
An Efficient Cost Model for Optimization
of Nearest Neighbor Search in Low and

Medium Dimensional Spaces
Yufei Tao, Jun Zhang, Dimitris Papadias, and Nikos Mamoulis

Abstract—Existing models for nearest neighbor search in multidimensional spaces are not appropriate for query optimization because

they either lead to erroneous estimation or involve complex equations that are expensive to evaluate in real-time. This paper proposes

an alternative method that captures the performance of nearest neighbor queries using approximation. For uniform data, our model

involves closed formulae that are very efficient to compute and accurate for up to 10 dimensions. Further, the proposed equations can

be applied on nonuniform data with the aid of histograms. We demonstrate the effectiveness of the model by using it to solve several

optimization problems related to nearest neighbor search.

Index Terms—Information storage and retrieval, selection process.

�

1 INTRODUCTION

GIVEN a multidimensional point data set S, a k nearest
neighbor (NN) query returns the k points of S closest to

a query point according to a certain distance function. NN
queries constitute the core of similarity search in spatial
[24], [18], multimedia databases [26], time series analysis
[15], etc. Accurate estimation of NN performance is crucial
for query optimization, e.g., it is well-known that the
efficiency of indexed-based NN algorithms degrades
significantly in high-dimensional spaces so that a simple
sequential scan often yields better performance [6], [31], [7].
As shown later, a similar problem also exists in low and
medium dimensionality for queries returning a large
number of neighbors. Thus, the ability to predict the cost
enables the query optimizer to decide the threshold of
dimensionality or k (i.e., the number of neighbors retrieved)
above which sequential scan should be used. Further,
NN queries are often components of complex operations
involving multiple predicates (e.g., ”find the 10 nearest
cities to New York with population more than 1M”), in
which case NN performance analysis is indispensable for
generating alternative evaluation plans. The necessity of
NN analysis is further justified in [9], [28], which show that
an efficient model can be used to tune the node size of

indexes in order to reduce the number of random disk
accesses and decrease the overall running time.

As surveyed in the next section, the existing models are
not suitable for query optimization because they either
suffer from serious inaccuracy or involve excessively
complex integrals that are difficult to evaluate in practice.
Even more seriously, their applicability to nonuniform data
is limited because 1) they typically assume biased queries
(i.e., the query distribution is the same as that of the data),
and 2) they are able to provide only a single estimate, which
corresponds to the average performance of all possible
queries. However, queries at various locations of the data
space have different behavior, depending on the data
characteristics in their respective vicinity. As a result, the
average performance cannot accurately capture all indivi-
dual queries.

A practical model for NN search should be closed (i.e., it
should not involve complex integrals, series, etc.), easy to
compute, precise, and able to provide a ”tailored” estimate
for each query. Motivated by this, we deploy a novel
approximation method which aims at high precision with
limited evaluation overhead. An important merit of our
model is that it permits the application of conventional
multidimensional histograms for individual NN queries on
nonuniform data. As a second step, we apply the proposed
formulae to several important query optimization problems.

This paper focuses on vector data spaces of low or
medium dimensionality1 (up to 10 dimensions) and Eu-
clidean distance (i.e., the L2 norm) due to its popularity. The
next section introduces NN search algorithms, reviews the
existing cost models, and elaborates on their shortcomings.
Section 3 presents our model, first on uniform data and then
extending the solution to arbitrary distributions. Section 4
demonstrates the applicability of the new model for query

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 10, OCTOBER 2004 1169

. Y. Tao is with the Department of Computer Science, City University of
Hong Kong, Tat Chee Avenue, Hong Kong.
E-mail: taoyf@cs.cityu.edu.hk.

. J. Zhang is with the Division of Information Systems, Computer
Engineering School, Nanyang Technological University, Singapore.
E-mail: jzhang@ntu.edu.sg.

. D. Papadias is with the Department of Computer Science, Hong Kong
University of Science and Technology, Clear Water Bay, Hong Kong.
E-mail: {zhangjun, dimitris}@cs.ust.hk.

. N. Mamoulis is with the Department of Computer Science and Information
Systems, Hong Kong University, Pokfulam Road, Hong Kong.
E-mail: nikos@csis.hku.hk.

Manuscript received 21 May 2002; revised 7 June 2003; accepted 26 June
2003.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 116604.

1. From a practical point of view, analysis of NN search in high
dimensional spaces is less important because index-based algorithms are
usually outperformed by sequential scan [6], [3].

1041-4347/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

optimization, and Section 5 contains an extensive experi-

mental evaluation to prove its efficiency. Finally, Section 6

concludes the paper with directions for future work.

2 RELATED WORK

Section 2.1 introduces indexed-based NN algorithms and

discusses the related problem of distance browsing. Then,

Section 2.2 surveys the existing analysis and cost models.

2.1 Algorithms for kNN Queries

Following the convention in the literature, throughout the

paper, we assume the R*-tree [4] as the underlying index,

but our discussion generalizes to other data partitioning

access methods (such as X-trees [5], A-trees [27], etc.). Fig. 1

shows a data set (with data points a, b, c, ...) and the

corresponding R*-tree, which clusters the objects by their

spatial proximity. Each nonleaf entry of the tree is

associated with a minimum bounding rectangle (MBR) that

encloses all the points in its subtree.
Consider, for example, the nearest neighbor query at

coordinate (5, 5), whose distances to the data points and

MBRs2 are illustrated using the numbers associated with

the leaf and nonleaf entries, respectively (these numbers

are for illustrative purpose only and are not actually stored

in the tree). An optimal kNN algorithm only visits those

nodes whose MBRs intersect the search region or vicinity

circle3 �ðq;DkÞ that centers at q with radius Dk equal to the

distance between the query point and the kth nearest

neighbor [23]. In the example of Fig. 1, k ¼ 1, D1 equals the

distance between q and h, and the vicinity circle is shown

in gray.
An important variation of kNN search is called distance

browsing (or distance scanning) [18], where the number k of

neighbors to be retrieved is not known in advance.

Consider, for example, a query that asks for the nearest

city of New York with population more than one million. A

distance browsing algorithm first finds the nearest city c1 of

New York and examines whether the population of c1 is

more than one million. If the answer is negative, the

algorithm retrieves the next nearest city c2 and repeats this

process until a city satisfying the population condition is

found. The implication of such incremental processing is that,

having obtained the k nearest neighbors, the ðkþ 1Þth
neighbor should be computed with little overhead.

Existing nearest neighbor algorithms prune the search

space following the branch-and-bound paradigm. The

depth-first (DF) algorithm (see [24] for details) starts from

the root and follows recursively the entry closest to the

query point. It is, however, suboptimal and cannot be

applied for incremental nearest neighbor retrieval. The best-

first (BF) algorithm of [18] achieves optimal performance by

keeping a heap containing the entries of the nodes visited so

far. The contents of the heap for the example of Fig. 1 are

shown in Fig. 2. Initially, the heap contains the entries of the

root sorted according to the distances of their MBRs to the

query point. At each iteration, the algorithm removes (from

the heap) the entry with the smallest distance and examines

its subtree. In Fig. 1, E1 is visited first, and the entries of its

child node (E4, E5, E6) are inserted into the heap together

with their distances. The next entry accessed is E2 (its

distance is currently the minimum in the heap), followed by

E8, where the actual result (h) is found and the algorithm

terminates. The extension to k nearest neighbors is

straightforward; the only difference is that the algorithm

terminates after having removed k data points from the

heap. BF is incremental, namely, the number of neighbors to

be returned does not need to be specified; hence, it can be

deployed for distance browsing.

2.2 Existing Performance Studies and Their Defects

Analysis of kNN queries aims at predicting: 1) the nearest
distance Dk (the distance between the query and the
kth nearest neighbor), 2) the query cost in terms of the
number of index nodes accessed or, equivalently, the
number of nodes whose MBRs intersect the search region
�ðq;DkÞ. The earliest models for nearest neighbor search
[13], [10] consider only single ðk ¼ 1Þ nearest neighbor
retrieval assuming the L1 metric and N ! 1, where N is
the total number of points in the data set. Sproull [25]

1170 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 10, OCTOBER 2004

Fig. 1. Example R*-tree and nearest neighbor query.

Fig. 2. Heap contents during BF.

2. The distance between a point p and an MBR r equals the minimum of
the distances between p and any point in r (see [24] for a formal definition
and details on the computation).

3. For dimensionality d � 3, a vicinity circle becomes a sphere or a
hypercircle. In this paper, we use these terms interchangeably.

presents a formula suggesting that, in practice, N must be
exponential with the dimensionality for the models of [13],
[10] to be accurate. When this condition is not satisfied,
these models yield considerable errors due to the so-called
boundary effect, which occurs if the distance from the query
point to its kth nearest neighbor is comparable to the axis
length of the data space. The first work [1] that takes
boundary effects into account also assumes the L1 metric.
Papadopoulos and Manolopoulos [23] provide lower and
upper bounds of the nearest neighbor query performance
on R-trees for the L2 norm. Boehm [3] points out that these
bounds become excessively loose when the dimensionality
or k increases and, as a result, they are of limited use in
practice.

The most accurate model is presented by Berchtold et al.
[6] and Boehm [3]. To derive the average distance D1 from a
query point q to its nearest neighbor, they utilize the fact
that, for uniform data and query distributions in the unit
data space U , the probability P ðq;� rÞ that a point falls in
the vicinity circle �ðq; rÞ corresponds to its volume
V olð�ðq; rÞÞ. Part of �ðq; rÞ, however, may fall outside the
data space and should not be taken into account in
computing P ðq;� rÞ. To capture this boundary effect,
P ðq;� rÞ should be calculated as the expected volume of
the intersection of �ðq; rÞ and U (i.e., averaged over all
possible locations of q):

P ðq;� rÞ ¼ E½V olð�ðq; rÞ \ UÞ� ¼
Z
p2U

V olð�ðp; rÞ \ UÞdp:

ð1Þ

Based on P ðq;� rÞ, the probability P ðD1 � rÞ that the
nearest distance is smaller than r (i.e., there is at least one
point in �ðq; rÞ) is represented as:

P ðD1 � rÞ ¼ 1� ð1� P ðq;� rÞÞN: ð2Þ

The density function pðD1 ¼ rÞ of P ðD1 � rÞ is the
derivative of P ðq;� rÞ:

pðD1 ¼ rÞ ¼ dP ðD1 � rÞ
dr

¼ dP ðq;� rÞ
dr

�N � ð1� P ðq;� rÞÞN�1:

ð3Þ

Hence, the expected value of D1 is:

EðD1Þ ¼
Z 1

0

r � pðD1 ¼ rÞdr

¼ N �
Z 1

0

r
dP ðq;� rÞ

dr
� ð1� P ðq;� rÞÞN�1dr:

ð4Þ

The evaluation of the above formula, however, is
prohibitively expensive, which renders the model inap-
plicable for query optimization. Specifically, as shown in
[6] and [31], the integral in (1) must be computed using
the Monte-Carlo method, which determines the volume of
an object with complex shape by 1) generating a large
number of points, 2) counting the number of points inside
the object’s boundary, and 3) dividing this number by the
total number of points. Based on this, (4) is solved
numerically using the trapezoidal rule as follows: First,
the integral range ½0;1Þ is divided into several partitions,
where the integral function is approximated by a

trapezoid in each partition. To compute the area of each
trapezoid, values of dP ðq;� rÞ=dr and P ðq;� rÞ at the end
points of the corresponding partition must be evaluated
(by the Monte-Carlo method). Finally, the sum of the
areas of all trapezoids is taken as the value of the integral.

To remedy the high cost of Monte-Carlo, Boehm [3]
suggests precomputing P ðq;� rÞ at discrete values of r in
its range ½0; d1=2� (note that d1=2 is the largest distance
between two points in the d-dimensional space). During
model evaluation, P ðq;� rÞ is rounded to the value of the
closest precomputed r and, as a result, the expensive
Monte-Carlo step can be avoided (it is pushed to the
compilation time). The problem of this approach is that
the number of precomputed values must be large in
order to guarantee satisfactory accuracy.4 This implies
that the computed values may need to be stored on the
disk in practice, in which case, evaluating the model
involves disk accesses, thus compromising the evaluation
cost. Extending the above analysis to Dk (i.e., the distance
from the query point to the kth nearest neighbor) is
relatively easy [3], but the resulting formula (5) suffers
from similar evaluation inefficiency. Another problem of
(4) and (5) is that they involve unsolved integrals and are,
hence, difficult to deduce other properties. For example,
given a query point q and distance D, it is not possible to
derive how many points fall in �ðq;DÞ (i.e., this requires
solving k from (5) by setting EðDkÞ ¼ D).

EðDkÞ¼
Z 1

0

r
d 1�

Pk�1
0

N
i

� �
P ðq;� rÞið1� P ðq;� rÞÞN�i

h i
dr

dr:

ð5Þ

After deciding Dk, the second step estimates the number of
node accesses, i.e., the number of nodes whose MBRs
intersect �ðq;DkÞ. An MBRM intersects �ðq;DkÞ if and only
if its Minkowski region �ðM;DkÞ, which extends M with
distance Dk on all directions (see Fig. 3 for a 2D example),
contains q. In the unit data space U , the intersection
probability equals the volume of V olð�ðM;DkÞ \ UÞ,
namely, the intersection of �ðM;DkÞ and U :

V olð�ðM;DkÞ \ U

¼
Z
p2U

1 if MINDIST ðM;pÞ � Dk

0 otherwise

�� �
dp;

ð6Þ

where MINDIST ðM;pÞ denotes the minimum distance
between an MBR M and a point p. The expected number of

TAO ET AL.: AN EFFICIENT COST MODEL FOR OPTIMIZATION OF NEAREST NEIGHBOR SEARCH IN LOW AND MEDIUM DIMENSIONAL... 1171

Fig. 3. The Minkowski region of M contains q.

4. In the experiments of [3], the precomputed information for cardinality
N¼100K amounts to several megabytes. The size is even larger for higherN .

node accesses can be derived as the sum of V olð�ðM;D1Þ \
UÞ for all nodes. As with (4) and (5), solving (6) also requires

expensive numerical evaluation and the knowledge of the

node extents. Berchtold et al. [6] and Boehm [3] focus only on

high dimensional spaces ðd > 10Þwhere 1) nodes can split at

most once on each dimension so that node extents can be

either 1=2 (for dimensions that have been split) or 1 (for the

rest), and 2) the extent of a node on each dimension touches

one end of the data space boundaries. These two conditions

permit the use of precomputation to accelerate the evalua-

tion, as described in [3]. However, these properties are not

satisfied if the dimensionality is below 10 (as explained in the

next section). Extending the precomputationmethod accord-

ingly is nontrivial and not considered in [3].
The above analysis is valid only for uniform data

distribution. Boehm [3] and other authors [22], [19] extend

the solution to nonuniform data by computing the fractal

dimension of the input data set. The problem of these

techniques is that 1) they only deal with biased queries (i.e.,

the query distribution must follow that of the data) and,

even in this case, 2) they can provide only a single estimate,

which equals the average cost (of all queries), but will be

used for the optimization of any individual query. As

mentioned earlier, for nonuniform data sets, queries at

various locations usually have different characteristics (e.g.,

they lead to different Dk) and, thus, applying the

approaches of [3], [22], [19] may (very likely) result in

inefficient execution plans.
Among others, Ciaccia et al. [12] perform an analysis

similar to [6], but in the metric space. Further, Berchtold et

al. [7] present a closed formula that, however, assumes that

the query point lies on the diagonal of the data space. It also

applies only to high-dimensional space, making the same

assumptions as [3] about the node extents. It is evident from

the above discussion that currently there does not exist any

cost model suitable for low and medium dimensionalities

ð� 10Þ. In the next section, we present closed formulae that

overcome these problems using novel approximation
techniques.

3 THE PROPOSED MODEL

Traditional analysis on kNN search focuses primarily on
small values of k ð� 10Þ, while, in many applications, it is
necessary to return a larger number of neighbors. For
example, in distance browsing, it is common that a large
number of objects are examined (in ascending order of their
distances to the query point) before one that satisfies a
user’s requirement is found. In this case, boundary effects
cannot be ignored in estimating the query cost, even in low
dimensional spaces, due to the fact that the nearest distance
Dk from the query point q to its kth nearest neighbor is
comparable to the extent of the data space.

The main difficulty in solving integrals (1) and (4), which
capture boundary effects, lies in the computation of the
intersection between a nonrectangular region (specifically, a
circle in (1) or the Minkowski region in (3)) and the data
space. Our analysis approximates a nonrectangular region
using a rectangle with the same volume. As with the
previous models, we follow a two-step method: Section 3.1
estimates the nearest distance Dk, and Section 3.2 estimates
the number of nodes whose MBRs intersect the vicinity
circle �ðq;DkÞ, focusing on uniform data sets. In Section 3.3,
we extend our approach to nonuniform data sets with the
aid of histograms. Table 1 lists the symbols that will be used
frequently in our discussion.

3.1 Estimating the Nearest Distance Dk

Dk satisfies the property that the vicinity circle �ðq;DkÞ is
expected to contain k (out of N) points. Equivalently, for
uniform data sets, this means that the expected volume
E½V olð�ðq;DkÞ \ UÞ� (recall that part of the vicinity circle
�ðq;DkÞ may fall outside the data space U and should not
be considered) equals k=N . Solving Dk from this equation,
as explained in Section 2, requires expensive numerical
evaluation. Therefore, we propose to replace �ðq; rÞ with a

1172 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 10, OCTOBER 2004

TABLE 1
Primary Notation Used throughout the Paper

vicinity (hyper-) rectangle RV ðq; LrÞwhose centroid is at q and

whose extent Lr along each dimension is such that the

volume of RV ðq; LrÞ equals that of �ðq; rÞ. The rationale for

this choice is that, for uniform distribution, volume is the

primary factor in deciding, probabilistically, the number of

points in a geometric shape. Specifically, the volumes of

�ðq; rÞ and RV ðq; LrÞ are computed as:

V olð�ðq; rÞÞ ¼
ffiffiffiffiffi
�d

p

�ðd=2þ 1Þ r
d

V olðRV ðq; LrÞÞ ¼ Lr
d;

where �ðxþ 1Þ ¼ x � �ðxÞ;�ð1Þ ¼ 1;�ð1=2Þ� ¼ 1=2�:

ð7Þ

Hence,we defineLr as (by solving VolðRVðq;LrÞÞ¼Volð�ðq;rÞÞÞ:

Lr ¼ CV � r; where CV is the vicinity constant :

CV ¼
ffiffiffi
�

p

½�ðd=2þ 1Þ�
1
d

:
ð8Þ

Using Lr, E½V olð�ðq; rÞ \ UÞ� can be rewritten as (note the

second equality is approximate):

E½V olð�ðq; rÞ \ UÞ�

¼
Z
p2U

V olð�ðp; rÞ \ UÞdp

�
Z
p2U

V olðRVðp; LrÞ \ UÞdp:

ð9Þ

Unlike (1) (which can only be solved numerically), the

integral in (9) can be solved as (see the Appendix):

E½V olð�ðq; rÞ \ UÞ�

� Lr � L2
r

4

� �d
¼ Cv � r�

C2
V �r2
4

� �d
; Lr < 2

1; otherwise;

8<
: ð10Þ

where CV is the vicinity constant defined in (8). As

mentioned earlier, Dk can be obtained by solving r from

E½V olð�ðq; rÞ \ UÞ� ¼ k=N , resulting in:

DK � 2

CV
1�

ffi
1� k

N

� �1
d

s2
4

3
5: ð11Þ

As demonstrated in the experiments, the above formula

gives a fairly accurate estimation for a wide range of

dimensionalities. To understand this, consider Fig. 4a,

which shows a 2D circle and its vicinity rectangle. The part
of the circle not covered by the rectangle is partitioned into
four pieces, which we call residue arcs. Similarly, the
rectangle also has four residue corners that fall out of the
circle. It is important to note that each residue arc and
corner have the same area (recall that the area of the circle is
the same as that of the rectangle).

Obviously, replacing circles with their vicinity rectangles
incurs no error (in computing (9)) if the circle (e.g., C2 in
Fig. 4b, withR2 as its vicinity rectangle) is entirely contained
in the data space U (i.e., V olðC2 \ UÞ ¼ V olðR2 \ UÞ). For
circles (e.g., C1, with vicinity rectangle R1) intersecting the
boundaries of U , the error is usually limited since the area of
the residue arcs inside U cancels (to a certain degree) that of
the residue corners inside U (i.e., V olðC2\UÞ�V olðR2 \ UÞ).
The concepts of residue arcs/corners also extend to higher
dimensionalities d � 3, but the ”canceling effects” become
weaker as d grows, rendering (11) increasingly erroneous.
As shown in Section 5, however, for d � 10 this equation is
accurate enough for query optimization.

3.2 Estimating the Number of Node Accesses

The performance (node accesses) of general queries on
hierarchical structures can be described as:

NA ¼
Xh�1

i¼0

ðni � PNAiÞ; ð12Þ

where h refers to the height of the tree (leaf nodes are at
level 0), PNAi is the probability that a node at level i is
accessed, and ni is the total number of nodes at level i (i.e.,
PNAi � ni is the expected number of node accesses at the
ith level). In particular, h and ni can be estimated as h ¼
1þ dlogfðN=fÞe and ni ¼ N=fiþ1, respectively, where N is
the cardinality of the data set, b the maximum capacity of a
node, and f the node fanout (the average number of entries
in a node, typically f ¼ 69% � b [29]).

In order to estimate PNAi for kNN, we need the average
extent si along each dimension for a node at level i. If 2d >
N=f ¼ n0 (high dimensionality), each leaf node can split
only in d0 ¼ dlog2ðn0Þe dimensions. For these d0 dimensions,
the extents of a leaf node are 1/2 (i.e., each split is
performed at the middle of the dimension), while, for the
remaining ðd� d0Þ dimensions, the extents are 1. If 2d � n0

(low dimensionality), a leaf node splits (possibly more than
once) on all dimensions. Further, for uniform data, the data
characteristics are the same throughout the data space and,
hence [3], 1) all nodes at the same level have similar extents,

TAO ET AL.: AN EFFICIENT COST MODEL FOR OPTIMIZATION OF NEAREST NEIGHBOR SEARCH IN LOW AND MEDIUM DIMENSIONAL... 1173

Fig. 4. Approximating vicinity circles with rectangles. (a) Residue arcs and corners. (b) Vicinity circles totally/partially in the data space.

and 2) each node has identical extent on each dimension.
Motivated by this, Boehm [3] provides the following
estimation for si:

Si ¼ 1� 1

f

� �
min

fiþ1

N
; 1

� �� �1=d

ð0 � i � h� 1Þ: ð13Þ

Next, we discuss the probability that a MBR M intersects
�ðq;DkÞ or, equivalently, the Minkowski region �ðM;DkÞ of
M (review Fig. 3) contains the query point q. Recall that,
according to [6], this probability (6) requires expensive
numerical evaluation. To avoid this, we approximate
�ðM;DkÞ with a (hyper) rectangle RMINKðM;LDÞ 1) whose
centroid is the same as that of M and 2) whose extent LD on
each dimension is such that V olðRMINKðM;LDÞÞ equals
V olð�ðM;DkÞÞ. Specifically, the volume of �ðM;DkÞ is
calculated as follows [6]:

V olð�ðM;DkÞÞ ¼
Xd
i¼0

d

i

� �
� sMd�i �

ffiffiffiffiffi
�i

p

�ði=2þ 1ÞD
i
k

 !
; ð14Þ

where �ði=2þ 1Þ is computed as in (7) and sM refers to the
extent of M on each dimension. Thus, LD can be obtained
by solving LD

d ¼ V olð�ðM;DkÞÞ, which leads to:

LD ¼
Xd
i¼0

d

i

� �
� sMd�i �

ffiffiffiffiffi
�i

p

�ði=2þ 1ÞD
i
k

 !" #1
d

: ð15Þ

Fig. 5a illustrates RMINKðM;LDÞ together with the corre-
sponding �ðM;DkÞ. Then, the probability PNAi that a
node at level i is visited during a kNN query, equals
E½V olð�ðM;DkÞ \ UÞ�, i.e., the expected volume between
the intersection of �ðM;DkÞ and the data space U .
Replacing �ðM;DkÞ with RMINKðM;LDÞ, we represent
PNAi as:

PNAi ¼ E½V olð�ðM;DkÞ \ UÞ�

�
Z
U�Amar

V olðRMINKðM;LDÞ \ UÞdMc;
ð16Þ

whereMc denotes the centroid ofM, and Amar is the margin
area close to the boundary of U that cannot contain the
centroid of any MBR M with extents sM along each
dimension (Fig. 5b shows an example for the 2D case),
taking into account the fact that each MBR must lie
completely inside the data space. The above integral is
solved as (see the Appendix):

PNAi �
Li�ðLi=2þsi=2

2

1�si

� �d
if Li þ si < 2

1 otherwise

(
ð0 � i � h� 1Þ;

ð17Þ

where Li is obtained from (15) by substituting sM with si.
As evaluated in the experiments, (17), albeit derived from
approximation, is accurate for dimensionalities d � 10 due
to reasons similar to those discussed in Section 3.1 (on the
approximation error of vicinity rectangle). Specifically, if
the original Minkowski region �ðM;DkÞ completely falls in
the data space, our approximation incurs no error (in the
computation of (16)) since

V olð�ðM;DkÞÞ ¼ V olðRMINKðM;LDÞÞ;

otherwise, the error is usually limited due to the
canceling effects (note that the concepts of residue arcs/
corners introduced in Section 3.1 can be formulated
accordingly here).

Combining (7) to (17), we summarize the number of
node accesses for kNN queries as follows:

NAðkÞ ¼
XlogfNf
i¼0

N

fiþ1
� Li � ðLi=2þ si=2Þ2

1� si

 !d
2
4

3
5; ð18Þ

where f is the average node fanout, and si the extent of a
level-i node given by (13).

3.3 Dealing with Nonuniform Data

The above analysis assumes that the data distribution is
uniform. In this section, we extend our results to arbitrary
distribution with the aid of histograms. Our technique is the
first in the literature to predict the costs of individual
queries (see Section 2 for a discussion of the existing
analysis). The rationale behind our approach is that data
within a sufficiently small region can be regarded as
uniform, even though the global distribution may deviate
significantly. Thus, the goal is to divide the space into
smaller regions and apply the uniform model locally (i.e.,
within each region). For simplicity, we describe the idea
using a regular histogram that partitions the d-dimensional
space into Hd cells of equal size (the histogram resolution H
refers to the number of partitions along each dimension),
but our method applies to any histogram with disjoint
partitions (such as the Minskew [2]). For each cell c, we
maintain the number nc of data points in it.

Fig. 6 shows a 2D example for a nearest neighbor query
q1 in cell c22 (the subscript indicates the second row and

1174 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 10, OCTOBER 2004

Fig. 5. Approximation of Minkowski region and area that may contain

MBR centroids. (a) Rectangular approximation of Minkowski region.

(b) The integral area for an MBR.
Fig. 6. Histogram example.

column) that contains n22 ¼ 9 points. Since the nearest
neighbor of q1 and its vicinity circle fall completely in c22, in
order to estimate the cost we only need to focus on those
nodes whose MBRs are in c22. To apply the uniform model
directly, we assume that all cells contain the same number
of points as c22 and estimate the query cost with (18) by
simply replacing N with n22 �H2.

The problem is more complex when the vicinity circle
does not fall completely in a cell, which happens when 1) the
query needs to retrieve a large number of nearest neighbors
(e.g., find 10 nearest neighbors for q1), or 2) the query falls in
a sparse cell (e.g., the vicinity circle of query q2 intersects c32
and c33). In this case, we find all the cells intersecting the
vicinity circle and use the average density of these cells to
synthesize the corresponding uniform data set (after which
we directly apply (18)). In Fig. 6, for example, since there are
in total three points in c32 and c33 (i.e., average density
1.5 points per cell), the equivalent uniform data set has
1:5� 9 � 14 points. Estimating the size of the vicinity circle,
however, is not trivial due to the changes of data density in
adjacent cells. To see this, observe that the intersection of a
cell with a circle has irregular shape (especially in high-
dimensional space), whose computation is difficult and
expensive. In the sequel, we discuss a solution that
addresses these problems with approximation.

For a kNN query q, we estimate Dk by enlarging the
search region progressively until the expected number of
points in it equals k. Let RVðq; LrÞ be the vicinity rectangle
centered at q with extent Lr along each dimension. The
algorithm increases Lr until it is expected to contain
k points, after which Dk can be obtained by dividing Lr

with the vicinity constant CV (as shown in (8), Lr¼ CV �Dk).
Specifically, if c is the cell that contains q, the algorithm
initializes a heap HP that contains the distances from q to
the boundaries of c (for d-dimensional space, the heap
contains 2d values). Consider, for example, Fig. 7a, where q
falls in cell c22. The content of HP is (in ascending order)
flx�; ly�; lxþ; lyþg (x� means negative direction of the
x-axis, etc). At each iteration, the algorithm removes the
minimum value l from HP and enlarges the vicinity
rectangle to L ¼ 2l. The shaded region in Fig. 7a shows
the first vicinity rectangle R obtained from lx�. In order to
estimate the number of points falling in R, assume that c22
contains n22 points; then, the expected number En of points
in R is n22 � areaðRÞ=areaðc22Þ, where the areas of R and c22
are L2 and 1=H2, respectively. If k < En, the vicinity
rectangle is too large (it contains more than k points), in

which case, Lr is set to L?ðk=EnÞ1=d so that the resulting
rectangle (with length Lr) contains k points and the
algorithm terminates.

If k > En, the vicinity rectangle needs to be enlarged
further. The algorithm will modify lx� to the distance that
q must travel (along direction x�) in order to reach the
next cell boundary (Fig. 7b) and reinsert it into HP . Before
starting the second iteration, the current L and En are
preserved in Lold and Enold, respectively. Similarly to the
previous pass, we remove the minimum value l in HP

(i.e., ly�), enlarge the vicinity rectangle R to L ¼ 2l (the
shaded area in Fig. 7b), and compute the expected
number En of data points in R. The vicinity rectangle R

now spans two cells, c21 and c22 (with n21 and n22 points,
respectively); thus, En must be computed according to the
properties of both cells:

En ¼ n21 �
areaðR \ c21Þ

H�d
þ n22 �

areaðr \ c22Þ
H�d

: ð19Þ

If the vicinity rectangle contains more than the required
number of points ðk < EnÞ, the actual size Lr of the
vicinity rectangle is smaller than L (i.e., the current size
of R) but larger than Lold (the computed size during the
previous iteration). To estimate Lr, we interpolate L and
Lold based on:

Lr
d � Lold

d

k�Enold
¼ Ld � Lr

d

En� k
: ð20Þ

The reasoning of the above equation is that the number of
points falling in a rectangle is linear to its volume. Solving
the equation, we have:

Lr ¼
Lold

dðk� EnÞ � Ldðk�EnoldÞ
Enold � En

� �1=d

: ð21Þ

If k is still larger than En, the algorithm will perform
another iteration. Fig. 7c shows the updated ly� and the new
vicinity rectangle R, which now intersects six cells. Note
that, in general, the set of cells whose extents intersect R can
be found efficiently. Since the side length of each cell is 1=H,
we can determine (by applying a simple hash function) the
cells that contain the corner points of R. Then, those cells
between the corner cells are the ones intersecting R. The
algorithm will always terminate because the vicinity
rectangle eventually covers the entire data space, at which
point the maximum number of neighbors are returned.

TAO ET AL.: AN EFFICIENT COST MODEL FOR OPTIMIZATION OF NEAREST NEIGHBOR SEARCH IN LOW AND MEDIUM DIMENSIONAL... 1175

Fig. 7. Estimating Lr. (a) The first iteration. (b) The second iteration. (c) The third iteration.

Fig. 8 summarizes the pseudocode for general d-dimen-
sional spaces. It is worth mentioning that the application of
this approach directly to circular regions would lead to
expensive evaluation time due to the high cost of comput-
ing the intersection between a circle and a rectangle.

As mentioned earlier, after obtaining Dk, we apply the
uniform cost model to estimate the number of node
accesses. Specifically, assuming that the average density of
the cells intersecting the vicinity rectangle is D (points per
cell), then the conceived data set consists of D �H2 points.
Hence, (18) produces the estimates for the nonuniform data
set by setting N to D �H2. Note that, by doing so, we make
an implicit assumption that the data density in the search
region does not change significantly. Fortunately, this is the
case for many real-world distributions (similar ideas have
been deployed in spatial selectivity estimation [29], [2]).

If the histogram resolution H is fixed, the number of cells
(and, hence, the histogram size) increases exponentially
with the dimensionality. In our implementation, we
gradually decrease H as the dimensionality increases (see
the experimental section for details), but, in practice, the
histogram can be compressed. An observation is that,
starting from the medium dimensionality (e.g., 5), many
cells contain no data points and, thus, are associated with
the same number ”0.” In this case, adjacent empty cells can
be grouped together and a single ”0” is stored for the region
they represent. Alternatively, [21] and [20] propose more
sophisticated compression methods based on wavelet and
DCT transformations, respectively; their methods can be
directly applied in our case.

4 QUERY OPTIMIZATION

Equation (18) is a closed formula that estimates the
performance of kNN queries on data partitioning access
methods. As we will demonstrate experimentally, it is

accurate and efficient in terms of computation cost; thus, it
is directly applicable to query optimization. In this section,
we present three important optimization heuristics that are
made possible by the model. It suffices to discuss uniform
distribution because, as shown earlier, the result can be
extended to nonuniform data using histograms.

4.1 Sequential Scan versus Best-First Algorithm

The performance of kNN search is affected by the
dimensionality d and the number k of neighbors retrieved.
It has been shown in [31] that, for single nearest neighbor
retrieval ðk ¼ 1Þ, sequential scan is more efficient than the
best-first (BF) algorithm (see Section 2) after d exceeds a
certain threshold. In the sequel, we analyze, for a fixed
dimensionality d, the value of KS such that sequential scan
outperforms BF for kNN queries with k > KS (even for low
and medium dimensionality).

We consider that each node in the index corresponds to a
single disk page (the general case, where each node
occupies multiple pages, can be reduced to this case by
enlarging the node size accordingly). To derive KS , we
compare the cost of kNN queries as predicted in (18) with
that of sequential scan. In practice, a query optimizer will
choose an alternative plan only if the expected number of
pages visited by this plan is below a percentage � (e.g.,
10 percent) of that of a sequential scan (because sequential
accesses are significantly cheaper than random ones). For
simplicity, we consider that 1) the cost of BF, estimated by
(14), includes only the leaf node accesses (i.e., i ¼ 0 in the
summation) since they constitute the major part of the total
cost [3], and 2) sequential scan visits as many disk pages as
the number of leaf nodes in the index (in practice, the cost
may be higher if each point in the data file contains more
information than its leaf entry in the index). Then,
sequential scan is expected to outperform BF when the
following condition holds:

1176 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 10, OCTOBER 2004

Fig. 8. Algorithm for computing Dk.

N

f
� L0 � ðL0=2þ s0=2Þ2

1� s0

 !d

� N

f
� �: ð22Þ

Recall that L0, computed using (15) (replacing sM with s0,

i.e., the leaf node extent estimated as in (13)), depends onDk

(i.e., the distance from the query point to its k-nearest

neighbor) which in turn is a function of k. KS is the smallest

value of k that makes the two sides of the inequality equal.

The resulting equation can be written as:

� L0
2

4
þ 1� s0

2

� �
L0 �

s0
2

4
þ �

1
dð1� s0Þ

� �
¼ 0: ð23Þ

If L0 is the root that satisfies the above equation, then KS is

derived as (from (11) and (15)):

Ks ¼ N � 1� 1� Cv

2CMINK
ðL0 � s0Þ

� �2
" #d

: ð24Þ

4.2 Optimizing the Node Size

An index node can contain a number B of consecutive disk

pages. The cost of each node access can be modeled as

ðTSEEK þ TIO � BÞ, where TSEEK is the seek time for a disk

operation, and TIO is the time for transmitting the data of a

single page. In practice, TSEEK is significantly larger than

TIO (typically, TSEEK ¼ 10ms and TIO ¼ 1ms per 1k bytes).

Let NAðB; kÞ be the number of node accesses for a kNN

query when each index node occupies B pages. Thus, the

total query cost TTOTAL is ðTSEEK þ TIO �BÞ �NAðB; kÞ. Note

that a higher value for B decreases the number of nodes in

the index (leading to larger fanout f in (18)) and, hence,

reduces NAðB; kÞ. On the other hand, a higher B may

increase the data transfer time TIO �B �NAðB; kÞ (particu-

larly, if B is large, then the index structure degenerates into

a sequential file). This fact has been utilized in [9] to

dynamically adjust the index node size and optimize the

performance under the L1 distance metric. Instead, in the

sequel, we aim at quantifying, for the Euclidean distance

metric, the optimal value of B that minimizes the total cost

of retrieving k nearest neighbors.5 For this purpose, we

rewrite the total cost TTOTAL as (only counting the leaf

accesses):

TTOTALðBÞ ¼ ðTSEEK þ TIO �BÞ � N

fðBÞ

� LðBÞ � ðLðBÞ=2þ sðBÞ=2Þ2

1� sðBÞ

 !2

;

ð25Þ

where LðBÞ, fðBÞ, and sðBÞ denote the values of L, f , and s

as functions of B. Specifically, fðBÞ ¼ 0:69B �Bsize=Osize

(Bsize and Osize denote the sizes of a disk page and an object

entry, respectively), and sðBÞ and LðBÞ are obtained from

(13) and (15). Optimizing B (i.e., finding the minimum

TTOTAL) requires solving the derivative:

dTTOTALðBÞ
dB

¼ 0: ð26Þ

Fig. 9 demonstrates the solutions of (26) by plotting the
optimal B as a function of k and d (where the maximum B is
set to 100) for a data set of 100K points (disk page size set to
1k bytes). For all dimensionalities, the optimal node size
increases with k. This is because a kNN query with larger k
needs to access more pages with data points around the
query point. Therefore, larger B reduces the node visits,
which also leads to fewer random accesses. Furthermore,
notice that the growth of B is faster as the dimensionality
increases. In particular, for d ¼ 10 and k > 500, the optimal
B is larger than 100 blocks, i.e., the index structure
degenerates into a sequential file.

4.3 Optimizing Incremental kNN Queries

For incremental kNN queries (distance browsing) the
number k of neighbors to be retrieved is unknown in
advance. In the worst case, k may equal the cardinality N of
the data file, which is also the case for distance sorting (i.e.,
output all data points ranked according to their distance
from a query point). Recall that, in order to answer such
queries, the BF algorithm (reviewed in Section 2) must store
in a heap all entries of the nodes visited so far. As noted in
[7], if the final number of neighbors retrieved is large, the
size of the heap may exceed the main memory and part of it
needs to be migrated to the disk. This causes disk thrashing
(i.e., frequent information exchange between the main
memory and disk) and compromises the query perfor-
mance significantly.6 To explain this qualitatively, we
estimate the heap size when k neighbors have been
reported, by combining the following facts: 1) On average,
f (i.e., the node fanout) entries are inserted to the heap
when a node is visited (hence, if NAðkÞ nodes are visited to
find k neighbors, f �NAðkÞ entries are inserted), 2) a leaf
entry (i.e., a point) is removed from the heap when the point
is reported, and 3) a nonleaf entry is removed when its node
is visited. Therefore, the heap contains f �NAðkÞ � k�
ðNAðkÞ � 1Þ ¼ ðf � 1Þ �NAðkÞ � kþ 1 entries after reporting
k nearest neighbors. Thus, the heap size may keep growing

TAO ET AL.: AN EFFICIENT COST MODEL FOR OPTIMIZATION OF NEAREST NEIGHBOR SEARCH IN LOW AND MEDIUM DIMENSIONAL... 1177

5. Berchtold et al. [7] also evaluate the optimal index node size in terms
of the number of disk pages. Their discussion, however, is for single nearest
neighbor queries in high-dimensional spaces. Further, they assume the
query points lie at the diagonal of the universe. Our analysis does not have
these constraints.

6. The problem is not as severe for nonincremental kNN because the
distance from the query point to the currently found kth nearest neighbor
can be used to reduce the heap size (see [18] for details).

Fig. 9. Optimal node sizes (disk page = 1k bytes).

until most of the nodes in the index have been visited (this
is experimentally confirmed in the next section).

Based on our model, we present a multipass distance
browsing algorithm (using the query example ”find the
10 nearest cities of New York with populations larger than
one million”). Given the available memory size M, the
algorithm first estimates the largest number k1 of neighbors
to be found such that the expected size of the heap will not
exceed M. Then, it performs the first pass, i.e., an ordinary
k1-NN query using BF. If 10 cities with satisfactory
populations are found during this pass (possibly before k1
cities are examined), the algorithm terminates. Otherwise, a
second pass is executed to retrieve the next k2 neighbors,
where k2 is an estimated number such that the heap of the
second pass will not exceed the memory size M. This
process is repeated until 10 cities satisfying the population
condition are encountered. The second and subsequent
passes are performed in the same way as the first pass
except that they include an additional pruning heuristic: Let
the current pass be the ith one ði � 2Þ; then, if the maximum
(actual) distance of a nonleaf (leaf) entry is smaller than the
distance of the farthest neighbor found in the ði� 1Þth pass,
this entry is immediately discarded (it has been considered
by a previous pass). Further, our BF algorithm has the
following difference from the one introduced in Section 2:
The leaf and nonleaf entries are stored in separate heaps,
called the nonleaf heap and leaf heap (i.e., with size ki at
pass i), respectively.

Now, it remains to estimate ki subject to M, which is
measured in terms of the number of heap entries. If ENON is
the number of nonleaf entries that would simultaneously
reside in the nonleaf heap, then ki should satisfy the property:
ENON þ ki � M. Next, we estimate an upper bound for
ENON . Let NonAi be the number of nonleaf nodes accessed
during the ith pass; then, ENON � f �NonAi �NonAi, where
f �NonAiðNonAiÞ is the total number of nonleaf entries
inserted into (removed from) the heap in the ith pass.
Observe that in the worst case, the ith pass would have to
access Ki neighbors, where Ki ¼

P
m¼1�i km. (i.e., all neigh-

bors reported in previous passes must be visited). Hence,
NonAi � NANONðKiÞ, where NANONðKiÞ is the number of
nonleaf node accesses in reporting Ki neighbors, which is
obtained from (18) as follows (note the summation below
starts from level 1):

NANONðKiÞ ¼
XlogfNf
i¼1

N

fiþ1
� Li � ðLi=2þ si=2Þ2

1� si

 !d
2
4

3
5: ð27Þ

Therefore, ki can be obtained by solving the following
equation:

f �NANONðKiÞ �NANONðKiÞ þ ki ¼ M: ð28Þ

5 EXPERIMENTAL EVALUATION

This section experimentally evaluates the proposed model
and optimization techniques, using the R*-tree [4] as the
underlying spatial access method. We deploy 1) uniform
data sets that contain 100k points in 2 to 10-dimensional
data spaces (where each axis is normalized to have unit
length) and 2) real data sets Color and Texture (both

available at the UCI KDD archive [30]), containing 68k 4D
and 8D points, respectively, that describe features in the
color and texture histograms of images in the Corel
collection. Unless otherwise stated, the node size equals
the disk page size (set to 1k bytes) such that node capacities
(i.e., the maximum number of entries in a node) range from
10 (for 10 dimensions) to 48 (for two dimensions). We select
a relatively small page size to simulate practical situations
where the database is expected to be considerably larger.
All the experiments are performed using a Pentium III
1GHz CPU with 256 mega bytes memory. Section 5.1 first
examines the precision of our formulae for estimating the
nearest distance (i.e., the distance from a query point to its
kth nearest neighbor) and query cost. Section 5.2 demon-
strates the efficiency of the query optimization methods.

5.1 Evaluation of Nearest Distance and
Query Cost Prediction

For all the experiments in this section, we use workloads

each containing 100 query points that uniformly distribute

in the data space and retrieve the same number k of

neighbors. Starting from uniform data, the first experiment

examines the accuracy of estimating the nearest distanceDk.

For this purpose, we measure the average, minimum, and

maximum Dk of all the queries in a workload and compare

them with the corresponding estimated value (since we

apply (11) directly, without histograms, there is a single

estimation for all queries in the same workload). Fig. 10a

plots the nearest distance as a function of dimensionality for

k ¼ 1; 500 (each vertical line segment indicates the range of

the actual Dk in a workload), and Fig. 10b illustrates the

results as a function of k for dimensionality 5. We evaluate

our model up to a relatively high value of k because the

boundary effect is not significant for small k (for the

dimensionalities tested). Observe that the variance in actual

Dk is larger as the dimensionality or k increases7 since the

boundary effect is more significant. The estimated values

capture the actual ones very well in all cases.

For comparison, we also implemented the model of [3]

which does not use approximation but involves complex

integrals. As expected, the estimated values produced by

this model are even closer to the actual (average) ones, but

at the expense of high evaluation overhead (the time to

produce an estimate ranges from 0.8 seconds, for d ¼ 2, to

5 seconds, for d ¼ 10). This cost can be reduced by

precomputing a set of values as discussed in [3], which, in

our implementation, results in computed values with total

size 2M bytes for the same estimation accuracy. Having

considerable size, these values may need to be stored on the

disk and incur disk accesses. On the other hand, the

running time of our model (11) is negligible (not even

measurable) and the space overhead is zero.
Next, we evaluate (18) that predicts the query cost (in

terms of the number of node accesses) for uniform data. In
Fig. 11a, we fix k to 1,500 and illustrate the actual and
estimated query costs as a function of dimensionality. For

1178 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 10, OCTOBER 2004

7. The variance is also large when k ¼ 1 (i.e., single nearest neighbor
retrieval), in which case, the nearest distance can be arbitrarily close to 0 as
the query point approaches a data point.

the actual cost, we report the average value, as well as the

cost range (using a vertical line segment), of each workload.

As expected, the search overhead increases exponentially

with the dimensionality, confirming the findings of [31]. In

Fig. 11b, we fix d ¼ 5 and study the effect of various values

of k (from 1 to 3,000). Once again the estimated values are

fairly accurate, and (similarly to Fig. 10) the precision is

relatively lower for large d and k where the boundary effect

(and, hence, the variance of different queries’ overhead) is

more significant. As with Dk estimation, our model (18)

produces an estimate almost instantly, while the model of

[3] takes from 2 seconds (for d ¼ 2) to 40 seconds (for

d ¼ 10) without precomputation. Note that the precompu-

tation method in [3] is not applicable here because, as

explained in Section 2, it applies only to the high-

dimensional space where node extents are either 1=2 or 1,

and its extension to lower-dimensional spaces is not

straightforward.
Having demonstrated the effectiveness of the model

for uniform distributions, we proceed to evaluate the

histogram technique proposed in Section 3.3 for nonuni-

form data. We use a regular-grid histogram with resolu-

tion H (i.e., the number of partitions along each

dimension), which is decided according to the available

memory. Specifically, the histogram size is limited to

200k bytes (or, equivalently, to 50K cells) and H is set to

b50; 0001=dc for the d-dimensional space (we do not apply

any compression method). Particularly, for the 4D data set

Color, H ¼ 15, while, for the 8D data set Texture, H ¼ 4.

Queries in the same workload uniformly distribute in the

data space and return the same number k of neighbors. Let

acti and esti denote the actual and estimated values for the

ith query ð1 � i � 100Þ; then, the workload error equals

ð1=100Þ �
P

i jacti � estij=acti.
Fig. 12a shows, for data set Color, the actual and

estimated Dk of each query (i.e., the horizontal and vertical

coordinates of a plotted point, respectively) in the workload

with k ¼ 10. Ideally, all points would fall on the diagonal of

the act-est space (i.e., actual and estimated values are

equal). The shaded area covers queries for which our

TAO ET AL.: AN EFFICIENT COST MODEL FOR OPTIMIZATION OF NEAREST NEIGHBOR SEARCH IN LOW AND MEDIUM DIMENSIONAL... 1179

Fig. 10. Evaluation of Dk estimation (uniform). (a) Dk versus d (k ¼ 1; 500). (b) Dk versus k (d ¼ 5).

Fig. 11. Evaluation of query cost estimation (uniform). (a) Query cost versus d (k ¼ 1; 500). (b) Query cost versus k (d ¼ 5).

Fig. 12. Dk evaluation (Color data set). (a) k ¼ 10. (b) k ¼ 500. (c) k ¼ 3; 000.

technique yields up to 25 percent relative error. For
comparison, we also include the estimate of [3], which, as
introduced in Section 2, provides a single estimate (i.e., 0.45,
represented as a vertical line) based on the data set’s fractal
dimension. The estimate of [3] is clearly inadequate because
it does not capture the actual performance at all (i.e.,
various queries have give very different results). Particu-
larly, notice that this estimate is smaller than most actual Dk

because 1) [3] assumes the query distribution follows that of
data, while, in our cases, queries can appear at any location
of the data space, and 2) the nearest distances of queries in
sparse areas (where there are few data points) are longer
than those in data-dense areas. On the other hand, our
estimation method is able to provide accurate prediction for
most queries. Specifically, 90 percent of the queries have
less than 25 percent relative error, and the workload error is
10 percent (as indicated in the figure). Similar observations
can be made for Figs. 12b and 12c (k ¼ 500 and 3,000,
respectively), as well as Fig. 13 that evaluates the accuracy
of cost estimation for various values of k. Fig. 14 and Fig. 15

demonstrate similar experiments for Texture. Note that, by

comparing the diagrams with Fig. 12 and Fig. 13, the error is

higher because 1) the boundary effect is more serious as the

dimensionality increases (in which case, approximating a

circle with a hyperrectangle tends to be more erroneous),

and 2) given the same size limit for the histogram, its

resolution drops considerably (i.e., 4 for Texture) so that the

uniformity in each cell degrades.

5.2 Evaluation of Query Optimization Methods

In this section, we evaluate the effectiveness of the query

optimization techniques presented in Section 4 using

uniform data sets. As discussed in Section 4.1, for a kNN

query, sequential scan outperforms the best-first (BF)

algorithm if k exceeds a certain value of KS (given in

(24)). The next experiment evaluates KS with respect to

different percentage thresholds � (parameter of (24)). For

example, if � ¼ 5 percent and sequential scan requires

1,000 node accesses, then BF is considered worse if it visits

more than 50 nodes.

1180 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 10, OCTOBER 2004

Fig. 13. Query cost (number of node accesses) evaluation (Color data set). (a) k ¼ 10. (b) k ¼ 500. (c) k ¼ 3; 000.

Fig. 14. Dk evaluation (Texture data set). (a) k ¼ 10. (b) k ¼ 500. (c) k ¼ 3; 000.

Fig. 15. Query cost (number of node accesses) evaluation (Texture data set). (a) k ¼ 10. (b) k ¼ 500. (c) k ¼ 3; 000.

Figs. 16a and 16b compare the estimated and actual KS

when � ¼ 5 percent and 10 percent, respectively, using a
uniform data set with 100K points. In both cases, the actual
values of KS are around 20 percent higher than the
corresponding estimated values. Observe (by comparing
the two figures) that KS increases with � because higher �
implies faster seek time and, thus, the overhead of random
accesses is lower for index-based approaches. Furthermore,
the fact that KS decreases with dimensionality is consistent
with the previous findings [31], [8], [7] that the BF algorithm
degenerates into sequential scans for high dimensionalities.

To demonstrate the gains of different node sizes, we
created R*-trees whose nodes occupy between 1 and
100 disk pages for 100K uniform points. Fig. 17 shows the
performance (in terms of total disk access time according to
(26)) of 500-NN queries as a function of node sizes for 2, 5,
and 10 dimensions (TSEEK ¼ 10ms and TIO ¼ 1ms per 1k
bytes). It is clear that, for all dimensionalities, the
performance initially improves as the node size increases,
but deteriorates after the optimal size, meaning that the
overhead of data transfer time does not pay off the reduced
seek time. Notice that the optimal values (16, 18, 100 for 2, 5,
10 dimensions, respectively) increase with the dimension-
ality, which is consistent with our predictions in Fig. 9.

Next, we evaluate the memory requirement of the best
first (BF) algorithm for retrieving nearest neighbors in-
crementally. Fig. 18 shows the heap size (in terms of the
number of entries) for a distance browsing query located at
the center of the 2, 5, and 10-dimensional spaces, respec-
tively (data set cardinality = 100K). The amount of required
memory initially increases with k (i.e., the number of
neighbors retrieved), but decreases after most nodes of the
tree have been accessed. For low dimensions (e.g., 2), the
heap size is small enough to fit in memory even for very

large k. In case of higher dimensions (e.g., 5 and 10),
however, the heap requirements are prohibitive even for
moderate values of k. For 10 dimensions, for example, if the
available memory can accommodate 30K entries (i.e.,
30 percent of the data set), then disk thrashing occurs for
k as low as 100.

Finally, we compare the multipass algorithm (MP in
short) described in Section 4.3 with the best-first method
(BF) in situations where the available memory is not enough
for the heap. For this purpose, we use both algorithms to
perform distance sorting, which outputs the data points in
ascending order of their distances to the center of the data
space. In Fig. 19, we fix the dimensionality to 5, and
measure the page accesses for various memory sizes
accounting for 20 to 100 percent of the maximum heap size
shown in Fig. 18. For the implementation of BF, we deploy
the three-tier heap management policy of [18]. As expected,
when the memory is enough for the entire heap (i.e., the
100 percent case), the two algorithms have identical
performance and MP behaves like BF. When the amount
of memory is close to 100 percent, BF is slightly better
because, in this case, the overhead of performing several
passes (for MP) is greater than the disk penalty incurred

TAO ET AL.: AN EFFICIENT COST MODEL FOR OPTIMIZATION OF NEAREST NEIGHBOR SEARCH IN LOW AND MEDIUM DIMENSIONAL... 1181

Fig. 16. KS versus dimensionality (cardinality = 100K). (a) KS versus d (� ¼ 5 percent). (b) KS versus d (� ¼ 10 percent).

Fig. 17. Total query cost versus node size.

Fig. 18. Heap size for incremental kNN versus k.

Fig. 19. Query cost versus available memory.

from disk trashing of BF. In all the other cases, MP is
superior and the performance gap increases as the memory
decreases. Particularly when the available memory is
enough for only 20 percent of the maximum heap size,
MP outperforms BF by an order of magnitude.

In Fig. 20, we fix the memory size (to 10 percent of the
database size) and evaluate the cost of distance sorting as a
function of dimensionality. Notice that the difference of MP
and BF is negligible for low dimensionalities (2 and 3),
which is expected because, in these cases, the memory is
large enough for the corresponding heaps. As the dimen-
sionality increases, the required heap size (for BF) grows
exponentially, resulting in severe buffer thrashing. It is
interesting that the relative performance of MP and BF
stabilizes for d � 6 (Fig. 20) because, for higher dimension-
alities, MP accesses a significant part of the tree at
subsequent passes due to the large distances of most data
points from the query point (as discussed in [31], the
average distance between two points grows exponentially
with the dimensionality). On the other hand, BF incurs
similar costs after certain dimensionality since it essentially
accesses all nodes and inserts all the entries into the heap.
As shown in the figure, MP outperforms BF in most cases
by an order of magnitude.

6 CONCLUSION

This paper proposes a cost model for kNN search
applicable to a wide range of dimensionalities with
minimal computational overhead. Our technique is based
on the novel concept of vicinity rectangles and Minkowski
rectangles (instead of the traditional vicinity circles and
Minkowski regions, respectively), simplifying the resulting
equations. We confirm the accuracy of the model through
extensive experiments, and demonstrate its applicability by
incorporating it in various query optimization problems.

Compared to previous work, the proposed model has the
following advantages: 1) Its small computational cost
makes it ideal for real-time query optimization, 2) it
permits the application of conventional multidimensional
histograms for kNN search, and 3) the derived formulae
can be easily implemented in an optimizer and combined
with other techniques (e.g., range selectivity estimation
[29], [2] for constrained kNN queries [16]).

On the other hand, the model has certain limitations that
motivate several directions for future work. First, the
approximation scheme yields increasing error with dimen-
sionality, such that, after 10 dimensions, it is no longer
suitable for query optimization due to inaccuracy. A
possible solution for this problem may be to develop
alternative approximation methods or identify some com-
pensation factors to reduce the error. Second, our histo-
gram-based algorithm (for cost estimation on nonuniform
data) only supports histograms whose bucket extents are
disjoint, which, however, is not satisfied in some high-
dimensional histograms (such as the one proposed in [17]).
This limits its applicability in these scenarios. Further,
another interesting future work is to extend the cost model
and related optimization techniques to closest pair queries
[11], which retrieve the k closest pairs of objects from two
data sets. Finally, the employment of the model for
nonpoint data sets is also a subject worth studying.

APPENDIX

Here, we present a solution to the following problem that is
essential for considering boundary effects in cost analysis
(generalizing the analysis in [3]). Given a (hyper)
rectangle R, 1) whose extents are s along all dimensions
and 2) whose centroid RC is restricted to the region Amar

that has margin a (which is an arbitrary constant in the

1182 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 10, OCTOBER 2004

Fig. 20. Query cost versus d.

Fig. 22. Change of LenðL \ UÞ as a function of LC .

Fig. 21. The integral area. (a) 2D case. (b) 1D version of the problem.

range [0, 0.5]) to each boundary of the (unit) data space U
(Fig. 21a shows a 2D example), compute the average area
(volume) of R \ U over all positions of RC or, more
formally, solve the following integral:

avgV olðRÞ ¼
ZZ

U�Amar

V olðR \ UÞdRC: ð29Þ

We first solve the 1D version of this problem (Fig. 21b).
Specifically, given a line segment L of length swhose center
LC must have distance at least a from the end points of the
data space (i.e., a unit line segment), solve the integral:

avgLenðLÞ ¼
Z
½a;1�a�

LenðL \ UÞdLC; ð30Þ

where the integral region ½a; 1� a� corresponds to the
possible positions of LC .

The solution is straightforward when 1) a � s=2 and
2) aþ s=2 � 1. For 1), the line segment is always within
the data space; hence, avgLenðLÞ ¼ s. On the other hand,
the line segment always covers the entire data space for
case 2); thus, avgLenðLÞ ¼ 1. Next, we focus on the case
that 2a < aþ s=2 < 1. As LC gradually moves from
position a to 1a, LenðL \ UÞ initially increases (from
aþ s=2) before reaching a maximum value, after which
LenðL \ UÞ decreases (finally to aþ s=2). This transition is
plotted in Fig. 22.

The average length of L \ U can be obtained by summing
the areas of the regions of the trapezoids A1, A2, A3 and
dividing the sum by 1� 2a (i.e., the length of all positions of
LC). Thus, integral (30) can be solved as:

avgLenðLÞ ¼ areaðA1 þA2 þA3Þ
1� 2a

¼ s� ðs=2þ aÞ2

1� 2a
: ð31Þ

For general d-dimensional spaces, the following equation
holds:

avgV olðRÞ ¼
Yd
i¼1

avgLenðRiÞ;

where Ri is the projection of R along the ith dimension. By
(31), the above equation can be solved into the closed form:

avgV olðRÞ ¼ s� ðs=2þ aÞ2

1� 2a

" #d
:

ACKNOWLEDGMENTS

This work was supported by grants HKUST 6180/03E and
HKUST 6197/02E from Hong Kong RGC. The authors
would like to thank the anonymous reviewers for their
insightful comments.

REFERENCES

[1] S. Arya, D. Mount, and O. Narayan, ”Accounting for Boundary
Effects in Nearest Neighbor Searching,” Proc. Ann. Symp.
Computational Geometry, 1995.

[2] S. Acharya, V. Poosala, and S. Ramaswamy, ”Selectivity Estima-
tion in Spatial Databases,” Proc. ACM SIGMOD Conf., 1999.

[3] C. Boehm, ”A Cost Model for Query Processing in High
Dimensional Data Spaces,” ACM Trans. Database Systems, vol. 25,
no. 2, pp. 129-178, 2000.

[4] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger, ”The
R*-Tree: An Efficient and Robust Access Method for Points and
Rectangles,” Proc. ACM SIGMOD Conf., 1990.

[5] S. Berchtold, D. Keim, and H. Kriegel, ”The X-Tree: An Index
Structure for High-Dimensional Data,” Proc. Very Large Database
Conf., 1996.

[6] S. Berchtold, C. Boehm, D. Keim, and H. Kriegel, ”A Cost Model
for Nearest Neighbor Search in High-Dimensional Data Space,”
Proc. ACM Symp. Principles of Database Systems, 1997.

[7] S. Berchtold, C. Boehm, D. Keim, F. Krebs, and H. Kriegel, ”On
Optimizing Nearest Neighbor Queries in High-Dimensional Data
Spaces,” Proc. Int’l Conf. Database Theory, 2001.

[8] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, ”When Is
‘Nearest Neighbor’ Meaningful?” Proc. Int’l Conf. Database Theory,
1999.

[9] S. Berchtold and H. Kriegel, ”Dynamically Optimizing High-
Dimensional Index Structures,” Proc. Int’l Conf. Extending Database
Technology, 2000.

[10] J. Cleary, ”Analysis of an Algorithm for Finding Nearest
Neighbors in Euclidean Space,” ACM Trans. Math. Software,
vol. 5, no. 2, pp. 183-192, 1979.

[11] A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vassilako-
poulos, ”Closest Pair Queries in Spatial Databases,” Proc. ACM
SIGMOD Conf., 2000.

[12] P. Ciaccia, M. Patella, and P. Zezula, ”A Cost Model for Similarity
Queries in Metric Spaces,” Proc. ACM Conf. Principles on Database
Systems, 1998.

[13] J. Friedman, J. Bentley, and R. Finkel, ”An Algorithm for Finding
Best Matches in Logarithmic Expected Time,” ACM Trans. Math.
Software, vol. 3, no. 3, pp. 209-226, 1977.

[14] C. Faloutsos and I. Kamel, ”Beyond Uniformity and Indepen-
dence, Analysis of R-Trees Using the Concept of Fractal Dimen-
sion,” Proc. ACM Conf. Principles of Database Systems, 1994.

[15] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, ”Fast
Subsequence Matching in Time-Series Databases,” Proc. ACM
SIGMOD Conf., 1994.

[16] H. Ferhatosmanoglu, I. Stanoi, D. Agarwal, and A. Abbadi,
”Constrained Nearest Neighbor Queries,” Proc. Symp. Spatial and
Temporal Databases, 2001.

[17] D. Gunopulos, G. Kollios, V. Tsotras, and C. Domeniconi,
”Approximate Multi-Dimensional Aggregate Range Queries over
Real Attributes,” Proc. ACM SIGMOD Conf., 2000.

[18] G. Hjaltason and H. Samet, ”Distance Browsing in Spatial
Databases,” Proc. ACM Trans. Database Systems, vol. 24, no. 2,
pp. 265-318, 1999.

[19] F. Korn, B. Pagel, and C. Faloutsos, ”On the ’Dimensionality
Curse’ and the ’Self-Similarity Blessing’,” IEEE Trans. Knowledge
and Database Eng., vol. 13, no. 1, pp. 96-111, 2001.

[20] J. Lee, D. Kim, and C. Chung, ”Multidimensional Selectivity
Estimation Using Compressed Histogram Information,” Proc.
ACM SIGMOD Conf., 1999.

[21] Y. Matias, J. Vitter, and M. Wang, ”Wavelet-Based Histograms for
Selectivity Estimation,” Proc. ACM SIGMOD Conf., 1998.

[22] B. Pagel, F. Korn, and C. Faloutsos, ”Deflating the Dimensionality
Curse Using Multiple Fractal Dimensions,” Proc. IEEE Int’l Conf.
Database Eng., 2000.

[23] A. Papadopoulos and Y. Manolopoulos, ”Performance of Nearest
Neighbor Queries in R-Trees,” Proc. Int’l Conf. Database Theory,
1997.

[24] N. Roussopoulos, S. Kelly, and F. Vincent, ”Nearest Neighbor
Queries,” Proc. ACM SIGMOD Conf., 1995.

[25] R. Sproull, ”Refinements to Nearest Neighbor Searching in
K-Dimensional Trees,” Algorithmica, pp. 579-589 1991.

[26] T. Seidl and H. Kriegel, ”Efficient User-Adaptable Similarity
Search in Large Multimedia Databases,” Proc. Conf. Very Large
Databases, 1997.

[27] Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima, ”The
A-Tree: An Index Structure for High-Dimensional Spaces Using
Relative Approximation,” Proc. Conf. Very Large Databases, 2000.

[28] Y. Tao and D. Papadias, ”Adaptive Index Structures,” Proc. Conf.
Very Large Database, 2002.

[29] Y. Theodoridis and T. Sellis, ”A Model for the Prediction of R-Tree
Performance,” Proc. ACM Conf. Principles on Database Systems,
1996.

TAO ET AL.: AN EFFICIENT COST MODEL FOR OPTIMIZATION OF NEAREST NEIGHBOR SEARCH IN LOW AND MEDIUM DIMENSIONAL... 1183

[30] UCI KDD archive, http://kdd.ics.uci.edu/, 2002.
[31] R. Weber, H. Schek, and S. Blott, ”A Quantitative Analysis and

Performance Study for Similarity-Search Methods in High-
Dimensional Spaces,” Proc. Conf. Very Large Databases, 1998.

Yufei Tao received the diploma from the South
China University of Technology in August 1999
and the PhD degree from the Hong Kong
University of Science and Technology in July
2002, both in computer science. After that, he
was a visiting scientist at Carnegie Mellon
University and is currently an assistant professor
in the Department of Computer Science at the
City University of Hong Kong. He is also the
winner of the Hong Kong Young Scientist Award

2002 from the Hong Kong Institution of Science. His research includes
query algorithms and optimization in temporal, spatial, and spatio-
temporal databases.

Jun Zhang received his diploma from the South
China University of Technology in July 2000,
and the PhD degree from the Hong Kong
University of Science and Technology in Jan-
uary 2004. He is currently an assistant professor
in the Division of Information Systems at the
Nanyang Technological University, Singapore.
His research interests include indexing techni-
ques and query optimization in spatial and
spatio-temporal databases.

Dimitris Papadias is an associate professor in
the Department of Computer Science at the
Hong Kong University of Science and Technol-
ogy (HKUST). Before joining HKUST, he
worked at various places, including the Data
and Knowledge Base Systems Laborator-
National Technical University of Athens
(Greece), the Department of Geoinformation-
Technical University of Vienna (Austria), the
Department of Computer Science and Engi-

neering-University of California at San Diego, the National Center for
Geographic Information and Analysis-University of Maine, and the
Artificial Intelligence Research Division-German National Research
Center for Information Technology (GMD).

Nikos Mamoulis received a diploma in compu-
ter engineering and informatics in 1995 from the
University of Patras, Greece, and the PhD
degree in computer science in 2000 from the
Hong Kong University of Science and Technol-
ogy. Since September 2001, he has been an
assistant professor in the Department of Com-
puter Science at the University of Hong Kong. In
the past, he has worked as a research and
development engineer at the Computer Tech-

nology Institute, Patras, Greece, and as a postdoctoral researcher at the
Centrum voor Wiskunde en Informatica (CWI), The Netherlands. His
research interests include spatial, spatio-temporal, multimedia, object-
oriented, and semistructured databases, and constraint satisfaction
problems.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1184 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 10, OCTOBER 2004

