “location-privacy” [Cheng et al. 2006b]. In recent years, the database
community has witnessed an increasing amount of research on modeling and
manipulating uncertain data, due to its importance in many emerging and tra-
ditional applications.

Consider a meteorology system that monitors the temperature, relative hu-
midity, and pollution level at a large number of sites. The corresponding read-
ings are taken by sensors in local areas, and transmitted to a central database
periodically (e.g., every 30 minutes). The database has a 3-value tuple for each
site, which, however, may not exactly reflect the current conditions. For in-
stance, the temperature at a site may have changed since it was measured.
Therefore, various probabilistic models should be deployed to capture different
attributes more accurately. For example, the actual temperature may be as-
sumed to follow a Gaussian distribution with a mean calculated based on the
last reported value (e.g., in the daytime, when temperature is rising, the mean
should be set higher than the latest sensor reading).

In some scenarios, an object cannot be represented with a “regular” model
(like uniform, Gaussian, and Zipf distributions, etc.), but demands a complex
probability density function (pdf) in the form of a histogram. This is true in
location-based services, where a server maintains the locations of a set of mov-
ing objects such as vehicles. Each vehicle o sends (through a wireless network)
its current location, whenever it has moved away from its previously updated
position x by a certain distance ε [Wolfson et al. 1999]. Therefore, at any time,
the server does not have the precise whereabout of o, except for the fact that
o must be inside a circle centering at x with radius ε, as shown in Figure 1(a).
Evidently, o cannot appear anywhere in the circle, since it is constrained by the
underlying road network, illustrated with the segments in Figure 1(a). The dis-
tribution of o can be approximated using a grid, where o can fall only in the grey
cells that intersect the circle and the network simultaneously. The probability
that o is covered by a particular cell is decided according to the application re-
quirements. A simple choice is to impose an equal chance for all the grey cells,
while more realistic modeling should take into account the distance between
the cell and x, the speed limits of roads, and so on.

Unlike in the above environments, where uncertainty is caused by the delay
in database updates, the raw data in some applications is inherently impre-
cise. Imagine a recommender company that assists clients to make promising
investment plans, based on their preferences on the principle amount, the num-
ber of years before advantageous gains (i.e., the “cold period duration”), etc. In
reality, it is difficult, or simply impossible, for a customer to specify unique val-
ues for these attributes. For instance, the amount of principle s/he is willing

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Range Search on Multidimensional Uncertain Data • Article 15 / 3

Fig. 1. Probabilistic modeling of uncertain objects.

to lay down may fall in a wide range of [$10k, $40k]. Obviously, depending on
the principle, her/his expectation for other attributes may also vary (e.g., with
a large principle, it would be reasonable to anticipate a shorter cold period).
Therefore, a preference profile is also an uncertain object whose pdf can be de-
scribed by a histogram, as demonstrated in Figure 1(b). The percentage in each
cell indicates the overall interest of the client in a plan whose (principle, cold-
period) 2D representation falls in the cell. For instance, s/he would not favor
small investments with short cold durations (which would involve high risk),
or large investments with lengthy cold periods (it would not be worthwhile to
have a huge amount of money nonspendable for a long time).

1.1 Motivation

As in traditional spatial databases, range search is also an important oper-
ation in the applications mentioned earlier, and the building block for many
other analytical tasks. However, since data is uncertain, it is no longer mean-
ingful to simply declare that an object o appears or does not appear in a query
region rq . Instead, the notion of “appearance” should be accompanied with a
value Prrange(o, rq), capturing the probability that o falls in rq , according to the
uncertainty modeling of o. In practice, users are typically only concerned about
events that may happen with a sufficiently large chance, that is, objects o whose
Prrange(o, rq) is at least a certain threshold tq .

The above requirements lead to a novel type of queries: probability threshold-
ing range retrieval. For instance, in the meteorology system discussed before,
such a query would “find every high-fire-hazard site satisfying the following
condition with at least 50% probability: its temperature is at least 86F degrees,
humidity at most 5%, and pollution index no less than 7 (on a scale from 1 to
10)”. In this query, tq equals 50%, and rq is a 3D rectangle whose projections
on the temperature, humidity, and pollution dimensions correspond to ranges
[86F, ∞), [0, 5%], [7, 10] respectively. As another example, in the vehicle track-
ing application, a user may request to “identify all the cabs that are located in
the downtown area (= rq) with at least 80% (= tq) likelihood”.

Range search can become “fuzzier”, when the query region itself is uncertain.
Assume that we would like to retrieve every police car o qualifying the next

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Article 15 / 4 • Y. Tao et al.

predicate with a chance no less than 30%: it is currently within 1 mile from
the cab q having licence number NY3852. Here, the precise locations of o and q
are unknown, but obey pdfs created as explained in Figure 1(a). Intuitively, for
every possible location x of q, there is a query region which is a circle centering
at x, and has a radius of 1 mile. A police car o qualifies the spatial predicate, as
long as it falls in the circle. The complication, however, lies in the large number
of search regions that must be considered: we have to exhaust the circles of all
the x, in order to calculate the overall probability that the distance between o
and q is bounded by 1 mile.

In general, given an uncertain object q, a probability threshold tq , and a
distance threshold εq , a probability thresholding fuzzy range query returns all
the objects o fulfilling Prfuzzy(o, q, εq) ≥ tq , which represents the probability that
o is within distance εq from q (in the previous example, q is the cab, tq is 30%,
and εq equals 1 mile). Fuzzy search is also common in recommender systems.
Consider that, in the scenario of Figure 1(b), the company has designed an
investment plan that requires a principle of 30k dollars, and its cold period
may have a length of 2 (or 3) years with 75% (or 25%) probability (in practice, it
may be difficult to conclude a unique cold period duration). Hence, the package
is an uncertain object q that can be described by a histogram analogous to a
customer profile in Figure 1(b). Then, the manager can identify the potential
interested clients, by issuing, on the customer-profile database, a fuzzy query
with q and suitable values for tq and εq .

1.2 Contributions and Article Organization

Although range search on traditional “precise” data has been very well studied
[Gaede and Gunther 1998], the existing methods are not applicable to uncertain
objects, since they do not consider the probabilistic requirements [Cheng et al.
2004b]. As a result, despite its significant importance, multidimensional un-
certain data currently cannot be efficiently manipulated. This article remedies
the problem with a comprehensive analysis, which provides careful solutions
to a wide range of issues in designing a fast mechanism for supporting (both
nonfuzzy and fuzzy) range queries.

The core of our techniques is a novel concept of “probabilistically constrained
rectangles” (PCRs), which are concise summaries of objects’ probabilistic mod-
eling. In terms of functionalities, PCRs are similar to minimum bounding rect-
angles (MBR) in spatial databases. Specifically, they permit the development
of an economical filter step, which prunes/validates a majority of the nonqual-
ifying/qualifying data. Therefore, the subsequent refinement phase only needs
to inspect a small number of objects, by invoking more expensive procedures
(which, in our context, include loading an object’s pdf, and/or calculating its
qualification probability). As expected, the pruning/validating heuristics with
PCRs are considerably more complicated (than those with MBRs), due to the
higher complexity of uncertain objects (than spatial data).

As a second step, we propose the U-tree, an index structure on multidimen-
sional uncertain objects that is optimized to reduce the I/O cost of range queries.
The U-tree leverages the properties of PCRs to effectively prune the subtrees

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Range Search on Multidimensional Uncertain Data • Article 15 / 5

that cannot have any query result, and thus, limits the scope of search to a
fraction of the database. The new access method is fully dynamic, and allows
an arbitrary sequence of object insertions and deletions.

Finally, we accompany our algorithmic findings with a thorough performance
analysis. Our theoretical results reveal valuable insight into the problem char-
acteristics, and mathematically confirm the effectiveness of the proposed al-
gorithms. In particular, we derive cost models that accurately quantify the
overhead of range retrieval, and can be utilized by a query optimizer for tuning
the parameters of a U-tree, and seeking a suitable execution plan.

The rest of the article is organized as follows. Section 2 formally defines prob-
abilistic thresholding range search. Section 3 introduces PCRs and elaborates
the pruning/validating strategies for nonfuzzy queries, while Section 4 extends
the heuristics to fuzzy retrieval. Section 5 clarifies the details of the U-tree,
as well as the query algorithms. Section 6 presents the theoretical analysis
about the effectiveness of our solutions, and applies the findings to U-tree opti-
mization. Section 7 contains an extensive experimental evaluation that demon-
strates the efficiency of the proposed techniques. Section 8 surveys the previous
work related to ours, and Section 9 concludes the article with directions for fu-
ture work.

2. PROBLEM DEfiNITIONS

We consider a d -dimensional workspace, where each axis has a unit range [0, 1].
Each uncertain object o is associated with (i) a probability density function
o.pdf (x), where x is an arbitrary d -dimensional point, and (ii) an uncertainty
region o.ur, which confines the area where the actual location of o could pos-
sibly reside. Specifically, the value of o.pdf (x) equals 0 for any x outside o.ur,
whereas

∫
o.ur o.pdf (x) d x equals 1. The pdfs of different objects are mutually

independent.
We do not place any other constraint on objects’ pdfs. In particular, various

objects can have totally different pdfs, that is, an object may have a pdf of the
uniform distribution, another could follow the Gaussian distribution, and yet
another one could possess an irregular distribution that can only be described
using a histogram (as in Figure 1). Furthermore, the uncertainty region of an
object does not have to be convex, or can even be broken into multiple pieces
(e.g., the object may appear inside two separate buildings, but not on the roads
between the buildings).

Definition 1. Let S be a set of uncertain objects. Given a query region rq ,
and a value tq ∈ (0, 1], a nonfuzzy probability thresholding range query returns
all the objects o ∈ S such that Prrange(o, rq) ≥ tq , where Prrange(o, rq) is the
appearance probability of o in rq , and is computed as

Prrange(o, rq) =
∫

rq∩o.ur
o.pdf (x) dx. (1)

The polygon in Figure 2(a) illustrates the uncertainty region o.ur of an object
o, and the rectangle corresponds to a query region rq . If the possible location

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Article 15 / 6 • Y. Tao et al.

Fig. 2. Range search on uncertain data.

of o uniformly distributes inside o.ur, Prrange(o, rq) equals the area of the inter-
section between o.ur and rq (i.e., the hatched region). In general, when rq is an
axis-parallel rectangle, we denote its projection on the ith axis (1 ≤ i ≤ d) as
[rq[i],−, rq[i]+]. Such rq is the focus of our analysis, because queries with these
search regions are predominant in reality [Gaede and Gunther 1998]. Never-
theless, as elaborated later, our techniques can be extended to query regions of
other shapes.

Definition 2. Let S be a set of uncertain objects, and q be another uncertain
object that does not belong to S. Given a distance threshold εq , and a value
tq ∈ (0, 1], a fuzzy probability thresholding range query returns all the objects
o ∈ S such that Prfuzzy(o, q, εq) ≥ tq , where Prfuzzy(o, q, εq) is the probability that o
and q have distance at most εq . Formally, if we regard o (q) as a random variable
obeying a pdf o.pdf(x) (q.pdf(x)), then

Prfuzzy(o, q, εq) = Pr{dist(o, q) ≤ εq} (2)

Since o and q are independent, it is not hard to see that Equation 2 can be
re-written as

Prfuzzy(o, q, εq) =
∫

x∈q.ur
q.pdf (x) · Prrange(o, �(x, εq)) dx. (3)

where Prrange is represented in Equation 1, and �(x, εq) is a circle that centers
at point x and has radius εq . As an example, the left and right polygons in
Figure 2(b) demonstrate the uncertainty regions of a data object o and a query
object q. The figure also shows the �(x, εq), when x lies at point A and B, respec-
tively. Again, for simplicity, assume that o.pdf follows a uniform distribution
inside o.ur. The area of the upper (lower) hatched region equals the probability
Prrange(o, �(x, εq)) for o and q to have a distance at most εq , when q is located at
x = A (B). In order to calculate Prfuzzy(o, q, εq), (conceptually) we must examine
the Prrange(o, �(x, εq)) of all x ∈ q.ur.

Definition 2 is independent of the distance metric employed. Although our
methodology is applicable to any metric, we derive concrete solutions for the
L∞ and L2 norms,1 which are of particular importance in practice. Note that,

1Let x1 and x2 be two d -dimensional points. Their distance under the L∞ norm is maxd
i=1 |x1[i] −

x2[i]|, where x1[i] and x2[i] are the i-th coordinates of x1 and x2, respectively. The distance under
the L2 norm is simply the length of the line segment connecting x1 and x2.

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Range Search on Multidimensional Uncertain Data • Article 15 / 7

under L∞, �(x, εq) is a square whose centroid falls at x and has a side length
2εq .

Since all the queries are “probability thresholding”, we will omit this phrase
in referring to their names. Furthermore, when the query type is clear, we
also use the term qualification probability for Prrange(o, rq) or Prfuzzy(o, q, εq).
As mentioned in Section 1.2, we adopt a filter-refinement framework in query
processing on uncertain data. Specifically, the filter step first retrieves a small
candidate set, after which the refinement phase computes the exact qualifi-
cation probabilities of all the objects in the set, and then produces the query
result. Hence, the candidate set should be a superset of the final result, that
is, any object excluded from the set must violate the spatial predicates with an
adequately high chance.

As analyzed in Section 5.3, it is usually expensive to compute the qualifica-
tion probabilities (typically, Eqs. (1) and (3) can be evaluated only numerically).
Therefore, the first objective of the filter step is to prune as many nonquali-
fying objects as possible, using computationally economical operations, which
involve only checking the topological relationships between two rectangles (i.e.,
whether they intersect, contain each other, or are disjoint). Meanwhile, the fil-
ter step also achieves another equally important objective: validating as many
qualifying objects as possible, again by analyzing only rectangles’ topological re-
lationships. We need to invoke the expensive process of qualification probability
evaluation, only if an object can be neither pruned nor validated.

The above discussion implies that, towards fast query processing, a crucial
task is to efficiently derive tight lower and upper bounds for the qualification
probability of an object. Specifically, the lower bound is for validating (i.e., an
object is guaranteed to be a result, if the lower bound is at least the query
probability threshold tq), whereas the upper bound is for pruning. Next, we
clarify how to obtain these bounds for each type of queries. Table I lists the
symbols frequently used in our presentation (some symbols have not appeared
so far, but will be introduced later).

3. NONFUZZY RANGE SEARCH

In this section, we will discuss the fundamental properties of probabilistically
constrained rectangles (PCR), particularly, how they can be applied to assist
pruning and validating for nonfuzzy range queries. Unless specifically stated,
all the queries have axis-parallel rectangular search regions (queries with gen-
eral shapes of search areas are the topic of Section 3.5).

3.1 Intuition behind Probabilistically Constrained Rectangles

A PCR of an object o depends on a parameter c ∈ [0, 0.5], and hence, is rep-
resented as o.pcr(c). It is a d -dimensional rectangle, obtained by pushing, re-
spectively, each face of o.mbr inward, until the appearance probability of o in
the area swept by the face equals c. Figure 3(a) illustrates the construction of a
2D o.pcr(c), where the polygon represents the uncertainty region o.ur of o, and
the dashed rectangle is the MBR of o, denoted as o.mbr. The o.pcr(c), which
is the grey area, is decided by 4 lines l[1]+, l[1]−, l[2]+, and l[2]−. Line l[1]+ has

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Article 15 / 8 • Y. Tao et al.

Table I. Frequently Used Symbols

Section of
Symbol Description Definition

d the workspace dimensionality 2
o.ur, o.pd f the uncertainty region and pdf of o, 2

o.mbr the MBR of o.ur 3.1
o.pcr(c), a probabilistically constrained rectangle (PCR) of o, 3.2

[o.pcr[i]−(c), o.pcr[i]+(c)] the projection of the PCR on the i-th dimension 3.2
rq , tq the search region and probability threshold of 2

a nonfuzzy query
rq , εq tq the search region, distance threshold 2

and probability threshold of a fuzzy query
Prrange(o, r) the probability of o appearing in a region r 2

Prfuzzy(o, q, εq) the probability for o and q to be within distance εq 2
C1,. . . , Cm the values of a U-catalog (in ascending order) 3.3

UBrange(o, r), LBrange(o, r) an upper and a lower bound of Prrange(o, r) 3.4
UBfuzzy(r, o, ε), LBfuzzy(r, o, ε) an upper and a lower bound of Prfuzzy(o, q, ε) 4.2

e.mbr(c) the MBR of the o.pcr(c) of all the objects o 5.1
in the subtree of an intermediate U-tree entry e

e.sl (c) the minimum projection length on any dimension 5.1
of o.pcr(c) of any object o in the subtree of e

the property that, the appearance probability of o on the right of l[1]+ (i.e., the
hatched area) is c. Similarly, l[1]− is obtained in such a way that the appearance
likelihood of o on the left of l[1]− equals c (it follows that the probability that
o lies between l[1]− and l[1]+ is 1 − 2c). Lines l[2]+ and l[2]− are obtained in the
same way, except that they horizontally partition o.ur.

PCRs can be used to prune or validate an object, without computing its accu-
rate qualification probability. Let us assume that the grey box in Figure 3(a) is
the o.pcr(0.1) of o. Figure 3(b) shows the same PCR and o.mbr again, together
with the search region rq1 of a nonfuzzy range query q1 whose probability thresh-
old tq1 equals 0.9. As rq1 does not fully contain o.pcr(0.1), we can immediately
assert that o cannot qualify q1. Indeed, since o falls in the hatched region with
probability 0.1, the appearance probability of o in rq1 must be smaller than
1 − 0.1 = 0.9. Figure 3(c) illustrates pruning the same object with respect to
another query q2 having tq2 = 0.1. This time, o is disqualified because rq2 does
not intersect o.pcr(0.1) (the pruning conditions are different for q1 and q2). In
fact, since rq2 lies entirely on the right of l[1]+, the appearance probability of o
in rq2 is definitely smaller than 0.1.

The second row of Figure 3 presents three situations where o can be validated
using o.pcr(0.1), with respect to queries q3, q4, q5 having probability thresholds
tq3 = 0.9, tq4 = 0.8, and tq5 = 0.1, respectively. In Figure 3(d) (or Figure 3(f)), o
must satisfy q3 (or q5) due to the fact that rq3 (or rq5) fully covers the part of o.mbr
on the right (or left) of l[1]−, which implies that the appearance probability of
o in the query region must be at least 1 − 0.1 = 0.9 (or 0.1), where 0.1 is the
likelihood for o to fall in the hatched area. Similarly, in Figure 3(e), o definitely
qualifies q4, since rq4 contains the portion of o.mbr between l[1]− and l[1]+, where
the appearance probability of o equals 1 − 0.1 − 0.1 = 0.8.

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Range Search on Multidimensional Uncertain Data • Article 15 / 9

Fig. 3. Pruning/validating with a 2D probabilistically constrained rectangle.

The queries in Figures 3(d)–3(f) share a common property: the projection of
the search region contains that of o.mbr along one (specifically, the vertical)
dimension. Accordingly, we say that those queries 1-cover o.mbr. In fact, val-
idation is also possible, even if a query 0-covers o.mbr, namely, the projection
of the query area does not contain that of o.mbr on any dimension. Next, we
illustrate this using the third row of Figure 3, where the queries q6, q7, q8 have
probability thresholds tq6 = 0.8, tq7 = 0.7, and tq8 = 0.6, respectively.

In Figure 3(g), o is guaranteed to qualify q6, since rq6 covers entirely the part
of o.mbr outside the hatched area. Observe that the appearance probability of
o in the hatched area is at most 0.2. To explain this, we decompose the area into
three rectangles ABCD, DCEF, BCGH, and denote the probabilities for o to lie in
them as ρABCD, ρDCEF, and ρBCGH, respectively. By the definition of l[1]−, we know
that ρABCD +ρDCEF = 0.1, whereas, by l[2]+, we have ρABCD +ρBCGH = 0.1. Since
ρABCD, ρDCEF, and ρBCGH are nonnegative, it holds that ρABCD +ρDCEF +ρBCGH ≤
0.2. This, in turn, indicates that o falls in rq6 with probability at least 0.8 (= tq6).
With similar reasoning, it is not hard to verify that, in Figure 3(h) (Figure 3(i)),
the appearance probability of o in the hatched area is at most 0.3 (0.4), meaning
that o definitely satisfies q7 (q8).

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Article 15 / 10 • Y. Tao et al.

3.2 Formalization of PCRs

We are ready to formalize PCRs and the related pruning/validating rules.

Definition 3. Given a value c ∈ [0, 0.5], the probabilistically constrained
rectangle o.pcr(c) of an uncertain object o is a d -dimensional rectangle, rep-
resentable by a 2d -dimensional vector {o.pcr[1]−(c), o.pcr[1]+(c),. . . , o.pcr[d]−(c),
o.pcr[d]+(c)}, where [o.pcr[i]−(c), o.pcr[i]+(c)] is the projection of o.pcr(c) on the
ith dimension. In particular, o.pcr[i]−(c) and o.pcr[i]+(c) satisfy∫

x[i]≤o.pcr[i]−(c)
o.pdf (x) dx =

∫
x[i]≥o.pcr[i]+(c)

o.pdf (x) d x = c, (4)

where x[i] denotes the ith coordinate of a d -dimensional point x.

o.pcr(c) can be computed by considering each individual dimension in turn.
We illustrate this using Figure 3(a) but the idea extends to arbitrary dimension-
ality in a straightforward manner. To decide, for example, line l[1]− (l[1]+), we
resort to the cumulative density function o.cdf (y) of o.pdf (x) on the horizontal
dimension. Specifically, o.cdf(x1) is the probability that o appears on the left of
a vertical line intersecting the axis at y . Thus, l[1]− can be decided by solving
y from the equation o.cdf (y) = c, and similarly, l[1]+ from o.cdf (y) = 1 − c.
When o.pdf (x) is regular (e.g., uniform or Gaussian), given a constant c, the y
satisfying o.cdf (y) = c can be obtained precisely. In any case, there is a stan-
dard sampling approach to evaluate the equation numerically. Specifically, let
us randomly generate s points x1, x2, . . . , xs in o.mbr, sorted in ascending order
of their x-coordinates. Then, we slowly move a vertical line l from the left edge
of o.mbr to its right edge. Every time l crosses a sample, we compute a value
v = vol

s′ · ∑s′
i=1 o.pdf (xi), where s′ is the number of samples crossed so far, and

vol the area of the part of o.mbr on the left of l . As soon as v exceeds c, and the
solution of o.cdf(y) = c is taken as the x-coordinate of the last sample crossed
by l .

In general, for any c and c′ satisfying 0 ≤ c < c′ ≤ 0.5, o.pcr(c) always
contains o.pcr(c′). Specially, o.pcr(0) is the MBR of the uncertainty region of
o, and o.pcr(0.5) degenerates into a point. The next theorem summarizes the
pruning rules.

THEOREM 1. Given a nonfuzzy range query with search region rq and prob-
ability threshold tq, the following holds:

(1) for tq > 0.5, o can be pruned, if rq does not contain o.pcr(1 − tq);
(2) for tq ≤ 0.5, o can be pruned, if rq does not intersect o.pcr(tq).

PROOF. The proofs of all lemmas and theorems can be found in the
appendix.

In general, given two d -dimensional rectangles r and r ′, we say that r l -
covers r ′ (0 ≤ l ≤ d), if there exist l dimensions along which the projection of r
encloses that of r ′. As a special case, if r d -covers r ′, then r contains the entire
r ′. Based on the notion of l -covering, we present the validating rules as follows.

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Range Search on Multidimensional Uncertain Data • Article 15 / 11

THEOREM 2. Given a nonfuzzy range query q with search region rq and
probability threshold tq, consider an object o whose o.pcr(0) is l -covered by rq

(1 ≤ l ≤ d). If l = d, o falls in rq with 100% likelihood. Otherwise, without loss
of generality, assume that the projection of o.pcr(0) is not covered by that of rq

on dimensions 1, 2, . . . , d − l . Then:

(1) for any tq, o definitely satisfies q, if there exist 2(d − l) values ci, c′
i (1 ≤ i ≤

d −l) such that tq ≤ 1−∑d−l
i=1 (ci+c′

i), and on the ith dimension (1 ≤ i ≤ d −l),
[rq[i]−, rq[i]+] contains [o.pcr[i]−(ci), o.pcr[i]+(c′

i)];
(2) for l = d − 1 and tq ≤ 0.5, o definitely satisfies q, if there exist values c1,

c′
1 with c1 ≤ c′

1 such that tq ≤ c′
1 − c1, and [rq[1]−, rq[1]+] contains either

[o.pcr[1]−(c1), o.pcr[1]−(c′
1)] or [o.pcr[1]+(c′

1), o.pcr[1]+(c1)].

Theorem 2 generalizes the reasoning behind the validation performed in
Figure 3. To illustrate Rule (1), let us review Figure 3(d), where rq3 1-covers
o.pcr(0) (= o.mbr). It is the horizontal dimension, denoted as dimension 1,
on which o.pcr(0) is not covered. There exist c1 = 0 and c′

1 = 0.1, such that
[rq[1]−, rq[1]+] contains [o.pcr[1]−(c1), o.pcr[1]+(c′

1)]. Since tq3 = 0.9 ≤ 1− (c1 +c′
1) =

0.9, by Theorem 2, o is guaranteed to satisfy q3.
As another example, consider Figure 3(h). Here, rq7 0-covers o.pcr(0). We can

find c1 = c′
1 = 0.1 for the horizontal axis, and c2 = 0, c′

2 = 0.1 for the vertical
axis (dimension 2), which fulfill the following condition: [rq[i]−, rq[i]+] encloses
[o.pcr[i]−(ci), o.pcr[i]+(c′

i)] for both i = 1 and 2. As tq7 = 0.7 ≤ 1−∑2
i=1(ci+c′

i) = 0.7,
we can assert that o satisfies q7 according to Rule (1).

Rule (2) can be applied only if the query region (d − 1)-covers o.mbr. For
instance, in Figure 3(f), rq5 does not cover o.mbr only on the horizontal di-
mension. We may set c1, c′

1 to 0 and 0.1, respectively, such that [rq[1]−, rq[1]+]
includes [o.pcr[1]−(c1), o.pcr[1]−(c′

1)]. Since tq5 ≤ c′
1 − c1 = 0.1, by Rule 2, o defi-

nitely qualifies rq5 .

3.3 Heuristics with a Finite Number of PCRs

The effectiveness of Theorems 1 and 2 is maximized if we could precompute the
PCRs of an object for all c ∈ [0, 0.5]. Since this is clearly impossible, for each
object o, we obtain its o.pcr(c) only at some predetermined values of c, which
are common to all objects and constitute the U-catalog.2 We denote the values
of the U-catalog as (in ascending order) C1, C2, ..., Cm, where m is the size of
the catalog. In particular, C1 is fixed to 0, that is, o.mbr = o.pcr(C1) is always
captured.

A problem, however, arises. Given an arbitrary query probability threshold
tq , the corresponding PCR needed for pruning/validating may not exist. For
instance, in Figure 3(b), as mentioned earlier, disqualifying object o for query
q1 requires o.pcr(0.1). Thus, the pruning cannot be performed if 0.1 is not in the
U-catalog.

We solve this problem by applying the heuristics of Section 3.2 in a conserva-
tive way. Assuming a U-catalog with m = 2 values {C1 = 0, C2 = 0.25}, Figure 4

2‘U’ here reminds of the fact that the catalog is created for uncertain data.

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Article 15 / 12 • Y. Tao et al.

Fig. 4. Pruning and validating using only o.pcr(0.25) and o.pcr(0).

shows an example where the dashed rectangle is o.mbr, and the grey box is
o.pcr(C2). Rectangle rq1 is the search region of q1 whose probability threshold
tq1 equals 0.8. Since o.pcr(0.25) is not contained in rq1 , by Rule (1) of Theorem 1, o
does not qualify q1 even if the query probability threshold were 1−0.25 = 0.75,
let alone a larger value 0.8.

Let us consider another query q2 with tq2 = 0.7 and a search region rq2 shown
in Figure 4. We can validate o for q2 by examining only o.mbr and o.pcr(0.25).
In fact, since rq2 completely covers the part of o.mbr on the left of line l[1]+, we
can assert (by Rule (1) of Theorem 2) that o appears in rq2 with a probability at
least 0.75, which is larger than tq2 .

In general, given a finite number of PCRs, we can still prune an object o, if
those PCRs allow us to verify that o cannot appear in the query region rq even
with a probability lower than or equal to the probability threshold tq . Based on
this reasoning, the next theorem presents the adapted version of the heuristics
in Theorem 1:

THEOREM 3. Given a nonfuzzy range query with search region rq and prob-
ability threshold tq, the following holds:

(1) for tq > 1 − Cm (recall that Cm is the largest value in the U-catalog), o can
be pruned, if rq does not contain o.pcr(c
), where c
 is the smallest value in
the U-catalog that is at least 1 − tq;

(2) for any tq, o can be pruned, if rq does not intersect o.pcr(c�), where c� is the
largest value in the catalog that is at most tq.

Similarly, using only m PCRs, we may still validate an object o, as long as we
can infer that o falls in rq with a chance higher than or equal to tq . Actually, in
this case, validating can still be performed using Theorem 2, except that all the
ci, c′

i (1 ≤ i ≤ d − l) should be taken from the U-catalog, and Rule 2 is applied
only if tq ≤ Cm (as opposed to tq ≤ 0.5 in Theorem 2).

3.4 Computing the Lower and Upper Bounds of Qualification Probability

Application of Theorem 3 is trivial, because both c
 and c� are well-defined, and
simple to identify. The utility of Theorem 2, however, is less straightforward,
because the appropriate values of ci, c′

i (1 ≤ i ≤ d − l) for successful validation
are not immediately clear. A naive method (of trying all the possibilities) may
entail expensive overhead, because each ci or c′

i can be any value in the U-
catalog, resulting in totally m2(d−l) possibilities.

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Range Search on Multidimensional Uncertain Data • Article 15 / 13

Fig. 5. Finding a lower and an upper bound of an object’s qualification probability.

Figure 5 presents an algorithm that allows us to determine whether an
object can be pruned/validated in O(m + d log m) time. Specifically, the algo-
rithm returns an upper bound UBrange(o, rq) and a lower bound LBrange(o, rq)
for the actual qualification probability Prrange(o, rq) of an object o. Given
these bounds, we can prune o if tq > UBrange(o, rq), or validate o if tq ≤
LBrange(o, rq). Numerical calculation of Prrange(o, rq) is necessary if and only
if tq ∈ (LBrange(o, rq), UBrange(o, rq)].

LEMMA 1. Let UBrange(o, rq) and LBrange(o, rq) be the values produced by Al-
gorithm 1 (Figure 5). For any query probability threshold tq > UBrange(o, rq),
Theorem 3 always disqualifies o from appearing in rq with a probability at
least tq. For any tq ≤ LBrange(o, rq), Theorem 2 always validates o as an object
appearing in rq with a probability at least tq.

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Article 15 / 14 • Y. Tao et al.

Fig. 6. Rationale of supporting circular search regions.

Having shown that Algorithm 1 is correct, we proceed with another lemma
that confirms the tightness of the resulting lower and upper bounds, as far as
our pruning and validating heuristics are concerned.

LEMMA 2. Let UBrange(o, rq) and LBrange(o, rq) be the values produced by Al-
gorithm 1. Theorem 3 cannot prune o, if the query probability threshold tq does
not exceed UBrange(o, rq). Similarly, Theorem 2 cannot validate o, if tq is higher
than LBrange(o, rq).

It is not hard to verify that the computation time of Algorithm 1 is O(m +
d log m). In particular, except Lines 12–14, every other line incurs either O(1)
or O(m) cost. Each of Lines 13 and 14 can be implemented in O(log m) time,
by performing a binary search, so that the for-loop initiated at Line 12 entails
totally O((d − l) · log m) = O(d log m) overhead.

3.5 Supporting Search Regions of Arbitrary Shapes

The above sections assume axis-parallel rectangular regions. The prun-
ing/validating heuristics presented so far, unfortunately, do not apply to queries
with arbitrary shapes of search areas. For example, consider Figure 6(a), where
the dashed and grey rectangles represent o.mbr and o.pcr(0.1), respectively. Cir-
cle rq1 is the search region of a query q1 with probability threshold tq1 = 0.9.
Notice that rq1 does not fully cover o.pcr(0.1), and therefore, Theorem 1 would
determine o as nonqualifying. This decision, however, may be wrong, because o
could have a probability 0.1 falling in the hatched area, and probability 0.8 in
the unhatched portion of rq1 .

Interestingly, we can correctly prune/validate an object for a query with any
search region rq , utilizing directly our solutions for axis-parallel rectangles. For
this purpose, we resort to a rectangle r that contains rq , and another rectangle
r ′ that is fully enclosed in rq (Figure 6(b) demonstrates r and r ′ for a circular
rq). Then, if an object o appears in r with a probability less than tq (the query
probability threshold), then o can be safely pruned. Likewise, if o falls in r ′ with
a chance at least tq , o can be immediately validated.

In general, for any search area rq and uncertain object o, we can use r
and r ′ (obtained as described earlier) to calculate a range [LBrange(o, rq),
UBrange(o, rq)], which is guaranteed to contain the actual probability
Prrange(o, rq) of o appearing in rq . Specifically, UBrange(o, rq) equals the

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Range Search on Multidimensional Uncertain Data • Article 15 / 15

upper bound returned by Algorithm 1 (Figure 5) with respect to r, whereas
LBrange(o, rq) is the lower bound produced by the algorithm for r ′. The precise
Prrange(o, rq) needs to be derived, if and only if tq falls in (LBrange(o, rq),
UBrange(o, rq)].

It remains to clarify the computation of r and r ′. Although any r (r ′) contain-
ing (contained in) the search region rq guarantees the correctness of the query
result, r (r ′) should be as small (large) as possible, to maximize the effective-
ness of the above approach. Obviously, the smallest r is the minimum bounding
rectangle of rq . On the other hand, when rq is a polygon, the r ′ with the largest
area can be found using the algorithm in Daniels et al. [1997].

The above approach is especially useful when rq is a rather irregular region,
such that it is difficult to test the topological relationships between rq and
other geometric objects (we will use the approach to tackle fuzzy search in
Section 4). However, approximating rq with r and r ′ may be overly conservative,
resulting in an [LBrange(o, rq), UBrange(o, rq)] that may be unnecessarily wide. In
fact, when rq has only limited complexity, we can achieve better pruning and
validating effects by extending the analysis of the previous sections.

Let us examine Figure 6(a) again, this time focusing on rq2 , the search area
of query q2 with probability threshold tq2 = 0.9 (the semantics of the dashed
and grey rectangles are the same as mentioned before). Observe that rq2 lies
completely on the right of (and does not touch) line l[1]−. Since o appears on the
left of l[1]− with probability 0.1, it falls out of rq2 with at least 90% likelihood;
hence, o can be eliminated. Note that pruning o in this case essentially follows
the rationale illustrated in Figure 3(b). Indeed, even for general search areas,
the reasoning discussed in Section 3.1 of using PCRs for pruning/invalidating
is still applicable. Based on such reasoning, we present the generic versions of
Theorems 3 and 2.

THEOREM 4. Given a nonfuzzy range query with search region rq and prob-
ability threshold tq, the following holds:

(1) for tq > 1 − Cm, o can be pruned, if rq falls completely on the right (or left)
of the plane containing the left (or right) face of o.pcr(c
) on any dimension,
where c
 is the smallest value in the U-catalog that is at least 1 − tq;

(2) for any tq, o can be pruned, if rq falls completely on the left (or right) of the
plane containing the left (or right) face of o.pcr(c�), where c� is the largest
value in the U-catalog that is at most tq.

THEOREM 5. Given a nonfuzzy range query q with search region rq and
probability threshold tq, o is guaranteed to satisfy rq in either of the following
situations

(1) we can find 2d values ci, c′
i (1 ≤ i ≤ d) in the U-catalog, such that tq ≤

1−∑d
i=1(ci +c′

i), and rq completely covers a d-dimensional rectangle r, whose
projection on the i-th dimension (1 ≤ i ≤ d) is [o.pcr[i]−(ci), o.pcr[i]+(c′

i)];
(2) we can find a dimension i ∈ [1, d], and 2 values c, c′ in the U-catalog,

such that tq ≤ c′ − c, and rq completely covers a d-dimensional rectan-
gle r, whose projection on the i-th dimension is [o.pcr[i]−(c), o.pcr[i]−(c′)] or

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Article 15 / 16 • Y. Tao et al.

[o.pcr[i]+(c′), o.pcr[i]+(c)], and r shares the same projection as o.mbr on the
other dimensions.

Theorems 4 and 5 can be employed, as long as it is feasible to check (i) whether
rq falls completely on one side of an axis-parallel plane, and (ii) whether rq

contains a d -dimensional rectangle. The only problem, however, is that there
does not exist an efficient algorithm for finding the set of 2d values in Rule (1)
of Theorem 5, in order to perform successful validation (recall that, if rq is
axis-parallel, we can use Algorithm 1 to validate an object o in O(m + d log m)
time, whenever o can be validated by Theorem 2). A brute-force method (of
attempting all possible ci, c′

i for i ∈ [1, d]) may not work, because each ci or
c′

i can be any of the m values in the U-catalog, rendering m2d possibilities. In
practice, a useful trick for alleviating the problem is to restrict the number of
these 2d values that are not zero to a small value α. In this case, there are
only (2d

α) · mα possibilities. For α = 1 or 2, it is computationally tractable to
examine all of them. In any case, the correctness of the query result is never
compromised, because if Theorem 5 cannot validate o, the actual qualification
probability of o will be calculated.

It is worth noting that the above technique may not be general enough to sup-
port any nonrectangular search regions efficiently, especially if the region has
a complex shape. Processing such queries requires dedicated solutions beyond
the scope of this article.

4. FUZZY RANGE SEARCH

We have shown in Section 3 that PCRs enable efficient pruning/validating for
nonfuzzy range search. In the sequel, we will demonstrate that PCRs are also
useful for fuzzy queries. As formulated in Definition 2, given an uncertain object
q, a distance value εq , and a probability threshold tq , such a query finds all the
objects o in a dataset satisfying Prfuzzy(o, q, εq) ≥ tq , where Prfuzzy(o, q, εq) is
given in Eq. (3). Section 4.1 provides the rationale behind our heuristics, which
are formally presented in Section 4.2.

4.1 Intuition of Pruning and Validating

Evaluation of Eq. (3) is usually costly, especially if q, o, or both have irregular
uncertainty regions and pdfs. Our objective is to prune or validate o without
going through the expensive evaluation. Next, we explain the underlying ratio-
nale, assuming that the distance metric employed is the L∞ norm; nevertheless,
our discussion can be extended to the L2 norm in a straightforward manner.

Let us consider a query q1 with probability threshold tq1 = 0.5. Assume that
we have already calculated q1.pcr(0.3) and o.pcr(0.3), which are the left and
right grey boxes in Figure 7(a), respectively. The dashed rectangle ABCD is the
MBR (denoted as q1.mbr) of the uncertainty region of q1. The parameter εq1 of
q1 equals half of the side length of square r1 or r2. By examining only q1.mbr and
the two PCRs, we can assert that Prfuzzy(o, q1, εq1) is at most 0.42, and hence, o
can be safely eliminated. To explain this, we need to cut ABCD into two disjoint

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Range Search on Multidimensional Uncertain Data • Article 15 / 17

Fig. 7. Pruning/validating with PCRs for fuzzy queries (under the L∞ norm).

rectangles EBCF and AEFD, and then rewrite Eq. 3 as:

Prfuzzy(o, q1, εq1) =
∫

x∈EBCF
q1.pdf (x) · Prrange(o, �(x, εq1))dx

+
∫

x∈AEFD
q1.pdf (x) · Prrange(o, �(x, εq1))dx, (5)

where �(x, εq1) represents a square that centers at point x, and has a side
length of 2εq1 . Observe that, for any x ∈ EBCF, Prrange(o, �(x, εq1)) must be
bounded by 0.7, due to the fact that �(x, εq1) does not fully cover o.pcr(0.3).
For instance, rectangle r1 illustrates the �(x, εq1) when x lies at point B; by
Rule 1 of Theorem 1, o appears in r1 with a probability at most 0.7. On the
other hand, for any x ∈ AEFD, Prrange(o, �(x, εq1)) never exceeds 0.3, because
�(x, εq1) does not intersect o.pcr(0.3). As an example, rectangle r2 shows the
�(x, εq1) for x = G; according to Rule (2) of Theorem 1, o falls in r2 with no
more than 0.3 probability. As a result:

Prfuzzy(o, q1, εq1) ≤ 0.7
∫

x∈EBCF
q1.pdf(x)dx + 0.3

∫
x∈AEFD

q1.pdf (x) dx

= 0.7 × 0.3 + 0.3 × 0.7 = 0.42. (6)

Let q2 be another query with probability threshold tq2 = 0.3. The left and
right grey boxes in Figure 7(b) demonstrate q2.pcr(0.3) and o.pcr(0.3), respec-
tively, whereas the larger and smaller dashed rectangles capture q2.mbr and
o.mbr, respectively. The parameter εq2 of q2 equals half of the side length
of square r1 or r2. Based on only the above information, we can claim that
Prfuzzy(o, q2, εq2) ≥ 0.3, and hence, o can be validated. To clarify this, we again
divide q2.mbr into rectangles EBCF and AEFD, and scrutinize Eq. (5). Here, for
any x ∈ EBCF, Prrange(o, �(x, εq2)) is a constant 1, because �(x, εq2) necessarily
contains o.mbr (r1 illustrates an example of �(x, εq2) for x = E). However, when
x distributes in AEFD, Prrange(o, �(x, εq2)) may drop to 0, as is the case for r2,
which is the �(x, εq2) for x = G. It follows that

Prfuzzy(o, q1, εq1) ≥ 1 ·
∫

x∈E BCF
q1.pdf (x)dx + 0

∫
x∈AEFD

q1.pdf (x)dx

= 1 × 0.3 + 0 × 0.7 = 0.3. (7)

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Article 15 / 18 • Y. Tao et al.

Fig. 8. Enhanced pruning/validating for fuzzy queries with more “slices” (under the L∞ norm).

In the above examples, we “sliced” q.mbr into two rectangles for pruning
and validating. In fact, stronger pruning/validation effects are possible by per-
forming the slicing more aggressively. Assume that, instead of 0.5, the query
q1 in Figure 7(a) has a lower tq1 = 0.4; hence, o can no longer be disqualified as
described with Inequality (6) (as 0.42 > tq1). However, we can actually derive
a tighter upper bound 0.33 of Prfuzzy(o, q1, εq1), and thus, still eliminate o. For
this purpose, we should divide q.mbr into three rectangles EBCF, IEFJ, and
AI J D as in Figure 8(a), which repeats the content of Figure 7(a), except for
including o.mbr (i.e., the right-dashed box). Accordingly: Prfuzzy(o, q1, εq1) =∫

x∈EBCF
q1.pdf (x)·Prrange(o, �(x, εq1)) dx+

∫
x∈IEFJ

q1.pdf (x)·Prrange(o, �(x, εq1)) dx

+
∫

x∈AIJD
q1.pdf (x) · Prrange(o, �(x, εq1)) dx. (8)

As analyzed earlier with Figure 7(a), for any point x ∈ E BCF ,
Prrange(o, �(x, εq1)) ≤ 0.7, whereas, for any point x ∈ IEFJ ⊂ ABCD,
Prrange(o, �(x, εq1)) ≤ 0.3. Furthermore, notice that, given any point x ∈ AI J D,
Prfuzzy(o, q1, εq1) is always 0, because �(x, εq1) is disjoint with o.mbr. For in-
stance, rectangle r3 is the �(x, εq1) when x lies at H; evidently, it is impossible
for o to appear in r3. Therefore, Eq. 8 ≥

0.7
∫

x∈EBCF
q1.pdf (x) dx + 0.3

∫
x∈IEFJ

q1.pdf (x)dx + 0
∫

x∈AIJD
q1.pdf (x) dx

= 0.7 × 0.3 + 0.3 × 0.4 + 0 × 0.3 = 0.33. (9)

Similarly, suppose that the query q2 in Figure 7(b) has a probability thresh-
old tq2 = 0.4, in which case o cannot be confirmed as a qualifying object with
Inequality (7). Next, we will use Figure 8(b), where the grey and dashed rect-
angles have the same meaning as in Figure 7(b), to derive a new lower bound
0.42 of Prfuzzy(o, q2, εq2), which thus validates o.

Let us break q2.mbr into rectangles EBCF, IEFJ, and AIJD. Then,
Prfuzzy(o, q2, εq2) can be represented as Eq. (8). Following the analysis that led
to Inequality (7), we know that, for x ∈ EBCF, Prfuzzy(o, q2, εq2) = 1, and, for
x ∈ AIJD, (obviously) Prfuzzy(o, q2, εq2) ≥ 0. The new observation here is that,
for x ∈ I E F J , Prfuzzy(o, q2, εq2) ≥ 0.3, since �(x, εq2) always fully covers the

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Range Search on Multidimensional Uncertain Data • Article 15 / 19

hatched area in Figure 8(b), which is the part of o.mbr on the left of o.pcr(0.3).
Rectangle r3 shows an example of �(x, εq2) when x = H; according to Rule (2)
of Theorem 2, o has a probability of at least 0.3 to lie in r3. Therefore, Eq. (8) ≥

1
∫

x∈EBCF
q1.pdf (x) dx + 0.3

∫
x∈IEFJ

q1.pdf (x) dx + 0
∫

x∈AIJD
q1.pdf (x) dx

= 1 × 0.3 + 0.3 × 0.4 + 0 × 0.3 = 0.42. (10)

4.2 Formal Results

Before processing a fuzzy query q, we compute its q.pcr(c) at mq values of c in
the range [0, 0.5]. We denote these values as QC1, QC2, ..., QCmq

, respectively,
sorted in ascending order. Similar to the smallest value C1 in the U-catalog,
QC1 is fixed to 0, so that q.pcr(c1) always equals q.mbr. Note that mq does not
need to be the size m of the U-catalog (we will examine the influence of mq in
the experiments).

Given an object o, we aim at obtaining an upper bound UBfuzzy(o, q, εq) and
a lower bound LBfuzzy(o, q, εq) of Prfuzzy(o, q, εq), by studying only the PCRs of
q and o (εq is the distance threshold of q). Then, o can be pruned if the query
probability threshold tq is larger than UBfuzzy(o, q, εq), or it can be validated
if tq does not exceed LBfuzzy(o, q, εq). Accurate evaluation of Prfuzzy(o, q, εq) is
performed only when both pruning and validating have failed.

We can reduce the computation of UBfuzzy(o, q, εq) and LBfuzzy(o, q, εq) to the
derivation of upper and lower bounds of nonfuzzy range search qualification
probabilities, which is solved by Algorithm 1 (Figure 5). In Section 4.2.1, we will
first settle a related problem underlying the reduction, which is then clarified
in Section 4.2.2.

4.2.1 Bounds of Prrange(o, �(x, εq)). Given any axis-parallel rectangle r, in
the sequel, we will develop two values UBPr(r, o, εq) and LBPr(r, o, εq) satisfying

LBPr(r, o, εq) ≤ Prrange(o, �(x, εq)) ≤ UBPr(r, o, εq) (11)

for any x ∈ r. To interpret UBPr(r, o, εq) and LBPr(r, o, εq) in a more intu-
itive manner, imagine that we examine all the circles �(x, εq) whose centers
x fall in r, and for every �(x, εq), record the probability Prrange(o, �(x, εq))
that o appears in �(x, εq). Then, UBPr(r, o, εq) is a value never smaller
than any Prrange(o, �(x, εq)), and similarly, LBPr(r, o, εq) is never larger than
any Prrange(o, �(x, εq)). A tighter range [LBPr(r, o, εq), UBPr(r, o, εq)] leads to
stronger pruning/validating power, as will be clear shortly.

We use
(r, εq) to denote the union of all the �(x, εq) with x ∈ r, and �(r, εq)
for the intersection of those circles. Depending on the distance metric deployed,

(r, εq) and �(r, εq) have different shapes. Next, we will discuss this about the
L∞ and L2 norms in 2D space, assuming that r has side lengths sl[1] and sl[2]
on the horizontal and vertical dimensions, respectively. The discussion can be
directly extended to higher dimensionalities.

Consider the grey rectangle r in Figure 9(a). Its
(r, εq) under the L∞ norm
is rectangle ABCD, which shares the same centroid as r, and has side length
sl[i] + 2εq on the ith dimension (1 ≤ i ≤ 2). Corner A of
(r, εq), for instance, is

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Article 15 / 20 • Y. Tao et al.

Fig. 9.
(r, εq) and �(r, εq) under the L∞ and L2 norms.

decided by the �(x, εq) when x lies at the upper-right corner of r. Also focusing on
L∞, Figure 9(b) demonstrates �(r, εq), which is also a rectangle ABCD sharing
the same centroid as r, but its side length is 2εq − sl[i] along the ith dimension
(1 ≤ i ≤ 2). In this case, corner A is determined by the �(x, εq) when x is
located at the bottom-left corner of r. In general, �(r, εq) does not exist if εq <

maxd
i=1(sl[i]/2).

As in Figure 9(c), under the L2 norm,
(r, εq) has a more complex contour,
which consists of line segments AB, CD, EF, GH, as well as arcs BC, DE, FG,
and H A. For example, arc H A is formed by the �(x, εq) when x is the upper-
right corner of r; segment AB is created jointly by all the �(x, εq) as x moves on
the upper edge of r. We give the �(r, εq) of L2 in Figure 9(d), whose boundary has
4 arcs AB, BC, CD, and DA. Here, AB is determined by the �(x, εq) when x is
positioned at the bottom-right corner of r. As with its L∞ counterpart, �(r, εq) of
L2 is not always present; it exists only if εq ≥ 1

2 (
∑d

i=1 sl2
[i])

1/2. In general, under
any distance metric L,
(r, εq) is essentially the Minkowski sum [Berg et al.
2000] of r and an L-sphere with radius εq .

LEMMA 3. Let r be an axis-parallel rectangle. Given any point x ∈ r, we have
(for any distance metric):

Prrange(o, �(r, εq)) ≤ Prrange(o, �(x, εq)) ≤ Prrange(o,
(r, εq)), (12)

where Prrange is defined in Eq. (1). Specially, if �(r, εq) does not exist, then
Prrange(o, �(r, εq)) = 0.

We employ the above lemma to calculate UBPr(r, o, εq) and LBPr(r, o, εq),
which are defined in Inequality (11). Specifically, we invoke the Algorithm 1
(Figure 5) with the parameters o and
(r, εq), and then set UBPr(r, o, εq) to

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Range Search on Multidimensional Uncertain Data • Article 15 / 21

the upper bound returned by the algorithm. Similarly, LBPr(r, o, εq) equals the
lower bound produced by the same algorithm, when its parameters are o and
�(r, εq).

There remains, however, a subtle issue: the second parameter of Algorithm 1
must be a rectangle, whereas
(r, εq) and �(r, εq) may have irregular shapes
under the L2 norm (see Figures 9(c) and 9(d)). We remedy the problem using
the approach explained with Figure 6(b). To derive UBPr(r, o, εq) of L2, we pass,
instead of
(r, εq), its MBR (e.g., IJKL in Figure 9(c)) into the second parameter
(notice that the MBR is essentially the
(r, εq) of L∞). Likewise, for computing
LBPr(r, o, εq), the parameter is set to an “inner rectangle” of �(r, εq) created as
follows. For every corner x of r, we connect it with its opposing corner using a
line l . Then, the intersection between l and circle �(x, εq) becomes a corner of
the inner rectangle. After all the corners of r have been considered, the inner
rectangle is fixed. As an example, in Figure 9(d), the inner rectangle of the
illustrated �(r, εq) is EFGH (e.g., E is decided by considering the bottom-right
corner of r).

4.2.2 Bounds of Prfuzzy(o, q, εq). We are ready to explain how to deter-
mine the upper bound UBfuzzy(o, q, εq) and lower bound LBfuzzy(o, q, εq) of
Prfuzzy(o, q, εq). Recall that we have prepared mq PCRs: q.pcr(c) at c =
QC1, ..., QCmq

. Let us consider the projections of these PCRs along the ith di-
mension (1 ≤ i ≤ d): [q.pcr[i]−(c), q.pcr[i]+(c)]. We slice q.mbr with 2(mq − 1)
planes, which are perpendicular to the ith axis, and intersect this axis at
q.pcr[i]−(c) or q.pcr[i]+(c), for every c ∈ [2, mq]. The slicing divides q.mbr into
2mq − 1 disjoint rectangles r1, r2, ..., r2mq−1, sorted in ascending order of their
projections on the ith dimension.

For instance, assume that mq = 2, and QC1 = 0, QC2 = 0.3; rectangle
ABCD and the grey box in Figure 8(a) illustrate q.pcr(QC1) and q.pcr(QC2),
respectively. Lines I J and E F are the two slicing planes at q.pcr[1]−(QC2) and
q.pcr[1]+(QC2), where the subscript 1 denotes the horizontal dimension. The
result of the slicing is 2mq − 1 = 3 rectangles BCFE, IEFJ, and AIJD.

LEMMA 4. Let q be a fuzzy query with distance threshold εq, whose q.mbr
has been partitioned into rectangles r1, ..., r2mq−1 on the ith dimension (for some
i ∈ [1, d]) as described earlier. Then, for any object o:
Prfuzzy(o, q, εq) ≤ (1 − 2QCmq

) · UBPr(rmq , o, εq) +
mq−1∑
i=1

(QCi+1 − QCi) ·
[
UBPr(ri, o, εq) + UBPr(r2mq−i, o, εq)

]
. (13)

Similarly, Prfuzzy(o, q, εq) ≥ (1 − 2QCmq
) · LBPr(r, o, εq) +

mq−1∑
i=1

(QCi+1 − QCi) ·
[
LBPr(ri, o, εq) + LBPr(r2mq−i, o, εq)

]
. (14)

The computation of functions UBrange(.) and LBrange(.) has been discussed in
Section 4.2.1.

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Article 15 / 22 • Y. Tao et al.

The right-hand sides of Inequalities (13) and (14) can directly be taken as
UBfuzzy(o, q, εq) and LBfuzzy(o, q, εq), respectively. Remember that, there is a set
of these two inequalities for every dimension i ∈ [1, d]. To tighten the range
[LBfuzzy(o, q, εq), UBfuzzy(o, q, εq)] (for maximizing the pruning and validating
power, as discussed at the beginning of Section 4.2), we set UBfuzzy(o, q, εq)
(or LBfuzzy(o, q, εq)) to the smallest (or largest) of the right-hand sides of the d
versions of Inequality (13) (or Inequality (14)) on the d dimensions, respectively.

5. QUERY ALGORITHMS

The analysis in Section 3 (or 4) leads to an algorithm that processes a nonfuzzy
(or fuzzy) query by scanning the entire dataset. Specifically, the filter step of
the algorithm decides whether each object can be pruned, validated, or must be
added to a candidate set, by analyzing the PCRs of o (for fuzzy search, also the
PCRs of the query object q). Then, the refinement phase calculates the accurate
qualification probability of every object in the candidate set, to determine if it
satisfies the query.

This section achieves two objectives. First, we design an access method, called
the U-tree, for multidimensional uncertain data (Section 5.1), and utilize it to
reduce the cost of the filter step, by avoiding examination of all the objects (Sec-
tion 5.2). Second, we clarify the details of refinement, and develop solutions with
different trade-offs between precision and computation overhead (Section 5.3).

5.1 The U-tree

The U-tree is a balanced external-memory structure, where each node occupies
a disk page. We number the levels of the tree in a bottom-up manner; namely, if
the tree has a height of h, then all the leaf nodes are at level 0, whereas the root is
at level h−1. Each entry in a leaf node corresponds an object o. This entry keeps
(i) o.pcr(c) for the values of c in the U-catalog: C1 (= 0), ..., Cm (recall that o.pcr(0)
equals o.mbr), and (ii) a descriptor about o.pdf, whose information depends on
the complexity of o.pdf. Specifically, if o.pdf is simple (i.e., a common distribution
with a regular uncertainty region o.ur), then the descriptor contains all the
details of o.pdf. Otherwise, the descriptor is a pointer that references a disk
address where the representation of o.pdf (e.g., a histogram) is stored; in this
case, additional I/Os are required to retrieve o.pdf after the leaf entry has been
found.

Let e be a level-1 entry, that is, e is the parent entry of a leaf node. Without
loss of generality, assume that the node has f objects o1, ..., o f . In addition to a
pointer to its child node, e also retains (i) m rectangles e.mbr(C1) ..., e.mbr(Cm),
where, for any c in the U-catalog, e.mbr(c) is the MBR of o1.pcr(c), ..., o f .pcr(c),
and (ii) m values e.sl (C1), ..., e.sl (Cm) such that e.sl (c) (here, “sl” means side
length) equals the length of the shortest projection of o1.pcr(c), ..., o f .pcr(c)
along all dimensions.

Figure 10 provides an example that illustrates the information recorded in
leaf and level-1 entries, assuming that the U-catalog has m = 2 values C1 = 0
and C2 = 0.3. The left- and right-dashed rectangles correspond to the MBRs
of objects o1 and o2, (they are o1.pcr(0) and o2.pcr(0), respectively). The grey

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Range Search on Multidimensional Uncertain Data • Article 15 / 23

Fig. 10. A leaf node containing objects o1 and o2.

box inside o1.mbr (or o2.mbr) is o1.pcr(0.3) (or o2.pcr(0.3)), which is associated
with the leaf entry of o1 (or o2). Consider a leaf node that contains only o1,
o2, and has e as its parent entry at level 1. Entry e carries two rectangles
e.mbr(0) and e.mbr(0.3). As shown in Figure 10, the former rectangle tightly
bounds the MBRs of o1 and o2, while e.mbr(0.3) is the MBR of o1.pcr(0.3) and
o2.pcr(0.3). Furthermore, e also stores two values e.sl (C1) and e.sl (C2), which
equal the lengths of segments AB and CD, respectively. Specifically, e.sl (C1) =
AB because the vertical edge of o2.mbr is the shortest among all the edges of
o1.mbr and o2.mbr. Similarly, e.sl (C2) = CD since the vertical edge of o1.pcr(0.3)
has the smallest length among all the edges of o1.pcr(0.3) and o2.pcr(0.3).

An entry e of a higher level i > 1 has similar formats. To elaborate this, sup-
pose that the child node of e has (intermediate) entries e1,. . . , e f . Then, e is asso-
ciated (i) a pointer to the node, (ii) m rectangles e.mbr(C1),. . . , e.mbr(Cm), where
e.mbr(c) is the MBR of e1.mbr(c),. . . , e f .mbr(c), for any c in the U-catalog, and
(iii) m values e.sl (C1),. . . , e.sl (Cm) such that e.sl (c) is the smallest of e1.sl (c),. . . ,
e f .sl (c).

Note that an intermediate entry e in the U-tree consumes more space than a
leaf entry. In particular, e keeps e.sl (c), which is not present at the leaf level (but
is needed for improving the I/O performance, as explained in the next subsec-
tion). In general, it is reasonable to retain more information at the intermediate
levels, if such information can reduce the number of leaf nodes accessed. Af-
ter all, in processing a query, the cost at the leaf level usually significantly
dominates the overall overhead.

The U-tree is dynamic, because objects can be inserted/deleted in an arbitrary
order, by resorting to the update algorithms of the R*-tree [Beckmann et al.
1990]. Specifically, a U-tree is analogous to an R*-tree built on the o.pcr(C�m/2�)
of the objects (C�m/2� is the median value in the U-catalog). The difference is that,
(conceptually) after objects have been grouped into leaf nodes, the contents of
the intermediate entries need to be “filled in” as mentioned earlier. Clearly, with
this analogy, a U-tree can also be constructed with the bulkloading algorithm
of R*-trees [Leutenegger et al. 1997].

5.2 The Filter Step

Given a nonfuzzy range query q (with search region rq and probability threshold
tq), the filter step traverses the U-tree in a depth-first manner. Specifically,

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Article 15 / 24 • Y. Tao et al.

Fig. 11. Finding an upper bound of an object’s qualification probability (nonfuzzy range search).

the search starts by accessing the root. For each root entry e, the algorithm
computes an upper bound UBrange(e, rq) of the qualification probability of any
object that lies in the subtree of e. If UBrange(e, rq) is smaller than tq , the subtree
of e is pruned; otherwise, we fetch the child node of e, and carry out the above
operations recursively for the entries encountered there. When a leaf node is
reached, we attempt to prune or validate the objects discovered. Objects that
can neither be pruned nor validated are added to a candidate set Scan. Then,
the search backtracks to the previous level, and continues this way until no
more subtree needs to be visited.

The filter phase of a fuzzy query q (with distance and probability thresholds
εq and tq , respectively) is exactly the same, except that UBrange(e, rq) is replaced
with UBfuzzy(e, q, εq), which upper bounds the UBfuzzy(o, q, εq) (as in Eq. (3)) of
any object o underneath e.

It remains to clarify the computation of UBrange(e, rq) and UBfuzzy(e, q, εq). We
settle the former with Algorithm 2 (Figure 11), assuming a rectangular rq . To
illustrate the algorithm, let us consider Figure 10 again, where, as mentioned
earlier, the U-catalog has m = 2 values C1 = 0, C2 = 0.3, and e is the parent
entry of the leaf node containing only o1 and o2. Rectangles rq1 and rq2 are the
search regions of two nonfuzzy range queries q1 and q2, respectively. Given
parameters e and rq1 , Algorithm 2 returns (at Line 4) UBrange(e, rq1) = 0.3. This
is because rq1 does not intersect e.mbr(0.3), which indicates that the o.pcr(0.3) of
any object o must be disjoint with rq1 . Hence, according to Rule 2 of Theorem 1,
o cannot appear in rq1 with a probability at least 0.3.

On the other hand, given e and rq2 , Algorithm 2 produces (at Line 8)
UBrange(e, rq2) = 0.7. To explain why, we need to focus on the hatched area of
Figure 10, which is the intersection between rq2 and e.mbr(0.3), and is the rect-
angle r computed at Line 6 of Algorithm 2. Observe that the length of the ver-
tical projection of r is shorter than e.sl (0.3), which, as discussed in Section 5.1,
equals the length of segment CD. This implies that none of the o.pcr(0.3) of any
object o in the subtree of e can possibly be entirely covered by rq2 . As a result,
by Rule 1 of Theorem 1, o falls in rq2 with a probability less than 0.7.

When rq is not rectangular, UBrange(e, rq) can be calculated using Algorithm 2,
by passing the MBR of rq as the second parameter. Finally, the UBfuzzy(e, q, εq)
for a fuzzy query q can also be calculated using Algorithm 2, leveraging the
reduction proposed in Section 4.2. Instead of repeating the theoretical reasoning

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Range Search on Multidimensional Uncertain Data • Article 15 / 25

Fig. 12. Finding an upper bound of an object’s qualification probability (fuzzy search).

of the reduction, we simply present the details in Figure 12, which applies to
both the L∞ and L2 norms.

5.3 The Refinement Step

For each object o in the Scan output by the filter step, the refinement phase
calculates the qualification probability of o, for comparison with the probability
threshold tq . Next, we elaborate the details of the calculation, starting with
Prrange(o, rq) for a nonfuzzy range query q, before discussing Prfuzzy(o, q, εq) for
a fuzzy query q.

If Prrange(o, rq) can be solved into a closed equation, its computation entails
negligible cost. For instance, when o.ur and rq are rectangles and o.pdf describes
a uniform distribution, Prrange(o, rq) is simply the ratio between the areas of
o.ur ∩ rq and rq , both of which can be easily computed. In general, however,
integrating a complex multidimensional function (i.e., o.pdf) over a potentially
irregular region o.ur∩rq is a well-known difficult problem, for which the Monte-
Carlo (MC) method [Press et al. 2002] is a standard remedy.

Specifically, to apply MC, we need to formulate a function f (x), which equals
o.pdf (x) for a d -dimensional point x in o.ur ∩ rq , or 0 for any other x. Then, we
take the MBR rmbr of rq (note that rq may not be a rectangle), and uniformly
generate a number s of points inside rmbr ∩ o.MBR (which is a rectangle). Let
us denote these points as x1,. . . , xs, respectively. Equation (1) can be estimated
as (using E to denote the estimate):

E = vol · 1
s

s∑
i=1

f (xi), (15)

where vol returns the volume of rmbr ∩ o.MBR. The value of s may need to be
really large in order to produce an accurate estimate. This is why refinement
of an object can be rather costly, and should be prevented as much as possible.

Prfuzzy(o, q, εq) is more expensive to evaluate, because Eq. (3) essentially has
two layers of integrals. In particular, the inner layer derives Prrange(x, �(o, εq)),
which can be settled as described earlier. The outer layer can also be calculated
by Eq. (15) with the following changes. First, function f (x) should be replaced

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Article 15 / 26 • Y. Tao et al.

with g (x), which equals 0 if x lies outside q.ur; otherwise, g (x) is the integrand
of Eq. (3). Second, rmbr now becomes q.mbr.

6. COST-BASED INDEX OPTIMIZATION

The U-tree takes a parameter m, which is the size of the U-catalog, and has a
significant impact on the query performance. A large m leads to more precom-
puted PCRs, which reduce the chance of calculating an object’s actual qualifica-
tion probability, and hence, the overhead of the refinement step. On the other
hand, as m increases, the node fanout decreases, which adversely affects the
I/O efficiency of the filter phase.

The best m depends on the dataset characteristics. As an extreme example,
imagine that all uncertainty regions are so small that their extents can be
ignored. In this case, the dataset degenerates into a set of points, for which
(intuitively) the best index is simply an R*-tree, or a special U-tree with m = 1
(i.e., for each object o, only o.pcr(0) = o.mbr is stored). On the other hand,
consider an object o that has a sizable uncertainty region o.ur, and a Gaussian
pdf with a large variance (i.e., o.pdf (x) peaks at the center of o.ur, but quickly
diminishes as x drifts away). It is beneficial to materialize o.pcr(c) at some
values of c ∈ (0, 0.5], all of which have significantly smaller extents than o.mbr,
and effectively prevent the refinement of o.

In the sequel, we provide a method for deciding a good value of m prior to
the construction of a U-tree. Our objective is to minimize the cost of nonfuzzy
range search (Definition 1). Towards this purpose, Section 6.1 first analyzes
how often PCRs can prevent the numerical process discussed in Section 5.3.
Then, Section 6.2 derives a formula that accurately captures both the filter and
refinement overhead. Finally, Section 6.3 applies the cost model to optimize m
for an arbitrary dataset.

6.1 Probability of Numerical Evaluation

Consider an object o with pre-computed o.pcr(C1),. . . , o.pcr(Cm), where C1,. . . ,
Cm are the values in the U-catalog. Let q be a nonfuzzy range query with prob-
ability threshold tq and a rectangular search region rq whose projection on the
ith dimension has length slq[i] (much smaller than 1), and its centroid is uni-
formly distributed in the workspace. We aim at deriving the probability o.Prcomp

that Prrange(o, rq) must be numerically computed in processing q. Alternatively,
o.Prcomp is the likelihood that o can be neither pruned by Theorem 3 nor vali-
dated by Theorem 2.

We are mainly interested in query regions that are “larger” than o.mbr. For-
mally, if the projection length of o.mbr on the ith (1 ≤ i ≤ d) dimension is
o.slmbr[i], then slq[i] ≥ o.slmbr[i] for all i ∈ [1, d]. The reasons for concentrating
on such voluminous queries are two fold. First, they are (much) more expensive
than queries with small search regions, and hence, the target of optimization
in finding an appropriate U-catalog size m. Second, they simplify Theorem 2,
which allows us to avoid excessively complex equations. Specifically, for a volu-
minous query, at least one value in each pair of ci, c′

i (1 ≤ i ≤ d) must be 0 in
Rule 1 of Theorem 2; likewise, in Rule (2), either c1 or c′

1 equals 0.

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Range Search on Multidimensional Uncertain Data • Article 15 / 27

Fig. 13. Analysis of o.Prcomp for tq > 1 − Cm.

Our analysis on voluminous nonfuzzy range search proceeds in two parts,
focusing on large tq (Section 6.1.1), small tq (Section 6.1.2), and median tq (Sec-
tion 6.1.3), respectively. Finally, Section 6.1.4 mathematically explains why
PCRs are a useful tool for reducing the refinement cost, and elaborates how to
support nonvoluminous queries.

6.1.1 Case 1: tq > 1 − Cm. As opposed to the original settings (the location
of o.mbr is fixed while that of rq is uniformly distributed), for deriving o.Prcomp,
it is more convenient to consider the equivalent opposite. Specifically, we fix rq ,
but move the centroid of o.mbr around in the workspace, following a uniform
distribution. In doing so, we keep track of whether o can be pruned/validated
when its MBR equals the current o.mbr. After o.mbr has been placed at all
possible locations, we have collected an evaluation region (ER), which consists
of all the centroids of o.mbr that do not allow our heuristics to prune and validate
o. Thus, o.Prcomp is exactly the area of this region (remember that the workspace
has an area 1).

Assume that o.mbr is the dashed rectangle in Figure 13(a), which also demon-
strates the o.pcr(c�) and o.pcr(c
) of o, where c
 (c�) is the smallest (largest)
U-catalog value at least (most) 1 − tq . Here, o.pcr(c�), o.pcr(c
), and o.mbr are
“concentric”, that is, they have the same centroid. Although the concentric be-
havior is not always true, it facilitates explaining the crux of our analysis.

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Article 15 / 28 • Y. Tao et al.

Later, we will generalize the results to the general situation where PCRs are
not concentric.

The outmost rectangle in Figure 13(b) corresponds to the query region rq .
Next, we will construct an area that closely approximates the ER. The hatched
region in Figure 13(b) is a ring bounded by two rectangles, both of which have
the same centroid as rq . In particular, the outer (inner) rectangle is shorter than
rq by 2a1 (2a2) on the horizontal dimension, and by 2b1 (2b2) on the vertical
dimension. As illustrated in Figure 13(a), 2a1, 2b1 (or 2a2, 2b2) are the lengths
of the horizontal and vertical edges of o.pcr(c
) (or o.pcr(c�)), respectively. In
Figure 13(b), there are 4 grey boxes near the corners of the ring. The upper-left
grey box is decided by (i) the (inner) corner of the ring that the box is adjacent
to, and (ii) the point inside rq , having horizontal (vertical) distance a3 (b3) from
the upper-left corner of rq , where a3 and b3 are the projection lengths of o.mbr
(see Figure 13(a)). The other grey boxes are obtained in the same way, but with
respect to other corners of the ring and rq .

When the centroid of o.mbr falls outside the hatched and grey area in
Figure 13(b), o can always be pruned or validated. For example, if the cen-
troid lies at point A in Figure 13(c), rq does not fully cover o.pcr(c
); hence, o is
eliminated by Rule 1 of Theorem 3. On the other hand, if the centroid falls at
B, o can be validated by Rule 1 of Theorem 2, setting c1 = 0 and c′

1 = c
 (the
subscript 1 represents the horizontal dimension). On the other hand, as long
as the centroid of o.mbr lies in the hatched region in Figure 13(b), o can never be
pruned/validated, but always requires numeric evaluation of o.Prcomp. For in-
stance, let us examine the case where the centroid lies at point C in Figure 13(d).
Given parameters o and rq , Algorithm 1 returns [1 − c
, 1 − c�], which contains
tq . Hence, as proved in Section 3.4, o can be neither pruned by Theorem 1 nor
validated by Theorem 2.

The implication of the above discussion is that o.Prcomp is at most the total
area of the hatched and grey regions, but at least the area of the hatched region
itself. Formally, o.Prcomp ∈ [o.PrLB

comp, o.PrUB
comp], with

o.PrLB
comp =

d∏
i=1

(
slq[i] − o.slpcr[i](c
)

) −
d∏

i=1

(
slq[i] − o.slpcr[i](c�)

)
, and (16)

o.PrUB
comp = o.PrLB

comp +
d∏

i=1

(
o.slmbr[i] − o.slpcr[i](c�)

)
, (17)

where function o.slpcr[i](c) gives the projection length of o.pcr(c) on the ith di-
mension. For example, in Figure 13(a), o.slpcr[1](c
) = 2a1 and o.slpcr[2](c
) = 2b1.
Notice that we presented the above equations in their general forms applicable
to all dimensionalities. In fact, the construction of the approximate ER in Fig-
ure 13(b) can be extended to any dimensionality in a straightforward manner;
the resulting ring and grey boxes possess the same properties.

So far we have implicitly assumed the presence of c
, which, however, is not
always true. If c
 does not exist, Rule 1 of Theorem 3 is no longer applicable;
thus, pruning relies on Rule (2), where, for tq over 1−Cm, the value c equals Cm.
Accordingly, the outer boundary of the ring in Figure 13(b) becomes a rectangle

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Range Search on Multidimensional Uncertain Data • Article 15 / 29

Fig. 14. Analysis of o.Prcomp for tq ≤ Cm.

(again, sharing the centroid of rq) with a projection length longer than that of rq

by o.slpcr[i](Cm) on the ith dimension (1 ≤ i ≤ 2). As a result, slq[i] − o.slpcr[i](c
)
should be replaced with slq[i] + o.slpcr[i](Cm) in Eq. (16).

Equations (16) and (17) are valid even if the PCRs of an object are not con-
centric. In that case, the only modification to all our analysis lies in the ring
construction. To explain this, let p be the centroid of o.mbr with coordinates
p[1],. . . , p[d]. On each dimension i ∈ [1, d], the left (or right) edge of the outer
rectangle of the ring is obtained by moving the left (or right) edge of rq inward
at the distance of p[i] − o.pcr[i]−(c
) (or o.pcr[i]+(c
) − p[i]). The inner rectangle
is decided in the same way, except that c
 is replaced with c�.

6.1.2 Case 2: tq ≤ Cm. We will derive o.Prcomp using the methodology in
Section 6.1.1. Figure 14(a) repeats the content of Figure 13(a), except that here
c
 (c�) should be understood as the smallest (largest) U-catalog value at least
(most) tq . The approximate ER (evaluation region) also consists of a ring (the
hatched region) and four grey boxes. Specifically, the outer (inner) rectangle of
the ring shares a common centroid with rq , but is longer than rq by 2a2 (2a1)
and 2b2 (2b1) on the horizontal and vertical dimensions, respectively. The grey
boxes are obtained in the same way as in Figure 13(b).

The approximate ER bears two properties identical to those in the previ-
ous subsection. Namely, o can definitely be pruned or validated if the centroid
of o.mbr is outside the hatched and grey area, whereas Prrange(o, rq) must be
numerically calculated if the centroid falls in the hatched region. Therefore,
o.Prcomp is guaranteed to fall in a range [o.PrLB

comp, o.PrUB
comp], where the lower

and upper bounds are given by two equations analogous to Eqs. (16) and (17):

o.PrLB
comp =

d∏
i=1

(
slq[i] + o.slpcr[i](c�)

) −
d∏

i=1

(
slq[i] + o.slpcr[i](c
)

)
, and (18)

o.PrUB
comp = o.PrLB

comp +
d∏

i=1

(
o.slmbr[i] + o.slpcr[i](c
)

)
, (19)

Finally, the above formulae are correct in any dimensionality, even when the
PCRs of an object are not concentric.

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Article 15 / 30 • Y. Tao et al.

Fig. 15. Analysis of o.Prcomp for Cm < tq ≤ 1 − Cm.

Fig. 16. Explanation about why refinement is more frequent without PCRs.

6.1.3 Case 3: Cm < tq ≤ 1 − Cm. This remaining case is the simplest: both
c
 and c� correspond to cm, that is, the largest U-catalog value. The counterpart
of Figures 13 and 14 here is Figure 15. Since the derivation is similar to that
of the previous two cases, we directly present the final equations of o.PrLB

comp

and o.PrUB
comp (which, again, are applicable in any dimensionality, regardless of

whether o.mbr and o.pcr(cm) are concentric):

o.PrLB
comp =

d∏
i=1

(
slq[i] + o.slpcr[i](cm)

) −
d∏

i=1

(
slq[i] − o.slpcr[i](cm)

)
, and (20)

o.PrUB
comp = o.PrLB

comp +
d∏

i=1

(
o.slmbr[i] − o.slpcr[i](cm)

)
, (21)

6.1.4 Discussion. The analysis of Sections 6.1.1 through 6.1.3 also explain
why PCRs can effectively reduce the refinement cost. Imagine that we do not
have any PCR. In this case, regardless of tq , pruning (or validation) of o is
possible if and only if rq does not intersect (or completely covers) o.mbr. With
respect to the extents of o.mbr in Figure 16(a), the grey portion of Figure 16(b)
illustrates the exact evaluation region of o, which unions the centroids of all
o.mbr causing o.Prcomp to be numerically computed. The region is a ring, whose

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Range Search on Multidimensional Uncertain Data • Article 15 / 31

outer (inner) boundary is a rectangle that shares the centroid of rq , and is longer
(shorter) than rq by 2a3 on the horizontal dimension, and by 2b3 on the vertical
dimension. The area of the evaluation region is much larger than those of the
approximate evaluation regions in Figures 13(b), 14(b), and 15(b), which, as
explained earlier, give pessimistic upper bounds of o.Prcomp (for large, small,
and median tq respectively) when PCRs are used.

The above discussion applies only to voluminous queries (i.e., the projection
of rq is longer than that of o.mbr on every dimension). When a query is not
voluminous, its evaluation region is significantly more complex, because o can
be validated in many additional ways (the voluminous requirement simplifies
Theorem 2, as mentioned at the beginning of Section 6.1). However, o.Prcomp

can still be estimated as follows. First, we generate a large number s1 of o.mbr,
by randomly distributing their centroids in the workspace. Then, we count the
number s2 of o.mbr that leads to numerical evaluation of Prrange(o, rq), after
which Prcomp(o, rq) can be approximated as s1/s2. We note that nonvoluminous
queries are much less important than the voluminous counterpart for index
optimization, as explained at the beginning of Section 6.1.

6.2 A Cost Model

In this section, we will derive analytical formulae that quantify the overhead
of nonfuzzy range search on multidimensional uncertain data. Specifically, let
q be a query with a probability threshold tq , and a rectangular search region
rq that has projection length slq[i] on the ith dimension (1 ≤ i ≤ d), and its
centroid follows a uniform distribution in the workspace. The objective is to
compute the expected query time cost(q), which sums the cost costflt(q) of the
filter step, and the refinement overhead costrfn(q).

In Section 6.2.1, we settle the problem for a “regular” dataset generated
as follows. First, we create n objects o with the same o.ur and o.pdf. Then,
these objects are positioned in the workspace such that the centroids of their
o.mbr distribute uniformly. Section 6.2.2 generalizes our analytical results to
arbitrary datasets.

6.2.1 Regular Data. In a regular dataset, the PCRs (at the same U-catalog
value c) of all objects are equally large, that is, o1.slpcr[i](c) = o2.slpcr[i](c) for any
dimension i ∈ [1, d] and arbitrary objects o1, o2. Therefore, for every object o,
the likelihood o.Prcomp that o can be neither pruned nor validated is equivalent.
This leads to:

nNE = n · o.Prcomp, (22)

where nNE is the number of numerical evaluations needed to answer a query.
As for o.Prcomp, we employ the following estimation:

o.Prcomp =
(
o.PrLB

comp + o.PrUB
comp

)
/2, (23)

where o.PrLB
comp and o.PrUB

comp are represented in Eqs. (16) and (17) for tq > 1−Cm,
Eqs. (18) and (19) for tq ≤ Cm, or Eqs. (20) and (21) for Cm < tq ≤ 1−Cm. Hence,

costrfn = nNE · o.costrfn = n · o.Prcomp · o.costrfn, (24)

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Article 15 / 32 • Y. Tao et al.

where o.costrfn is the overhead of MC (Monte-Carlo) for calculating the quali-
fication probability of a single object (see Section 5.3). o.costrfn is identical for
all objects, since it depends only on the cost of loading o.pdf and the number of
samples used in MC.

On the other hand, costflt(q) corresponds to the time of accessing the leaf
nodes of the U-tree in the filter step (we do not include the overhead of visiting
the intermediate nodes, since it is by far dominated by the cost at the leaf level,
especially if the intermediate levels are buffered). The probability nd .Pracs that
a leaf node nd is accessed depends on the characteristics of the data inside
nd . For a regular dataset, the characteristics are the same across the entire
workspace; hence, nd .Pracs is equivalent for all leaf nodes. It follows that:

nNA = n · o.Pracs, (25)

where nNA the number of nodes accessed in processing a query. Therefore,

costflt(q) = nNA · costranIO = (n/ f) · nd .Pracs · costranIO, (26)

where f is the average fanout of a node, n/ f is the total number of leaf nodes,
and costranIO the time of a random I/O. Note that f is determined by the page
size, and very importantly, the U-catalog size m (recall that each leaf entry
keeps m PCRs of an object).

Let e be the parent entry of a leaf node nd . As mentioned in Section 5.1, for
each U-catalog value c, e retains (i) e.mbr(c), which is the MBR of the o.pcr(c)
of all the objects o in nd , and (ii) a value e.sl (c), equal to the smallest projection
length of any o.pcr(c) on any dimension. In the sequel, we use e.slmbr[i](c) to
denote the projection length of e.mbr(c) on the ith dimension.

Calculating nd .Pracs requires the values of e.slmbr[i](c) and e.sl (c). The analy-
sis of the former can be reduced to estimating the MBR size of a leaf node in an
R-tree, by regarding nd as a leaf R-tree node, and e.mbr(c) its MBR. Leveraging
the findings3 of Theodoridis and Sellis [1996], we have:

e.slmbr[i](c) = o.slpcr[i](c) + (f /n)1/d (27)

where o.slpcr[i](c) captures the projection length of the o.pcr(c) of an object o on
the ith dimension. On the other hand, the analysis of e.sl (c) is straightforward:

e.sl (c) =
d

min
i=1

o.slpcr[i](c). (28)

We are ready to elaborate the derivation of nd .Pracs. Recall that nd must be
visited, if and only if the following “access condition” holds: tq is at most the
UBrange(e, rq) returned by Algorithm 2. Let us first consider the case tq > 1−Cm,
where we use c
 to denote the smallest U-catalog value at least 1 − tq . Thus,
the access condition is satisfied only when the rectangle rq ∩ e.mbr(c
) has a

3Consider an R-tree that indexes n equivalent rectangles, which are uniformly distributed in a
d -dimensional workspace, and their side lengths on the ith (1 ≤ i ≤ d) dimension equal x[i]. Let
y[i] denote the side length, on the ith dimension, of the MBR of a level-1 entry in an R-tree. If each
dimension of the workspace has a unit length, y[i] can be accurately estimated as x[i] + (f /n)1/d ,
where f is the average tree fanout. This result is due to the grid-modeling of the MBRs of the leaf
nodes in Theodoridis and Sellis [1996].

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Range Search on Multidimensional Uncertain Data • Article 15 / 33

projection length at least e.sl (c
) on all the dimensions. Note that c
 may not
exist, in which scenario the access condition is equivalent to rq intersecting
e.mbr(0). Similarly, for tq ≤ 1 − Cm, we deploy c� to represent the largest U-
catalog value at most tq (there is always such a value). Accordingly, the access
condition is valid if and only if e.mbr(c�) intersects rq .

It is clear from the above discussion that nd .Pracs is essentially the probabil-
ity that (a uniformly distributed) rq intersects a rectangle e.mbr(c) in a certain
way, where c is an appropriate U-catalog value selected as mentioned earlier.
This is a problem that has been studied by Pagel et al. [1993]. Based on their
results4 we have nd .Pracs =⎧⎪⎪⎨
⎪⎪⎩

∏d
i=1

(
slq[i] + e.slmbr[i](c
) − e.sl(c
)

)
iftq > 1 − Cm and c
 exists∏d

i=1

(
slq[i] + e.slmbr[i](0)

)
iftq > 1 − Cm and c
 does not exist∏d

i=1

(
slq[i] + e.slmbr[i](c�)

)
iftq ≤ 1 − Cm

(29)

where functions e.slmbr[i](.) and e.sl (.) are presented in Eqs. (27) and (28), re-
spectively.

All the components in Eqs. (24) and (26) have been represented as functions
of the dimensionality d , the query parameters, the PCR sizes of an object, the
dataset cardinality n, and the node fanout f , all of which are readily obtainable.
Therefore, we have derived the expected cost of nonfuzzy range search on a
regular dataset.

6.2.2 Arbitrary Data. The dataset-dependent parameters to the above
“regular” cost model involve only the cardinality n, and projection length
o.slpcr[i](c) of the o.pcr(c) of an object o on the ith dimension (1 ≤ i ≤ d), where
c is a U-catalog value. Given an arbitrary dataset, a naive approach of apply-
ing the model to estimate cost(q) is to feed those parameters with the average
statistics. In particular, o.slpcr[i](c) can be set to the average projection length
on the ith dimension of the o′.pcr(c) of all objects o′ in the dataset. This ap-
proach, however, may not produce accurate estimates, due to the potentially
large variance in objects’ projection lengths.

This problem can be alleviated using the local smoothing technique [Theodor-
idis and Sellis 1996] originally proposed for capturing R-tree performance. The
basic observation underlying the technique is that, the variance in the charac-
teristics of objects in a small region is (possibly much) lower than that in the
whole workspace. Hence, the application of the regular model to a subset of the
dataset tends to be more effective.

Specifically, we divide the data space into a grid of λd identical cells, where λ

is the resolution of the grid, and equals 5 in our experiments. For each cell cl , we
will develop a value cl .cost(q) that estimates the expected cost of q, when the

4Consider two d -dimensional axis-parallel rectangles whose side lengths on the ith (1 ≤ i ≤ d)
dimension equal x[i] and y[i], respectively. Let the two rectangles (independently) uniformly dis-
tribute in a workspace where each axis has a unit length. Examine the probability that they
intersect into a box whose side length on the ith (1 ≤ i ≤ d) dimension is at least z[i]. The analysis
of Pagel et al. [1993] shows that the probability equals �d

i=1(x[i] + y[i] − z[i]). As a corollary, the
probability that the two rectangles intersect is �d

i=1(x[i] + y[i]).

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Article 15 / 34 • Y. Tao et al.

centroid of q.mbr lies in cl . Obviously, λd values are obtained after examining
all the cells. Our final estimate for the expected cost cost(q) (of all queries)
equals the average of these values.

It remains to explain the computation of cl .cost(q). For this purpose, we need
the number cl .n of objects o′ such that the centroids of their o′.mbr are contained
by cl . Furthermore, for these objects o′ and every value c in the U-catalog, we
compute the average projection length cl .slpcr[i](c) on the ith dimension (1 ≤ i ≤
d) of o′.pcr(c). Then, cl .cost(q) is calculated by the regular model in Section 6.2.1,
after setting n = cl .n · λd , and o.slpcr[i](c) = cl .slpcr[i](c). Note that the statistics
(i.e., cl .n and cl .slpcr[i](c)) required for calculating cost(q) can be obtained by a
single scan of the dataset.

6.3 Optimizing the U-catalog Size

We close this section by elaborating the procedures of tuning the U-catalog
size m. Remember that the cost model of Section 6.2.1 is, in fact, a function m,
which influences the query overhead in two important ways. First, m directly
decides the node fanout f (which drops if more PCRs are retained for each
object). Second, various m leads to different values in the U-catalog, which in
turn affect the c� and c
 in Eqs. (16), (17), (18), (19), and (29). These formulae
determine both the filter and refinement cost.

The number of possibilities of m is limited, because this parameter should be
a small integer, for example, no more than 10. Therefore, we use our analytical
formulae to predict the expected query cost for every possible value of m, and
choose the value that yields the lowest prediction. This strategy, however, raises
two questions. First, what are the m values in the U-catalog? Second, how to
decide the query parameters (i.e., slq[1],. . . , slq[d] and tq) to be plugged into the
model?

We settle the first question by fixing the first value to 0, and placing the
other m − 1 values evenly in the range of (0, 0.5]. For example, for m = 2,
the U-catalog consists of {0, 1/4}, whereas the catalog becomes {0, 1/6, 2/6} for
m = 3. The answer to the second question largely depends on the preferences
of the database administrator. For instance, s/he could manually select some
parameter values that are proved to be popular among users based on the past
statistics. Another option is to generate many sets of parameters (e.g., one set
concerns large rq and tq , while another explores their small counterparts), and
deploy our model to produce an estimate for every set. The overall quality of
the m under consideration can be gauged by the average of the estimates of all
sets (possibly assigning different weights to the estimates of various sets).

7. PERFORMANCE EVALUATION

In this section, we empirically evaluate the effectiveness and efficiency of the
proposed techniques. All the experiments are performed on a machine run-
ning a Pentium IV 3.6GHz CPU. The disk page size is fixed to 4096 bytes. The
workspace is normalized to have a domain of [0, 10000] on every dimension.

Given a set X of points, we generate uncertain data as follows to simulate
a database storing the positions of mobile clients in a location-based service

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Range Search on Multidimensional Uncertain Data • Article 15 / 35

[Wolfson et al. 1999]. For each point p ∈ X , we create an uncertain object
o, whose uncertainty region o.ur is an L2 circle that centers at p, and has
a radius rado. We examine the type of o.pdf (x) that has been experimented
most in the literature: Gaussian. A traditional Gaussian distribution, however,
has an infinite domain, that is, o.pdf (x) is a positive value for any x in the
entire workspace, which contradicts the requirement that o.pdf (x) equals 0 at
a point x outside o.ur. Hence, following the practice of Cheng et al. [2004b],
we consider the “constrained Gaussian” distribution. Formally, let g (x) be a
conventional Gaussian function whose mean falls at the centroid of o.ur, and
its variance equals (rado/2)2 (i.e., the standard deviation rado/2 is half the
radius of an object’s uncertainty region). Then, the corresponding constrained
Gaussian o.pdf (x) is defined as:

o.pdf (x) =
{

g (x)/
∫

x∈o.ur g (x) dx if x ∈ o.ur

0 otherwise
(30)

By setting X respectively to two-dimensional point sets LB, CA, and RAN, we
obtain uncertain databases where the centroids of objects’ uncertainty regions
follow three different distributions. Both LB and CA are real spatial datasets
downloadable at the R-tree portal (http://www.rtreeportal.org), and are pro-
duced from the Tiger project of the US Census Bureau (http://tiger.census.gov).
Specifically, the former and latter contain 53k and 62k points representing ad-
dresses in the Long Beach county and Los Angeles, respectively. RAN consists
of 100k points randomly distributed in the workspace. In the sequel, we will
use LB-rado, CA-rado, and RAN-rado to refer to the uncertain datasets where
the radii of objects’ uncertainty regions equal radi (e.g., LB-100 indicates the
dataset created with X = LB and rado = 100).

The search region rq of a nonfuzzy range query is a circle, under the L∞ or
L2 norm, that has a radius radq , and its center follows the distribution of the
points in X (i.e., the original dataset used to synthesize uncertain objects). In
particular, when the L∞ norm is used, the search region is a square with side
length 2radq . On the other hand, for fuzzy range search, the query object q is
randomly sampled from the underlying uncertain dataset. As with nonfuzzy
retrieval, a fuzzy query is also associated with a defining norm (L∞ or L2),
which governs the distance metric in Definition 2.

In our experiments, we will often execute a workload of 10000 similar queries
in order to measure their average performance. Specifically, a workload has four
properties: (i) fuzzy or nonfuzzy, (ii) radq (or εq) for a nonfuzzy (or fuzzy) work-
load, (iii) the defining norm, and (iv) tq . For instance, “a nonfuzzy L∞ workload
with radq = 500 and tq = 0.3” contains purely nonfuzzy queries whose search
regions are squares with side length 1000, and their probability thresholds
equal 0.3. We sometimes set tq to a special value “mixed”, to indicate a work-
load where the probability threshold of a query is randomly generated in the
range of [0.1, 0.9].

Table II summarizes the data/query parameters mentioned earlier, together
with their values to be tested, and the default values in bold fonts.

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Article 15 / 36 • Y. Tao et al.

Table II. Data and Query Parameters Varied in our Experiments

Parameter Meaning Values
rado The radius of an object’s uncertainty region 5, 100, 250
radq The radius of the search region of a nonfuzzy range query 250, 500, 750
εq The distance threshold of a fuzzy range query 250, 500, 750
tq The probability threshold of a query Uniform in [0.1, 0.9]

7.1 Cost of Evaluating the Exact Qualification Probability

Given a nonfuzzy query, calculating the qualification probability Prrange(o, rq)
of an object o (Eq. (1)) requires integrating o.pdf (x), as given in Eq. (30), inside
the intersection between the uncertainty region o.ur of o and the search area rq .
Remember that o.ur is an L2 circle, and rq can be a square or an L2 circle. In any
case, o.ur ∩ rq may have an irregular shape, thus preventing the result of the
integral from being solved into a closed form. The same problem also exists in
computing the qualification probability Prfuzzy(o, q, εq) of o (Eq. (3)) with respect
to a fuzzy query. In fact, the computation here is even more difficult, because
the evaluation of Prfuzzy(o, q, εq) requires solving Prrange(.) in the first place.

Since Prrange(o, rq) and Prfuzzy(o, q, εq) can only be calculated numerically, the
result of the calculation cannot be always guaranteed to match the theoretical
value. This raises an important question: what should be accepted as a “correct
result”? As the numerical process is carried out with the Monte-Carlo method
(discussed in Section 5.3), a natural answer to this question is: the result ob-
tained from a sample set with a sufficiently large size s. Therefore, the first set
of experiments aims at identifying the magic value s.

Our methodology is as follows. First, we obtain an extremely accurate es-
timate of the real Prrange(o, rq) (or Prfuzzy(o, q, εq)), by using a huge sample
size 1010. Then, we increase s gradually from a small value, and measure
the error obtained from each s against the accurate estimate obtained ear-
lier. Note that, for a nonfuzzy (or fuzzy) query, the error depends on the rel-
ative positions of o.ur and rq (or q.ur). Therefore, after fixing an object o,
we create a special workload with 1000 random queries satisfying the con-
dition 0 < Prrange(o, rq) (or Prfuzzy(o, q, εq)) < 1 (the qualification probability of
o should not be 0 and 1, since numerical evaluation is not needed otherwise).
Then, given a particular s, the workload error is measured as the average of
the absolute errors of all queries contained.

In Figure 17(a) (or 17(b)), we demonstrate the workload error as a function
of s using L∞ (or L2) workloads of nonfuzzy queries. Here, we examine two
extreme combinations of parameters rado and radq : small queries on a small
object (radq = 250, rado = 5), and large queries on a large object (radq = 750,
rado = 250). Figures 17(c) and 17(d) illustrate the results of similar experi-
ments utilizing workloads of fuzzy queries. It turns out that the precision of
Monte-Carlo is dependent solely on the sample size s, and is not affected by
the data and query parameters. Recall that the rationale of Monte-Carlo stems
from the sampling theory, that is, its accuracy is decided only by two factors: the
fraction of samples falling into the integration region, and the function being
integrated [Press et al. 2002]. These factors are identical in all the experiments

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Range Search on Multidimensional Uncertain Data • Article 15 / 37

Fig. 17. Error of Monte-Carlo vs. sample size.

in Figures 17(a) and 17(b) with the same s, which explains the analogous behav-
ior in those figures. Finally, the similarity between nonfuzzy and fuzzy queries
is because the calculation of Prfuzzy(.) is reduced to Prrange(.).

We will set s to 104 in the rest experiments, since it is the smallest sample
size that leads to a reasonable workload error 1%. In other words, from now on,
an approximate result derived from this value of s will be claimed as correct. Ac-
cordingly, a single evaluation of Prrange(.) and Prfuzzy(.) demands approximately
1.7 milliseconds and 0.35 seconds, respectively.

7.2 Tuning the U-catalog Size

The size m of a U-catalog has important influence on query performance. In Sec-
tion 6, we presented a method for automatic tuning of this parameter, according
to the characteristics of the input dataset. In this section, we demonstrate the
effectiveness of the method.

7.2.1 Cost Model Accuracy. A fundamental component of our tuning ap-
proach is a cost model that predicts the overhead of nonfuzzy range search.
To verify the accuracy of the model, we use an m = 3 catalog (the values in
the catalog are decided as elaborated in Section 6.3), employ the dataset RAN-
100 (i.e., generated from the point set RAN with rado = 100), and compare the
estimated query cost (from our model) against the actual cost. In particular,
the comparison includes two aspects: (i) the I/O overhead, which is the cost
of the filter step, and proportional to the number of leaf node accesses in the
U-tree, and (ii) the CPU time, which is dominated by the overhead of the re-
finement phase, and proportional to the number of numerical evaluations of
Prrange(.).

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Article 15 / 38 • Y. Tao et al.

Fig. 18. Accuracy of the proposed cost model (dataset: RAN-100; L∞ nonfuzzy workloads).

Figures 18(a) and 18(b) plot the I/O and CPU comparison as a function of the
radius radq of search regions, respectively. Here, at each value x of radq , the
actual I/O (or CPU) cost corresponds to the average number of node accesses (or
numerical evaluations) in executing a query in a nonfuzzy L∞ workload with
parameters radq = x and tq = mixed. Given a query, we estimate its I/O and
CPU overhead using Eqs. (25) and (22), respectively. Figures 18(c) and 18(d)
illustrate the comparison as tq varies from 0.1 to 0.9. The actual and estimated
results are obtained in the same manner as explained earlier, except that the
workloads have a tq equal to the value being tested, and an radq fixed to 500.

It is clear that the proposed model is highly accurate, incurring an error less
than 5% in all cases. In particular, our analytical formulae capture exactly the
changes of query cost. First of all, there should be no surprise in witnessing
the cost increase continuously with radq (see Figures 18(a) and 18(b)): a larger
search region leads to more qualifying objects, thus entailing more expensive
I/O and CPU overhead. The change behavior with respect to tq is more complex.
As this parameter grows, the I/O cost decreases monotonically, while the num-
ber of numerical evaluations initially decreases until tq reaches 0.167, stays low
for a wide range of tq , and then bounces up when tq becomes 1 − 0.167 = 0.833.

To understand the above “tq-phenomenon”, recall that this experiment is
based on a U-catalog with three values: 0, 0.167, and 0.334. Let o be an object
whose uncertainty region partially intersects the search region (the other ob-
jects can always be pruned/validated, and hence, are irrelevant to explaining
the phenomenon). The power of Theorem 3 in pruning o is increasingly stronger
as tq grows (see the footnote5), which is the reasoning behind Figure 18(c). As

5Specifically, for tq ∈ [0, 0.167), o can be never be pruned. For tq ∈ [0.167, 0.334), o can be pruned

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Range Search on Multidimensional Uncertain Data • Article 15 / 39

for Figure 17d, we point out that, for tq ∈ [0, 0.167), it is not possible to prune o
with Theorem 3, although o may be validated using Theorem 2. The opposite is
true for tq ∈ (0.833, 1], that is, o may be pruned, but it can never be validated.
Our heuristics are most effective when tq distributes in [0.167, 0.833]. In this
case, both pruning and validation of o are likely; therefore, the least number of
numerical evaluations is needed.

7.2.2 Effects of the U-catalog Size. We are ready to inspect the effective-
ness of the proposed method for tuning the U-catalog size m. For this purpose,
we employ only the uncertain databases generated from the real datasets CA
and LB. As discussed in Section 6.2.2, when the data distribution is irregu-
lar, our tuning solution applies the local smoothing technique based on a λ × λ

histogram; in the sequel, λ is fixed to 5.
We aim at minimizing the expected overall overhead (i.e., including both

I/O and CPU time) of a nonfuzzy query whose radq equals the median value
500, and its tq follows a uniform distribution in [0.1, 0.9]. To achieve this goal,
given a particular m, we utilize our cost model to estimate the expected over-
head of queries with eighty-one {radq , tq} combinations, respectively: {500, 0.1},
{500, 0.11},. . . , {500, 0.89}, {500, 0.9}. Each estimate is the sum of costfrn and
costflt computed from Eqs. (26) and (24), respectively, setting costranIO to 20
milliseconds, and costrfn to 1.7 milliseconds (according to the experiments in
Section 7.1). The penalty of m is the average of the estimates of all the combi-
nations. The best m is the one with the lowest penalty.

In the experiment of Figure 19(a), we select the uncertain dataset CA-5
(where the uncertainty region of each object is a circle with radius rado = 5).
The curve labeled as “actual” presents the average query cost in a nonfuzzy L∞
workload with radq = 500 and tq = mixed, when the catalog size m varies from
1 to 10. The curve “estimated” shows the penalties of m. Figures 19(b) through
19(f) demonstrate similar results for datasets LB-5, CA-100, LB-100, CA-250,
and LB-250, respectively.

In every figure, the two curves are very close to each other, which proves
that our performance analysis is effective also for irregular data distributions.
Furthermore, the optimal U-catalog size m is clearly related to the data char-
acteristics. In particular, when objects have very small uncertainty regions (as
in CA-5 and LB-5), the best m equals 1, that is, only a single PCR (i.e., the MBR
o.pcr(0)) of each object o should be indexed. This is reasonable because, if the
query region rq is much larger than o.ur, the chance of rq partially intersecting
o.pcr(0) is very low, meaning that o can already be pruned or validated with a
very high probability even if no other PCR is available.

As shown in Figures 19(c) through 19(d), when objects have sizable uncer-
tainty regions, the optimal m tends to increase with rado. For each dataset,
before m reaches its optimal value, enlarging the U-catalog brings more PCRs
to each object, strengthens the pruning and validating power of our heuristics,

if the query region rq is disjoint with o.pcr(0.167), while for tq ∈ [0.334, 0.666), pruning can be per-
formed if rq does not intersect o.pcr(0.334), which is smaller than o.pcr(0.167). For tq ∈ [0.666, 0.833)
(or [0.666, 0.833)), we can prune o if rq does not contain o.pcr(0.334) (or o.pcr(0.167)).

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Article 15 / 40 • Y. Tao et al.

Fig. 19. Effectiveness of our method for U-catalog size tuning (radq = 500, tq uniform in [0.1,
0.9]).

and reduces the query cost. After m passes the optimum, however, further in-
creasing it no longer enhances the effectiveness of the heuristics significantly,
but necessitates more I/Os (due to the decrease of node fanout), thus compromis-
ing query performance. Our tuning method captures such behavior precisely,
and always identifies the optimal catalog size.

7.3 Cost of Nonfuzzy Range Search

Range search on multidimensional uncertain data is a novel topic that has not
been previously studied. Since there does not exist a nontrivial competitor, next
we compare the U-tree against the R-tree in nonfuzzy retrieval. Specifically, an
R-tree refers to a special U-tree with a U-catalog size m = 1. We will focus on two
uncertain datasets: CA-100 and LB-100, for both of which the best U-catalog
size equals 3, as shown in Figure 19. A memory cache is introduced to buffer
all the intermediate levels of an index.

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Range Search on Multidimensional Uncertain Data • Article 15 / 41

Fig. 20. Nonfuzzy query cost comparison between R- and U-trees (L∞-workloads).

Focusing on CA-100, the experiment of Figure 20(a) uses three nonfuzzy L∞
workloads with tq = mixed, and radq = 250, 500, and 750, respectively. For
each workload, we measure the average overhead of processing a query with
R- and U-trees, respectively. At each value of radq , the result of a method is
further broken into two parts, representing the cost of its filter and refinement
steps, respectively. Figure 20(b) shows the comparison for LB-100 under the
same settings.

The U-tree outperforms its rival in all cases, achieving a maximum speedup
of 3. In particular, the U-tree entails higher filter cost, but is significantly faster
in the refinement phase. This is expected because (i) by retaining several PCRs
per object, the U-tree has a lower fanout, and hence, a larger number of nodes,
rendering more node accesses in filtering; (ii) the U-tree needs to refine much
fewer objects.

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Article 15 / 42 • Y. Tao et al.

An object is a false hit, if its precise qualification probability is calculated, but
it does not qualify the query. False hits should be avoided as much as possible
to ensure fast response time. Figures 20(c) and 20(d) demonstrate the average
number of false hits per query in the experiments of Figures 20(a) and 20(b),
respectively. Obviously, the U-tree incurs significantly fewer false hits.

Figure 20(e) and 20(f)) plots the query time of R- and U-trees as a function
of tq , using nonfuzzy L∞ workloads with radq = 500, and tq = 0.1,. . . , 0.9,
respectively. Again, the U-tree is the clear winner, and its behavior is similar to
that illustrated in Figure 18(d). The performance of the R-tree is not affected by
tq , since keeping only the objects’ MBRs offers equivalent pruning/validating
power for all tq .

Figure 21 presents the results of the same experiments in Figure 20 but with
respect to L2 workloads. These results confirm the phenomena observed from
L∞ workloads, except that U-trees achieve a lower performance speedup over
R-trees. To explain this, recall that we process an L2 query, by conservatively
bounding its search region rq using an outside rectangle r and an inside rect-
angle r ′ respectively, as illustrated in Figure 6(b). The conservative approach
reduces the pruning/validating power of our heuristics. Although both U- and
R-trees are affected, the effects on U-trees are more significant, since only lim-
ited pruning/validating is possible for R-trees in any case.

7.4 Cost of Fuzzy Search

Now we continue to evaluate the algorithm in Section 4 for fuzzy range queries,
also using the datasets CA-100 and LB-100. As mentioned in Section 4.2, the
algorithm requires a parameter mq , which is the number of PCRs computed
for the query object q. Hence, we first select an appropriate value for this pa-
rameter. For this purpose, given a particular mq , we measure the average time
of processing a query with a U-tree in a fuzzy workload with εq = 500 and
tq = mixed. Figure 22(a) and (22(b)) plots the average cost as a function of
mq for both CA-100 and LB-100, using L∞ (L2) workloads. Clearly, an exces-
sively small mq results in expensive query overhead, because in this case only
a limited amount of information about the query is available for pruning and
validating. On the other hand, once mq reaches 10, further increasing this pa-
rameter does not lead to significant improvement, indicating that 10 PCRs of q
is already sufficient for efficient processing. In the rest experiments, we fix mq

to 10.
Next, we compare the query performance of R- and U-trees, by repeating the

experiments of Figures 20 and 21 with respect to fuzzy workloads. The results
are presented in Figures 23 and 24. Each column can be interpreted as either
the overall query time or refinement overhead (averaged over all the queries in
a workload). In fuzzy search, the filter step cost is negligible compared to the
overall time, and is demonstrated on top of each column.

The U-tree is again the better solution in all experiments, having a maximum
speedup of 5 over the R-tree (in Figure 23(c)). As in Figures 23 and 24, the
cost changes of U-trees with respect to tq are much smoother than those in
nonfuzzy search (see Figures 20 and 21). Namely, the “tq-phenomenon”, defined

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Range Search on Multidimensional Uncertain Data • Article 15 / 43

Fig. 21. Nonfuzzy query cost comparison between R- and U-trees (L2-workloads).

in Section 7.2.1, disappears. To understand this, recall that, as elaborated in
Section 7.2.1, the condition of the phenomenon is that, for a nonfuzzy query
q, only one PCR (selected according to tq) is used for pruning/validating an
object. The condition no longer holds: given a fuzzy query, multiple PCRs may
be utilized by our pruning/validating approach in Section 4.

Finally, as in the nonfuzzy scenario, the performance superiority of U-trees
over R-trees is more obvious in L∞ queries (than L2). Similar to the reasons
given in Section 7.3, this is due to the conservative approximation deployed in
processing an L2 query, except that here the approximation is illustrated in
Figures 9(c) and 9(d).

7.5 Index Construction Overhead

We proceed to evaluate the efficiency of the U-tree’s construction algorithm.
In Figure 25(a) and (25(b)), we demonstrate the cost of building a U- and an
R-tree on dataset CA-100 (LB-100), by incrementally inserting all the objects.

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Article 15 / 44 • Y. Tao et al.

Fig. 22. Tuning mq for fuzzy retrieval (εq = 500, tq uniform in [0.1, 0.9]).

Fig. 23. Fuzzy query cost comparison between R- and U-trees (L∞-workloads).

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Range Search on Multidimensional Uncertain Data • Article 15 / 45

Fig. 24. Fuzzy query cost comparison between R- and U-trees (L2-workloads).

In particular, the U-tree result consists of three components, capturing respec-
tively the overhead of (i) optimizing the U-catalog size, (ii) preparing the PCRs of
each object, and (iii) incremental insertion. The U-tree catalog contains 3 values.

Evidently, the cost of U-catalog optimization and PCR computation accounts
for a very small fraction of the overall overhead (particularly, finding all the
PCRs of an object takes around 1.8 milliseconds). After those two tasks are
completed, a U-tree can be built in time similar to an R-tree: on average
30 milliseconds to insert one object.

7.6 Three-Dimensional Results

So far, we have focused on 2D data. The last set of experiments examines the per-
formance of U-trees on three-dimensional objects. For this purpose, we generate

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Article 15 / 46 • Y. Tao et al.

Fig. 25. Index construction cost.

Fig. 26. Query cost on three dimensional data (RAN-3D, L∞-workloads, tq uniform in [0.1, 0.9]).

a dataset RAN-3D in the same way as RAN-250, except that each object’s un-
certainty region is a 3D sphere (with radius 250), and the function g (x) in
Eq. (30) is the pdf of a three-variate normal distribution with standard devi-
ation 125. The U-tree on RAN-3D has a U-catalog size 3. A (nonfuzzy/fuzzy)
query workload is created in the same manner as a 2D counterpart.

Figure 26(a) and (26(b)) compares the cost of answering a nonfuzzy (fuzzy)
workload with the U- and R-trees on RAN-3D, when radq (εq) changes from 250
to 750. Each cost is broken down into the overhead of the filter and refinement
steps, respectively. Since the filter costs are unnoticeable in Figure 26(b), we
illustrate them on top of the columns. The U-tree consistently outperforms
significantly the R-tree in all cases.

8. RELATED WORK

Section 8.1 first surveys various approaches for modeling uncertainty. Then,
Section 8.2 discusses query algorithms for producing probabilistic results.

8.1 Uncertainty Models

Several models have been proposed to incorporate uncertain objects in
databases. These models differ mainly in the semantics and complexities of

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Range Search on Multidimensional Uncertain Data • Article 15 / 47

the data in the underlying applications [Sarma et al. 2006]. In general, uncer-
tainty can be represented in a “qualitative” or “quantitative” manner. A qual-
itative model captures the presence/absence of data, typically using a “NULL”
keyword to describe a missing value. Accordingly, SQL needs to be augmented
with additional keywords for querying such incomplete tuples, for example,
“definite”, “indefinite”, “maybe” and “must” [Liu and Sunderraman 1987, 1991;
Sistla et al. 1997].

To provide a more rigorous treatment of uncertain data, a quantitative
approach describes uncertainty through mathematical modeling. These ap-
proaches include the fuzzy model [Galindo et al. 2006], the Dempster–Shafer
(evidence-oriented) model [Lee 1992; Lim et al. 1996] and the probabilistic
model. In particular, the probabilistic model can be further classified into three
categories: “table-based”, “tuple-based” and “attribute-based” solutions, which
handle different granularities of uncertainty. Specifically, a table-based ap-
proach concerns the “coverage” of a table, that is, how much percentage of tuples
are present in a table [Widom 2005]. A tuple-based solution, on the other hand,
associates each individual tuple with a probability, which indicates the likeli-
hood that the tuple exists in the table [Dalvi and Suciu 2004; Dalvi and Suciu
2005; Fuhr 1995]. This methodology has been applied to various forms of semi-
structured data, such as XML documents [Nierman and Jagadish 2002] and
other acyclic graphs [Hung et al. 2003]. Finally, when an attribute of a tuple
is not known precisely, an attribute-based method introduces a probability dis-
tribution for describing a set of possible values, together with their occurring
probabilities [Cheng et al. 2003; Deshpande et al. 2004; Pfoser and Jensen 1999;
Wolfson et al. 1999].

The attribute-based category, which is the focus of this article, has received
a large amount of attention in the literature of spatiotemporal databases and
sensor networks. For example, the modeling of vehicle locations illustrated in
Figure 1(a) is due to Wolfson et al. [1999]. This model is extended by Pfoser and
Jensen [1999] to enable estimation of the modeling error, by Trajcevski et al.
[2004] to support trajectories, and by Teixeira de Almeida and Güting [2005]
to road networks. A one-dimensional version of the model of Wolfson et al.
[1999] is also employed to handle continuous sensor data in Cheng et al. [2003,
2006a]. In a similar context [Deshpande et al. 2004], a joint pdf of multiple
attributes is deployed to capture the correlation of physical entities (e.g., tem-
perature and pressure). The above work concentrates on continuous attributes,
whereas uncertainty of discrete attributes is discussed in Barbará et al. [1992]
and Lakshmanan et al. [1997]. The solutions developed in our article can be
applied to all the models mentioned earlier.

Finally, there is a bulk of research [Cheng et al. 2003, 2006a; Khanna and
Tan 2001; Olston et al. 2001; Olston and Widom 2000, 2002] that investigates
how to reduce the cost of monitoring objects’ uncertain representations (e.g.,
as temperature is rising, the sensor must decide whether to issue an update to
the server, taking into account the tradeoff between communication overhead
and the precision of modeling). The approaches there are complementary to
our work, because they can be applied to generate objects’ pdf updates to the
U-tree.

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Article 15 / 48 • Y. Tao et al.

8.2 Query Evaluation

In a broad sense, a “probabilistic query” is a user inquiry that retrieves the ob-
jects qualifying a set of predicates with certain probabilistic guarantees. Such
queries are usually raised against a tuple-based or attribute-based uncertainty
model. In particular, queries with respect to tuple-based modeling are formu-
lated through the notion of either “intensional semantics” [Fuhr 1995] or “ex-
tensional semantics” [Dalvi and Suciu 2004, 2005]. For the attribute-based cat-
egory, [Cheng et al. 2003, 2006a] present a detailed taxonomy that classifies
a variety of probabilistic search, based on factors such as whether the result
values are continuous or discrete, whether there is any relationship among the
retrieved objects, and so on. Cheng et al. [2003, 2006a] also develop algorithms
for evaluating queries of each class in the taxonomy. These algorithms are later
adapted to solve problems in spatiotemporal databases [Cheng et al. 2004a],
and sensor networks [Cheng et al. 2006a; Deshpande et al. 2004; Han et al.
2007]. Recently, join operations between two uncertain datasets are investi-
gated in Kriegel et al. [2006].

In practice, the above methods may incur expensive cost, since they must
compute the actual qualification probability of every object. Motivated by this,
(targeting attribute-based modeling), Cheng et al. [2004b] introduce the con-
cept of “probability thresholding”, as formally defined in Section 2. In Cheng
et al. [2004b], the authors also explore access methods that minimize the I/O
cost of one dimensional probability threshold range search. They argue that
uncertain databases are inherently more difficult to handle (than the precise
counterpart), and support their claim by proving an asymptotical lower bound
for the optimal I/O performance. They also develop several index structures
that (almost) achieve the lower bound, but, unfortunately, are limited to one-
dimensional spaces. In the preliminary version [Tao et al. 2005] of the current
article, we tackle multidimensional data with the basic version of the heuristics
in Section 3, and describe a compression-based implementation of the U-tree.

The techniques proposed in this article extend beyond the methods in Cheng
et al. [2004b] and Tao et al. [2005]. Specifically, we (i) present a thorough set of
heuristics for pruning and validation of nonqualifying and qualifying objects,
respectively, (ii) perform a careful theoretical analysis to prove the effectiveness
of those heuristics, and (iii) devise fast algorithms for fuzzy range search, which
is not addressed in Cheng et al. [2004b] and Tao et al. [2005].

9. CONCLUSIONS AND FUTURE WORK

As has been proved in spatial databases, range search is a problem fundamental
to a large number of analytical tasks [Gaede and Gunther 1998]. Unfortunately,
there has been no formal research about optimizing this operation on multidi-
mensional uncertain objects, thus currently preventing such data from being
manipulated and analyzed efficiently. This article alleviates the situation by
presenting a comprehensive study on two forms of range retrieval common in
practice: nonfuzzy and fuzzy search. Based on a novel concept of “probabilisti-
cally constrained rectangle” (PCR), we carefully developed a set of heuristics
for effectively pruning (or validating) nonqualifying (or qualifying) objects. PCR

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Range Search on Multidimensional Uncertain Data • Article 15 / 49

also motivates a new index structure called the U-tree for minimizing the I/O
overhead of range queries. Finally, we accompany our algorithmic findings with
a thorough performance analysis, which explains the reasoning behind the effi-
ciency of the proposed techniques, and leads to the development of a cost model
that can be applied to query optimization.

Query processing on multidimensional uncertain databases, in general, re-
mains an attractive research topic that has not been extensively explored. The
work of this article lays down the foundation for designing fast algorithms
towards accomplishing various data mining goals, such as clustering, outlier
detection, etc (investigation of these algorithms would very likely motivate al-
ternative access methods, which, in turn, may actually inspire improvement of
the U-tree). A challenge, however, lies in the semantics/representations of the
mined results. For example, what does a “cluster of uncertain objects” mean
exactly? How to store a cluster concisely without losing its semantics? As an-
other example, what is a (global/local) “outlier” in a dataset when each object is
described with a pdf? Answers to these questions would naturally spawn new,
practical, definitions of the existing data mining concepts.

APPENDIX: PROOFS OF LEMMAS AND THEOREMS

PROOF OF THEOREM 1. We will only prove Rule (1), because Rule (2) can be
established in a similar manner. Since rq does not fully contain o.pcr(1 − tq),
there must be a face of o.pcr(1 − tq) such that, both o.pcr(1 − tq) and rq lie on
the same side of the d -dimensional plane containing the face. Let us denote the
place as l . Consider the portion of o.ur that lies on the opposite side of l with
respect to rq . By the definition of o.pcr(1 − tq), o has probability 1 − tq to appear
in that portion. As a result, the probability that o falls in rq is smaller than
1 − (1 − tq) = tq . Thus, o can be safely pruned. �

PROOF OF THEOREM 2. To prove Rule (1), we aim at obtaining a rectangle r
which is completely covered by rq . The rectangle r has the property that o has
at least 1 − ∑d−l

i=1 (ci + c′
i) probability to appear in r, which, combined with the

fact 1 − ∑d−l
i=1 (ci + c′

i) ≥ tq , confirms that o indeed qualifies q. More specifically,
at the beginning, r is initialized to o.pcr(0). Then, we will shrink r along each
of the d − l dimensions on which o.pcr(0) is not covered by rq . During the whole
process, we will use ρ to denote a lower bound for the probability that o appears
in the current r. The starting value of ρ is 1, and its final value will be exactly
1 − ∑d−l

i=1 (ci + c′
i).

On dimension 1, we shrink r by moving its left edge to the left boundary of
o.pcr(c1). Compared to the r before the shrinking, the appearance probability
of o inside r has been reduced by at most c1, due to the formulation of o.pcr(c1).
Hence, with respect to the new r, the value of ρ can be updated to 1 − c1.
Similarly, we shrink r again by moving its right edge (still, on dimension 1) to
the right boundary of o.pcr(c′

1), and update ρ to 1 − c1 − c′
1.

Performing the above shrinking on all the dimensions 1, 2, . . . , d − l , we
end up with (i) a rectangle r whose left (or right) edge along the ith dimension
(1 ≤ i ≤ d −l) coincides with that of o.pcr(ci) (or o.pcr(c′

i)), and (ii) a ρ with value

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Article 15 / 50 • Y. Tao et al.

1 − ∑d−l
i=1 (ci + c′

i). Hence, the projections of r on all these d − l dimensions are
contained by those of rq . Furthermore, r is covered by rq along the remaining l
dimensions; therefore, we have discovered an r and a ρ needed for proving the
first rule, as stated at the beginning of the proof.

Finally, Rule (2) can be established in a similar, but simpler, way.
Due to symmetry, let us consider the case where [rq[1]−, rq[1]+] encloses
[o.pcr[1]−(c1), o.pcr[1]−(c′

1)]. Initially, r equals a rectangle that shares the same
extents as o.mbr on all the dimensions except the first one, along which r
has a projection [o.pcr[1]−(0), o.pcr[1]−(c′

1)]. We set ρ to c′
1, which is the ex-

act probability that o appears in r. Then, we shrink r on the first dimen-
sion, by moving its left edge to the left boundary of o.pcr(c1). Accordingly, ρ

can be updated to c′
1 − c1. The current r is contained in rq ; hence, Rule (2)

holds. �

PROOF OF THEOREM 3. Let us first establish Rule (1). Since rq does not fully
cover o.pcr(c
), by Rule (1) of Theorem 1, o does not qualify q if its probability
threshold tq were 1 − c
. In fact, c
 ≥ 1 − tq , that is, the actual tq is at least
1−c
; therefore, o can be safely eliminated. Rule (2) can be verified in a similar
manner. Specifically, since rq is disjoint with o.pcr(c�), according to Rule (2) of
Theorem 1, o does not satisfy q even if its tq were c�, which is at most the actual
tq . Hence, o can again be pruned. �

PROOF OF LEMMA 1. The lemma trivially holds if rq contains or is disjoint with
o.mbr. In the sequel, we discuss the case where rq partially overlaps o.mbr,
starting with the pruning part of the lemma.

Pruning Case 1: tq ≤ 1 − Cm. In this scenario, the value c≤ at Line 4 of
Algorithm 1 must exist; otherwise, UBrange(o, rq) would be decided at Line 8,
and larger than 1 − Cm, violating the condition tq > UBrange(o, rq). Hence,
UBrange(o, rq) = c≤−δ (where δ is an infinitely small positive), leading to c≤ ≤ tq .
Let c� be the largest value in the U-catalog that is at most tq . It follows that
c≤ ≤ c�, that is, o.pcr(c≤) contains o.pcr(c�). By the way c≤ is decided, o.pcr(c≤)
is disjoint with rq . Therefore, o.pcr(c�) is also disjoint with rq , so that o is pruned
by Rule (2) of Theorem 3.

Pruning Case 2: tq > 1 − Cm. Assume, on the contrary, that o cannot be
pruned by Theorem 3. Thus, rq fully covers o.pcr(c
), where c
 is the smallest
value in the U-catalog at least 1 − tq ; otherwise, o would have been eliminated
by Rule (1) of Theorem 3. Therefore, rq definitely contains o.pcr(Cm), where Cm

is the largest value in the U-catalog. It follows that c≤ does not exist at Line 4.
Let us examine the c≥ produced at Line 7. As tq > UBrange(o, rq) = 1 − c≥ − δ,
we have c≥ ≥ 1 − tq . Hence, c≥ ≥ c
 (recall the criterion of choosing c≥), and
o.pcr(c
) contains o.pcr(c≥). Since, due to the way c≥ is selected, rq does not
fully cover o.pcr(c≥), rq cannot enclose o.pcr(c
), either. Here, we arrive at a
contradiction.

We proceed with the validating part of the lemma, also considering two cases.
Validating Case 1: LBrange(o, rq) produced at Line 15. Let us apply the c1,

c′
1, . . . , cd−l , c′

d−l calculated at Lines 13 and 14 in Rule (1) of Theorem 2 (the
projection of rq does not contain that of o.mbr on dimensions 1, . . . , d − l). By

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Range Search on Multidimensional Uncertain Data • Article 15 / 51

the way these 2(d −l) values are decided, the projection of rq on each dimension
i ∈ [1, d − l] encloses [o.pcr[i]−(ci), o.pcr[i]+(c′

i)]. Since tq ≤ LBrange(o, rq) = 1 −∑d−l
i=1 (ci + c′

i), o is validated by Rule (1).
Validating Case 2: LBrange(o, rq) produced at Line 19. In this scenario, l =

d − 1. We apply the values of c1 and c′
1 computed at Lines 17 and 18 in Rule

(2) of Theorem 2. According to the manner these two values are selected, the
projection of rq on dimension 1 encloses either [o.pcr[1]−(c1), o.pcr[1]−(c′

1)] or
[o.pcr[1]+(c′

1), o.pcr[1]+(c1)]. In both situations, as tq ≤ c′
1 − c1, o is validated

by Rule (2). �

PROOF OF LEMMA 2. The lemma is obviously true if rq completely covers or
is disjoint with o.mbr. In the sequel, we focus on the case where rq partially
overlaps o.mbr. To prove the part of the lemma about pruning, assume, on the
contrary, that pruning with Theorem 3 is possible for a tq ≤ UBrange(o, rq). We
discuss two cases separately.

Pruning Case 1: UBrange(o, rq) produced at Line 5 of Algorithm 1. Accord-
ingly, tq ≤ UBrange(o, rq) < Cm; hence, only Rule (2) of Theorem 3 could have
eliminated o, meaning that rq is disjoint with o.pcr(c�), where c� is the largest
U-catalog value at most tq . Let c≤ be the value computed at Line 4, that is,
c≤ = UBrange(o, rq)+δ, where δ is an infinitely small positive. Since c� ≤ tq < c≤,
c≤ is no longer the smallest value c in the U-catalog such that o.pcr(c) is disjoint
with rq , which violates the definition of c≤.

Pruning Case 2: UBrange(o, rq) produced at Line 8. Let c≥ be the value com-
puted at Line 7, that is, c≥ = 1 − UBrange(o, rq) − δ < 1 − tq . As Line 7 has been
executed, all o.pcr(c) (for any c in the U-catalog) must intersect rq . Thus, o can
be pruned only by Rule (1) of Theorem 3, meaning that rq does not fully cover
o.pcr(c
), where c
 is a U-catalog value at least 1 − tq . Since c
 ≥ 1 − tq > c≥,
c≥ is no longer the largest value c in the U-catalog such that rq does not fully
cover o.pcr(c). This violates the definition of c.

We continue to prove the part of the lemma about validating. Assume, on the
contrary, that validating with Theorem 2 is possible for a tq > LBrange(o, rq). We
again distinguishing two cases.

Validating Case 1: o is validated by Rule (1) of Theorem 2. In this scenario,
rq encloses o.pcr(Cm), and thus, LBrange(o, rq) is determined at Line 15. Let c1,
c′

1, . . . , cd−l , c′
d−l be the 2(d − l) values computed at Lines 13 and 14. Similarly,

we use c∗
1, c∗′

1 , . . . , c∗
d−l , c∗′

d−l to denote the values used in Rule (1) for validating
o. For every i ∈ [1, d − l], where l is as defined at Line 10, we have ci ≤ c∗

i and
c′

i ≤ c∗′
i , due to the way that ci and c′

i are selected. Therefore, LBrange(o, rq) =
1 − ∑d−l

i=1 (ci + c′
i) ≥ 1 − ∑d−l

i=1 (c∗
i + c∗′

i) ≥ tq , leading to a contradiction.
Validating Case 2: o is validated by Rule (2) of Theorem 2. When this hap-

pens, rq does not contain o.pcr(Cm) (otherwise, it is easy to observe that Rule
(1) can also validate o); hence, LBrange(o, rq) is obtained at Line 19. Let c1, c′

1
be the values computed at Lines 17, 18, and c∗

1, c∗′
1 the values used in Rule

(2) for validating o. By the way that c1 and c′
1 are chosen, we have c′

1 ≥ c∗′
1

and c1 ≤ c′
1. Therefore, LBrange(o, rq) = c′

1 − c1 ≥ c∗′
1 − c∗

1 ≥ tq , resulting in a
contradiction. �

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Article 15 / 52 • Y. Tao et al.

PROOF OF THEOREM 4. The theorem is a direct corollary of the definitions of
PCRs. �

PROOF OF THEOREM 5. Same as the proof of Theorem 2, except that, in the part
establishing Rule (1), ‘l ’ should be replaced with ‘d ’, while, in the part about
Rule (2), “dimension 1” is now “dimension i”. �

PROOF OF LEMMA 3. Inequality (12) follows immediately the definition of Prrange

and the fact that �(r, εq) ⊆ �(x, εq) ⊆
(r, εq). �
PROOF OF LEMMA 4. Due to symmetry, it suffices to prove only Inequality (13).

Given r1, . . . , r2mq−1, Eq. (3) can be rewritten as

Prfuzzy(o, q, εq) =
2mq−1∑

i=1

∫
x∈ri

q.pd f (x) · Prrange(o, �(x, εq))dx. (31)

When x ∈ ri, Prrange(o, �(x, εq)) ≤ UBPr(ri, o, εq) (see Inequality (11)). Hence:

Prfuzzy(o, q, εq) ≤
2mq−1∑

i=1

(
UBPr(ri, o, εq) ·

∫
x∈ri

q.pd f (x)dx
)

. (32)

Furthermore:∫
x∈ri

q.pdf(x)dx =
⎧⎨
⎩

QCi+1 − QCi if i ∈ [1, mq − 1]
1 − 2QCmq

if i = mq

QC2mq−i+1 − QC2mq−i if i ∈ [mq + 1, 2mq − 1]
(33)

Substituting the above equation into Inequality (32), we arrive at Inequality
(13). �

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their insightful
comments.

REFERENCES

BARBARÁ, D., GARCIA-MOLINA, H., AND PORTER, D. 1992. The management of probabilistic data.
IEEE Trans. Knowl. Data Eng. 4, 5, 487–502.

BECKMANN, N., KRIEGEL, H.-P., SCHNEIDER, R., AND SEEGER, B. 1990. The R*-tree: An efficient and
robust access method for points and rectangles. In Proceedings of ACM SIGMOD. ACM, New
York. 322–331.

BERG, M., KREVELD, M., OVERMARS, M., AND SCHWARZKOPF, O. 2000. Computational Geometry: Algo-
rithms and Applications. Springer-Verlag, New York.

CHENG, R., KALASHNIKOV, D., AND PRABHAKAR, S. 2006a. The evaluation of probabilistic queries over
imprecise data in constantly-evolving environments. Inf. Syst. 32, 1, 104–130.

CHENG, R., KALASHNIKOV, D. V., AND PRABHAKAR, S. 2003. Evaluating probabilistic queries over
imprecise data. In Proceedings of ACM SIGMOD. ACM, New York. 551–562.

CHENG, R., KALASHNIKOV, D. V., AND PRABHAKAR, S. 2004a. Querying imprecise data in moving object
environments. IEEE Trans. Knowl. Data Eng. 16, 9, 1112–1127.

CHENG, R., XIA, Y., PRABHAKAR, S., SHAH, R., AND VITTER, J. S. 2004b. Efficient indexing methods
for probabilistic threshold queries over uncertain data. In Proceedings of the Symposium on Very
Large Databases. 876–887.

CHENG, R., ZHANG, Y., BERTINO, E., AND PRABHAKAR, S. 2006b. Preserving user location privacy in
mobile data management infrastructures. In Proceedings of the Privacy Enhancing Technology

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Range Search on Multidimensional Uncertain Data • Article 15 / 53

Workshop (PET 2006) (Cambridge, UK, June). Lecture Notes in Computer Science. Springer-
Verlag, New York, 393–412.

DALVI, N. AND SUCIU, D. 2005. Answering queries from statistics and probabilistic views. In Pro-
ceedings of the Symposium on Very Large Databases. 805–816.

DALVI, N. N. AND SUCIU, D. 2004. Efficient query evaluation on probabilistic databases. In Pro-
ceedings of the Symposium on Very Large Databases. 864–875.

DANIELS, K. L., MILENKOVIC, V. J., AND ROTH, D. 1997. Finding the largest area axis-parallel rect-
angle in a polygon. Comput. Geom. 7, 125–148.

DE ALMEIDA, V. T. AND GÜTING, R. H. 2005. Supporting uncertainty in moving objects in network
databases. In Proceedings of the ACM International Symposium on Advances in Geographie
Information Systems. ACM, New York, 31–40.

DESHPANDE, A., GUESTRIN, C., MADDEN, S., HELLERSTEIN, J., AND HONG, W. 2004. Model-driven data
acquisition in sensor networks. In Proceedings of the Symposium on Very Large Databases. 588–
599.

FUHR, N. 1995. Probabilistic datalog - a logic for powerful retrieval methods. In SIGIR. 282–290.
GAEDE, V. AND GUNTHER, O. 1998. Multidimensional access methods. ACM Comput. Surv. 30, 2,

170–231.
GALINDO, J., URRUTIA, A., AND PIATTINI, M. 2006. Fuzzy Databases: Modeling, Design, and Imple-

mentation. Idea Group Publishing, ISBN: 1-59140-324-3.
HAN, S., CHAN, E., CHENG, R., AND LAM, K. Y. 2007. A statistics-based sensor selection scheme for

continuous probabilistic queries in sensor networks. Real-Time Syst. J. 35, 1, 33–58.
HUNG, E., GETOOR, L., AND SUBRAHMANIAN, V. S. 2003. PXML: A probabilistic semistructured data

model and algebra. In Proceedings of the IEEE International Conference on Data Engineering,
IEEE Computer Society Press, Los Alamistos, CA, 467.

KHANNA, S. AND TAN, W. 2001. On computing functions with uncertainty. In Proceedings of the
20th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, ACM,
New York, 171–182.

KRIEGEL, H.-P., KUNATH, P., PFEIFLE, M., AND RENZ, M. 2006. Probabilistic similarity join on un-
certain data. In Proceedings of the International Conference on Database Systems for Advanced
Applications. 295–309.

LAKSHMANAN, L., LEONE, N., ROSS, R., AND SUBRAHMANIAN, V. 1997. Probview: A flexible probabilistic
database system. Trans. Datab. Syst. 22, 3, 419–469.

LEE, S. K. 1992. An extended relational database model for uncertain and imprecise information.
In Proceedings of the Conference on Very Large Databases. 211–220.

LEUTENEGGER, S. T., EDGINGTON, J. M., AND LOPEZ, M. A. 1997. STR: A simple and efficient algorithm
for r-tree packing. In Proceedings of the IEEE International Conference on Data Engineering,
IEEE Computer Society Press, Los Alamitos, CA, 497–506.

LIM, E.-P., SRIVASTAVA, J., AND SHEKHAR, S. 1996. An evidential reasoning approach to attribute
value conflict resolution in database integration. IEEE Trans. Knowl. Data Eng. 8, 5, 707–723.

LIU, K. AND SUNDERRAMAN, R. 1987. An extension to the relational model for indefinite databases.
In Proceedings of the ACM-IEEE Computer Society Fall Joint Computer Conference. ACM, New
York, 428–435.

LIU, K. AND SUNDERRAMAN, R. 1991. A generalized relational model for indefinite and maybe in-
formation. IEEE Trans. Knowl. Data Eng. 3, 1, 65–77.

NIERMAN, A. AND JAGADISH, H. V. 2002. ProTDB: Probabilistic data in XML. In Proceedings of the
Conference on Very Large Databases. ACM, New York, 646–657.

OLSTON, C., LOO, B. T., AND WIDOM, J. 2001. Adaptive precision setting for cached approximate
values. In Proceedings of the ACM SIGMOD Symposium. ACM, New York, 355–366.

OLSTON, C. AND WIDOM, J. 2000. Offering a precision-performance tradeoff for aggregation queries
over replicated data. In Proceedings of the Conference on Very Large Databases. ACM, New York,
144–155.

OLSTON, C. AND WIDOM, J. 2002. Best-effort cache synchronization with source cooperation. In
Proceedings of the ACM SIGMOD Symposium. ACM, New York, 73–84.

PAGEL, B.-U., SIX, H.-W., TOBEN, H., AND WIDMAYER, P. 1993. Towards an analysis of range query
performance in spatial data structures. In Proceedings of the ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems. ACM, New York, 214–221.

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

Article 15 / 54 • Y. Tao et al.

PFOSER, D. AND JENSEN, C. S. 1999. Capturing the uncertainty of moving-object representations.
In Proceedings of the Symposium on Advances in Spatial Databases. Springer-Verlag, New York,
111–132.

PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND FLANNERY, B. P. 2002. Numerical Recipes in
C++. Cambridge University Press, Cambridge, MA.

SARMA, A. D., BENJELLOUN, O., WIDOM, J., AND HALEVY, A. 2006. Working models for uncertain
data. In Proceedings of the IEEE International Conference on Data Engineering. IEEE Computer
Society Press, Los Alamitos, CA.

SISTLA, A. P., WOLFSON, O., CHAMBERLAIN, S., AND DAO, S. 1997. Querying the uncertain position of
moving objects. In Temporal Databases, Dagstuhl. 310–337.

SWEENEY, L. 2002. k-anonymity: A model for protecting privacy. Int. J. Uncer. Fuzziness Knowl.-
based Syst. 10, 5, 557–570.

TAO, Y., CHENG, R., XIAO, X., NGAI, W. K., KAO, B., AND PRABHAKAR, S. 2005. Indexing multi-
dimensional uncertain data with arbitrary probability density functions. In Proceedings of the
Symposium on Very Large Databases. 922–933.

TEIXEIRA DE. ALMEIDA, V., AND GÜTING, R. H. 2005. Supporting uncertainty in moving objects in
network databases. In Proceedings of the GIS, 31–40.

THEODORIDIS, Y. AND SELLIS, T. K. 1996. A model for the prediction of R-tree performance. In Pro-
ceedings of the ACM SIGACT-SIGMOD SIGART Symposium on Principles of Database Systems.
ACM, New York, 161–171.

TRAJCEVSKI, G., WOLFSON, O., HINRICHS, K., AND CHAMBERLAIN, S. 2004. Managing uncertainty in
moving objects databases. Trans. Datab. Syst. 29, 3, 463–507.

WIDOM, J. 2005. Trio: A system for integrated management of data, accuracy, and lineage. In
Proceedings of CIDR. 262–276.

WOLFSON, O., SISTLA, A. P., CHAMBERLAIN, S., AND YESHA, Y. 1999. Updating and querying databases
that track mobile units. Distrib. Paral. Datab. 7, 3, 257–387.

Received June 2006; revised January 2007; accepted April 2007

ACM Transactions on Database Systems, Vol. 32, No. 3, Article 15, Publication date: August 2007.

