
To appear in IEEE TKDE

Title: Efficient Skyline and Top-k Retrieval in Subspaces
Keywords: Skyline, Top-k, Subspace, B-tree

Contact Author:
Yufei Tao (taoyf@cse.cuhk.edu.hk)
Department of Computer Science and Engineering
Chinese University of Hong Kong
Sha Tin, Hong Kong
Tel: +852-26098437 Fax: +852-26035024

Efficient Skyline and Top-k Retrieval in Subspaces

Yufei Tao† Xiaokui Xiao† Jian Pei‡

†Department of Computer Science and Engineering ‡School of Computing
Chinese University of Hong Kong Simon Fraser University

Sha Tin, Hong Kong Burnaby, BC Canada V5A 1S6
{taoyf, xkxiao}@cse.cuhk.edu.hk jpei@cs.sfu.ca

Abstract

Skyline and top-k queries are two popular operations for preference retrieval. In prac-
tice, applications that require these operations usually provide numerous candidate attributes,
whereas, depending on their interests, users may issue queries regarding different subsets of
the dimensions. The existing algorithms are inadequate for subspace skyline/top-k search
because they have at least one of the following defects: they (i) requirescanning the entire
database at least once; (ii) are optimized for one subspace but incur significant overhead for
other subspaces; (iii) demand expensive maintenance cost or space consumption.

In this paper, we propose a technique,SUBSKY, which settles both types of queries using
purely relational technologies. The core ofSUBSKYis a transformation that converts multidi-
mensional data to 1D values. These values are indexed by a simple B-tree, which allows us to
answer subspace queries by accessing a fraction of the database.SUBSKYentails low mainte-
nance overhead, which equals the cost of updating a traditional B-tree.Extensive experiments
with real data confirm that our technique outperforms alternative solutionssignificantly in both
efficiency and scalability.

1 Introduction

A multidimensional pointp dominatesanotherp′, if the coordinate ofp on each axis does not

exceed that ofp′, and is strictly smaller on at least one dimension. Given a set of points, the

skylineconsists of all the points that are not dominated by others. Figure 1 shows a dataset with

dimensionalityd = 2. The x-dimension represents theprice of a hotel, and the y-axis captures

its distanceto the beach. Hotelp1 dominatesp2, because the former is cheaper, and closer to

the beach. The skyline includesp1, p4, andp5, which offer various tradeoffs betweenprice and

distance: p4 is the nearest to the beach,p5 is the cheapest, andp1 may be a good compromise of

the two factors.

The notion of skyline is generalized to “skyband” in [22]. Specifically, thek-skybandof a dataset

includes all the points that are dominated by less thank points. For instance, the 2-skyband of the

dataset in Figure 1 contains all the objects exceptp7 andp8. Clearly, the skyline is the 1-skyband.

In general, for anyk andk′ satisfyingk′ < k, thek′-skyband is a subset of thek-skyband.

1

price (x)

distance to the beach (y)

O
p� p�

p�
p�

p�
p� p�

p�
0.2 0.4 0.6 0.8 1

1

0.8

0.6

0.4

0.2

Figure 1: A dataset with hotel records

Skylines have been extensively studied in the literature, due to their close relationship to preference

search. A preference is usually formulated through a monotone1 preference functiong, which

returns ascoreg(p) for every pointp. Given such a function, atop-k queryretrieves thek points

in a dataset with the lowest scores. For example, forg(p) = 3p[x] + p[y], the top-1 hotel in

Figure 1 isp1 (score 0.8). Regardless of the choice ofg, the top-1 object always lies in the skyline.

Furthermore, every skyline point is the top-1 object for a certain function (i.e., a skyline does not

contain any redundant point for top-1 search [5]). Similarly, thek-skyband containsall and only

the objects retrieved by top-k queries.

The motivation of this work is that, in practice, a skyline/preference search application typically

provides numerous candidate attributes, whereas a user chooses only a small number of them in

her/his query. Assume that, in addition to the dimensions inFigure 1, the database also stores the

distances of each hotel to several other locations (e.g., the town center, the nearest supermarket,

subway station, etc.), the ratings of security, air-quality, traffic-status in the neighborhood, and

so on. It is unlikely that a customer would consider all the attributes in selecting her/his hotel.

Instead, s/he would take into account only some of them, i.e., a subspaceof the universe. Alter-

native customers may have different concerns. Therefore, the system must be prepared to perform

skyline/top-k retrieval in a variety of subspaces. Unfortunately, this observation has been ignored

by the previous research. As discussed later, the existing skyline/top-k algorithms are optimized

for the whole universe, but entail expensive cost for subspace queries.

This paper presents the first study on indexes for efficient skyline and top-k computation in arbi-

trary subspaces. We developSUBSKY, a novel technique that settles both problems using purely

1Monotonicity meansg(p) > g(p′) for two arbitrary pointsp andp′, which share the same coordinates ond − 1

dimensions, andp has a larger coordinate on the remaining dimension.

2

relational technologies, and hence, can be incorporated into a conventional database system imme-

diately2. The core ofSUBSKYis a transformation that converts each multidimensional point to a

1D value. The converted values are indexed by a B-tree, which can be used to handle all types (i.e.,

skyline, skyband, top-k) of queries effectively. In the presence of tuple insertions/deletions, the tree

can be maintained at the same cost of updating a traditional B-tree. Extensive experiments confirm

that the proposed solutions significantly outperform the state-of-the-art skyline/top-k algorithms.

The rest of the paper is organized as follows. Section 2 reviews the previous work related to ours.

Section 3 adapts the existing algorithms for subspace skyline/top-k processing, and elaborates

their deficiencies. Section 4 presents the basicSUBSKYoptimized for skyline search on uniform

data, and Section 5 generalizes the technique to arbitrary data distributions. Section 6 discusses

skyband and top-k processing. Section 7 contains an experimental evaluationthat demonstrates

the efficiency ofSUBSKY. Section 8 concludes the paper with directions for future work.

2 Related Work

Section 2.1 surveys the algorithms for computing skylines in the whole universe. Then, Section 2.2

discusses the “sky-cube” that is highly relevant to subspace skylines. Finally, Section 2.3 reviews

the previous work on top-k search.

2.1 Skyline Retrieval in the Universe

The existing algorithms can be classified in two categories.The first one involves solutions that do

not assume any preprocessing on the underlying dataset, butthey retrieve the skyline by scanning

the entire database at least once. The second category reduces query cost by utilizing an index

structure. In the sequel, we survey both categories, focusing on the second one, since it also

involves our solutions.

Algorithms Requiring No Preprocessing.The first skyline algorithm in the database context is

BNL (block-nested-loop) [5], which simply inspects all pairs of points, and returns an object if it is

not dominated by any other object.SFS[10] (sort-filter-skyline) is based on the same rationale, but

improves the performance by sorting the data according to a monotone function. The performance

2Including a non-relational method into a commercial DBMS isdifficult, because it requires fixing complex issues

related to concurrency control, recovery, etc.

3

List 1 (x) p5:0.1 p6:0.3 p2:0.4 p7:0.6
List 2 (y) p4:0.1 p1:0.2 p3:0.3 p8:0.5

(a) The sorted lists used byIndex
List 1 (x) p5:0.2 p1:0.2 p6:0.3 p2:0.4 p3:0.5 p7:0.6 p8:0.9 p9:0.9
List 2 (y) p4:0.1 p1:0.2 p3:0.3 p2:0.4 p8:0.5 p6:0.7 p7:0.8 p5:0.9

(b) The sorted lists used byTA

Figure 2: Illustration of algorithms leveraging sorted lists

of BNL and SFSis analyzed in [25]. D&C [5] (divide-and-conquer) divides the universe into

several regions, calculates the skyline in each region, andproduces the final skyline from the

regional skylines. When the entire dataset fits in memory, this algorithm produces the skyline in

O(n logd−2 n + n log n) time, wheren is the dataset cardinality andd its dimensionality.Bitmap

[26] converts each pointp to a bit string, which encodes the number of points having a smaller

coordinate thanp on every dimension. The skyline is then obtained using only bit operations.LESS

(linear-elimination-sort for skyline) [14] is an algorithm that has good worst-case asymptotical

performance. Specifically, when the data distribution is uniform and no two points have the same

coordinate on any dimension,LESScomputes the skyline inO(d · n) time in expectation.

Algorithms Based on Sorted Lists. Index [26] organizes the dataset intod lists. Thei-th list

(1 ≤ i ≤ d) contains pointsp with the following property:p[i] = mind
j=1

p[j], wherep[i] is the

i-th coordinate ofp. Figure 2a shows thed = 2 lists for the dataset of Figure 1. For example,

p5 is assigned to List 1 because its x-coordinate 0.1 is smallerthan its y-coordinate 0.9. In case a

point has identical coordinates on both dimensions, the list containing it is decided arbitrarily (in

Figure 2a,p2 andp1 are randomly assigned to Lists 1 and 2, respectively). The entries in List 1

(2) are sorted in ascending order of their x- (y-) coordinates (e.g., entryp5:0.1 indicates the sorting

key 0.1 ofp5).

To compute the skyline,Indexscans the two lists in a synchronous manner. At the beginning, the

algorithm initializes pointersptr1 andptr2 referencing the first entriesp5, p4, respectively. Then,

at each step,Indexprocesses the referenced entry with a smaller sorting key. Since bothp5 andp4

have the same key 0.1,Indexrandomly picks one for processing. Assume thatp5 is selected; it is

added to the skylineSsky, after whichptr1 is moved top6. As p4 has a smaller key (thanp6), it

is the second point processed.p4 is not dominated by any point inSsky, and hence, is inserted in

Ssky. Pointerptr2 is then shifted top1. Similarly,p1 is processed next, and included in the skyline,

4

x

y

O

p�p	 p
 p�
p�

p
 p�
p�

N� N	
N

N� N

N� p� p	 p
 p� p� p
 p� p�N� N	 N
 N�N� N

0.2 0.4 0.6 0.8 1

1

0.8

0.6

0.4

0.2

the dominant region of p�
Figure 3: Illustration ofBBS

after whichptr2 is set top3. At this stage,Ssky = {p1, p4, p5}.

Both coordinates ofp1 are smaller than the x-coordinate 0.3 ofp6 (referenced byptr1), in which

case all the not-yet inspected pointsp in List 1 can be pruned. To understand this, observe that both

coordinates ofp are at least 0.3, indicating thatp is dominated byp1. Due to the same reasoning,

List 2 is also eliminated because both coordinates ofp1 are lower than the y-coordinate ofp3

(referenced byptr2). The algorithm finishes with{p1, p4, p5} as the result.

Borzsonyi et al. [5] develop an algorithmTA3 that deploys a different set of sorted lists. For a

d-dimensional dataset, thei-th list (1 ≤ i ≤ d) enumerates all the objects in ascending order of

their i-th coordinates. Figure 2b demonstrates the two lists for the dataset in Figure 1.TAscans the

d lists synchronously, and stops as soon as the same object hasbeen encountered in all lists. For

instance, assume thatTAaccesses the two lists in Figure 2b in a round-robin manner. It terminates

the scanning after seeingp1 in both lists. At this moment, it has retrievedp5, p4 andp1. Clearly, if

a pointp has not been fetched so far,p must be dominated byp1, and thus, can be safely removed

from further consideration. On the other hand,p5, p4 andp1 may or may not be in the skyline.

To verify this,TA obtains the y-coordinate ofp5 (notice that the scanning discovered only its x-

coordinate), and x-coordinate ofp4. Then, it computes the skyline from{p5, p4, p1}, which is

returned as the final skyline.

Algorithms Based on R-trees.NN (nearest-neighbor) [18] andBBS(branch-and-bound skyline)

[22] find the skyline using an R-tree [2]. The difference is that NN issues multiple NN queries

[15] while BBSperforms only a single traversal of the tree. It has been proved [22] thatBBSis

I/O optimal, i.e., it accesses the least number of disk pagesamong all algorithms based on R-trees

3This algorithm is calledB-tree in [5]. We refer to it asTA to emphasize its connection to Fagin’s threshold

algorithm [12].

5

(includingNN). Hence, the following discussion concentrates on this technique.

Figure 3 shows the R-tree for the dataset of Figure 1, togetherwith the minimum bounding rect-

angles (MBR) of the nodes.BBSprocesses the (leaf/intermediate) entries in ascending order of

their mindist(minimum distance) to the origin of the universe. At the beginning, the root entries

are inserted into a min-heapH (= {N5, N6}) using their mindist as the sorting key. Then, the

algorithm removes the top elementN5 of H, accesses its child node, and en-heaps all the entries

there.H now becomes{N1, N2, N6}.

Similarly, the next node visited is leafN1, where the data points are added toH (= {p1, p2, N2,

N6}). Sincep1 topsH, it is taken as the first skyline point, and used for pruning inthe subsequent

execution. Pointp2 is de-heaped next, but is discarded because it falls in thedominant regionof p1

(the shaded area).BBSthen visitsN2, and inserts onlyp4 into H = {N6, p4} (p3 is not inserted as it

is dominated byp1). Likewise, accessingN6 adds only one entryN3 to H (= {N3, p4}) becauseN4

lies completely in the shaded area. Following the same rationale, the remaining entries processed

areN3 (en-heapingp5), p4, p5, at which pointH becomes empty andBBSterminates.

Retrieval of Skyline Variants. Balke et al. [1] consider skyline computation in distributedenvi-

ronments. Also in the distributed framework, the work of Huang et al. [17] studies skyline search

on mobile objects. Lin et al. [19] investigate continuous skyline monitoring on data streams. In [6],

skylines are extended to partially-ordered domains. Chan etal. [8, 7] propose various approaches

to improve the usefulness of skylines in high-dimensional spaces. The above methods, however,

are restricted to their specific scenarios, and cannot be adapted to the problem of this paper.

2.2 The Sky-Cube

Pei et al. [23] and Yuan et al. [31] independently propose thesky-cube, which consists of the

skylines inall possible subspaces. In the sequel, we explain this concept,assuming that no two

points have the same coordinate on any axis (see [23, 31] for ageneral discussion overcoming the

assumption).

Suppose that the universe hasd = 3 dimensions x, y, and z. Figure 4 shows the 7 possible non-

empty subspaces. All the points in the skyline of a subspace belong to the skyline of a subspace

containing additional dimensions. For instance, the skyline of subspace xy is a subset of the skyline

6

xyz

xy xz yz

x y z

Figure 4: The lattice of skycube

in the universe, represented by an edge between xy and xyz in Figure 4. Specially, if a subspace

involves only a single dimension, its skyline consists of the point having the smallest coordinate

on this axis.

The skycube can be computed in a top-down manner. First, we retrieve the skyline of the universe.

Then, a child skyline can be found by applying a conventionalalgorithm on a parent skyline (in-

stead of the original database). For example, the skyline ofxyz can produce those of xy, xz, and

yz, while the skyline of x can be obtained from that of either xy or xz. To reduce cost, several

heuristics are proposed in [23, 31] to avoid the common computation in different subspaces. Xia

and Zhang [29] explain how to dynamically maintain a skycube, after the underlying database has

been updated.

2.3 Top-k Search in the Universe

There is a bulk of research on distributed top-k processing (see [20] and the references therein). In

that scenario, the data on each dimension is stored at a different server; the goal is to find the top-k

objects with the least network communication. Our work falls in the category of centralized top-k

search, where all the dimensions are retained at the same server, and the objective is to minimize

queries’ CPU and I/O cost. Next, we concentrate on this category.

Chang et al. [9] develop ONION, which answers only top-k queries withlinear preference func-

tions. Hristids and Papakonstantinou [16] propose the PREFER system, which supports a broader

class of preference functions, but requires duplicating the database several times. Yi et al. [30] sug-

gest a similar approach with lower maintenance cost. Tsaparas et al. [28] present a technique that

can handle arbitrary preference functions. This technique, however, is limited to two dimensions,

and supports only top-k queries whosek does not exceed a certain constant. The state-of-the-art

solution [27, 28] is based on “best-first traversal” [15] on an R-tree. It enables top-k queries with

anyk and monotone preference function, on data of arbitrary dimensionality.

7

3 Extending the Previous Algorithms to Subspaces

Without loss of generality, we assume ad-dimensional universe where each axis has domain [0,

1]. Given a pointp, p[i] denotes its coordinate on thei-th dimension (1 ≤ i ≤ d). BNL, SFS,

D&C, Bitmap, andLESS(in general, any algorithm that does not demand preprocessing) can be

trivially extended to compute the skyline in a subspace, by ignoring the irrelevant coordinates of

each point. However, they entail expensive cost by scanningthe entire dataset multiple times.

Indexcan be adapted for subspace skyline retrieval, by re-constructing the underlying data structure

for every query. Assume, for example,d = 10. As mentioned in Section 2.1, the preprocessing

of Index creates ten sorted listsL1, ..., andL10, whereLi (1 ≤ i ≤ 10) includes all pointsp

satisfyingp[i] = min{p[1], ..., p[10]}. Consider a query that aims at finding the skyline in the first

two dimensions. To applyIndex, we must organize the database into two sorted listsL′
1

andL′
2
,

whereL′
i (1 ≤ i ≤ 2) contains all pointsp such thatp[i] = min{p[1], p[2]}. Notice that, the pre-

computedL1, ...,L10 provide little help for derivingL′
1

andL′
2
. The most efficient way to calculate

L′
1

andL′
2

would ignore the pre-computed lists, scan the database onceto assign each object toL′
1

or L′
2
, and then perform two external sorts to obtain the proper order in the two lists.

TA is directly applicable to subspace computation, by operating on only the sorted lists correspond-

ing to the axes of the target subspace. Unfortunately, this technique is inappropriate for dynamic

datasets, because its sorted lists are costly to maintain. Recall that, every object has an entry in

each of thed sorted lists. Since a list is organized with a B-tree [5], a single tuple insertion/deletion

requires modifyingd B-trees, which is prohibitively expensive for larged.

NN andBBScan find a subspace skyline by ignoring the extents of an MBR along the irrelevant

dimensions. It suffices to discuss onlyBBSsinceNN is always slower. Imagine the rectangles in

Figure 3 as the projections, in the 2D subspace demonstrated, of the MBRs in ad-dimensional R-

tree for anyd > 2. BBSretrieves the skyline of the subspace in exactly the same wayas described

in Section 2.1. The performance ofBBS, however, severely degrades when the dimensionality

d increases, due to two reasons. First, asd grows, MBRs become considerably larger, which

significantly decreases the probability that an MBR falls in the dominant regions of the skyline

points (recall that this is the pruning condition ofBBS).

The other (less obvious) reason is the emergence of the “random grouping” phenomenon, after

8

d exceeds a certain threshold. Consider, for example, a 15D uniform dataset with 100k points.

Given a node capacity of 100 entries, the R-tree would containapproximately 1000 leaf nodes.

Since1000 ≈ 210, each leaf MBR has been split once along roughly 10 dimensions, while the

remaining 5 axes are not considered at all in the R-tree construction [3, 4]. Assume that we use

the R-tree to retrieve the skyline in a 2D subspace including any two of those 5 dimensions. The

expected performance is as poor as deploying a pathological2D R-tree, which groups the points

(in that 2D subspace) into leaf nodes in a completely random manner, regardless of their spatial

proximity.

Finally, the skycube algorithm discussed in Section 2.2 is not suitable for retrieving the skyline in

onesubspace, because it performs unnecessary work by fetchingskylines in many non-requested

subspaces. An alternative approach is to pre-compute the entire skycube. In that case, although the

skyline of any subspace can be obtained immediately, the skycube occupies significant space, and

incurs expensive update cost (whenever the original database is updated).

In summary, the existing approaches are inadequate for subspace skyline search because they have

at least one of the following defects: they (i) require scanning the entire database at least once;

(ii) are optimized for one subspace but incur significant overhead for other subspaces; (iii) demand

expensive maintenance cost or space consumption. In the following sections, we remedy all defects

by proposing a new technique.

4 The Basic SUBSKY

We use the termmaximal cornerfor the cornerAC of the universe having coordinate 1 on all

dimensions. Each data pointp is converted to a 1D valuef(p), equal to theL∞ distance between

p andAC :

f(p) = L∞(p,AC) =
d

max
i=1

(1 − p[i]). (1)

Pointp dominates all pointsp′ satisfying the following inequality:

f(p′) <
d

min
i=1

(1 − p[i]) (2)

Figure 5 illustrates a 2D example. Pointsp′ obeying the inequality constitute the shaded square,

whose side length equalsmin2

i=1
(1−p[i]). Obviously, no suchp′ can appear in the skyline because

the square is entirely contained in the dominant region ofp.

9

x

y

O

p

A�region pruned by p

Figure 5: Illustration of Inequality 2

Inequality 2 applies to the whole universe, while a similar result exists in any subspace. Repre-

senting a subspace as a setSUB capturing the relevant dimensions (e.g., if the subspace involves

the 1st and 3rd axes of the universe, thenSUB = {1, 3}), we have:

Property 1. Given an arbitrary pointp, no pointp′ qualifying the following condition can belong

to the skyline ofSUB:

f(p′) < min
i∈SUB

(1 − p[i]) (3)

For example, assumed = 3, and that the goal is to retrieve the skyline inSUB = {1, 2}. If p

has coordinates (0.05, 0.1, –) (the 3rd coordinate is irrelevant), no pointp′ with f(p′) < min(1 −

0.05, 1− 0.1) = 0.9 can be in the target skyline. This is correct because the coordinates ofp′ must

be at least 0.1 on all dimensions; hence,p′ is dominated byp in SUB.

Property 1 leads to an algorithm, referred to as thebasic SUBSKY, for computing the skyline in a

subspaceSUB. Specifically, we access the data pointsp in descending order of theirf(p). Mean-

while, we maintain (i) the current setSsky of skyline points (among the data already examined),

and (ii) a valueU equal to the largestmini∈SUB(1 − p[i]) of the objectsp ∈ Ssky. The algorithm

terminates whenU exceeds thef(p) of the nextp to be processed. The pseudocode of the basic

SUBSKYis given in Figure 6.

We illustrate the basicSUBSKYusing the 8 three-dimensional points in Figure 7 (the x- and y-

coordinates are the same as in Figure 1), where the last row indicates thef -value of each point.

The query subspaceSUB is {1, 2}. Objects are processed in this order:{p3, p4, p5, p1, p6, p2, p8,

p7}. After examiningp3, SUBSKYinitializesSsky as{p3}, andU asmini∈SUB(1 − p3[i]) = 0.5.

After the second pointp4 is inspected,Ssky becomes{p3, p4}, sincep4 is not dominated byp3; U

remains 0.5, because0.5 > mini∈SUB(1− p4[i]) = 0.1. Similarly, nextp5 is added toSsky without

10

Algorithm BASIC-SUBSKY (SUB)
/* SUB includes the dimensions relevant to the query subspace */
1. DB = the given set of data points sorted in descending order of theirf -values
2. U = 0; Ssky = ∅
3. p = the first point inDB

4. whilep 6= ∅ andU ≤ f(p) do
5. if p is not dominated by any point inDB

6. addp to Ssky

7. remove fromSsky the points dominated byp
8. U = the maximummini∈SUB(1 − p′[i]) of all p′ ∈ Ssky

9. setp to the next point inDB

10. returnSsky

Figure 6: The basicSUBSKYalgorithm

dimension p1 p2 p3 p4 p5 p6 p7 p8

1 (x) 0.2 0.4 0.5 0.9 0.1 0.3 0.6 0.9
2 (y) 0.2 0.4 0.3 0.1 0.9 0.7 0.8 0.5
3 (z) 0.5 0.9 0.1 0.6 0.3 0.2 0.7 0.6

f(pi) 0.8 0.6 0.9 0.9 0.9 0.8 0.4 0.5

Figure 7: An example dataset

affectingU . To handle the 4th pointp1, we insert it inSsky, but removep3 from Ssky, asp3 is

dominated byp1. Moreover,U is increased tomini∈SUB(1− p1[i]) = 0.8. The algorithm proceeds

to inspectp6, which does not changeSsky andU . Since thef -values of the remaining points are

smaller than the currentU = 0.8, the algorithm finishes and reports{p1, p4, p5} as the final skyline.

As shown in the experiments, despite its simplicity, the basic SUBSKYis highly efficient in com-

puting subspace skylines, when the data distribution is uniform. Next we provide the intuition,

under the same settings as used in Section 3 to illustrate thedefects ofBBS. Consider a 15D uni-

form dataset with cardinality 100k. Assume that we want to retrieve the skyline in a subspace

SUB containing any two dimensions, as shown in Figure 8. There isa high chance that a skyline

dimension 1 in SUBO
(l, l)

dimension 2 in SUB

Figure 8: Illustration of the analysis

11

x

y

O

p

A�
A�

Figure 9: Pruning effects of different anchors

point lies very close to the origin inSUB. Specifically, let us examine the square in Figure 8

whose lower-left corner is the origin, and its side length equals some smallλ ∈ [0, 1]. The prob-

ability of not having any object in the square equals(1 − λ2)100000, which is less than 10% for

λ = 0.001. In other words, with at least 90% chance, we can find a pointp in the square such that

mini∈SUB(1−p[i]) ≥ 0.999. In this case, (by Property 1) all pointsp′ with f(p′) < 0.999 are elim-

inated bySUBSKY. The expected percentage of such points in the whole datasetequals the volume

of a 15-dimensional square with side length 0.999. The volume evaluates to0.99915 = 98.5%, that

is, we only need to access 1.5% of the dataset!

5 The General SUBSKY

In the basicSUBSKY, f(p) is always computed using oneanchor, i.e., the maximal cornerAC .

This works fine for uniform data. In practice where data is clustered, however, thef(p) of various

p should be calculated with respect to different anchors to achieve greater pruning power.

To illustrate this, Figure 9 shows a 2D dataset, where all objects gather around the upper-left corner.

In the basicSUBSKY, (by Property 1) pointp prunes the right shaded square, which is useless since

the square does not cover any object. Alternatively, let us computef(p) as theL∞ distance from

p to another anchorA1. As a direct corollary of Property 1, we can eliminate all pointsp′ whose

f(p′) is smaller thanmin2

i=1
(A1[i]−p[i]). These points form the left shaded square, which encloses

a significant portion of the dataset. Namely,A1 offers stronger pruning power thanAC .

Based on this idea, in Sections 5.1-5.4, we develop the general version ofSUBSKY. Finally, Sec-

tion 5.5 discusses issues related to updates and other “preference directions”.

12

5.1 Pruning with Multiple Anchors

Given a dataset, we will compute a setSanc of anchorsA1, A2, ...,Am. Then, every data pointp is

converted to a 1D value as follows.

Definition 1. Each data pointp is converted to a valuef(p) = L∞(p,A), whereA belongs to

Sanc, and is called theassigned anchorof p.

Next, we formalize our pruning heuristic based on multiple anchors.

Property 2. Letp be an arbitrary object, andS ′
anc the set of anchors whose projections in supspace

SUB are dominated byp. Then, for each anchorA ∈ S ′
anc, an objectp′ assigned toA cannot be

in the skyline if

f(p′) < min
i∈SUB

(A[i] − p[i]) (4)

The above result degenerates to Property 1 whenA = AC . To explain the case whereA 6= AC ,

considerd = 3, andA = (0.8, 0.7, 0.1). In subspaceSUB = {1, 2}, an objectp = (0.2, 0.2, –)

eliminates all pointsp′ assigned toA with f(p′) < min(A[1] − p[1], A[2] − p[2]) = 0.5. Note that

the first and second coordinates ofp′ must be larger than 0.3 and 0.2 respectively, indicating that

p′ is dominated byp in SUB.

The pruning effectiveness of Property 2 depends on (i) how data is assigned to anchors, and (ii)

how the anchors are selected. We analyze these issues in the next two subsections, respectively.

5.2 Assigning Points to Anchors

We introduce the concept ofeffective region.

Definition 2. Given a data pointp and an anchorA dominated byp, theeffective region(ER) of

p with respect to A is a d-dimensional rectangle whose opposite corners are the origin and the

point having coordinateA[i]−L∞(p,A) on thei-th dimension (1 ≤ i ≤ d). The ER does not exist,

if A[i] < L∞(p,A) for anyi ∈ [1, d].

ERs are closely related to the benefit of assigning a point to ananchor. To understand this, consider

Figure 10a whered = 2, and pointp is assigned toAC . As a result, in finding the skyline in the

13

x

y

O

p

A�
the ER of p

f(p)

p�p�
x

y

O

p
A

the ER of p

f(p)

p�p�
(a) Assigningp to AC (b) Assigningp to A

Figure 10: The concept of effective region

universe,p can be eliminated with Property 2, if and only if another point is discovered in the

shaded square, which is the ER ofp with respect toAC . For example, sincep1 (p2) is inside

(outside) the ER, we can (cannot) eliminatep after encounteringp1 (p2). Let us assignp to an

alternative anchorA in Figure 10b. The shaded area demonstrates the new ER ofp, which covers

bothp1 andp2. This means thatp can be eliminated as long as eitherp1 or p2 has been discovered.

Compared with assigningp to AC , the new assignment increases the chance of pruningp.

Motivated by this, we assignp to the anchor that produces the largest ER ofp. Specifically, this is

the anchor that is dominated byA and maximizes:
d∏

i=1

max(0, A[i] − L∞(p,A)) (5)

5.3 Finding the Anchors

An anchor that leads to a large ER for one data point may produce a small ER for another. When

we are allowed to keep onlym anchors (wherem is a small integer, set as a system parameter),

how should they be selected in order to maximize the ER volumes of as many points as possible?

Notice that the largest ER of a pointp corresponds to itsanti-dominant region, consisting of all

the points in the universe dominatingp. These points form a rectangle that has the origin andp as

its opposite corners. In other words, the maximum value of Formula 5 equalsΠd
i=1

p[i], which is

achieved when

A[i] − L∞(p,A) = p[i] (6)

holds on all dimensionsi ∈ [1, d]. We refer to an anchorA satisfying the above equation as a

perfect anchorfor p.

14

x

y

O

p1

A
C

anti-dominant
region of p1

r1
r2

p2 major perpen-
dicular plane

p1'
p2'

l

A
a good anchor

p�
p�
p�B

A
p�

p�
(a) Perfect rays (b) Deciding the anchor

Figure 11: Finding anchors

It turns out that each pointp has infinite perfect anchors. Let us shoot a ray fromp that is in its

dominant region, and parallel to themajor diagonalof the data space (i.e., the diagonal connecting

the origin and the maximal corner). Every pointA on thisperfect rayis a perfect anchor ofp. This

is because the coordinate difference betweenA andp is equivalent on all axes, i.e.,A[i] − p[i] =

L∞(p,A) for anyi ∈ [1, d], thus establishing Equation 6.

In Figure 11a, for example, the perfect ray of pointp1 is r1, and any anchor onr1 will result in the

ER of p1 that is the shaded rectangle (i.e., the anti-dominant region of p1). Similarly, r2 is the ray

for p2. Sincer1 andr2 are very close to each other, if we can keep only a single anchor A, it would

lie between the two rays as in Figure 11a. AlthoughA is not the perfect anchor ofp1 andp2, it is a

good anchor as it leads to large ERs for both points.

The important implication of the above discussion is thatpoints with close perfect rays may share

the same anchor. This observation naturally leads to an algorithm for finding anchors based on

clustering. Specifically, we first project all objects onto the major perpendicular plane, i.e., the

d-dimensional plane that passes the maximal corner, and is perpendicular to the major diagonal of

the universe. In Figure 11a (d = 2), for instance, the plane is linel, and the projections ofp1 and

p2 arep′
1

andp′
2
, respectively. Then, we partition the projected points into m clusters using the

k-means algorithm [11, 24], and formulate an anchor for eachcluster.

It remains to clarify how to decide an anchorA for a clusterS. We aim at guaranteeing thatA

should produce a non-empty ER for every pointp ∈ S (i.e.,A[i] > L∞(p,A) on every dimension

i, as suggested in Definition 2); otherwise,p cannot be assigned toA. We illustrate the algo-

rithm using a 2D example, but the idea generalizes to arbitrary dimensionality in a straightforward

manner.

15

Assume thatS consists of 5 objectsp1, p2, ..., p5. The algorithm examines them in theoriginal

universe (i.e., not in the major perpendicular plane), as shown in Figure 11b. We first obtain point

B, whose coordinate on each dimension equals the lowest coordinate of the points inS on this

axis. Note thatB necessarily falls inside the data space, and dominates all the points. Then, we

compute the smallest square that covers all the points inS (see Figure 11b). The anchorA for S is

the corner of the square opposite toB.

5.4 The Data Structure and Query Algorithm

We are ready to clarify the details of ourSUBSKYtechnique. Given a small numberm (less than

100 in our experiments),SUBSKYfirst obtainsm anchors, by applying the method in Section 5.3

on a random subset of the database. Then, thef(p) of each pointp is set to theL∞ distance between

p and its assigned anchor (which maximizes the volume of ER among the anchors dominated by

p). We guarantee the existence of such an anchor by always including the maximal corner in the

anchor set.

SUBSKYmanages the resultingf(p) with a single B-tree that separates the points assigned to

various anchors. We achieve this by indexing a composite key(j, f(p)), wherej ∈ [1,m] is the id

of the anchor to whichp is assigned. Thus, an intermediate entrye of the B-tree has the form (e.id,

e.f), which means that (i) each pointp in the subtree ofe has been assigned to thej-th anchor with

j ≥ e.id, and (ii) in casej = e.id, the value off(p) is at leaste.f .

We illustrate the above process using the 3D dataset of Figure 7 andm = 2 anchors: the maximal

cornerA1 (= AC), andA2 = (1, 1, 0.8). The second row of Figure 13a illustrates the ER volume

of each data point with respect toA1, calculated by Equation 5. For instance, the volume 125

(×10−3) of p8 is derived fromΠ3

i=1
(A1[i] − L∞(A1, p8)) = (1 − 0.5)3. Similarly, the third row

contains the ER volumes with respect toA2. A “−” means that the corresponding ER does not

exist. For example, the ER ofp2 is undefined becausep2 does not dominateA2, while there is no

ER forp4 sinceA2[3] = 0.8 is smaller thanL∞(A2, p4) = 0.9 (review Definition 2). The white cells

of the table indicate each point’s ER-volume with respect to its assigned anchor. For example,p3

is assigned toA2 since this anchor produces a larger ER thanA1. Figure 13b shows the B-tree

indexing the transformedf -values, e.g., the leaf entryp3:(2, 0.7) in nodeN4 captures the fact that

f(p3) equals theL∞ distance 0.7 betweenA2 andp3.

16

Algorithm SUBSKY (SUB, {A1, A2, ... Am})
/* SUB includes the dimensions relevant to the query subspace;A1, ...,Am are the anchors */
1. for j = 1 tom

2. use a B-tree to find the pointptrj with the maximumf(ptrj) among all the points assigned toAj

3. ptrj .ER =
∏d

i=1
(Aj [i] − L∞(ptrj , Aj)) //Equation 5

4. Ssky = ∅ //the set of skyline points
5. while (ptrj 6= ∅ for anyj ∈ [1, m])
6. t = the value ofj giving the smallestptrj .ER among allj ∈ [1, m] such thatptrj 6= ∅
7. if ptrt is not dominated by any point inSsky

8. remove fromSsky the points dominated byptrt

9. Ssky = Ssky ∪ {ptrt}
10. forj = 1 tom, andj 6= t

11. if ptrj 6= ∅ andf(ptrj) < mini∈SUB(Aj [i] − ptrt[i])
12. ptrj = ∅ /* no point assigned toAj can belong to the skyline (Property 2) */
13. ptrt = the point with the next largestf(p) among the data assigned toAt (this point lies in either the

same leaf as the previousptrt, or a neighboring node)
14. if ptrt 6= ∅
15. for every pointpsky ∈ Ssky

16. if f(ptrt) < mini∈SUB(At[i] − psky[i])
17. ptrt = ∅ /* no point assigned toAt can belong to the skyline (Property 2) */
18. ptrt.ER =

∏d
i=1

(At[i] − L∞(ptrt, At))
19. returnSsky

Figure 12: The algorithm of finding a subspace skyline

Figure 12 formally describes the query algorithm ofSUBSKY. At a high level,SUBSKYdivides the

dataset intom lists, such that thei-th (1 ≤ i ≤ m) list contains all the points assigned to anchorAi,

sorted in descending order of theirf -values. Given a query subspaceSUB, the algorithm scans

them lists in a synchronous manner. Initially, pointersptr1, ptr2, ..., ptrm are positioned at the

first elements of them lists, respectively. The subsequent execution runs in iterations, until all the

pointers have become∅. In each iteration,SUBSKYprocesses the pointp that has the smallest ER,

among all the points currently referenced by them pointers. Specifically, it first updates the skyline

setSsky (i.e., whenever necessary, addp to Ssky and remove the points fromSsky dominated by

p). Then, the algorithm checks whether a list can be eliminated with p, according to Property 2.

Once a list is pruned, its corresponding pointer is set to∅. Afterwards, the pointer referencingp is

advanced to the next point, and another iteration starts.

As an example, assume that we want to compute the skyline in the subspaceSUB = {1, 2}. As

the first step, the algorithm identifies, for each anchor, theassigned data pointp with the maximum

f(p). In Figure 13b, the point forA1 (A2) is p6 (p5), which is the right-most point assigned to this

17

p� p� p� p p! p" p# p$
8 64 1 1 1 8 216 125ER-vol w.r.t. A%
0 - 9 - - 9 144 75ER-vol w.r.t. A& p3 p6p4

(1, 0.9)
p5

(1, 0.9) (2, 0.7) (2, 0.7)

p7
(1, 0.4)

p8
(1, 0.5)

p2
(1, 0.6)

p1
(1, 0.8)

(1, 0.4) (1, 0.6) (1, 0.9) (2, 0.7)

(1, 0.4) (1, 0.9)

N1 N2 N3 N4

N5 N6

(a) ER volumes with respect toA1, A2 (unit 10−3) (b) The B-tree on the transformedf -values

Figure 13: Illustration of the skyline algorithm

anchor at the leaf level, and can be easily found by accessinga single path of the B-tree.

Then, the algorithm scans the points assigned to each anchorin descending order of theirf -values,

i.e., the ordering is{p5, p4, p1, p2, p8, p7} for A1, and{p6, p3} for A2. Initially, ptr1 andptr2

reference the headsp5 and p6 of the two lists, respectively. At each iteration, we process the

referenced point with a smaller ER (in case of a tie, the next processed point is randomly decided).

Continuing the example, since the ER-volume 1 ofp5 is smaller than that 9 ofp6 (implying that

p6 has a larger probability of being pruned by a future skyline point), the algorithm addsp5 to the

skyline setSsky, and advancesptr1 to the next pointp4 in the list of A1. Sincep4 has a lower

ER-volume (thanp6 pointed to byptr2) and is not dominated byp5, it is also added toSsky (={p5,

p4}). Pointerptr1 now reachesp1, which is processed next, and is included inSsky, too.

According to Property 2,p1 prunes all the pointsp assigned toA1 whosef(p) are smaller than

mini∈SUB(A1[i] − p1[i]) = 0.8. Since the next pointp2 in the list of A1 qualifies the condition,

none of the remaining data in the list can be a skyline point. Similarly, p1 also prunes the datap

assigned toA2 satisfyingf(p) < mini∈SUB(A2[i] − p[i]) = 0.8. Thus, the headp6 in the list ofA2

is eliminated (f(p6) = 0.7 < 0.8), and no point in the list belongs to the skyline either. Hence, the

algorithm terminates withSsky ={p5, p4, p1}.

5.5 Discussion

We keep the anchor set in memory since it is small (occupying only several k-bytes) and is needed

for performing queries and updates. Specifically, to insert/delete a pointp, we decide its assigned

anchorA as described in Section 5.2, and setf(p) = L∞(p,A), after which the insertion/deletion

proceeds as in a normal B-tree. The anchor set is never modifiedafter its initial computation. Query

efficiency remains unaffected as long as the data distribution does not incur significant changes.

For a dynamic dataset, all the data must be retained because anon-skyline point may appear in the

18

skyline after a skyline point is deleted. On the other hand, if the dataset is static, points that are

not in the skyline of the whole universe can be discarded since, as mentioned in Section 2.1, they

will not appear in the skyline of any subspace4. Whend is large, the size of the full-space skyline

may still be comparable to the dataset cardinality [13]. Hence, the points (of the skyline) should be

managed by a disk-oriented technique (such asSUBSKY) to enable efficient retrieval in subspaces.

So far our definition of “dominance” prefers small coordinates on all dimensions, whereas in gen-

eral a point may be considered dominating another only if itscoordinates are larger on some axes.

For example, given attributesprice andsizeof houses, a reasonable skyline would seek to mini-

mize theprice but maximize thesize(i.e., a customer is typically interested in large houses with

low prices). Depending on its semantics, a dimension usually has only one “preference direction”,

e.g., skylines involvingprice (size) would most likely prefer the negative (positive) direction of

this axis. SUBSKYeasily supports a positive preference direction by converting it to a negative

direction, which can be achieved by subtracting (from 1) allcoordinates on the corresponding

dimension (e.g.,1− price).

It is worth mentioning that, sometimes a dimension may have two preference directions. For exam-

ple, consider the attributenearest-subway-station-distanceof properties. People, who travel with

the subway frequently, may prefer to minimize this attribute. Others, who are seeking quiet neigh-

borhoods, may prefer to maximize it. In this case, two instances ofSUBSKYmay be maintained,

each supporting one preference direction.

6 Extensions of SUBSKY

In the sequel, we show that SUBSKY can be adapted to perform other types of search in subspaces

efficiently. Section 6.1 first elaborates this for skyband queries, and then Section 6.2 discusses

top-k processing.

4Strictly speaking, this is correct only if all the data points have distinct coordinates on each dimension. If this is

not true, the points that need to be retained include those sharing common coordinates with a point in the full-space

skyline. Retrieval of such points is discussed in [23].

19

6.1 Subspace Skyband Retrieval

As mentioned in Section 1, thek-skybandof a dataset consists of all the data points that are

dominated by less thank other points.SUBSKYcan be easily modified to find thek-skyband in

any subspaceSUB. In terms of theoretical reasoning, the modification lies inProperty 2: a point

p′ cannot appear in thek-skyband, if there arek pointsp1, ..., pk, such that eachpj (1 ≤ j ≤ k)

satisfies Inequality 4, replacingp with pj. This observation implies that a subspacek-skyband can

be extracted using the B-tree deployed bySUBSKY, in a way similar to finding a subspace skyline.

Intuitively, the only difference is that, here, a sorted list can be eliminated, only after its remaining

points are guaranteed to be dominated byk points already seen. Based on this idea, Figure 14

demonstrates theSUB-SKYBANDalgorithm.

Next, we illustrate the algorithm by using the index in Figure 13b to extract the 2-skyband in

SUB = {1, 2} of the dataset in Figure 7.SUB-SKYBANDscans two sorted lists{p5, p4, p1, p2,

p8, p7} and{p6, p3} in a synchronous manner. Recall that the points in the first (second) list are

assigned to anchorA1 (A2) and sorted in descending order of theirf -values. Following the process

discussed in Section 5.4, we access, in this order,p5, p4, andp1 of the first list, after whichptr1 and

ptr2 are referencingp2 andp6 respectively, andSsky = {p5, p4, p1} (which should be interpreted as

the 2-skyband set now). As explained in Section 5.4,p1 definitely dominates all the un-inspected

points in both lists — the reason for terminating the skylinesearch in the example in Section 5.4.

To obtain the complete 2-skyband, we continue to processp2, because its ER has a smaller volume

than that ofp6. Sincep2 is dominated by only a single pointp1 in Ssky, it is added toSsky; then,

ptr1 is moved top8.

p2 must dominate all the un-examined pointsp in the first list, which can be understood by com-

bining Property 2 with the fact:f(p) ≤ f(p8) = 0.5 < mini∈SUB(A1[i] − p2[i]) = 0.6. Now that

we have found two points (p1 andp2) that dominate the un-inspected part of the first list, the list is

eliminated from further consideration.

The discovery ofp2 does not prune the second list. Hence,p6 is examined, and added toSsky

because it is dominated by only one pointp1 in Ssky. Pointerptr1 now referencesp3, which is also

checked, and included in the 2-skyband. Since the second list has been exhausted, the algorithm

finishes, reportingSsky = {p5, p4, p1, p2, p6, p3} as the final result.

20

Algorithm SUB-SKYBAND (SUB, k, {A1, A2, ... Am})
/* The meanings ofSUB, A1, ..., andAm follow those in Figure 12;k is the parameter in “k-skyband” */

1. for j = 1 tom

2. use a B-tree to find the pointptrj with the maximumf(ptrj) among all the points assigned toAj

3. ptrj .ER =
∏d

i=1
(Aj [i] − L∞(ptrj , Aj)) //Equation 5

4. Ssky = ∅ //the set of points in thek-skyband inSUB

5. for j = 1 tom

6. Sprune[j] = ∅ //Sprune[j] is the set of points that dominate the un-inspected points assigned toAj

7. while (ptrj 6= ∅ for anyj ∈ [1, m])
8. t = the value ofj giving the smallestptrj .ER among allj ∈ [1, m] such thatptrj 6= ∅
9. if ptrt is dominated by less thank points inSsky

10. for every pointp ∈ Ssky dominated byptrt

11. p.cnt + + //p.cnt is the number of data points found dominatingp

12. if p.cnt = k then removep from Ssky

13. Ssky = Ssky ∪ {ptrt}; ptrt.cnt = 0
14. forj = 1 tom, andj 6= t

15. if ptrj 6= ∅ andf(ptrj) < mini∈SUB(Aj [i] − ptrt[i])
16. Sprune[j] = Sprune[j] ∪ {ptrt}
17. if |Sprune[j]| = k thenptrj = ∅ /* no point assigned toAj can belong to thek-skyband */
18. ptrt = the point with the next largestf(p) among the data assigned toAt (this point lies in either the

same leaf as the previousptrt, or a neighboring node)
19. if ptrt 6= ∅
20. for every pointpsky ∈ (Ssky − Sprune[j])
21. if f(ptrt) < mini∈SUB(At[i] − psky[i])
22. Sprune[t] = Sprune[t] ∪ {psky}
23. if |Sprune[t]| = k thenptrt = ∅ /* no point assigned toAt can belong to thek-skyband */
24. ptrt.ER =

∏d
i=1

(At[i] − L∞(ptrt, At))
25. returnSsky

Figure 14: The algorithm of finding a subspace skyband

6.2 Subspace Top-k Retrieval

Given a monotone preference functiong (concerning a subspaceSUB), a top-k query returns the

k data points with the lowest scores. Since, in anySUB, any top-k result is always included

in the correspondingk-skyband, an obvious solution to answering the query is to extract thek-

skyband, compute the scores of the retrieved points, and report thek ones with the lowest scores.

This approach, however, may perform considerable unnecessary work, if thek-skyband is sizable.

Here, we propose a faster algorithm, which employs exactly the same B-tree used by ourSUBSKY

methodology, and is applicable to any monotone preference functiong. The algorithm requires the

notion of “ER max-corner”, defined as follows:

Definition 3. Given a pointp and an anchorA dominated byp, let R be the ER ofp with respect

21

Algorithm SUB-TOPK (SUB, k, g {A1, A2, ... Am})
/* The meanings ofSUB, A1, ..., andAm follow those in Figure 12;k is the parameter in “top-k”; g is the
preference function of the top-k query */
1. for j = 1 tom

2. use a B-tree to find the pointptrj with the maximumf(ptrj) among all the points assigned toAj

3. Stop = ∅ //the top-k set
4. while (ptrj 6= ∅ for anyj ∈ [1, m])
5. t = the value ofj giving the smallestg(ptrj) among allj ∈ [1, m] such thatptrj 6= ∅
6. if g(ptrt) is smaller than the score of some point inStop

7. remove fromStop the point with the largest score
8. Stop = Stop ∪ {ptrt}
9. for j = 1 tom, andj 6= t

10. if ptrj 6= ∅
11. ptrjC

is the ER max-corner ofptrj

12. if g(ptrjC
) is larger than the scores of all points inStop

13. ptrj = ∅ /* no point assigned toAj can belong to the top-k set */
14. ptrt = the point with the next largestf(p) among the data assigned toAt

15. if ptrt 6= ∅
16. ptrtC is the ER max-corner ofptrt

17. if g(ptrtC) is larger than the scores of all points inStop

18. ptrt = ∅ /* no point assigned toAt can belong to the top-k set */
19. returnStop

Figure 15: The algorithm of answering a subspace top-k query

to A (formulated in Definition 2). Then, theER max-corner of p with respect toA is the corner

of R opposite to the origin (which is also a corner ofR).

For example, in Figure 10a, the ER max-corner ofp is the upper-right corner of the shaded region.

Such corners have two important properties:

Property 3. A data pointp′ cannot be in the result of a top-k query (which specifies a preference

functiong concerning subspaceSUB), if there existk pointsp1, ...,pk such that, for allj ∈ [1, k],

g(pj) < g(p′C) (7)

wherep′C is the ER max-corner ofp′ with respect to its assigned anchor.

Property 4. Let p1 andp2 be two points assigned to the same anchorA. If f(p1) ≥ f(p2), then

g(p1C
) ≤ g(p2C

), whereg is any monotone preference function, andp1C
and p2C

are the ER

max-corners ofp1 andp2 with respect toA, respectively.

Figure 7 formally describes the proposed algorithmSUB-TOPKfor subspace top-k retrieval. As

with subspace skyline/skyband search,SUB-TOPKleveragesm lists, where thei-th (1 ≤ i ≤ m)

22

list juxtaposes the points assigned to thei-th anchor in descending order of theirf -values. Given

a query subspaceSUB, the algorithm again usesm pointersptr1, ptr2, ..., ptrm to scan them

lists synchronously, and maintains the setStop of k objects that have the smallest scores among all

the objects scanned so far. In each iteration,SUB-TOPKprocesses the referenced pointp with the

smallest score, and attempts to prune a list according to Properties 3 and 4.

In the sequel, we explain the algorithm using the dataset in Figure 13, assuming a top-2 query in

SUB = {1, 2} with g(p) = 3p[1] + p[2]. SUB-TOPKexamines two sorted lists{p5, p4, p1, p2,

p8, p7} and{p6, p3}. At the beginning, pointersptr1 andptr2 reference the top elements of the

two lists, respectively. At each step, we process the referenced point with a smaller score. Since

g(p5) = 1.2 < g(p6) = 1.6, p5 is added toStop, andptr1 is moved to the next elementp4.

As g(p6) < g(p4) = 2.8, the algorithm addsp6 to Stop (which becomes{p5, p6}, sorted in ascend-

ing order of their scores), and shifts pointerptr2 nto p3. Similarly, p3 is the third point inspected,

but is discarded, becauseg(p3) = 1.8 is larger than the score of the current top-2 objectp6. The

second list has been exhausted; hence, the subsequent execution focuses on the first list. We con-

tinue to processp5 andp4, which are also ignored, due to the same reason for discarding p3. Next,

p1 is examined, and included inStop, whereasp6 is removed fromStop, because it has a higher

score thanp1 andp5.

The algorithm terminates here withStop = {p1, p5} as the final result. To explain this, notice that

the elementp2 referenced byptr1 now has an ER max-cornerp2C
= (0.4, 0.4, 0.4). The score

g(p2C
) = 1.6 of p2C

is greater than those (0.8 and 1.2) ofp1 andp5. Hence, by Property 3,p2

cannot belong to the top-2 result. Furthermore, letp be any point in the first list that has not been

examined, andpC the ER max-corner ofp. As f(p2) ≥ f(p), according to Property 4,g(pC) must

be at leastg(p2C
), and hence, larger than the scores of bothp1 andp5. Therefore,p cannot be in

the top-2 result, either. The complete algorithm is formally described in Figure 15.

7 Experiments

In this section, we experimentally evaluate the efficiency of the proposed techniques. We deploy

three real datasetsNBA, Household, andColor5. Specifically,NBA contains 17k 8-dimensional

5These datasets can be downloaded athttp://www.nba.com, http://www.ipums.org, andhttp://kdd.ics.uci.edu, re-

spectively.

23

points, where each point corresponds to the statistics of a player in 8 categories. These categories

include the numbers of points scored, rebounds, assists, steals, blocks, field goals attempted, free

throws, and three-point shots, all averaged over the numberof minutes played.Householdconsists

of 127k 6-dimensional tuples, each of which represents the percentage of an American family’s

annual income spent on 6 types of expenditure: gas, electricity, water, heating, insurance, and

property tax.Color is a 9-dimensional dataset with a cardinality 68k, and a tuple captures sev-

eral properties of an image. Specifically, each image is encoded in the HSV space, and those 9

dimensions record the mean, standard deviation, and skewness of all the pixels in the H, S, and V

channels, respectively. All the values are normalized intothe unit range [0, 1].

We also generate synthetic data with four distributions:uniform, correlated, anti-correlated, and

clustered. The first three distributions are commonly adopted in the literature for evaluating skyline

algorithms; we refer our readers to [5] for their generalization. To create aclustereddataset with

cardinalityN , we first pick 10 cluster centroids randomly. Then, for each centroid, we obtain

N/10 points, such that the coordinate of a point on each axis follows a Gaussian distribution with

standard deviation 0.05, and a mean equal to the corresponding coordinate of the centroid.

7.1 Efficiency of Subspace Skyline Retrieval

We compareSUBSKYagainst the adapted versions ofBBS, SFS, andTA discussed in Section 3.

To applySUBSKY(BBS), we build a B- (R-) tree on each dataset. Each B-tree is constructed with

anchors computed (as elaborated in Section 5.3) from a 10% random sample set of the employed

dataset. ForTA, we created sorted lists as described in Section 2.1. Recall that,TA executes in

two phases. The first phase extracts the ids of a set of candidate objects, i.e., the ids scanned until

the same id is encountered in all lists. Then, the second stepretrieves the concrete coordinates of

each candidate. To optimize the second phase, we employ a B-tree to index the underlying dataset

on the ids; thus, the phase can be completed via a single traversal of the tree, which visits only

the nodes on the paths from the root to the leaves containing at least a candidate id. Our approach

incurs much lower cost than the traditional implementation[5, 26], where the second phase invokes

a blocked nested loop.SFSis implemented in the same way as presented in [10]. The page size is

set to 4k bytes in all cases.

A workloadcontains as many queries as the number of subspaces with the same dimensionality

24

 0

 0.5

 1

 1.5

 2

 2.5

1009080706050403020101

q
u

e
ry

 c
o

st
 (

se
c)

number m of anchors

4D subspaces
3D subspaces
2D subspaces

 0

 1

 2

 3

 4

 5

 6

1009080706050403020101

q
u

e
ry

 c
o

st
 (

se
c)

number m of anchors

4D subspaces
3D subspaces
2D subspaces

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

1009080706050403020101

q
u

e
ry

 c
o

st
 (

se
c)

number m of anchors

4D subspaces
3D subspaces
2D subspaces

(a)NBA (b) Household (c) Color

Figure 16:SUBSKYperformance vs. the number of anchors

dsub in the underlying dataset, wheredsub is a parameter of the workload. For example, forNBAand

dsub = 3, there are(8

3
) = 56 three-dimensional subspaces, and hence, the corresponding workload

includes 56 queries. ForNBAandHousehold, each skyline aims at maximizing the coordinates of

the participating dimensions, while queries on the other datasets prefer small coordinates.

We measure query cost as the total overhead, which includes both the CPU and I/O time. In

particular, I/O cost involves 20ms for each random access, and 4ms for each sequential access. All

the experiments are performed on a machine with a Pentium IV CPU at 3GHz and 1 Giga bytes

memory.

Tuning the Number of Anchors. The first set of experiments examines the influence of the

numberm of anchors on the performance ofSUBSKY. For each real dataset, we create 11 B-trees

by varyingm from 1 to 100. Then, we use each tree to process a workload, andmeasure the

average cost per query. Figure 16 plots the cost as a functionof m, for workloads withdsub =

2, 3 and 4, respectively. Note that the results form = 1 correspond to the overhead of the basic

SUBSKYthat uses the maximal corner as the only anchor (Section 4).

As m becomes larger, the query overhead first decreases and then actually increases afterm passes

a certain threshold. The initial decrease confirms the analysis of Section 5 that query efficiency

can be improved by using multiple anchors. To explain the performance deterioration, recall that

the query algorithm ofSUBSKYessentially scansm segments of continuous leaf nodes in a B-tree,

which requires at leastm page accesses. For excessively largem, thesem accesses constitute a

dominant factor in the overall overhead, which thus grows (almost) linearly withm.

Even for the same dataset, the optimalm is greater, when the dimensionalitydsub of the query

25

SFS TA BBS SUBSKY(basic) SUBSKY

 1

 10

 100

 1000

1.510.5

q
u

e
ry

 c
o

st
 (

se
c)

cardinality (million)

 0.1

 1

 10

 100

 1000

1.510.5

q
u

e
ry

 c
o

st
 (

se
c)

cardinality (million)

(a)Uniform (b) Correlated

 1

 10

 100

 1000

1.510.5

q
u

e
ry

 c
o

st
 (

se
c)

cardinality (million)

 1

 10

 100

 1000

1.510.5
q

u
e

ry
 c

o
st

 (
se

c)
cardinality (million)

(c) Anti-correlated (d) Clustered

Figure 17: Cost of skyline search vs. cardinality (dsub = 3, d = 10)

subspace is higher. For example, forNBA, the bestm equals 10, 40, 50 fordsub = 2, 3, and 4,

respectively. In the sequel, we setm to 10 for real datasets, since this value offers the best overall

performance.

Through a similar tuning process, we usem = 70, 1, 100, and 30 for all theuniform, correlated,

anti-correlated, andclustereddatasets, respectively.

Scalability with the Cardinality and Universe Dimensionality. In the next experiment, we de-

ploy 10D uniform datasets with cardinalities ranging from 0.5 to 1.5 million. Deploying a 3D

workload, Figure 17a compares the average cost (of all queries in a workload) ofBBS, SFS, TA,

the basic and generalSUBSKY.

The proposed techniques significantly outperform their competitors. In particular, the twoSUB-

SKYmethods are faster thanSFSandTA by a factor of an order of magnitude. Furthermore, the

generalSUBSKYis also nearly 10 times faster thanBBS. In Figures 17b-17d, we present the re-

sults of the same experiments on synthetic datasets of the other distributions, confirming the above

observations. The basicSUBSKYis omitted because it targets uniform data specifically.

26

SFS TA BBS SUBSKY(basic) SUBSKY

 1

 10

 100

 1000

15105

q
u

e
ry

 c
o

st
 (

se
c)

universe dimensionality

 0.01

 0.1

 1

 10

 100

 1000

15105

q
u

e
ry

 c
o

st
 (

se
c)

universe dimensionality

(a)Uniform (b) Correlated

 1

 10

 100

 1000

15105

q
u

e
ry

 c
o

st
 (

se
c)

universe dimensionality

 1

 10

 100

 1000

15105
q

u
e

ry
 c

o
st

 (
se

c)
universe dimensionality

(c) Anti-correlated (d) Clustered

Figure 18: Cost of skyline search vs. universe dimensionality (dsub = 3, 1 million cardinality)

To examine the influence of the universe dimensionalityd, we utilize datasets with cardinality 1

million, whosed varies from 5 to 15. In Figure 18, again leveraging 3D workloads, we measure the

average cost of alternative methods as a function ofd, for the four types of synthetic distributions,

respectively.SUBSKYconsistently outperforms the other approaches significantly.

It is worth mentioning that, all algorithms are I/O-bounded, such that the CPU cost accounts for

at most 2% of the total running time of any query. In the rest experiments, we omitSFSandTA,

because they are not comparable withBBSandSUBSKY. Furthermore, we will use the general

SUBSKYas the representative of our technique.

Characteristics of SUBSKY. We proceed to study several intrinsic properties of the proposed

technique. For this purpose, we focus onuniform datasets, so that we can explain the observed

behavior without worrying about the complex influences caused by the irregularity in the data

distribution.

First, we examine the percentage of a database (universe dimensionality 10) that must be inspected

by SUBSKY. The 2nd (3rd, 4th) row of Table 1a shows the percentage for answering a 2D (3D, 4D,

27

cardinality 10k 500k 1m 1.5m 2m
dsub = 2 1.4% 1.4% 0.90% 0.61% 0.49%
dsub = 3 3.7% 3.6% 3.5% 3.1% 2.5%
dsub = 4 17% 15% 13% 12% 10%

(a) Percentage vs. dataset cardinality (d = 10)
d 5 10 15

dsub = 2 0.63% 0.90% 0.90%
dsub = 3 0.77% 3.5% 10.8%
dsub = 4 0.65% 15% 28%

(b) Percentage vs. universe dimensionalityd (cardinality 1 million)

Table 1: The percentage of a database accessed bySUBSKY

0
0.5

1
1.5

2
2.5

3
3.5

4

65432

q
u

e
ry

 c
o

st
 (

se
c)

universe dimensionality

BBS
SUBSKY

Figure 19: The break-evend betweenBBSandSUBSKY(dsub = 2, 1 million cardinality)

respectively) workload, as the dataset cardinality grows from 10k to 2 million. For the samedsub,

the percentage is actually lower for a more sizable dataset.To explain this, consider the object

whoseL∞ distance to the origin is the smallest. Letλ denote that distance. This object prunes all

the data pointsp satisfyingf(p) < 1−λ, wheref(p) is theL∞ distance betweenp and the maximal

corner. When the dataset is larger,λ is smaller; therefore, a higher percentage of the dataset can

be pruned. Note that the above phenomenon does not contradict the results in Figure 17. As the

cardinality grows, the actual number of objects inspected by SUBSKYstill increases, even though

the percentage is reduced.

Table 1b demonstrates the percentages for performing 2D, 3D, and 4D workloads, with respect to

various universe dimensionalitiesd. As expected, the percentage increases withd, confirming the

intuition that subspace skyline retrieval is more difficultin a higher-dimensional universe. The two

tables also indicate that, given the same cardinality andd, the percentage grows withdsub. This is

reasonable, because our heuristics are less effective in subspaces with more dimensions.

28

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

q
u

e
ry

 c
o

st
 (

se
c)

subspaces

BBS (avg = 0.36)
SUBSKY (avg = 0.23)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

q
u

e
ry

 c
o

st
 (

se
c)

subspaces

BBS (avg = 1.20)
SUBSKY (avg = 0.77)

 0

 1

 2

 3

 4

 5

 6

q
u

e
ry

 c
o

st
 (

se
c)

subspaces

BBS (avg = 2.67)
SUBSKY (avg = 1.60)

(a)NBA, dsub = 2 (b)NBA, dsub = 3 (c)NBA, dsub = 4

 0.1

 1

 10

q
u

e
ry

 c
o

st
 (

se
c)

subspaces

BBS (avg = 1.43)
SUBSKY (avg = 0.27)

 0.1

 1

 10

q
u

e
ry

 c
o

st
 (

se
c)

subspaces

BBS (avg = 4.39)
SUBSKY (avg = 1.09)

 1

 10

 100

q
u

e
ry

 c
o

st
 (

se
c)

subspaces

BBS (avg = 8.32)
SUBSKY (avg = 2.83)

(d) Household, dsub = 2 (e)Household, dsub = 3 (f) Household, dsub = 4

 0.01

 0.1

 1

 10

 100

q
u

e
ry

 c
o

st
 (

se
c)

subspaces

BBS (avg = 0.73)
SUBSKY (avg = 0.26)

 0.01

 0.1

 1

 10

 100

q
u

e
ry

 c
o

st
 (

se
c)

subspaces

BBS (avg = 2.06)
SUBSKY (avg = 0.55)

 0.01

 0.1

 1

 10

 100

q
u

e
ry

 c
o

st
 (

se
c)
subspaces

BBS (avg = 4.09)
SUBSKY (avg = 1.38)

(g) Color, dsub = 2 (h)Color, dsub = 3 (i) Color, dsub = 4

Figure 20: Cost of skyline search vs. subspace dimensionality

Second, we investigate the “break-even” universe dimensionality whereBBSandSUBSKYswitch

their relative superiority. As analyzed in Section 3,BBSis expensive only if the universe dimen-

sionalityd is sufficiently high (so that the structure of the underlyingR-tree degrades significantly).

If d is small,BBSwould be faster thanSUBSKY, due to the information loss in the dimension-

reduction transformation adopted bySUBSKY.

To capture the break-even point, we fixdsub to 2 and cardinality to 1 million, but measure the

cost of the two methods by gradually raisingd. The results are demonstrated in Figure 19. The

overhead ofSUBSKYis not significantly affected whend distributes in the tested range, whereas

the cost ofBBSescalates quickly. As expected, for smalld, BBSentails cheaper computation time,

butSUBSKYstarts being the better method atd = 5.

Examination of Individual Subspaces.Figure 20a illustrates the cost ofSUBSKYandBBSfor

29

x

y

O

p

the search
region of BBS

Figure 21: The best case forBBS

answering each query in a 2D workload on theNBA dataset. The x-axis represents the sub-

spaces, sorted in ascending order of the correspondingSUBSKYoverhead. The average cost of

each method is shown after its legend (e.g., the per-query overhead ofSUBSKYequals 0.23 sec-

onds). In Figures 20b and 20c, we demonstrate a similar comparison for workloads withdsub = 3

and 4, respectively. Figures20d-20i present the results ofthe same experiments onHouseholdand

Color respectively, except that the y-axes are in logarithmic scale.

SUBSKYconsistently achieves lower average cost than its competitor (with the maximum speedup

5 in Figure 20d). Regarding individual query performance,SUBSKYoutperformsBBSin all queries

on Household, and most queries onNBAandColor. The only exception is in Figure 20g, where

BBSis slightly faster for around 60% of the workload, but significantly slower for the remaining

queries, rendering its average overhead nearly 3 times higher than that ofSUBSKY.

Why canBBSsometimes be so efficient even when the structure of the R-treeincurs serious de-

terioration caused by the high dimensionality of the dataset? To answer this question, Figure 21a

shows an extreme case where the skyline includes a single point p (i.e., p dominates all the other

points). BBSaccesses only the nodes whose MBRs intersect the shaded region. No matter how

the leaf nodes of the R-tree are obtained, there is only one leaf (i.e., the one that containsp) whose

MBR intersects the region (recall that there exists a data point on each edge of an MBR). The same

analysis also applies to nodes of higher levels, i.e.,BBSneeds to access only a single path of the

R-tree.

In general, given a “bad” R-tree,BBSmay still have satisfactory performance if the skyline points

are close to the origin. However, when the condition is violated, the efficiency of this technique

drops considerably due to the reasons discussed in Section 3. SUBSKY, on the other hand, is able to

find a skyline that contains numerous points far-away from the origin with much lower overhead.

30

 0

 0.5

 1

 1.5

 2

 2.5

 3

q
u

e
ry

 c
o

st
 (

se
c)

subspaces

BBS (avg = 0.98)
SUBSKY (avg = 0.61)

 0

 1

 2

 3

 4

 5

 6

q
u

e
ry

 c
o

st
 (

se
c)

subspaces

BBS (avg = 2.76)
SUBSKY (avg = 1.57)

 0

 1

 2

 3

 4

 5

 6

 7

 8

q
u

e
ry

 c
o

st
 (

se
c)

subspaces

BBS (avg = 4.53)
SUBSKY (avg = 2.40)

(a)NBA, dsub = 2 (b)NBA, dsub = 3 (c)NBA, dsub = 4

 0.1

 1

 10

q
u

e
ry

 c
o

st
 (

se
c)

subspaces

BBS (avg = 2.61)
SUBSKY (avg = 0.39)

 0.1

 1

 10

q
u

e
ry

 c
o

st
 (

se
c)

subspaces

BBS (avg = 6.63)
SUBSKY (avg = 1.74)

 1

 10

 100

q
u

e
ry

 c
o

st
 (

se
c)

subspaces

BBS (avg = 11.0)
SUBSKY (avg = 4.02)

(d) Household, dsub = 2 (e)Household, dsub = 3 (f) Household, dsub = 4

 0.01

 0.1

 1

 10

 100

q
u

e
ry

 c
o

st
 (

se
c)

subspaces

BBS (avg = 1.98)
SUBSKY (avg = 0.39)

 0.01

 0.1

 1

 10

 100

q
u

e
ry

 c
o

st
 (

se
c)

subspaces

BBS (avg = 4.11)
SUBSKY (avg = 1.17)

 0.01

 0.1

 1

 10

 100

q
u

e
ry

 c
o

st
 (

se
c)
subspaces

BBS (avg = 6.93)
SUBSKY (avg = 2.54)

(g) Color, dsub = 2 (h)Color, dsub = 3 (i) Color, dsub = 4

Figure 22: Cost ofk-skyband search vs. subspace dimensionality (k = 5)

7.2 Efficiency of Skyband and Top-k Retrieval

Having demonstrated the superiority ofSUBSKYin answering skyline queries, we proceed to eval-

uate the efficiency of our techniques for subspacek-skyband and top-k search. Specifically, for

k-skyband (or top-k) queries, we compareSUBSKYagainst the extendedBBS in [21] (or BF,

standing for the best-first algorithm mentioned in Section 2.3). Each query workload is created in

the same way as described in Section 7.1, except that here it contains another parameterk. For all

datasets examined in the sequel, the indexes employed are exactly the same as those used in the

skyline experiments.

Figures 22a-22i demonstrate the results of 5-skyband retrieval under the settings identical to those

in Figures 20a-20i, respectively. The characteristics ofSUBSKYandBBSare similar to those in

skyline search. Fixingdsub to 3, Figure 23 compares the average query cost in a workload of the

31

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 1 2 3 4 5 6 7 8 9 10

q
u

e
ry

 c
o

st
 (

se
c)

k

BBS
SUBSKY

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 1 2 3 4 5 6 7 8 9 10

q
u

e
ry

 c
o

st
 (

se
c)

k

BBS
SUBSKY

 0

 1

 2

 3

 4

 5

 6

 1 2 3 4 5 6 7 8 9 10

q
u

e
ry

 c
o

st
 (

se
c)

k

BBS
SUBSKY

(a)NBA (b) Household (c) Color

Figure 23: Cost ofk-skyband search vs.k (dsub = 3)

two methods, by varyingk from 1 to 10. Figures 24 and 25 repeat these experiments with respect

to top-k queries. Clearly,SUBSKYoutperforms its competitor considerably in all cases.

8 Conclusions

In practice, skyline and top-k queries are usually issued in a large number of subspaces, each of

which includes a small subset of the attributes in the underlying relation. In this paper, we de-

velop a new techniqueSUBSKYthat supports subspace skyline/top-k retrieval with only relational

technologies. The core ofSUBSKYis a transformation that converts multidimensional data to1D

values, and permits indexing the dataset with a single conventional B-tree. Extensive experiments

verify that SUBSKYconsistently outperforms the previous solutions in terms of efficiency and

scalability.

This work also lays down a foundation for future investigation of several related topics. For in-

stance, certain attributes in the relation may appear in thesubspaces of most queries (e.g., a user

looking for a good hotel would always be interested in theprice dimension). In this case, the

data structure may be modified to facilitate pruning on theseaxes. Another interesting issue is to

cope with datasets where the data distribution may incur frequent changes. Instead of periodically

reconstructing the B-tree, a better approach is to replace only some anchors, and re-organize the

data assigned to them. This strategy achieves lower update cost since it avoids accessing the points

assigned to the unaffected anchors.

32

100
10-2
10-1
10-1
10-1
10-1
10-1
10-1
10-1

q
u

e
ry

 c
o

st
 (

se
c)

subspaces

BF (avg = 0.22)
SUBSKY (avg = 0.10)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

q
u

e
ry

 c
o

st
 (

se
c)

subspaces

BF (avg = 0.25)
SUBSKY (avg = 0.10)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

q
u

e
ry

 c
o

st
 (

se
c)

subspaces

BF (avg = 0.27)
SUBSKY (avg = 0.11)

(a)NBA, dsub = 2 (b)NBA, dsub = 3 (c)NBA, dsub = 4

 0

 0.5

 1

 1.5

 2

 2.5

 3

q
u

e
ry

 c
o

st
 (

se
c)

subspaces

BF (avg = 1.27)
SUBSKY (avg = 0.27)

 0

 0.5

 1

 1.5

 2

 2.5

q
u

e
ry

 c
o

st
 (

se
c)

subspaces

BF (avg = 1.46)
SUBSKY (avg = 0.46)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

q
u

e
ry

 c
o

st
 (

se
c)

subspaces

BF (avg = 1.89)
SUBSKY (avg = 0.84)

(d) Household, dsub = 2 (e)Household, dsub = 3 (f) Household, dsub = 4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

q
u

e
ry

 c
o

st
 (

se
c)

subspaces

BF (avg = 0.35)
SUBSKY (avg = 0.24)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

q
u

e
ry

 c
o

st
 (

se
c)

subspaces

BF (avg = 0.41)
SUBSKY (avg = 0.30)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

q
u

e
ry

 c
o

st
 (

se
c)

subspaces

BF (avg = 0.47)
SUBSKY (avg = 0.37)

(g) Color, dsub = 2 (h)Color, dsub = 3 (i) Color, dsub = 4

Figure 24: Cost of top-k search vs. subspace dimensionality (k = 5)

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 1 2 3 4 5 6 7 8 9 10

q
u

e
ry

 c
o

st
 (

se
c)

k

BF
SUBSKY

 0

 0.5

 1

 1.5

 2

 1 2 3 4 5 6 7 8 9 10

q
u

e
ry

 c
o

st
 (

se
c)

k

BF
SUBSKY

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 2 3 4 5 6 7 8 9 10

q
u

e
ry

 c
o

st
 (

se
c)

k

BF
SUBSKY

(a)NBA (b) Household (c) Color

Figure 25: Cost of topk-k search vs.k (dsub = 3)

Acknowledgements

Yufei Tao and Xiaokui Xiao were supported by CERG Grant CUHK 1202/06 from the Research

Grant Council of the HKSAR government. Jian Pei was supportedby NSERC Discovery Grants

Program, NSERC Collaborative Research and Development GrantsProgram, and IBM Faculty

33

award.

References

[1] W.-T. Balke, U. Guntzer, and J. X. Zheng. Efficient distributed skylining for web information
systems. InEDBT, pages 256–273, 2004.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. TheR*-tree: An efficient and
robust access method for points and rectangles. InSIGMOD, pages 322–331, 1990.

[3] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-tree : Anindex structure for high-
dimensional data. InVLDB, pages 28–39, 1996.

[4] C. Bohm. A cost model for query processing in high dimensional data spaces.TODS,
25(2):129–178, 2000.

[5] S. Borzsonyi, D. Kossmann, and K. Stocker. The skyline operator. InICDE, pages 421–430,
2001.

[6] C.-Y. Chan, P.-K. Eng, and K.-L. Tan. Stratified computation of skylines with partially-
ordered domains. InSIGMOD, pages 203–214, 2005.

[7] C.-Y. Chan, H. Jagadish, K.-L. Tan, A. Tung, and Z. Zhang. Onhigh dimensional skylines.
In EDBT, pages 478–495, 2006.

[8] C.-Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and Z. Zhang. Finding k-dominant
skylines in high dimensional space. InSIGMOD, pages 503–514, 2006.

[9] Y.-C. Chang, L. D. Bergman, V. Castelli, C.-S. Li, M.-L. Lo, andJ. R. Smith. The onion
technique: Indexing for linear optimization queries. InSIGMOD, pages 391–402, 2000.

[10] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with presorting. InICDE, pages
717–719, 2003.

[11] R. O. Duda and P. E. Hart.Pattern Classification and Scene Analysis. Wiley, 1973.

[12] R. Fagin. Combining fuzzy information from multiple systems (extended abstract). InPODS,
pages 216–226, 1996.

[13] P. Godfrey. Skyline cardinality for relational processing. InFoIKS, pages 78–97, 2004.

[14] P. Godfrey, R. Shipley, and J. Gryz. Maximal vector computation in large data sets. InVLDB,
pages 229–240, 2005.

[15] G. R. Hjaltason and H. Samet. Distance browsing in spatial databases.TODS, 24(2):265–318,
1999.

[16] V. Hristidis and Y. Papakonstantinou. Algorithms and applications for answering ranked
queries using ranked views.The VLDB Journal, 13(1):49–70, 2004.

34

[17] Z. Huang, C. S. Jensen, H. Lu, and B. C. Ooi. Skyline queries against mobile lightweight
devices in MANETs. InICDE, 2006.

[18] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the sky: An online algorithm for
skyline queries. InVLDB, pages 275–286, 2002.

[19] X. Lin, Y. Yuan, W. Wang, and H. Lu. Stabbing the sky: Efficient skyline computation over
sliding windows. InICDE, 2005.

[20] S. Michel, P. Triantafillou, and G. Weikum. Klee: a framework for distributed top-k query
algorithms. pages 637–648, 2005.

[21] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and progressive algorithm for skyline
queries. InSIGMOD, pages 467–478, 2003.

[22] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline computation in database
systems.TODS, 30(1):41–82, 2005.

[23] J. Pei, W. Jin, M. Ester, and Y. Tao. Catching the best views of skyline: a semantic approach
based on decisive subspaces. InVLDB, pages 253–264. VLDB Endowment, 2005.

[24] D. Pelleg and A. W. Moore. X-means: Extending k-means with efficient estimation of the
number of clusters. InInternational Conference on Machine Learning, pages 727–734, 2000.

[25] R. K. Surajit Chaudhuri, Nilesh Dalvi. Robust cardinalityand cost estimation for skyline
operator. InICDE, 2006.

[26] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progressive skyline computation. InVLDB,
pages 301–310, 2001.

[27] Y. Tao, V. Hristidis, D. Papadias, and Y. Papakonstantinou. Branch-and-bound processing of
ranked queries.To appear in Information Systems.

[28] P. Tsaparas, T. Palpanas, Y. Kotidis, N. Koudas, and D. Srivastava. Ranked join indices. In
ICDE, pages 277–288, 2003.

[29] T. Xia and D. Zhang. Refreshing the sky: the compressed skycube with efficient support for
frequent updates. InSIGMOD, pages 491–502, 2006.

[30] K. Yi, H. Yu, J. Yang, G. Xia, and Y. Chen. Efficient maintenance of materialized top-k
views. InICDE, pages 189–200, 2003.

[31] Y. Yuan, X. Lin, Q. Liu, W. Wang, J. X. Yu, and Q. Zhang. Efficient computation of the
skyline cube. InVLDB, pages 241–252, 2005.

35

