To appear in IEEE TKDE

Title: Efficient Skyline and Top: Retrieval in Subspaces
Keywords: Skyline, Top#, Subspace, B-tree

Contact Author:

Yufei Tao faoyf@cse.cuhk.eduhk

Department of Computer Science and Engineering
Chinese University of Hong Kong

Sha Tin, Hong Kong

Tel: +852-26098437 Fax: +852-26035024



Efficient Skyline and Top: Retrieval in Subspaces

Yufei Tao Xiaokui Xiaof Jian Péi
fDepartment of Computer Science and Engineering *School of Computing
Chinese University of Hong Kong Simon Fraser University
Sha Tin, Hong Kong Burnaby, BC Canada V5A 1S6
{taoyf, xkxiad} @cse.cuhk.edu.hk jpei@cs.sfu.ca
Abstract

Skyline and topk queries are two popular operations for preference retrieval. In prac
tice, applications that require these operations usually provide numeandglate attributes,
whereas, depending on their interests, users may issue queriesnggifigrent subsets of
the dimensions. The existing algorithms are inadequate for subspace Akplhesearch
because they have at least one of the following defects: they (i) resear@ning the entire
database at least once; (ii) are optimized for one subspace but inaificsigt overhead for
other subspaces; (iii) demand expensive maintenance cost or SeCeEngion.

In this paper, we propose a technig&)BSKY which settles both types of queries using
purely relational technologies. The coreQIIBSK\Ys a transformation that converts multidi-
mensional data to 1D values. These values are indexed by a simple B-iek,alows us to
answer subspace queries by accessing a fraction of the dat&h#38KYentails low mainte-
nance overhead, which equals the cost of updating a traditional BExéensive experiments
with real data confirm that our technique outperforms alternative soluigngicantly in both
efficiency and scalability.

1 Introduction

A multidimensional pointp dominatesanothery’, if the coordinate ofp on each axis does not
exceed that of/, and is strictly smaller on at least one dimension. Giventag@oints, the
skylineconsists of all the points that are not dominated by otheigurE 1 shows a dataset with
dimensionalityd = 2. The x-dimension represents thace of a hotel, and the y-axis captures
its distanceto the beach. Hoteb, dominatesp,, because the former is cheaper, and closer to
the beach. The skyline includes, ps, andps, which offer various tradeoffs betwegmice and
distance p, is the nearest to the beagh, is the cheapest, ang may be a good compromise of
the two factors.

The notion of skyline is generalized to “skyband” in [22].e8fically, thek-skybandof a dataset
includes all the points that are dominated by less thaoints. For instance, the 2-skyband of the
dataset in Figure 1 contains all the objects exgeindps. Clearly, the skyline is the 1-skyband.
In general, for any: andk’ satisfyingk’ < k, thek’-skyband is a subset of tiieskyband.

1



A distance to the beach (y)
19 ps

.

0.8 ®
DPe®
067 Pse
0.4 p2®
P

0.2 ®

4 Dse

O 02 04 06 08 1 Pricex)

Figure 1: A dataset with hotel records

Skylines have been extensively studied in the literature,td their close relationship to preference
search. A preference is usually formulated through a mambtpreference functiory, which
returns ascoreg(p) for every pointp. Given such a function, ®p-k queryretrieves the: points

in a dataset with the lowest scores. For example,¢fpy = 3p[z] + p[y|, the top-1 hotel in
Figure 1 isp; (score 0.8). Regardless of the choicegypthe top-1 object always lies in the skyline.
Furthermore, every skyline point is the top-1 object for gaia function (i.e., a skyline does not
contain any redundant point for top-1 search [5]). Simylatthe £-skyband containall and only

the objects retrieved by top-queries.

The motivation of this work is that, in practice, a skylineference search application typically
provides numerous candidate attributes, whereas a useseb@nly a small number of them in
her/his query. Assume that, in addition to the dimensioriSiguire 1, the database also stores the
distances of each hotel to several other locations (e.g.talvn center, the nearest supermarket,
subway station, etc.), the ratings of security, air-qyalitaffic-status in the neighborhood, and
so on. It is unlikely that a customer would consider all theeilautes in selecting her/his hotel.
Instead, s/he would take into account only some of them,d.subspacef the universe. Alter-
native customers may have different concerns. Therefloeesytstem must be prepared to perform
skyline/top# retrieval in a variety of subspaces. Unfortunately, thiseskation has been ignored
by the previous research. As discussed later, the exiskiylme/top+ algorithms are optimized

for the whole universe, but entail expensive cost for subspgieries.

This paper presents the first study on indexes for efficieyitrekand topk computation in arbi-

trary subspaces. We devel§JUBSKY a novel technique that settles both problems using purely

Monotonicity meangj(p) > g(p’) for two arbitrary pointg andp’, which share the same coordinatesdn 1

dimensions, ang has a larger coordinate on the remaining dimension.

2



relational technologies, and hence, can be incorporatedioonventional database system imme-
diately’. The core ofSUBSKYs a transformation that converts each multidimensionaitpo a

1D value. The converted values are indexed by a B-tree, wiaiclibe used to handle all types (i.e.,
skyline, skyband, top) of queries effectively. In the presence of tuple insedideletions, the tree
can be maintained at the same cost of updating a traditiom@d3-Extensive experiments confirm

that the proposed solutions significantly outperform tlagesof-the-art skyline/topg-algorithms.

The rest of the paper is organized as follows. Section 2wnewvibe previous work related to ours.
Section 3 adapts the existing algorithms for subspace reiytip4 processing, and elaborates
their deficiencies. Section 4 presents the b&iBSKYoptimized for skyline search on uniform
data, and Section 5 generalizes the technique to arbititey distributions. Section 6 discusses
skyband and top- processing. Section 7 contains an experimental evalu#taindemonstrates

the efficiency ofSUBSKY Section 8 concludes the paper with directions for futurekwo

2 Related Work

Section 2.1 surveys the algorithms for computing skylimgté whole universe. Then, Section 2.2
discusses the “sky-cube” that is highly relevant to subsskglines. Finally, Section 2.3 reviews

the previous work on top-search.
2.1 Skyline Retrieval in the Universe

The existing algorithms can be classified in two categoiiée. first one involves solutions that do
not assume any preprocessing on the underlying datasehdyutetrieve the skyline by scanning
the entire database at least once. The second categoryeseduery cost by utilizing an index

structure. In the sequel, we survey both categories, fogusn the second one, since it also

involves our solutions.

Algorithms Requiring No Preprocessing. The first skyline algorithm in the database context is
BNL (block-nested-loop) [5], which simply inspects all paifpoints, and returns an object ifitis
not dominated by any other obje&FS[10] (sort-filter-skyline) is based on the same rationalg, b

improves the performance by sorting the data according toraotoene function. The performance

2Including a non-relational method into a commercial DBMSificult, because it requires fixing complex issues

related to concurrency control, recovery, etc.



List1 (X) | p5:0.1| ps:0.3 | p2:0.4 | p7:0.6
List 2 (y) | p4:0.1| p1:0.2 | p3:0.3 | ps:0.5
(a) The sorted lists used gdex
List1 (X) | p5:0.2 | p1:0.2 | ps:0.3 | p2:0.4 | p3:0.5| p7:0.6 | ps:0.9 | py:0.9
List2 (y) | p4:0.1 | p1:0.2 | p3:0.3 | p2:0.4 | ps:0.5| ps:0.7 | p7:0.8 | p5:0.9

(b) The sorted lists used ByA

Figure 2: lllustration of algorithms leveraging sorteddis

of BNL and SFSis analyzed in [25]. D&C [5] (divide-and-conquer) divides the universe into
several regions, calculates the skyline in each region,pmoduces the final skyline from the
regional skylines. When the entire dataset fits in memorg, algorithm produces the skyline in
O(nlog?n + nlogn) time, wheren is the dataset cardinality antits dimensionality.Bitmap
[26] converts each poini to a bit string, which encodes the number of points having allem
coordinate thap on every dimension. The skyline is then obtained using onlyderationsLESS
(linear-elimination-sort for skyline) [14] is an algoriththat has good worst-case asymptotical
performance. Specifically, when the data distribution iarm and no two points have the same

coordinate on any dimensiobESScomputes the skyline i@ (d - n) time in expectation.

Algorithms Based on Sorted Lists. Index[26] organizes the dataset intblists. Thei-th list

(1 < i < d) contains point with the following property:p[i] = min?_, p[j], wherepli] is the
i-th coordinate ofp. Figure 2a shows thé = 2 lists for the dataset of Figure 1. For example,
ps IS assigned to List 1 because its x-coordinate 0.1 is smialéar its y-coordinate 0.9. In case a
point has identical coordinates on both dimensions, thedistaining it is decided arbitrarily (in
Figure 2a,p, andp, are randomly assigned to Lists 1 and 2, respectively). Theesnn List 1
(2) are sorted in ascending order of their x- (y-) coordiagég., entrys:0.1 indicates the sorting
key 0.1 ofps).

To compute the skylindndexscans the two lists in a synchronous manner. At the beginttieg
algorithm initializes pointergtr; andptr, referencing the first entrigs;, p,, respectively. Then,
at each stegndexprocesses the referenced entry with a smaller sorting kege®othps andp,
have the same key 0.Indexrandomly picks one for processing. Assume thgais selected; it is
added to the skyline&,,, after whichptr, is moved tops. As ps has a smaller key (thap), it

is the second point processed. is not dominated by any point ifi;;,, and hence, is inserted in

Ssky. Pointerptr, is then shifted tg,. Similarly, p, is processed next, and included in the skyline,



the dominant region of p
g
s 3 Ns
"
Y Al
0.6 C N p

|Nl N2| |N3 N4|

0.4- —T T

pz. — M
oo (a2 1*P5 s [pi]p2 ] [ps]pa] [Ps|ps ] [Pr]ps |
: Vi| N, P

-
-

O 0r da 0 de T x
02 04 06 08 1
Figure 3: lllustration oBBS

after whichptr, is set tops. At this stageSsi, = {p1, pa, ps}-

Both coordinates of; are smaller than the x-coordinate 0.3gf(referenced bytr,), in which
case all the not-yet inspected poiptis List 1 can be pruned. To understand this, observe that both
coordinates op are at least 0.3, indicating thatis dominated by,. Due to the same reasoning,
List 2 is also eliminated because both coordinateg,oére lower than the y-coordinate pf

(referenced bytr,). The algorithm finishes witkip, p4, ps} as the result.

Borzsonyi et al. [5] develop an algorith® that deploys a different set of sorted lists. For a
d-dimensional dataset, theth list (1 < i < d) enumerates all the objects in ascending order of
theiri-th coordinates. Figure 2b demonstrates the two lists ®d#taset in Figure A scans the

d lists synchronously, and stops as soon as the same objebebasncountered in all lists. For
instance, assume th&A accesses the two lists in Figure 2b in a round-robin manttrrhinates
the scanning after seeing in both lists. At this moment, it has retrieveg, p, andp;. Clearly, if

a pointp has not been fetched so farmust be dominated by;, and thus, can be safely removed
from further consideration. On the other hapgl, p, andp; may or may not be in the skyline.
To verify this,T' A obtains the y-coordinate @f (notice that the scanning discovered only its x-
coordinate), and x-coordinate pf. Then, it computes the skyline frofps, p4, p1}, which is

returned as the final skyline.

Algorithms Based on R-trees.NN (nearest-neighbor) [18] arBBS(branch-and-bound skyline)
[22] find the skyline using an R-tree [2]. The difference isttN& issues multiple NN queries
[15] while BBSperforms only a single traversal of the tree. It has beenqu¢22] thatBBSis

I/O optimal, i.e., it accesses the least number of disk pagemng all algorithms based on R-trees

3This algorithm is called3-treein [5]. We refer to it asTA to emphasize its connection to Fagin’s threshold
algorithm [12].



(includingNN). Hence, the following discussion concentrates on thisrigpie.

Figure 3 shows the R-tree for the dataset of Figure 1, togethibrthe minimum bounding rect-
angles (MBR) of the nodesBBSprocesses the (leaf/intermediate) entries in ascenditey af
their mindist(minimum distance) to the origin of the universe. At the Ipegng, the root entries
are inserted into a min-heafd (= {5, Ns}) using their mindist as the sorting key. Then, the
algorithm removes the top elemeit of H, accesses its child node, and en-heaps all the entries
there.H now becomeg Ny, Ny, Ng}.

Similarly, the next node visited is led¥;, where the data points are addedHo(= {p, pa, Vs,
Ns}). Sincep; topsH, itis taken as the first skyline point, and used for pruninthensubsequent
execution. Poinp, is de-heaped next, but is discarded because it falls iddh@nant regiorof p,
(the shaded areaBBSthen visitsN,, and inserts only, into H = { Ng, p4} (ps is not inserted as it

is dominated by, ). Likewise, accessingy/s; adds only one entrys to H (= { N3, p4}) becauséV,

lies completely in the shaded area. Following the samenalé the remaining entries processed

are N3 (en-heapings), pa4, ps, at which pointd becomes empty arBBSterminates.

Retrieval of Skyline Variants. Balke et al. [1] consider skyline computation in distributawi-
ronments. Also in the distributed framework, the work of Hgat al. [17] studies skyline search
on mobile objects. Lin et al. [19] investigate continuouglsle monitoring on data streams. In [6],
skylines are extended to partially-ordered domains. Chah €8, 7] propose various approaches
to improve the usefulness of skylines in high-dimensiopaices. The above methods, however,

are restricted to their specific scenarios, and cannot hetedi#o the problem of this paper.
2.2 The Sky-Cube

Pei et al. [23] and Yuan et al. [31] independently proposestkhecube which consists of the
skylines inall possible subspaces. In the sequel, we explain this coreggmiming that no two
points have the same coordinate on any axis (see [23, 31]genearal discussion overcoming the

assumption).

Suppose that the universe has= 3 dimensions x, y, and z. Figure 4 shows the 7 possible non-
empty subspaces. All the points in the skyline of a subspatmng to the skyline of a subspace

containing additional dimensions. For instance, the slkeytif subspace xy is a subset of the skyline



xyz

/ I\
|><><

Figure 4: The lattice of skycube

in the universe, represented by an edge between xy and xyigumeF4. Specially, if a subspace
involves only a single dimension, its skyline consists @& goint having the smallest coordinate

on this axis.

The skycube can be computed in a top-down manner. First,iweuwethe skyline of the universe.
Then, a child skyline can be found by applying a conventi@gbrithm on a parent skyline (in-
stead of the original database). For example, the skyling/nitan produce those of xy, xz, and
yz, while the skyline of x can be obtained from that of eithgrax xz. To reduce cost, several
heuristics are proposed in [23, 31] to avoid the common caatjoun in different subspaces. Xia
and Zhang [29] explain how to dynamically maintain a skycwfter the underlying database has

been updated.
2.3 Top-+# Search in the Universe

There is a bulk of research on distributed toprocessing (see [20] and the references therein). In
that scenario, the data on each dimension is stored at aatiffeerver; the goal is to find the tdp-
objects with the least network communication. Our worksfatl the category of centralized tdp-
search, where all the dimensions are retained at the sawey,s@nd the objective is to minimize

queries’ CPU and I/O cost. Next, we concentrate on this cayego

Chang et al. [9] develop ONION, which answers only togueries withlinear preference func-
tions. Hristids and Papakonstantinou [16] propose the PRESStem, which supports a broader
class of preference functions, but requires duplicatiegidtabase several times. Yi et al. [30] sug-
gest a similar approach with lower maintenance cost. Tsapatral. [28] present a technique that
can handle arbitrary preference functions. This techniboeever, is limited to two dimensions,
and supports only top-queries whosé does not exceed a certain constant. The state-of-the-art
solution [27, 28] is based on “best-first traversal’ [15] anRxtree. It enables top-queries with

any k and monotone preference function, on data of arbitrary dsiomality.



3 Extending the Previous Algorithms to Subspaces

Without loss of generality, we assumel/alimensional universe where each axis has domain [0,
1]. Given a pointp, p[i] denotes its coordinate on tligh dimension { < ¢ < d). BNL, SFS
D&C, Bitmap andLESS(in general, any algorithm that does not demand prepraogssan be
trivially extended to compute the skyline in a subspace gopiing the irrelevant coordinates of

each point. However, they entail expensive cost by scarthmgntire dataset multiple times.

Indexcan be adapted for subspace skyline retrieval, by re-amistg the underlying data structure
for every query. Assume, for examplé,= 10. As mentioned in Section 2.1, the preprocessing
of Index creates ten sorted lists;, ..., andL;y, whereL; (1 < i < 10) includes all pointg
satisfyingp[i] = min{p[1], ..., p[10]}. Consider a query that aims at finding the skyline in the first
two dimensions. To applindex we must organize the database into two sorted listand L},
whereL! (1 < i < 2) contains all pointg such thap[i] = min{p[1], p[2]}. Notice that, the pre-
computed’,, ..., Lo provide little help for deriving’; and/,. The most efficient way to calculate
L} andLi, would ignore the pre-computed lists, scan the databasetorassign each object g,

or Li, and then perform two external sorts to obtain the propegrardthe two lists.

TAis directly applicable to subspace computation, by opagain only the sorted lists correspond-
ing to the axes of the target subspace. Unfortunately, gaisrtique is inappropriate for dynamic
datasets, because its sorted lists are costly to maintaicallRRat, every object has an entry in
each of thel sorted lists. Since a listis organized with a B-tree [5], @&nuple insertion/deletion

requires modifying/ B-trees, which is prohibitively expensive for larde

NN andBBScan find a subspace skyline by ignoring the extents of an MBRgglbe irrelevant
dimensions. It suffices to discuss oBBSsinceNN is always slower. Imagine the rectangles in
Figure 3 as the projections, in the 2D subspace demonsti@tdte MBRs in ad-dimensional R-
tree for anyd > 2. BBSretrieves the skyline of the subspace in exactly the sameawalescribed

in Section 2.1. The performance BBS however, severely degrades when the dimensionality
d increases, due to two reasons. First,dagrows, MBRs become considerably larger, which
significantly decreases the probability that an MBR fallshia tlominant regions of the skyline

points (recall that this is the pruning condition®BS.

The other (less obvious) reason is the emergence of the dmargtouping” phenomenon, after

8



d exceeds a certain threshold. Consider, for example, a 15@rondataset with 100k points.
Given a node capacity of 100 entries, the R-tree would corgpproximately 1000 leaf nodes.
Since1000 ~ 29 each leaf MBR has been split once along roughly 10 dimensishie the

remaining 5 axes are not considered at all in the R-tree aarigin [3, 4]. Assume that we use
the R-tree to retrieve the skyline in a 2D subspace includimgta&o of those 5 dimensions. The
expected performance is as poor as deploying a patholagiz&-tree, which groups the points
(in that 2D subspace) into leaf nodes in a completely random manegaydless of their spatial

proximity.

Finally, the skycube algorithm discussed in Section 2.Dissnitable for retrieving the skyline in
onesubspace, because it performs unnecessary work by fetskytiges in many non-requested
subspaces. An alternative approach is to pre-compute thie skycube. In that case, although the
skyline of any subspace can be obtained immediately, theusleyoccupies significant space, and

incurs expensive update cost (whenever the original dagaisaupdated).

In summary, the existing approaches are inadequate fopaabskyline search because they have
at least one of the following defects: they (i) require sc¢agrhe entire database at least once;
(ii) are optimized for one subspace but incur significantbead for other subspaces; (iii) demand
expensive maintenance cost or space consumption. In fbevfiog sections, we remedy all defects

by proposing a new technique.

4 The Basic SUBSKY

We use the ternmaximal cornerfor the cornerA® of the universe having coordinate 1 on all
dimensions. Each data poinis converted to a 1D valug(p), equal to thel.., distance between
pandA°:
F(p) = Loo(p, A°) = miax(1 — pi]). (1)
Pointp dominates all pointg’ satisfying the following inequality:
d

f(P") < min(1 — pld]) (2)

=1

Figure 5 illustrates a 2D example. Poiptsobeying the inequality constitute the shaded square,
whose side length equalsin?_, (1 —pli]). Obviously, no such’ can appear in the skyline because

the square is entirely contained in the dominant regiom of

9



A region pruned by p  4¢

[ ——

=Y

)

Figure 5: lllustration of Inequality 2

Inequality 2 applies to the whole universe, while a simiksult exists in any subspace. Repre-
senting a subspace as a §étB capturing the relevant dimensions (e.g., if the subspac#ves

the 1st and 3rd axes of the universe, ttnB = {1, 3}), we have:

Property 1. Given an arbitrary poin, no pointp’ qualifying the following condition can belong
to the skyline obU B:

7)< min (1= pli) ®3)

For example, assumé = 3, and that the goal is to retrieve the skylineSV B = {1, 2}. If p
has coordinates (0.05, 0.1, —) (the 3rd coordinate is iragi), no point’ with f(p') < min(1 —
0.05,1—0.1) = 0.9 can be in the target skyline. This is correct because thedawates ofy’ must
be at least 0.1 on all dimensions; hengds dominated by in SUB.

Property 1 leads to an algorithm, referred to asltsic SUBSK)for computing the skyline in a
subspac&'U B. Specifically, we access the data poipia descending order of theji(p). Mean-
while, we maintain (i) the current sét,, of skyline points (among the data already examined),
and (ii) a valueU equal to the largeshin;csy5(1 — pli]) of the object® € Sy, The algorithm
terminates whe/ exceeds the (p) of the nextp to be processed. The pseudocode of the basic

SUBSK\s given in Figure 6.

We illustrate the basiSUBSKYusing the 8 three-dimensional points in Figure 7 (the x- and y
coordinates are the same as in Figure 1), where the last isates thef-value of each point.
The query subspacgU B is {1, 2}. Objects are processed in this ordgws, ps, ps, p1, Pe, P2y Ds»
pr}. After examiningps, SUBSKYinitializes Sx, as{ps}, andU asmin;csyp(1 — psi]) = 0.5.
After the second point, is inspected,S,;, becomesps, ps}, sincep, is not dominated bys; U

remains 0.5, becau$eb > min;csyp(1 — pafi]) = 0.1. Similarly, nextp; is added ta5,,, without

10



Algorithm BASI C- SUBSKY (SU B)

/* SU B includes the dimensions relevant to the query subspace */
1. DB =the given set of data points sorted in descending order of fhre#iues
2. U=0;Sy =0

3. p =the first pointinDB

4. whilep # (¢ andU < f(p) do

5. if pis not dominated by any point i B

6 addp to S,

7 remove fromS,;, the points dominated by

8. U =the maximummin;cgyp(1 — p'[i]) of all p’ € Sy

9. setpto the next pointinDB

10. returnSgy,

Figure 6: The basiSUBSKYalgorithm

dimension| py | p2 | p3 | P4 | P5 | P | P7 | P8
1(x) 02/04{05/09(0.1/03|0.6]0.9
2(y) |02/04[03[01]/09]/07]08[05
3(z) |05/09]/01[06]|03]02[0.7]06

[ f(») [08]06]09]09[09]08]04]05]

Figure 7: An example dataset

affectingU. To handle the 4th point;, we insert it inS,,, but removep; from Sy, asps is
dominated by;. Moreover,U is increased tmin;csy5(1 — p1[i]) = 0.8. The algorithm proceeds
to inspectps, which does not chang€,, andU. Since thef-values of the remaining points are

smaller than the curreit = 0.8, the algorithm finishes and repofts,, p4, ps } as the final skyline.

As shown in the experiments, despite its simplicity, thead&JBSKYs highly efficient in com-
puting subspace skylines, when the data distribution iformi Next we provide the intuition,
under the same settings as used in Section 3 to illustratéetleets oBBS Consider a 15D uni-
form dataset with cardinality 100k. Assume that we want toieee the skyline in a subspace

SU B containing any two dimensions, as shown in Figure 8. Theaehigh chance that a skyline

‘r dimension 2 in SUB

—T (2. 1)
(0] dimensiorfl in SUB
Figure 8: lllustration of the analysis

11



0A,

0 x

Figure 9: Pruning effects of different anchors

point lies very close to the origin iISU B. Specifically, let us examine the square in Figure 8
whose lower-left corner is the origin, and its side lengthag some smalk € [0, 1]. The prob-
ability of not having any object in the square equéls— \?)'9°%° which is less than 10% for

A = 0.001. In other words, with at least 90% chance, we can find a pointhe square such that
min;esyp(1—pli]) > 0.999. In this case, (by Property 1) all pointswith f(p’) < 0.999 are elim-
inated bySUBSKYThe expected percentage of such points in the whole dagsats the volume
of a 15-dimensional square with side length 0.999. The velemaluates t6.999'° = 98.5%, that

is, we only need to access 1.5% of the dataset!

5 The General SUBSKY

In the basicSUBSKY f(p) is always computed using orachor; i.e., the maximal corneA®.
This works fine for uniform data. In practice where data istdued, however, thé(p) of various

p should be calculated with respect to different anchors ieze greater pruning power.

To illustrate this, Figure 9 shows a 2D dataset, where adlabjgather around the upper-left corner.
In the basicSUBSKY (by Property 1) poinp prunes the right shaded square, which is useless since
the square does not cover any object. Alternatively, letamsputef(p) as theL,, distance from

p to another anchod;. As a direct corollary of Property 1, we can eliminate allrgsp’ whose
f(p') is smaller thamnin?_, (A;[i] —p[i]). These points form the left shaded square, which encloses

a significant portion of the dataset. Namely, offers stronger pruning power thatf’.

Based on this idea, in Sections 5.1-5.4, we develop the geressaon of SUBSKY Finally, Sec-

tion 5.5 discusses issues related to updates and otheefpneie directions”.

12



5.1 Pruning with Multiple Anchors

Given a dataset, we will compute a $&},. of anchorsA,, A,, ..., A,,. Then, every data pointis

converted to a 1D value as follows.

Definition 1. Each data poinp is converted to a valug¢(p) = L. (p, A), where A belongs to

Sane, @nd is called thassigned anchoof p.

Next, we formalize our pruning heuristic based on multipielzors.

Property 2. Letp be an arbitrary object, and’  _the set of anchors whose projections in supspace

anc

SU B are dominated by. Then, for each anchad € 5’

anc’!

an objecty’ assigned ta4 cannot be

in the skyline if
f®') < min (Afi] — pli]) (4)

1€SUB

The above result degenerates to Property 1 whenA®. To explain the case wheré # A°,
considerd = 3, andA = (0.8, 0.7, 0.1). In subspacs/ B = {1, 2}, an objectp = (0.2, 0.2, -)
eliminates all pointg’ assigned toA with f(p') < min(A[1] — p[1], A[2] — p[2]) = 0.5. Note that
the first and second coordinatespbimust be larger than 0.3 and 0.2 respectively, indicating tha

p’ is dominated by in SUB.

The pruning effectiveness of Property 2 depends on (i) haa aassigned to anchors, and (ii)

how the anchors are selected. We analyze these issues iexttisvo subsections, respectively.
5.2 Assigning Points to Anchors

We introduce the concept effective region

Definition 2. Given a data poinp and an anchord dominated by, theeffective region(ER) of
p with respect to A is a d-dimensional rectangle whose opposite corners are the rodgid the
point having coordinatel[:] — L..(p, A) on thei-th dimension < i < d). The ER does not exist,
if Afi] < Loo(p, A) foranyi € [1,d].

ERs are closely related to the benefit of assigning a point emahor. To understand this, consider

Figure 10a wherd = 2, and pointp is assigned toA“. As a result, in finding the skyline in the

13



yA A¢ yA — A4
i 4]
P P
the ER of p
p.1 the ER of p p.1
0 X 0 X

(a) Assigningp to A® (b) Assigningp to A
Figure 10: The concept of effective region

universe,p can be eliminated with Property 2, if and only if another paogndiscovered in the
shaded square, which is the ER jofnith respect toA“. For example, since; (p») is inside
(outside) the ER, we can (cannot) eliminatafter encountering; (p;). Let us assigm to an
alternative ancho#d in Figure 10b. The shaded area demonstrates the new ERadfich covers
bothp; andp,. This means that can be eliminated as long as eitheror p, has been discovered.

Compared with assigningto A“, the new assignment increases the chance of pryning

Motivated by this, we assigmto the anchor that produces the largest ER.dbpecifically, this is

the anchor that is dominated byand maximizes:

H max(0, Afi] — Loo(p, A)) (5)

5.3 Finding the Anchors

An anchor that leads to a large ER for one data point may pedwmall ER for another. When
we are allowed to keep only: anchors (wheren is a small integer, set as a system parameter),

how should they be selected in order to maximize the ER vaduoh@s many points as possible?

Notice that the largest ER of a poiptcorresponds to itanti-dominant regionconsisting of all
the points in the universe dominatipg These points form a rectangle that has the origin;aad
its opposite corners. In other words, the maximum value ofrfeta 5 equaldI’_, pli], which is

1=

achieved when
Afi] = Loo(p, A) = pli] (6)
holds on all dimensions € [1,d]. We refer to an anchod satisfying the above equation as a

perfect anchofor p.

14



|
4 good anchor (2

A
y £ A€
I 1] !
y2) . ‘
)4 major perpen-
dicular plane D1
Ps

anti-dominant

region of p
— O

> B D3

(a) Perfect rays (b) Deciding the anchor

Figure 11: Finding anchors

It turns out that each point has infinite perfect anchors. Let us shoot a ray fpothat is in its
dominant region, and parallel to theajor diagonalof the data space (i.e., the diagonal connecting
the origin and the maximal corner). Every poihbn thisperfect rayis a perfect anchor of. This
is because the coordinate difference betwdeandp is equivalent on all axes, i.ed[i| — p[i] =

L (p, A) for anyi € [1,d], thus establishing Equation 6.

In Figure 11a, for example, the perfect ray of pgipis r;, and any anchor on, will result in the
ER of p; that is the shaded rectangle (i.e., the anti-dominant negi®;). Similarly, r, is the ray
for p,. Sincer; andr, are very close to each other, if we can keep only a single ant¢hibwould
lie between the two rays as in Figure 11a. Althougls not the perfect anchor @f andp,, itis a

good anchor as it leads to large ERs for both points.

The important implication of the above discussion is f@ints with close perfect rays may share
the same anchorThis observation naturally leads to an algorithm for figdanchors based on
clustering. Specifically, we first project all objects ontb@ thajor perpendicular planei.e., the
d-dimensional plane that passes the maximal corner, andpgpeicular to the major diagonal of
the universe. In Figure 11d & 2), for instance, the plane is lingand the projections qf;, and

po arep) andpi, respectively. Then, we partition the projected pointe imt clusters using the

k-means algorithm [11, 24], and formulate an anchor for eduaster.

It remains to clarify how to decide an anchdrfor a clusterS. We aim at guaranteeing that

should produce a non-empty ER for every pgirgt S (i.e., A[i] > L. (p, A) on every dimension
17, as suggested in Definition 2); otherwigecannot be assigned td. We illustrate the algo-
rithm using a 2D example, but the idea generalizes to arpittianensionality in a straightforward

mannetr.

15



Assume thatS consists of 5 objects;, ps, ..., ps. The algorithm examines them in tleiginal
universe (i.e., not in the major perpendicular plane), asvehin Figure 11b. We first obtain point
B, whose coordinate on each dimension equals the lowest ioatedof the points in5' on this
axis. Note thatB necessarily falls inside the data space, and dominateleafidints. Then, we
compute the smallest square that covers all the pointS(gee Figure 11b). The anchdrfor S is

the corner of the square oppositeRo
5.4 The Data Structure and Query Algorithm

We are ready to clarify the details of 08tJBSKYtechnique. Given a small number (less than
100 in our experimentsUBSKMirst obtainsm anchors, by applying the method in Section 5.3
on a random subset of the database. Thenj theof each poinp is set to the.,, distance between

p and its assigned anchor (which maximizes the volume of ERngntize anchors dominated by
p). We guarantee the existence of such an anchor by alwaygling the maximal corner in the

anchor set.

SUBSKYmanages the resulting(p) with a single B-tree that separates the points assigned to
various anchors. We achieve this by indexing a composité kef(p)), wherej € [1,m] is the id

of the anchor to which is assigned. Thus, an intermediate emtof the B-tree has the forne(d,

e.f), which means that (i) each poinin the subtree of has been assigned to tji¢h anchor with

j > e.id, and (ii) in casg = e.id, the value off (p) is at least. f.

We illustrate the above process using the 3D dataset of &igandn = 2 anchors: the maximal
cornerA; (= Ag), andA, = (1, 1, 0.8). The second row of Figure 13a illustrates the BRme

of each data point with respect ty, calculated by Equation 5. For instance, the volume 125
(x1073) of pg is derived fromIT?_, (A;[i] — Loo(A1, ps)) = (1 — 0.5)3. Similarly, the third row
contains the ER volumes with respect4ge. A “—" means that the corresponding ER does not
exist. For example, the ER ¢f is undefined becaugge does not dominaté,, while there is no
ER forp, sinceA,[3] = 0.8 is smaller tharl ., ( Az, ps) = 0.9 (review Definition 2). The white cells
of the table indicate each point’s ER-volume with respectd@ssigned anchor. For example,

is assigned tol, since this anchor produces a larger ER thian Figure 13b shows the B-tree
indexing the transformegd-values, e.g., the leaf entpy:(2, 0.7) in nodeV, captures the fact that

f(ps) equals the., distance 0.7 betwee#, andps.

16



Algorithm SUBSKY (SUB, { A1, Aa, ... Ap})
/* SU B includes the dimensions relevant to the query subspége;., A,,, are the anchors */

1. forj=1tom

2. use a B-tree to find the poiptr; with the maximumf (ptr;) among all the points assigned.fg
3. ptrj.ER =[], (Ajli] — Loo(ptr;, A;)) I/Equation 5

4. Sgy = 0 /lthe set of skyline points

5. while (ptr; # 0 foranyj € [1,m])

6. ¢ =the value ofj giving the smallesptr;. ER among allj € [1, m] such thaptr; # ()

7. if ptry is not dominated by any point ifi,

8. remove fromS,;, the points dominated bytr;

9. Ssk:y = Osky U {ptrt}

10. forj=1tom,andj £t

11. ifpt?“j 75 0 andf(ptrj) < minieSUB(Aj [’L] —pt’l"t[’i])

12. ptr; = () [* no point assigned tal; can belong to the skyline (Property 2) */

13. ptr, = the point with the next largegt(p) among the data assignedAg (this point lies in either the
same leaf as the previopsr;, or a neighboring node)

14. ifptry # 0

15. for every poinp,iy € Sery

16. if f(ptry) < minjesup(Aeli] — pskyli])
17. ptry = () I* no point assigned tal; can belong to the skyline (Property 2) */

18. ptre. ER = [, (Adi] — Loo(ptre, Ar))
19. returnSgy,

Figure 12: The algorithm of finding a subspace skyline

Figure 12 formally describes the query algorithnS&fBSKYAt a high level SUBSKMivides the
dataset intan lists, such that théth (1 < i < m) list contains all the points assigned to ancHer
sorted in descending order of theirvalues. Given a query subspat® B, the algorithm scans
them lists in a synchronous manner. Initially, pointers, ptrs, ..., ptr,, are positioned at the
first elements of then lists, respectively. The subsequent execution runs iatitars, until all the
pointers have beconte In each iterationSUBSKYprocesses the poiptthat has the smallest ER,
among all the points currently referenced by th@ointers. Specifically, it first updates the skyline
setSy, (i.e., whenever necessary, agdo S, and remove the points frotfi,;,, dominated by
p). Then, the algorithm checks whether a list can be elimohati¢h p, according to Property 2.
Once a list is pruned, its corresponding pointer is sét tafterwards, the pointer referencings

advanced to the next point, and another iteration starts.

As an example, assume that we want to compute the skylineeisuhspacéUB = {1, 2}. As
the first step, the algorithm identifies, for each anchoragsgned data poiptwith the maximum

f(p). In Figure 13b, the point foA; (As) is ps (ps), which is the right-most point assigned to this

17



(1,081, 0.9)
N5 N6
(1,0.4)[(1, 0.6) (1,0.9], 0.7)

P1|P2|P3|P4|P5|Ps|P7|Ps

D7 §43 P2 P yZ Ds D3 P
ER-volwrt. A 8 64 [ 1| 1| 1 [8 2161125 1" o1 05)[ 1 0.6)| (1, 0.8)|| (1. 0.9) |1, 09| 2, 0.7 2. 0.7)
ER-volw.rt. 4o| 0 [ - | 9| - | - | 9 |144]|75 N, N, N, N,

(a) ER volumes with respect té,, A, (unit10~3) (b) The B-tree on the transformedvalues
Figure 13: lllustration of the skyline algorithm

anchor at the leaf level, and can be easily found by accesassimtgle path of the B-tree.

Then, the algorithm scans the points assigned to each amctiescending order of thefi-values,
i.e., the ordering i ps, ps, p1, P2, ps, pr} for Ay, and{ps, p3} for As. Initially, ptr; andptry
reference the heads, andpg of the two lists, respectively. At each iteration, we pracdse
referenced point with a smaller ER (in case of a tie, the nexd¢gssed point is randomly decided).
Continuing the example, since the ER-volume Ipois smaller than that 9 gfs (implying that
pe has a larger probability of being pruned by a future skylioef), the algorithm adds; to the
skyline setS,,, and advancegtr; to the next pointp, in the list of A;. Sincep, has a lower
ER-volume (tharps pointed to byptr,) and is not dominated by, it is also added t&;,, (={ps,

p4}). Pointerptr; now reacheg,, which is processed next, and is includedin,, too.

According to Property 2p; prunes all the pointg assigned tod; whosef(p) are smaller than
min;esup(A1[i] — p1]i]) = 0.8. Since the next point, in the list of A; qualifies the condition,
none of the remaining data in the list can be a skyline poimil&rly, p; also prunes the daja
assigned tod, satisfyingf(p) < min;esyp(Aszli] — p[i]) = 0.8. Thus, the heagl in the list of A,

is eliminated {(ps) = 0.7 < 0.8), and no point in the list belongs to the skyline either. Herthe

algorithm terminates witl¥x, ={ps, p1, p1}-
5.5 Discussion

We keep the anchor set in memory since it is small (occupyntg several k-bytes) and is needed
for performing queries and updates. Specifically, to iridehtte a poinp, we decide its assigned
anchorA as described in Section 5.2, and géb) = L. (p, A), after which the insertion/deletion
proceeds as in a normal B-tree. The anchor set is never moditexdts initial computation. Query

efficiency remains unaffected as long as the data distabutoes not incur significant changes.

For a dynamic dataset, all the data must be retained becauseskyline point may appear in the

18



skyline after a skyline point is deleted. On the other hahthe dataset is static, points that are
not in the skyline of the whole universe can be discardedesias mentioned in Section 2.1, they
will not appear in the skyline of any subspac®#/hend is large, the size of the full-space skyline
may still be comparable to the dataset cardinality [13]. ¢¢ethe points (of the skyline) should be

managed by a disk-oriented technique (sucBE@BSKYto enable efficient retrieval in subspaces.

So far our definition of “dominance” prefers small coordagbn all dimensions, whereas in gen-
eral a point may be considered dominating another only datsrdinates are larger on some axes.
For example, given attributgwice andsizeof houses, a reasonable skyline would seek to mini-
mize theprice but maximize thesize(i.e., a customer is typically interested in large housdf wi
low prices). Depending on its semantics, a dimension ustak only one “preference direction”,
e.g., skylines involvingorice (siz would most likely prefer the negative (positive) directiof
this axis. SUBSKYeasily supports a positive preference direction by comgit to a negative
direction, which can be achieved by subtracting (from 1)calbrdinates on the corresponding

dimension (e.g.l— price).

It is worth mentioning that, sometimes a dimension may haegareference directions. For exam-
ple, consider the attributeearest-subway-station-distanoéproperties. People, who travel with
the subway frequently, may prefer to minimize this attrébudthers, who are seeking quiet neigh-
borhoods, may prefer to maximize it. In this case, two ins#arfSUBSKYmay be maintained,

each supporting one preference direction.

6 Extensions of SUBSKY

In the sequel, we show that SUBSKY can be adapted to perforar tthes of search in subspaces
efficiently. Section 6.1 first elaborates this for skybaneérges, and then Section 6.2 discusses

top-k processing.

4Strictly speaking, this is correct only if all the data psithiave distinct coordinates on each dimension. If this is
not true, the points that need to be retained include thasenghcommon coordinates with a point in the full-space

skyline. Retrieval of such points is discussed in [23].

19



6.1 Subspace Skyband Retrieval

As mentioned in Section 1, the-skybandof a dataset consists of all the data points that are
dominated by less thah other points.SUBSKYcan be easily modified to find theskyband in
any subspacéU B. In terms of theoretical reasoning, the modification lieProperty 2: a point

p' cannot appear in the-skyband, if there aré pointsp;, ..., px, such that each; (1 < j < k)
satisfies Inequality 4, replacingwith p,. This observation implies that a subsp#eskyband can

be extracted using the B-tree deployed3lyBSKYin a way similar to finding a subspace skyline.
Intuitively, the only difference is that, here, a sorted éian be eliminated, only after its remaining
points are guaranteed to be dominatedibyoints already seen. Based on this idea, Figure 14
demonstrates th8UB-SKYBANIRlgorithm.

Next, we illustrate the algorithm by using the index in Figur3b to extract the 2-skyband in
SUB = {1, 2} of the dataset in Figure SUB-SKYBANDcans two sorted list§ps, pa, p1, po,

ps, pr} and{pg, ps} in a synchronous manner. Recall that the points in the firsb(e# list are
assigned to anchot; (A,) and sorted in descending order of thgivalues. Following the process
discussed in Section 5.4, we access, in this oggdep,, andp, of the first list, after whichtr, and
ptry are referencing, andpg respectively, ands., = {ps, p4, p1 } (Wwhich should be interpreted as
the 2-skyband set now). As explained in Section p,4jefinitely dominates all the un-inspected
points in both lists — the reason for terminating the skybearch in the example in Section 5.4.
To obtain the complete 2-skyband, we continue to propgdsecause its ER has a smaller volume
than that ofps. Sincep, is dominated by only a single poipt in Sy, it is added taS,,; then,

ptry IS moved tops.

p2 must dominate all the un-examined poipts the first list, which can be understood by com-
bining Property 2 with the factf(p) < f(ps) = 0.5 < min;esyp(Ai]i] — p2[i]) = 0.6. Now that
we have found two pointe( andp,) that dominate the un-inspected part of the first list, thei$i

eliminated from further consideration.

The discovery ofp, does not prune the second list. Henpg,s examined, and added 6,
because it is dominated by only one pqinin Sy,. Pointerptr; now referencegs, which is also
checked, and included in the 2-skyband. Since the secanltblssbeen exhausted, the algorithm

finishes, reporting,., = {ps., p1, P1, P2, P6, p3 } as the final result.

20



Algorithm SUB- SKYBAND (SU B, k, { A1, Aa, ... Ay })
/* The meanings obU B, Ay, ..., andA,, follow those in Figure 12k is the parameter ink-skyband” */
forj=1tom
use a B-tree to find the poiptr; with the maximumf (ptr;) among all the points assigned.g
ptri.ER = [, (A;[i] — Loo(ptrj, A;)) /Equation 5
Ssky = 0 /lthe set of points in thé-skyband inSUB
forj=1tom
Sprune[j] = 0 11Sprune[j] is the set of points that dominate the un-inspected points assigned to
while (ptr; # 0 for anyj € [1,m])
t = the value ofj giving the smallesptr;. ER among allj € [1,m] such thaptr; # ()
if ptr; is dominated by less thanpoints in Sy,
for every poinp € S, dominated bytr;
11.  p.ent + + /llp.ent is the number of data points found dominatjng
12. if p.cnt = k then remove from Sy,
13, Ssky = Ssky U {ptri}; ptryent =0
14. forj=1tom,andj # ¢
15.  ifptr; # 0 and f(ptr;) < minjesyp(A;[i] — ptrei])
16. Sprune[j] = Sprune[j] ) {pt""t}
17. if [Sprunelj]| = k thenptr; = () /* no point assigned ta!; can belong to thé-skyband */
18. ptr, = the point with the next largegt(p) among the data assignedAg (this point lies in either the
same leaf as the previopsr;, or a neighboring node)
19. ifptr; # 0
20. for every poinpgy, € (Soky — Sprunels])
21, if f(ptry) < minjesup(Adfi] — psiylil)
22. Sp'mme [t] = Sprune [t] U {psky}
23. if | Sprune(t]| = k thenptr, = 0 /* no point assigned tol, can belong to thé-skyband */
24, ptri. ER =[] (A]i] — Loo(ptrs, Ay))
25. returnS,y,,

©CoNOOA~®WDNE

=
o

Figure 14: The algorithm of finding a subspace skyband

6.2 Subspace Topke Retrieval

Given a monotone preference functigiiconcerning a subspac#/ B), a top query returns the
k data points with the lowest scores. Since, in &tyB, any top4 result is always included
in the corresponding-skyband, an obvious solution to answering the query is toaekthek-
skyband, compute the scores of the retrieved points, araitre 4 ones with the lowest scores.
This approach, however, may perform considerable unnages®rk, if thek-skyband is sizable.
Here, we propose a faster algorithm, which employs exacdysame B-tree used by cBUBSKY
methodology, and is applicable to any monotone preferamuetibng. The algorithm requires the

notion of “ER max-corner”, defined as follows:

Definition 3. Given a pointp and an anchord dominated by, let R be the ER of with respect

21



Algorithm SUB- TOPK (SUB, k, g {A1, Ag, ... Am})

/* The meanings obU B, Ay, ..., andA,, follow those in Figure 12k is the parameter in “topg”; g is the
preference function of the topguery */

1. forj=1tom

2. use a B-tree to find the poiptr; with the maximumf (ptr;) among all the points assigned.g
3. Siop = 0 Ilthe top# set

4. while (ptr; # () foranyj € [1,m])

5. t=the value ofj giving the smallesy(ptr;) among allj € [1, m] such thaptr; # 0

6. if g(ptr) is smaller than the score of some pointSp,

7 remove fromS,,, the point with the largest score

8 Stop = Stop U {Ptrt}

9. forj =1tom, andj # ¢

10. if ptrj # 0

11. ptrj. is the ER max-corner qftr;

12. if g(ptr;.) is larger than the scores of all pointsSp,,,

13. ptr; = () [* no point assigned tal; can belong to the tog-set */
14. ptr, = the point with the next largegt(p) among the data assigned4e
15. ifptry # 0

16. ptrs, is the ER max-corner qgftr;

17.  if g(ptre. ) is larger than the scores of all pointsSi,),

18.  ptr; = () /* no point assigned tal; can belong to the top-set */
19. returnS;,,

Figure 15: The algorithm of answering a subspaceftopery

to A (formulated in Definition 2). Then, tER max-corner of p with respect to A is the corner

of R opposite to the origin (which is also a corner Bj.
For example, in Figure 10a, the ER max-cornep &f the upper-right corner of the shaded region.
Such corners have two important properties:

Property 3. A data pointp’ cannot be in the result of a top-query (which specifies a preference

functiong concerning subspacgU B), if there existk pointsp, ..., px such that, for allj € [1, k],
9(p;) < 9(pc) (7)
wherep(, is the ER max-corner ¢f with respect to its assigned anchor.

Property 4. Letp; andp, be two points assigned to the same ancHorlf f(p;) > f(p2), then
g(p1.) < g(pa.), Whereg is any monotone preference function, amgd and p,., are the ER

max-corners op; andp, with respect ta4, respectively.

Figure 7 formally describes the proposed algoritBiB-TOPKfor subspace top-retrieval. As
with subspace skyline/skyband searShiB-TOPKleveragesn lists, where thé-th (1 < i < m)

22



list juxtaposes the points assigned to ikt anchor in descending order of th¢hvalues. Given

a query subspac8U B, the algorithm again uses pointersptry, ptrs, ..., ptr,, to scan then

lists synchronously, and maintains the Sg}, of k& objects that have the smallest scores among alll
the objects scanned so far. In each iterat®dB-TOPKprocesses the referenced pgiwith the

smallest score, and attempts to prune a list according toePies 3 and 4.

In the sequel, we explain the algorithm using the datasetgaré 13, assuming a top-2 query in
SUB = {1,2} with g(p) = 3p[1] + p[2]. SUB-TOPKexamines two sorted lists, ps, p1, pa,

ps, pr} and{ps, ps}. At the beginning, pointerstr; andptr, reference the top elements of the
two lists, respectively. At each step, we process the rete@ point with a smaller score. Since

g(ps) = 1.2 < g(ps) = 1.6, ps is added tad,,,, andptr, is moved to the next elemept.

As g(ps) < g(ps) = 2.8, the algorithm addg to S, (which becomegps, ps}, sorted in ascend-
ing order of their scores), and shifts pointer, nto ps. Similarly, ps is the third point inspected,
but is discarded, becaugép;) = 1.8 is larger than the score of the current top-2 objgctThe
second list has been exhausted; hence, the subsequeni@xdéoauses on the first list. We con-
tinue to procesp; andp,, which are also ignored, due to the same reason for discppglirNext,
p1 IS examined, and included ifi,,,, whereagy is removed fromS,,,, because it has a higher

score tham, andps.

The algorithm terminates here with,, = {p:, ps} as the final result. To explain this, notice that
the elemenp, referenced bytr, now has an ER max-cornegt,, = (0.4, 0.4, 0.4). The score
g(p2..) = 1.6 of py, is greater than those (0.8 and 1.2);9fandps;. Hence, by Property 3.
cannot belong to the top-2 result. Furthermoreplbe any point in the first list that has not been
examined, ang¢ the ER max-corner agf. As f(p2) > f(p), according to Property 4,(pc) must
be at leasy(p,..), and hence, larger than the scores of hatlandp;. Thereforep cannot be in

the top-2 result, either. The complete algorithm is formdscribed in Figure 15.

7 Experiments

In this section, we experimentally evaluate the efficientcthe proposed techniques. We deploy

three real datasetdBA Householg and Color®. Specifically, NBA contains 17k 8-dimensional

5These datasets can be downloadetitti://www.nba.comhttp://www.ipums.organdhttp://kdd.ics.uci.edure-

spectively.

23



points, where each point corresponds to the statistics t#yeepin 8 categories. These categories
include the numbers of points scored, rebounds, assistssblocks, field goals attempted, free
throws, and three-point shots, all averaged over the nuofbmemutes playedHouseholdconsists

of 127k 6-dimensional tuples, each of which represents #dregmtage of an American family’s
annual income spent on 6 types of expenditure: gas, eligtneater, heating, insurance, and
property tax. Color is a 9-dimensional dataset with a cardinality 68k, and aetwalptures sev-
eral properties of an image. Specifically, each image is @edan the HSV space, and those 9
dimensions record the mean, standard deviation, and sksvafall the pixels in the H, S, and V

channels, respectively. All the values are normalized tiiounit range [0, 1].

We also generate synthetic data with four distributiamsiform, correlated anti-correlated and
clustered The first three distributions are commonly adopted in tieedture for evaluating skyline
algorithms; we refer our readers to [5] for their generadia To create @lustereddataset with
cardinality vV, we first pick 10 cluster centroids randomly. Then, for eaehtiwid, we obtain
N/10 points, such that the coordinate of a point on each axisvislla Gaussian distribution with

standard deviation 0.05, and a mean equal to the corresgpodordinate of the centroid.
7.1 Efficiency of Subspace Skyline Retrieval

We compareSUBSKYagainst the adapted versionsBBS SFS andTA discussed in Section 3.
To applySUBSKY(BBS, we build a B- (R-) tree on each dataset. Each B-tree is cornstiwath
anchors computed (as elaborated in Section 5.3) from a 1@éeona sample set of the employed
dataset. FoiTA, we createl sorted lists as described in Section 2.1. Recall thAtexecutes in
two phases. The first phase extracts the ids of a set of cardibgects, i.e., the ids scanned until
the same id is encountered in all lists. Then, the secondretapves the concrete coordinates of
each candidate. To optimize the second phase, we employeeBetindex the underlying dataset
on the ids; thus, the phase can be completed via a singlesedva the tree, which visits only
the nodes on the paths from the root to the leaves contaitile@st a candidate id. Our approach
incurs much lower cost than the traditional implementafgr26], where the second phase invokes
a blocked nested loogFSis implemented in the same way as presented in [10]. The pagéss

set to 4k bytes in all cases.

A workloadcontains as many queries as the number of subspaces withrttee dimensionality

24



25 — 6 — 4.5 —
R 4D subspaces—H5— i 4D subspaces—H=— 41 4D subspaces—H&— |
s 2l 3D subspaces—2&— | S5 ¢ 3D subspaces—=&— | S 3D subspaces—4—
2 2D subspaces—o— o 2D subspaces—c— o 35 ¢ 2D subspaces—— |
~ ~ 4 L 4 ~ L 4
@ & @ @
3 5y 834 3
Py 1 Py Py
) o2t )
=} =} ]
o o o
l L
0 0

1 10 20 30 40 50 60 70 80 90100 1 10 20 30 40 50 60 70 80 90 100 1 10 20 30 40 50 60 70 80 90100
number m of anchors number m of anchors number m of anchors

(a) NBA (b) Household (c) Color

Figure 16:SUBSKYperformance vs. the number of anchors

d.p in the underlying dataset, whedg,, is a parameter of the workload. For example N@Aand
ds.» = 3, there are?) = 56 three-dimensional subspaces, and hence, the corresgondikload
includes 56 queries. FédBAandHouseholdeach skyline aims at maximizing the coordinates of

the participating dimensions, while queries on the othéaskdts prefer small coordinates.

We measure query cost as the total overhead, which includistbe CPU and I/O time. In
particular, I/O cost involves 20ms for each random accesb4as for each sequential access. All
the experiments are performed on a machine with a Pentium IV &RBGHz and 1 Giga bytes

memory.

Tuning the Number of Anchors. The first set of experiments examines the influence of the
numberm of anchors on the performance 8UBSKY For each real dataset, we create 11 B-trees
by varyingm from 1 to 100. Then, we use each tree to process a workloadmaadure the
average cost per query. Figure 16 plots the cost as a funetion, for workloads withd,, =

2, 3 and 4, respectively. Note that the results/for= 1 correspond to the overhead of the basic

SUBSKMhat uses the maximal corner as the only anchor (Section 4).

As m becomes larger, the query overhead first decreases anddiu@tiyaincreases aften passes

a certain threshold. The initial decrease confirms the arsbf Section 5 that query efficiency
can be improved by using multiple anchors. To explain théoperance deterioration, recall that
the query algorithm oSUBSKYessentially scans segments of continuous leaf nodes in a B-tree,
which requires at least: page accesses. For excessively largeghesem accesses constitute a

dominant factor in the overall overhead, which thus groum@at) linearly withm.

Even for the same dataset, the optimalis greater, when the dimensionality,, of the query

25



[IJSFS [0T7A BBBS N SUBSKY(basic) ¥ SUBSKY

1000 w w w 1000

100 ¢
10 ¢
1

query cost (sec)
(==Y
o
o

query cost (sec)
=
o

[N

0.1
15 0.5 1 15
cardlnallty (million) cardinality (million)
(a) Uniform (b) Correlated
1000 \ \ \ 1000
o — ] < 7 M
] (]
2100 ] 2100
[%] [%]
Q Q
o o
> e
2 10; 1 2 10¢
o o
1 1
0.5 1.5 0.5 1 15
cardlnallty (million) cardinality (million)
(c) Anti-correlated (d) Clustered

Figure 17: Cost of skyline search vs. cardinalify,f = 3, d = 10)

subspace is higher. For example, foBA the bestn equals 10, 40, 50 fod,,, = 2, 3, and 4,
respectively. In the sequel, we setto 10 for real datasets, since this value offers the besttiver

performance.

Through a similar tuning process, we use= 70, 1, 100, and 30 for all theniform, correlated

anti-correlated andclustereddatasets, respectively.

Scalability with the Cardinality and Universe Dimensionality. In the next experiment, we de-
ploy 10D uniform datasets with cardinalities ranging from 0.5 to 1.5 millioDeploying a 3D
workload, Figure 17a compares the average cost (of all gsiémnia workload) oBBS SFS TA,
the basic and gener8UBSKY

The proposed techniques significantly outperform their pettors. In particular, the tw8UB-
SKYmethods are faster th&FSand TA by a factor of an order of magnitude. Furthermore, the
generalSUBSKYis also nearly 10 times faster th&BS In Figures 17b-17d, we present the re-
sults of the same experiments on synthetic datasets oflee distributions, confirming the above

observations. The bas®RlUBSKYs omitted because it targets uniform data specifically.

26



[IJSFS [0T7A BBBS N SUBSKY(basic) ¥ SUBSKY

1000 1000

0 M ] ‘S100 ([ | ]

2100 | ] 2

%) B 10

o o

o o

> = 1+

g 10, : g

< o1t

1 0.01
5 10 15 5 10 15
universe dimensionality universe dimensionality
(a) Uniform (b) Correlated
1000 \ 1000 \

o — [ n — ]

3 3

= 100 ¢ 1 = 100 ¢

[%] [%]

3 3

> e

2 10; 1 2 10¢

o o

1 1
5 10 15 5 10 15
universe dimensionality universe dimensionality
(c) Anti-correlated (d) Clustered

Figure 18: Cost of skyline search vs. universe dimension@lit,, = 3, 1 million cardinality)

To examine the influence of the universe dimensionaljtye utilize datasets with cardinality 1
million, whosed varies from 5 to 15. In Figure 18, again leveraging 3D worlkave measure the
average cost of alternative methods as a functiaf &r the four types of synthetic distributions,

respectivelySUBSKYconsistently outperforms the other approaches significant

It is worth mentioning that, all algorithms are I/O-boungdsdch that the CPU cost accounts for
at most 2% of the total running time of any query. In the regtegxnents, we omiSFSand TA,
because they are not comparable vBBS and SUBSKY Furthermore, we will use the general

SUBSKYas the representative of our technique.

Characteristics of SUBSKY. We proceed to study several intrinsic properties of the psed
technique. For this purpose, we focus wmform datasets, so that we can explain the observed
behavior without worrying about the complex influences eauBy the irregularity in the data

distribution.

First, we examine the percentage of a database (univergndionality 10) that must be inspected
by SUBSKYThe 2nd (3rd, 4th) row of Table 1a shows the percentage fwarnng a 2D (3D, 4D,

27



cardinality | 10k | 500k | 1m 1.5m 2m
dsyp =2 | 1.4% | 1.4% | 0.90% | 0.61% | 0.49%
deup =3 | 3.7% | 3.6% | 3.5% | 3.1% | 2.5%
dewp =4 | 17% | 15% | 13% | 12% | 10%

(a) Percentage vs. dataset cardinality=(10)

d 5 10 15
dsup =2 | 0.63% | 0.90% | 0.90%
dsup =3 | 0.77% | 3.5% | 10.8%
dsup =4 | 0.65% | 15% | 28%

(b) Percentage vs. universe dimensionalifgardinality 1 million)

Table 1: The percentage of a database access8BBEKY

‘Te==8BSs
539 1 SUBSKY
v 3
2
725
8 21
>
§1.5*
o 1+

05+

0

2 3 4 5 6

universe dimensionality

Figure 19: The break-evehbetweerBBSandSUBSKYd,,;, = 2, 1 million cardinality)

respectively) workload, as the dataset cardinality grawsf10k to 2 million. For the same,,;,

the percentage is actually lower for a more sizable dataBeexplain this, consider the object
whoseL,, distance to the origin is the smallest. Letlenote that distance. This object prunes all
the data pointg satisfyingf(p) < 1—A\, wheref(p) is the L, distance betweemand the maximal
corner. When the dataset is largeris smaller; therefore, a higher percentage of the dataset ca
be pruned. Note that the above phenomenon does not contifagliesults in Figure 17. As the
cardinality grows, the actual number of objects inspecie8UBSKYstill increases, even though

the percentage is reduced.

Table 1b demonstrates the percentages for performing 2Dal®4D workloads, with respect to
various universe dimensionalitids As expected, the percentage increases witonfirming the
intuition that subspace skyline retrieval is more diffianla higher-dimensional universe. The two
tables also indicate that, given the same cardinality&ride percentage grows with,;. This is

reasonable, because our heuristics are less effectivégpanes with more dimensions.

28



1.1
1 ~  BBS (avg = 0.36) 4
09| SUBSKY (avg = 0.23),-]
(S N
208 Y
=07 o
8 06 N P
205 £ oo
o 04 a R s ioa
503 - Lt
8% AAA apna & BT
1
0
subspaces
(a) NBA dsub =2
1
0 » " BBS (avg = 1.43)
R SUBSKY (avg = 0.27)
o
in/ A a a A
§ 1he e - N a
> A R
@
>
o
0.1 L
subspaces

(d) Householdd,,;, = 2

100
4 BBS (avg = 0.73)

B SUBSKY (avg = 0.26)
[s]
& 10 . o
@ s 24
8 1 & ey, o
2 &
5
T01p e S et

0.01

query cost (sec)

subspaces

(g) Color, dy, =2

£

4 BBS (avg = 1.20)

w
3

N

o = r
ok, oW

R SUBSKY (avg = 0.77)

subspaces
(b)NBA dyp = 3

10

query cost (sec)
R

0.1 b SRET
subspaces
(e)Householdd,,;, =3
100
4 BBS (avg = 2.06)
B SUBSKY (avg = 0.55)
8 10 ¢ m A AL
«u A A
3 a & PR NS
§ 1 S T
g I Y —
S ..A...ﬂ.....n.........zzg ------ Tl
S 0.1 hdebaee,]

0.01

subspaces

(h)Color, dg, =3

query cost (sec)

6 a BBS (avg = 2.67)
T SUBSKY (avg = 1.60)
AA A R - AAA
4 A A A VNN AAAA AAAAA&
¢ b A A © R
3 AA A a . o
2 B ) - e AAA
: » g
1 Ao el ""A R
Ao
£
s
subspaces
(C)NBA d,,, = 4
1
00 4 BBS (avg = 8.32)
2 SUBSKY (avg = 2.83)
o
@
17}
s10} , , ) B
> 44 fs,a f2ana
[
=}
o
1

subspaces

() Householdd,,, = 4

100 a BBS (avg = 4.09)

--------------- SUBSKY (avg = 1.38)

query cost (sec)

subspaces

(i) Color, dg,, =4

Figure 20: Cost of skyline search vs. subspace dimensignalit

Second, we investigate the “break-even” universe dimeiasity whereBBSandSUBSKYswitch

their relative superiority. As analyzed in SectionBBSis expensive only if the universe dimen-

sionalityd is sufficiently high (so that the structure of the underlyivyee degrades significantly).

reduction transformation adopted BYBSKY

If dis small,BBSwould be faster tha®UBSKY due to the information loss in the dimension-

To capture the break-even point, we fix, to 2 and cardinality to 1 million, but measure the

cost of the two methods by gradually raisidg The results are demonstrated in Figure 19. The

overhead oSUBSKYis not significantly affected wheth distributes in the tested range, whereas

but SUBSKstarts being the better methoddat 5.

the cost oBBSescalates quickly. As expected, for smalIBBSentails cheaper computation time,

Examination of Individual Subspaces. Figure 20a illustrates the cost 8JJBSKYandBBSfor

29



YA

the search
region of BBS
/

p 7
0 X
Figure 21: The best case fBBS

answering each query in a 2D workload on tNBA dataset. The x-axis represents the sub-
spaces, sorted in ascending order of the corresporBif@SKYoverhead. The average cost of
each method is shown after its legend (e.g., the per-quasshead ofSUBSKYequals 0.23 sec-
onds). In Figures 20b and 20c, we demonstrate a similar cosapafor workloads withi,,;, = 3
and 4, respectively. Figures20d-20i present the resultssodame experiments é¢touseholdand

Color respectively, except that the y-axes are in logarithmitesca

SUBSKYtonsistently achieves lower average cost than its conopéivith the maximum speedup
5in Figure 20d). Regarding individual query performar®gBSKYoutperformEBBSin all queries
on Householdand most queries oNBAandColor. The only exception is in Figure 20g, where
BBSis slightly faster for around 60% of the workload, but sigrafitly slower for the remaining

queries, rendering its average overhead nearly 3 timeghtpan that oSUBSKY

Why canBBSsometimes be so efficient even when the structure of the Rricees serious de-
terioration caused by the high dimensionality of the data3® answer this question, Figure 21a
shows an extreme case where the skyline includes a singiepgie., p dominates all the other
points). BBSaccesses only the nodes whose MBRs intersect the shaded. régpamatter how
the leaf nodes of the R-tree are obtained, there is only oféleathe one that containg whose
MBR intersects the region (recall that there exists a datat jpoi each edge of an MBR). The same
analysis also applies to nodes of higher levels, BBSneeds to access only a single path of the

R-tree.

In general, given a “bad” R-tre®@BSmay still have satisfactory performance if the skyline p®in
are close to the origin. However, when the condition is tedathe efficiency of this technique
drops considerably due to the reasons discussed in Sect®IWEBSKYon the other hand, is able to

find a skyline that contains numerous points far-away froenatigin with much lower overhead.

30



3
4 BBS (avg = 0.98)

25 " SUBSKY (avg = 0.61) |
[$)
[} A
L 2
e a
815 s a
2
s 1 PR
o A a &

0.5 fas,” ° et °

ok

subspaces

(@Q)NBA dp = 2

1
0 ~  BBS (avg = 2.61)
I SUBSKY (avg = 0.39)
Q N N A D
G A
81
>
[
=}
o
0.1 e
subspaces

(d) Householdd,,;, = 2

100
4 BBS (avg = 1.98)

P SUBSKY (avg = 0.39)
3 10 b
k2 VNV
3 st
8 1 s °
\2‘ A o
[} Y.V
g g TR

0.01

subspaces

(g) Color, dy, =2

6
IN BBS (avg = 2.76)
2% SUBSKY (avg = 1.57)
3 : A
L4 aus B 5
g AA & N ) AA
o3 A A et
2 A A A A I AAA '''''
(5] 2 A i
=) s )
Tip” L
H P -
0k
subspaces
(b)NBA d.,; = 3
10
b A% a2 2 ST YU
A0 AT AT

query cost (sec)
R

4 BBS (avg = 6.63)

0.1

subspaces

(e)Householdd,,;, =3

100

=
o

query cost (sec)
P

o
=

0.01

4 BBS (avg = 4.11)
--------------- SUBSKY (avg = 1.17)

vt

Y5

subspaces

(h)Color, dg, =3

A BBS (avg = 4.53)
o SUBSKY (avg = 2.40)
6 BN s an o

Ap A A . A§ A
5 AmAAA AAAAA:AA%AAAA
4 AAAAA @AA AA f A
3 ’ ) B} AAA e
1 b
0
subspaces

(C)NBA dy, =4

1
00 4 BBS (avg = 11.0)
s | SUBSKY (avg = 4.02)
3
°a
§10 AAAAAAAAAA A s
s
R E—————
T [
T |
1

subspaces

() Householdd,,, = 4

100 T BB g <685
| e SUBSKY (avg = 2.54)
g 2
& a o o0sBalaad
10 2480 28 oo
\2 A @%AAA
1 ;
e Pt
E-B) i
501 %
A
0.01

subspaces

(i) Color, dg,, =4

Figure 22: Cost ok-skyband search vs. subspace dimensionality H)

7.2 Efficiency of Skyband and Topk Retrieval

Having demonstrated the superiority®i)BSKYn answering skyline queries, we proceed to eval-
uate the efficiency of our techniques for subsphekyband and top- search. Specifically, for
k-skyband (or topk) queries, we compar8UBSKYagainst the extende@BSin [21] (or BF,
standing for the best-first algorithm mentioned in Secti@).2Each query workload is created in
the same way as described in Section 7.1, except that heyetédins another parameter For all

datasets examined in the sequel, the indexes employed acdyethe same as those used in the

skyline experiments.

Figures 22a-22i demonstrate the results of 5-skybanevatrunder the settings identical to those
in Figures 20a-20i, respectively. The characteristicSdBSKYandBBSare similar to those in

skyline search. Fixing,,; to 3, Figure 23 compares the average query cost in a worklbtwo

31



4 =" BBs 2 —&— BBS 8 —=—BBs
535 o, | —o suBsky S 55| —e— SUBSKY \
83 | 8 8
725 ] i =4
8 85 8
o 2 S 44 o3
215 ] o 2
74 g3 g 21
T 1 1 UZW o

0.5 ] 1 1

0 0 0

1 2 3 45 6 7 8 9 10 1 2 3 45 6 7 8 9 10 1 2 3 45 6 7 8 9 10
k k k

(a)NBA (b) Household (c) Color
Figure 23: Cost of-skyband search v&.(ds., = 3)

two methods, by varying from 1 to 10. Figures 24 and 25 repeat these experiments asfect

to top+ queries. ClearlySUBSKYoutperforms its competitor considerably in all cases.

8 Conclusions

In practice, skyline and top-queries are usually issued in a large number of subspacgsoéa
which includes a small subset of the attributes in the ugdeglrelation. In this paper, we de-
velop a new techniqu8UBSKYthat supports subspace skyline/tbpetrieval with only relational
technologies. The core &UBSKYs a transformation that converts multidimensional datao
values, and permits indexing the dataset with a single ctioweal B-tree. Extensive experiments

verify that SUBSKYconsistently outperforms the previous solutions in termefficiency and
scalability.

This work also lays down a foundation for future investigatof several related topics. For in-
stance, certain attributes in the relation may appear irstispaces of most queries (e.g., a user
looking for a good hotel would always be interested in phiee dimension). In this case, the
data structure may be modified to facilitate pruning on theesss. Another interesting issue is to
cope with datasets where the data distribution may incguiat changes. Instead of periodically
reconstructing the B-tree, a better approach is to replalyesmme anchors, and re-organize the
data assigned to them. This strategy achieves lower updstsiace it avoids accessing the points
assigned to the unaffected anchors.

32



10_1 & BF(avg=0.22)
10T e SUBSKY (avg = 0.10)
) 1
@ 10 s 4 s
= 10t as o ot
g L. e, PNV
o 107 [a 2 & a Ot a
ey i1 4
) 10
2 -1
S 107 |

102

10°
subspaces
(a) NBA dsub =2
3
~  BF(avg =1.27)
o5 SUBSKY (avg = 0.27) |
3
3 2 A A
@ IN
815 a toa
> a B
g 1 s -
=3 a
05 °
o e
subspaces

(d) Householdd,,;, = 2

0.4
& BF (avg =0.25)
0351 e SUBSKY (avg = 0.10)
2 031 . & el
L N A A Ak REL 4
0258 4a% an Splamm B,
[0} NN o8 pn on A N A o
8 02k % cans s a
a i
$ 015}
s
T 0L T
0.05}
0
subspaces

(0)NBA d,; = 3

25 4 BF (avg = 1.46)
--------------- SUBSKY (avg = 0.46)
o 27 N
3 A .,
% 1.5 P . ot
8 A A - 4
g 1l . a a
=]
0 wwwwwwwwwwwwwwwwww
subspaces
(e)Householdd,,;, =3

I
~

0.35

4 BF (avg =0.27)

g 0.3
025 fea e Suun "L s 5
8 02f,° .
zos
T 01l
c 01 .............................................................
0.05
0
subspaces
(C) NBA dsub = 4
> ~  BF (avg =1.89)
B — B ) hse |
g A
325¢ . )
g2 I
> s o A A
>154 2 2 2 N
g .......
“ 1 | .A.........-..-.............4.......-....,
0 e
subspaces

() Householdd,,, = 4

1.4 1.6 16
4 BF (avg =0.35) 4 BF (avg = 0.41) & BF (avg=0.47)
12 SUBSKY (avg =0.24) | LA e SUBSKY (avg = 0.30) LA e SUBSKY (avg = 0.37)
i 2 S 12t @ 12t “op
& 1r 4 & a & a s 24
= a = 1t a n = 1t s fafy
% 0.8+ A @ a 2 R
o 06 s s o 08¢ o B0 iy o 08¢} & pfpa o
g aat, 506} e RS $ 06 an® A
204t s S04l SO 2 04 Y o
[0 3 m—— PUR— e 0.2 b 02k 4
haanls “asdansssss ana b, s
0 0 0
subspaces subspaces subspaces
(g) Color, dy, =2 (h)Color, dg, =3 (i) Color, dg,, =4
Figure 24: Cost of tog: search vs. subspace dimensionality=(5)
04— 4 2 0.6 ————%F \
5035 —o— suBsKkY 5 —6— SUBSKY : 505 —&— SUBSKY
2 03 215+ 1]
N < 204t
g 025 B B
8 0.2 8 14 803t
> > >
§ 015 5 g 0.28
S 01, 5 0.5 W =3
005 01t

1 2 3 45 6 7 8 910

(a)NBA

0

1 2 3 45 6 7 8 910
k

(b) Household

1 2 3 45 6 7 8 910
k

(c) Color

Figure 25: Cost of topk: search vsk (d,,, = 3)

Acknowledgements

Yufei Tao and Xiaokui Xiao were supported by CERG Grant CUHK 1@6Zrom the Research
Grant Council of the HKSAR government. Jian Pei was suppdifeNSERC Discovery Grants
Program, NSERC Collaborative Research and Development GPaatggam, and IBM Faculty

33



award.

References

[1] W.-T. Balke, U. Guntzer, and J. X. Zheng. Efficient distri&d skylining for web information
systems. IrEDBT, pages 256-273, 2004.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. Rhee: An efficient and
robust access method for points and rectangleSIGMOD pages 322-331, 1990.

[3] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-tree : Amdex structure for high-
dimensional data. INLDB, pages 28-39, 1996.

[4] C. Bohm. A cost model for query processing in high dimenalatiata spaces.TODS
25(2):129-178, 2000.

[5] S. Borzsonyi, D. Kossmann, and K. Stocker. The skylinerafme. InICDE, pages 421430,
2001.

[6] C.-Y. Chan, P.-K. Eng, and K.-L. Tan. Stratified computatiof skylines with partially-
ordered domains. I8IGMOD, pages 203214, 2005.

[7] C.-Y. Chan, H. Jagadish, K.-L. Tan, A. Tung, and Z. Zhang. High dimensional skylines.
In EDBT, pages 478-495, 2006.

[8] C.-Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and Z.afly. Finding k-dominant
skylines in high dimensional space. $iGMOD, pages 503-514, 2006.

[9] Y.-C. Chang, L. D. Bergman, V. Castelli, C.-S. Li, M.-L. Lo, addR. Smith. The onion
technique: Indexing for linear optimization queries. SIGMOD, pages 391-402, 2000.

[10] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skylinghwpresorting. INCDE, pages
717-719, 2003.

[11] R. O. Duda and P. E. HarRattern Classification and Scene Analysigiley, 1973.

[12] R. Fagin. Combining fuzzy information from multiple sgsis (extended abstract). RODS
pages 216-226, 1996.

[13] P. Godfrey. Skyline cardinality for relational prosegsy. InFolKS pages 78-97, 2004.

[14] P. Godfrey, R. Shipley, and J. Gryz. Maximal vector comagion in large data sets. MLDB,
pages 229-240, 2005.

[15] G.R. Hjaltason and H. Samet. Distance browsing in spdditabasesTODS 24(2):265-318,
1999.

[16] V. Hristidis and Y. Papakonstantinou. Algorithms angpkcations for answering ranked
queries using ranked view$he VLDB Journgl13(1):49-70, 2004.

34



[17] Z. Huang, C. S. Jensen, H. Lu, and B. C. Ooi. Skyline querniggsnst mobile lightweight
devices in MANETS. INCDE, 2006.

[18] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars irkihefs online algorithm for
skyline queries. IVLDB, pages 275286, 2002.

[19] X. Lin, Y. Yuan, W. Wang, and H. Lu. Stabbing the sky: Eiiiot skyline computation over
sliding windows. InICDE, 2005.

[20] S. Michel, P. Triantafillou, and G. Weikum. Klee: a franwgk for distributed top-k query
algorithms. pages 637-648, 2005.

[21] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal aogrpssive algorithm for skyline
queries. INSIGMOD, pages 467-478, 2003.

[22] D. Papadias, Y. Tao, G. Fu, and B. Seeger. ProgressiMenekyomputation in database
systemsTODS 30(1):41-82, 2005.

[23] J. Pei, W. Jin, M. Ester, and Y. Tao. Catching the best sief\skyline: a semantic approach
based on decisive subspacesVIDB, pages 253-264. VLDB Endowment, 2005.

[24] D. Pelleg and A. W. Moore. X-means: Extending k-meanthwificient estimation of the
number of clusters. Imternational Conference on Machine Learnjmgges 727—-734, 2000.

[25] R. K. Surajit Chaudhuri, Nilesh Dalvi. Robust cardinalégpd cost estimation for skyline
operator. INCDE, 2006.

[26] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient progressiglée computation. InVLDB,
pages 301-310, 2001.

[27] Y. Tao, V. Hristidis, D. Papadias, and Y. Papakonstani Branch-and-bound processing of
ranked queriesTo appear in Information Systems

[28] P. Tsaparas, T. Palpanas, Y. Kotidis, N. Koudas, andrba§ava. Ranked join indices. In
ICDE, pages 277-288, 2003.

[29] T. Xia and D. Zhang. Refreshing the sky: the compressgdusie with efficient support for
frequent updates. ISIGMOD, pages 491-502, 2006.

[30] K. Yi, H. Yu, J. Yang, G. Xia, and Y. Chen. Efficient maintce of materialized top-k
views. InICDE, pages 189-200, 2003.

[31] Y. Yuan, X. Lin, Q. Liu, W. Wang, J. X. Yu, and Q. Zhang. Ef&nt computation of the
skyline cube. InVLDB, pages 241-252, 2005.

35



