
Prediction and Indexing of Moving Objects with Unknown 
Motion Patterns 

Yufei Tao† Christos Faloutsos‡ Dimitris Papadias§ Bin Liu§ 
†Department of Computer Science 

City University of Hong Kong 
Tat Chee Avenue, Hong Kong 

taoyf@cs.cityu.edu.hk 

‡Department of Computer Science 
Carnegie Mellon University 

Forbes Avenue, Pittsburgh, USA 
christos@cs.cmu.edu 

§Department of Computer Science 
HKUST 

Clear Water Bay, Hong Kong 
{dimitris, liubin}@cs.ust.hk 

  
ABSTRACT 
Existing methods for prediction in spatio-temporal databases 
assume that objects move according to linear functions. This 
severely limits their applicability, since in practice movement is 
more complex, and individual objects may follow drastically 
different motion patterns. In order to overcome these problems, 
we first introduce a general framework for monitoring and 
indexing moving objects, where (i) each object computes 
individually the function that accurately captures its movement 
and (ii) a server indexes the object locations at a coarse level and 
processes queries using a filter-refinement mechanism. Our 
second contribution is a novel recursive motion function that 
supports a broad class of non-linear motion patterns. The function 
does not presume any a-priori movement but can postulate the 
particular motion of each object by examining its locations at 
recent timestamps. Finally, we propose an efficient indexing 
scheme that facilitates the processing of predictive queries without 
false misses. 

1. INTRODUCTION 
Spatio-temporal databases that manage information about objects 
moving in two- (or higher) dimensional spaces are important for 
several emerging applications including traffic supervision, flight 
control, mobile computing, etc. A large part of the related 
research (e.g., [KGT99, AAE00, HKTG02, SJLL02, CC02, 
TSP03, HKT03]) focuses on predictive queries, which forecast 
the objects that will qualify a spatial condition at some future time 
based on the current knowledge (e.g., "which flights are expected 
to enter the airspace of California in the next 10 minutes"). In 
order to avoid frequent location updates, the database stores the 
motion function o(t) of each object o, which returns its location at 
any future timestamp t. With a single exception ([AA03] that 
investigates theoretical indexes on non-linear trajectories for 
nearest neighbor search), existing work on spatio-temporal 
prediction assumes linear movement. Specifically, o(t) = o(to) + 
vo(t−to) where to is the last timestamp that object o issued an 
update, o(to) is the location of o at time to, and vo denotes its 
current velocity (constant since to). Both o and vo are d-
dimensional vectors (where d is the dimensionality of the data 
space) since they capture the information of o on all axes. An 
update is necessary whenever vo (i.e., the speed or direction of the 
movement) changes.  

1.1 Motivation 
While in practice most movements are not linear, the adoption of 
the linear model is often justified in two ways: (i) it avoids the 
complications of arbitrary motion patterns and permits the 
analysis of several interesting spatio-temporal problems [TP02, 
ISS03] that otherwise would be very difficult or intractable, and 
(ii) piece-wise linear segments can approximate (virtually, to 
arbitrary precision) any curve, which seems to suggest that linear 
prediction trivially covers the forecasting of other motion types. 
This, unfortunately, is not true. Figure 1.1a explains the 
inadequacy of linear prediction by showing the locations (black 
dots) of an object o, moving along a curvature during 6 
timestamps. Consider a query issued at time 1 that asks for the 
location of o at the next 4 timestamps. According to the linear 
velocity of o at the query time (computed using o(0) and o(1)), the 
predicted positions (white dots) deviate from the actual ones 
significantly. Similar observations hold for a predictive query 
issued at timestamp 2, where estimation is based on o(1) and o(2). 
Although piece-wise line segments can approximate curves, they 
cannot be effectively applied for prediction, especially in the 
distant future. Further, note that the object needs to issue an 
update at every single timestamp to reflect the continuous 
direction changes. 
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Figure 1.1: Failure of linear prediction 

We use the term motion type or pattern to denote the general form 
of the motion function (e.g., linear, quadratic, circular), as 
opposed to its specific parameters, e.g., two linearly moving 
objects follow the same pattern although their direction or speed 
may differ. An obvious attempt to alleviate the above problems is 
to apply a more complex motion type. For example, one could use 
a quadratic function [AA03], o(t)=o(to)+vo(t−to)+½ao(t−to)

2, where 
ao is the acceleration vector of o. Although this model captures 
linearity as a special case (and therefore has higher applicability), 
it still cannot represent the curve of Figure 1.1. Further, even if a 
function describing the particular curve can be obtained, it would 
not be able to capture other objects in the system, which may 
follow totally different patterns. In general, due to the enormous 
diversity of motion types, trying to formulate a universal motion 
function that captures all possible trajectories would be 
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unrealistic.  

1.2 Contributions 
This paper contains three important contributions that solve the 
problems of prediction on arbitrary motion patterns. We first 
propose a general client-server architecture for answering typical 
spatio-temporal queries on objects with unknown, and possibly 
variable, movement types. In particular, each client (object) 
computes individually the function that best captures its motion, 
while a server indexes the object locations at a coarse level using 
a fixed function, which is common for all objects. Queries are 
processed through a filter-refinement mechanism, where 
candidate objects are contacted, if necessary, for more refined 
information. Our solution enables the application of spatio-
temporal access methods specifically designed for a particular 
type, to arbitrary movements without any false misses. Thus, the 
framework bridges naturally the existing research on the linear 
model with the non-linear world, permitting the utilization of 
previous results. 

The second contribution is the recursive motion function, a 
systematic and mathematically rigorous technique that expresses, 
in a concise format, a large number of movement types (e.g., 
polynomials, ellipses, sinusoids, etc.). In particular, unlike 
conventional a-priori motion functions that represent location as a 
closed formula with respect to time, a recursive function relates an 
object’s location to those of the recent past. This broadens the set 
of expressible trajectories, because they are no longer constrained 
by a certain default motion; rather, the recurrence causes each 
object to adapt itself, producing the next location according to the 
trend of its own movement.  

The third contribution is the STP-tree (spatio-temporal 
prediction tree), an access method for indexing the expected 
trajectories (at the server). Unlike existing indexes which target a 
specific motion type (most often linear) known in advance, the 
STP-tree can be used for polynomial functions of any degree. In 
the special case where the degree is 1, the STP-tree degenerates to 
the TPR-tree (the current state-of-the-art, discussed in Section 2). 
Compared to the TPR-tree (or other indexes for linear movement), 
the STP-tree reduces the number of location updates and false hits 
during query processing by delivering more accurate 
approximation of actual object movements.  

The rest of the paper is organized as follows. Section 2 
surveys previous work, focusing on the TPR-tree and related 
structures due to their immediate relevance to the STP-tree. 
Section 3 proposes the general framework for spatio-temporal 
prediction and overviews our methods. Section 4 discusses 
computation of unknown movements using the recursive motion 
function. Section 5 describes the STP-tree as well as the 
construction and query processing algorithms. Section 6 verifies 
the effectiveness of the proposed techniques through extensive 
experiments and Section 7 concludes the paper with directions for 
future work. 

2. RELATED WORK 
Among the several spatio-temporal structures [TUW98, KGT99, 
AAE00] that focus on predictive query processing, the most 
popular one is the TPR-tree. Because the TPR-tree is an 
adaptation of the R*-tree, we first provide a description of this 
structure in Section 2.1. Then, Section 2.2 overviews the TPR-tree 
and Section 2.3 the TPR*-tree, which improves the original 
method with enhanced algorithms.   

2.1 The R*-tree 
The R*-tree [BKSS90] aims at indexing static multi-dimensional 
data. Figure 2.1 shows a two-dimensional example where 10 
rectangles (a,b,…,j) are clustered according to their spatial 
proximity into 4 leaf nodes N1,…,N4, which are then recursively 
grouped into nodes N5, N6 that become the entries of the root. 
Each entry is represented as a minimum bounding rectangle 
(MBR). Specifically, the MBR of a leaf entry denotes the extent 
of an object, while the MBR of a non-leaf entry (e.g., N1) tightly 
bounds all the MBRs (i.e., a,b,c) in its child node. The R*-tree 
algorithms aim at minimizing the following penalty metrics: (i) 
the area, (ii) the perimeter of each MBR, (iii) the overlap between 
two MBRs (e.g., N1,N2) in the same node, and (iv) the distance 
between the centroid of an MBR (e.g., a in Figure 2.1) and that of 
the node (e.g., N1) containing it. As discussed in [PSTW93], 
minimization of these metrics decreases the probability that a 
node is accessed by a range query. 
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Figure 2.1: An R*-tree 

Given a new entry, the insertion algorithm decides, at each level 
of the tree, the branch to follow in a greedy manner. Assume that 
we insert an object k into the tree in Figure 2.1. At the root level, 
the algorithm chooses the entry whose MBR needs the least area 
enlargement to cover k; N5 is selected because its MBR does not 
need to be enlarged, while that of N6 must be expanded 
considerably. Then, at the next level (i.e., child node of N5), the 
algorithm chooses the entry whose MBR enlargement leads to the 
smallest overlap increase among the sibling entries in the node. 
Note that different metrics are considered at level 1 (leaf nodes 
are at level 0) and higher levels. An overflow occurs if the leaf 
node reached (i.e., N1 in the example) is full (i.e., it already 
contains the maximum number of entries). In this case the 
algorithm attempts to remove and re-insert a fraction of the entries 
in the node, trying to avoid a split if any entry could be assigned 
to other nodes. The set of entries to be re-inserted are those whose 
centroid distances are among the largest 30%. In Figure 2.1, b is 
selected since its centroid is the farthest from that of N1 
(compared to a,k,c). Node splitting is performed if the overflow 
persists after the re-insertion (e.g., b is re-inserted back to N1 in 
Figure 2.1, causing N1 to overflow again). The deletion algorithm 
of the R*-tree is relatively simple. First, the leaf node that 
contains the entry to be removed is identified. If the node does not 
generate an underflow (i.e., it does not violate the minimum node 
utilization), the deletion terminates. Otherwise, the underflow is 
handled by simply re-inserting all the entries of the node, using 
the regular insertion algorithm. Both overflows and underflows 
may propagate to upper levels, which are handled in the same 
way. 

2.2 The TPR-tree 
The TPR-(time parameterized R-) tree [SJLL00] extends the basic 
concepts of the R*-tree to linearly moving objects. We illustrate 
its functionality using the four points (a, b, c, d) in Figure 2.2a. 
The black dots illustrate their position at the current time 0, and 



the arrows (values) indicate the direction (speed) of their 
movements. For example, the velocity value of a along the x-
dimension is 1, while that on the y-axis equals 2, i.e., a moves 
northeast with slope 2 and speed 5. A negative velocity indicates 
that the object moves towards the minus direction on the 
corresponding axis. Figure 2.2b shows the object positions at 
timestamp 1, estimated (based on the linear model) according to 
their velocities at the current time. A node in the TPR-tree is 
represented using a MBR and a velocity bounding vector (VBV), 
which enclose the location and velocities of the covered objects, 
respectively. For example, the VBV of node N1 in Figure 2.2a is 
{−2, 1, −2, 2} where the first/second number equals the 
smallest/largest object velocity on the x-dimension (decided by b, 
a respectively). Similarly, the third and fourth values (−2, 2) 
capture the object velocities on the y-axis (VBV velocities are 
depicted by white arrows). The extent of a node grows with time 
(at the speed indicated by its VBV) so that at any future 
timestamp it contains the locations of the underlying objects, 
although it is not necessarily tight. For example, in Figure 2.2b, 
both N1 and N2 are considerably larger than the corresponding 
minimum rectangles. The node extents for some future time are 
computed dynamically based on the MBRs and VBVs at the 
current time. 
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(a) MBRs & VBRs at time 0 (b) MBRs at time 1 

Figure 2.2: Entry representations in a TPR-tree 

Given a point qP, a distance e, and a future time interval qT, a 
predictive range query finds all objects o such that dist(o,qP,qT)≤e, 
i.e., the distance between  o(t) and qP is equal to, or smaller than e 
at some timestamp t∈ qT. The shaded circle of Figure 2.2b 
corresponds to a range query with qT = [1,1]. A TPR-tree answers 
such queries by accessing all nodes (N1 and N2 in Figure 2.2b) that 
intersect the circle (qP,e) during qT. The same approach is used for 
(window) queries with rectangular regions. TPR-trees are 
optimized for queries with qT in the interval [TC, TC+H], where 
the reference time TC is the current timestamp, and the horizon H 
determines how far the tree should "see" in the future. The update 
algorithms are exactly the same as those of the R*-tree, by simply 
replacing the four penalty metrics with their integral counterparts. 
Specifically, the area (or perimeter) of an entry N equals ∫TC+H

TC

A(N,t)dt (or ∫TC+H
TC

P(N, t)dt), where A(N,t) (or P(N,t)) returns the 
area (perimeter) of N at time t. Similarly, the overlap (or the 
centroid distance) between two MBRs N1 and N2 is computed as 

∫TC+H
TC

OVR(N1,N2,t)dt (or ∫TC+H
TC

CDist(N1,N2,t)dt), where 
OVR(N1,N2,t) (or CDist(N1,N2,t)) returns the overlapping area 
(centroid distance) between N1 and N2 at time t. These integrals 
are solved into closed formulae [SJLL00]. Saltenis and Jensen 
[SJ02] describe a method for improving the performance of TPR-

trees when the time of the next update for each object is known in 
advance. 

2.3 The TPR*-tree 
The TPR*-tree [TPS03] follows the general update methodology 
of TPR- (and R-) trees, but includes some enhanced heuristics. 
When an object o is inserted, the TPR*-tree first identifies the leaf 
N that will accommodate o with the choose path algorithm, which, 
instead of the greedy traversal of the R*- and TPR*-trees, follows 
the path that leads to the minimization of the penalty metrics in a 
branch-and bound manner. If N is full, a set of entries, selected by 
pick worst, are removed from N and re-inserted. These objects are 
such that, their removal minimizes the MBR and VBV of the 
parent node. Any node that overflows during the re-insertion is 
split using sorting split, which decides the entry distribution by 
sorting all the spatial and velocity dimensions. Consider Figure 
2.3a, where node N overflows, assuming that the node capacity is 
3, and the minimum node utilization is 2. The algorithm first sorts 
the objects by their x-coordinates (i.e., the sorted order is a, b, c, 
d), and then groups the first two entries a, b into node N1, and c, d 
into N2. Based on the MBRs and VBVs of N1 and N2 (shown in 
Figure 2.3b), the algorithm computes the sum of their integrated 
perimeters, and uses it as the penalty of this split. Next, the 
algorithm performs another sorting on the x-velocities of these 
objects, (i.e., order a, c, b, d), distributes the entries into N1 and N2 
accordingly (Figure 2.3c), and computes the split penalty. The 
same process is repeated on the y-axis and the final entry 
distribution is the one (among the four possible) with the smallest 
penalty.  
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Figure 2.3: The split algorithm of the TPR*-tree 

3. SYSTEM OVERVIEW 
This section provides a general framework for spatio-temporal 
prediction and describes the proposed methodology at an abstract 
level, before proceeding with the details in subsequent sections. 
We assume a client-server architecture, where each moving client 
(object) o can measure its location through a GPS device (at 
discrete timestamps) and has some processing power and 
memory, so that it maintains the most recent locations and 
continuously revises its individual motion function o(t). The 
server collects information from objects over time, indexes their 
expected trajectories, and answers predictive range queries1 issued 
by the users.  

While different objects can follow distinct patterns, the server 
assumes the same motion type for all objects, which differs from 
their individual functions. Thus, the server maintains only 
imprecise information and has to process queries in a filter-
refinement manner. Specifically, at the filter step, it first retrieves 
(i) a set of objects that definitely satisfy the query predicates, and 
(ii) a set of candidates (which may or may not qualify the query). 
                                                                 
1 For simplicity we focus on static range queries. Nevertheless, 
our methods also capture moving queries as well as other types of 
predictive queries (e.g., nearest neighbor search).  



During refinement, the server contacts the objects of the second 
set, which evaluate the query conditions using their own (precise) 
motion function, and inform the server accordingly. Thus, the 
correctness of a query is defined with respect to individual 
objects’ motion functions. Figure 3.1 shows the overall system 
architecture. 

 
Figure 3.1: System architecture  

Similar to [SJLL00, TSP03], we use a horizon parameter H, and 
optimize the system for queries whose intervals qT fall in [TC, 
TC+H] where TC is the reference time. Let mS

o(t) be the motion 
function for object o at the server. In order to guarantee the 
correctness of query results, each object transmits (i) the 
parameters of mS

o(t), formulated according to its own motion 
function o(t) and (ii) a maximum distance do (called the horizon 
bound) between o(t) and mS

o(t) during the time interval [TC, 
TC+H]. To illustrate this, consider Figure 3.2 which builds on the 
example of Figure 1.1 assuming that TC =1, H=4 and that the 
server accepts only linear movements. The object computes the 
parameters of mS

o(t) based on its location at timestamps 0 and 1, 
and estimates its future positions using both o(t) and mS

o(t) 
(shown with black and white dots, respectively) at the next 4 
timestamps. In this case, do equals the distance d(5) between o(5) 
and mS

o(5). Consider now a range query (at time 1) asking for all 
objects in the circle centering at qP with radius e during interval qT 

= [4,5]. At the filter step, the server retrieves the objects such that 
dist(mS

o,qP,qT) ≤ e+do, where dist(mS
o,qP,qT) equals the minimum 

distance between mS
o and qP during [4,5] (in this example 

dist(mS
o,qP,qT) = dist(mS

o(4),qP)). Although o does not satisfy the 
query (both o(4) and o(5) are outside the range), it passes the filter 
step and becomes a candidate. Therefore, it is requested to 
evaluate the query based on its own prediction for o(4) are o(5), 
which will cause its elimination from the actual query result.  

 
Figure 3.2: Coordinating object and server functions (TC =1) 

Subsequent object updates follow an error-driven strategy. In 
particular, each object o records the last transmitted values of 
mS

o(t) and do, and issues an update whenever this information 
cannot correctly capture its current movement. Continuing the 
example, at the next timestamp TC =2, o re-computes its location 
during the next H (=4) timestamps using both mS

o(t) and o(t), as 
shown in Figure 3.3. The distance d(6) between mS

o(6) and o(6) is 
larger than the current horizon bound do and the server must be 
informed in order to avoid false misses. Thus, the object derives a 
new linear function mS'o(t) (based on its position at timestamps 1 

and 2) and (using this function) revises the value of do to d'(6) 
(i.e., the distance between mS'o(6) and o(6)). The new mS'o(t) and 
do are then sent to the server. At timestamp TC =3, the distance 
between o(7) and mS'o(7) is smaller than the last reported value of 
do (=d'(6)); therefore, the object does not issue an update and the 
server assumes that it continues moving according to the previous 
motion parameters. This update policy trivially captures the case 
where the object’s motion pattern changes over time (since the 
object revises o(t) at each timestamp).  

 
Figure 3.3: Error-driven update policy (TC =2 and TC =3) 

Finally, it should be pointed out that the existing methods for 
supporting predictive spatio-temporal queries constitute special 
cases of our framework, where the motion types are identical for 
all objects (and the server), and known in advance. As discussed 
in the introduction, this severely restricts their applicability to 
practical problems. On the other hand, the separation of motion 
functions (at the object and server sides) and the filter-refinement 
mechanism (i) lift these restrictions and, at the same time (ii) they 
permit the application of previous spatio-temporal research on 
linear movement. For instance, the TPR-tree (or any other spatio-
temporal index) can be used directly to index the object 
representations at the server, while selectivity estimation 
techniques [CC02, HKT03, TSP03] can predict the output size of 
the filter step. 

The above discussion serves as a high-level description, 
omitting, however, two fundamental issues: (i) the derivation of 
the individual motion functions for each object, and (ii) the 
development of a novel access method, which reduces the number 
of false misses by tuning the motion "resolution" depending on 
the application needs. These issues are addressed in Sections 4 
and 5, respectively.  

4. DERIVATION OF MOTION FUNCTIONS 
Let o be an object whose motion type is unknown. Given the 
actual locations of o at the h most recent timestamps, our 
objective is to derive a motion function that (i) can correctly 
capture all these locations, and (ii) can predict the future trajectory 
of o, by following the tendency of the movement (i.e., linear, 
quadratic, curving, etc.). Section 4.1 proposes a novel recursive 
motion function, which is significantly more powerful in terms of 
expressive power than the existing closed functions of time. Then, 
Section 4.2 presents a methodology for deciding the function 
parameters. 

4.1 Recursive functions and motion matrices 
Although individual trajectories may vary significantly, most 
motion types demonstrate a self-similar behavior, in the sense that 
the current location can be usually predicted from those in the 
recent past. This is most obvious for linear movements with fixed 
velocity v, where the location o(t) of o equals oo(t−1) + 



[oo(t−1)−oo(t−2)] = 2oo(t−1)−oo(t−2) (note that oo(t−1)−oo(t−2) 
gives exactly the velocity vector v). Interestingly, it turns out that, 
for a large number of movements, oo(t) can be represented as a 
linear function of oo(t-1), oo(t-2), …. We demonstrate this with 
two examples: accelerative and circular movements.   

Example 4.1: Consider the motion function o(t) = o(to)+ 
vo(t−to)+½ao(t−to)

2, where o(to) is the location of o at the reference 
time to, vo is the velocity vector at to, and ao is the acceleration. 
This function can be easily re-written in the form 
o(t)=c0+c1⋅t+c2⋅t2 where c0, c1, c2 are d×1 vectors of constants, and 
d is the dimensionality of the data space. Taking the discrete 
differentiation (with respect to t) on both sides of the equation 
results in o(t)−o(t−1) = c1+2c2⋅t. A second differentiation yields 
the linear form: [o(t)−o(t−1)]−[o(t−1)−o(t−2)]=2c2. The constant 
can be eliminated by yet another differentiation, leading to: 

   o(t)=3o(t−1)−3o(t−2)+o(t−3)     (4-1) 

In general, it is easy to verify that any polynomial motion function 
of degree D can be converted to a linear recurrence after D+1 
differentiations.     ■ 

Example 4.2: If a 2D object moves with angular speed2 ω on a 
circle that centers at (c1, c2) with radius r, its coordinates o(t).x1 
and o(t).x2 at time t are given by: o(t).x1 = c1+ r⋅cos(ω⋅t) and 
o(t).x2 = c2+r⋅sin(ω⋅t). Following a derivation similar to Example 
4.1, we have: 

o(t)=[ ]1+cos(ω) −sin(ω)
sin(ω) 1+cos(ω) o(t−1)+[ ]−cos(ω)  sin(ω)

 −sin(ω) −cos(ω) o(t−2) 

(4-2)  ■ 

Motivated by these observations, we introduce the following 
recursive motion function: 

o(t) = C1⋅o(t−1) + C2⋅o(t−2) + … + Cf⋅o(t−f)     (4-3) 

where Ci (1≤i≤f) is a d×d constant matrix, and f is a system 
parameter called retrospect. Equation 4-3 is much more powerful 
than conventional motion functions, since it can express an 
extensive number of simple and complex movement types (by 
varying Ci), including polynomials, ellipses, sinusoids, etc. 
Obviously, the expressive power increases with f (in our 
experiments, the value f=5 already models accurately all the 
motion types tested).  

We define the motion state so(t) of an object o at time t as a 
vector {o(t), o(t−1), …, o(t−f+1)} enclosing its location at the f 
most recent timestamps (i.e., so(t) is a (d⋅f )×1 vector). Equation 4-
3 becomes much friendlier (especially for performing future 
prediction, as elaborated shortly) when transformed to the 
equivalent matrix form:  

so(t) = Ko⋅so(t−1)     (4-4) 

where Ko is a constant (d⋅f)×(d⋅f) motion matrix for o. We use the 
following notations: (i) kij is the element of Ko at the i-th row and 
j-th column (1≤i, j≤d⋅f), (ii) ki* is the i-th row, i.e., a 1×(d⋅f) 
vector, and (iii) o(t).xi is the co-ordinate of o(t) on the i-th 
dimension. For clarity, in the following discussion we usually 
illustrate the properties of Ko for d=2 (i.e., 2D space) and f=2 (i.e., 
each state captures the two most recent locations), before 
extending to the general case. For the simple case, equation 4-4 

                                                                 
2 Angular speed is the angle (with respect to the center of the 
circle) traveled by the object in a time unit.  

becomes: 
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Notice that we can immediately decide the third and fourth rows 
of Ko, e.g., k3* ={1,0,0,0} is the only possible choice for making 
o(t−1).x1 ≡ k3*⋅so(t−1). In general, we have: 

kij=0 for i≥d+1 and i≠j+d 
kij=1 for i≥d+1 and i=j+d 

(4-6) 

Equivalently, the motion matrix has only d2⋅f unknowns (i.e., the 
number of unknowns in C1, C2, …, Cf of equation 4-3).  

A very important observation is that all objects that follow the 
same movement type have identical motion matrices. For example, 
the motion matrices Kline (for linear movement) and Kcircle (for 
circular movement) are:  

2 0 1 0

0 2 0 1

1 0 0 0

0 1 0 0

line

− 
 − =
 
 
 

K      (4-7) 
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(4-8) 

As another example, the quadratic polynomial function (for 2D 
spaces) requires a motion matrix with six rows and columns. By 
equation 4-2, the first two rows of the matrix are  [ ]3 0 -3 0 1 0

0 3 0 -3 0 1  

(the other rows are set according to equation 4-6).  
Motion matrices indicate whether there are dependencies 

among the dimensions. For instance, the linear model (and 
polynomial functions in general) is axis-independent, e.g., the x1-
coordinate of a point is decided solely by its velocity on the x1-
axis, and is unrelated to those on the other dimensions, because 
k12=k14=k21=k23=0. On the other hand, circular movement is axis-
dependent because of the non-zero k12 and k21; for example, o(t).x1 

=(1+cos(ω))⋅o(t−1).x1 − sin(ω)⋅o(t−1).x2 − cos(ω)⋅o(t−1).x1 + 
sin(ω)⋅o(t−1).x2, (i.e., the x1-coordinate of o is related to the x2-
coordinate of its location at the previous timestamp). In general, a 
type of movement is axis-independent if and only if3: 

kij=0, ∀ 1≤i≤d and j%d ≠ i%d     (4-9) 

Another crucial observation is that all motion matrices should 
satisfy the translation rule: 

so(t) = Ko ⋅ so(t−1) ⇒ so(t) + c = Ko ⋅ (so(t−1) + c)     (4-10) 

where the translation vector c is a (d⋅f)×1 vector in the form 
c=(c1,c2,…,cd, …, c1,c2,…,cd) (i.e., c1,c2,…,cd repeated f times), 
for arbitrary constants c1, c2,…, cd. Since the intuition behind this 
equation is not obvious, we give a concrete example. Assume that 
the coordinates of a linearly-moving 2D object are o(0)={1,1}, 
o(1)={2,3}, o(2)={3,5} respectively (i.e., its x1- and x2-velocities 
are 1 and 2). If we set up a state with f=2 locations, i.e., 
so(1)={o(0), o(1)} and so(2)={o(1), o(2)}, then they are captured 
by the motion matrix of Kline (given in equation 4-7), namely, 

                                                                 
3 Operator % returns the residue after the modulo operation (e.g., 
5%3=2, 6%3=0).  



so(2)=Kline⋅so(1). Now consider that we translate all locations o(0), 
o(1), o(2) by the same offsets c1=10, c2=20 on the two dimensions 
respectively, obtaining o'(0) = {10,21}, o'(1) = {12,23}, o'(2) = 
{13,25}. Obviously o'(0), o'(1), o'(2) still form a line and hence 
should be captured by Kline, meaning that, for the resulting states 
so'(1) = {o'(0), o'(1)} and so'(2) = {o'(1), o'(2)}, we have so'(2) = 
Kline⋅so'(1). Notice that the effect of the translation on states so(0) 
and so(1) is such that, each new state so'(i) (1≤i≤2) equals so'(i)+c, 
where c = {c1,c2,c1,c2}, leading to the fact that so(2)+c = 
Kline⋅(so(1)+c). In general, the translation rule indicates that, if Ko 
captures a trajectory o1, it also expresses any other trajectory o2 
translated from o1.    

Equation 4-10 imposes some important constraints on the 
elements of a motion matrix, i.e., the translation rule implies: 

c = Ko⋅c     (4-11) 

where c is any translation vector. In case that Ko is a 2×2 matrix, 
it can be shown that Ko satisfies equation 4-11 if and only if all 
the following conditions hold: (i) k11+k13=1, (ii) k12+k14=0, (iii) 
k21+k23=0, and (iv) k22+k24=1 (these conditions become obvious by 
writing each component on the left-hand side c as a function of 
the coefficients of Ko and the right-hand side c). Observe that 
each condition is on the sum of elements of Ko in the same row, 
interleaved by d (=2 in this case). For arbitrary values of d and f, 
equation 4-11 holds if and only if: 

kij + ki(j+d) + ki(j+2d) + … + ki(j+f⋅d) = 1 if j=i % d, and 
kij + ki(j+d) + ki(j+2d) + … + ki(j+f⋅d) = 0 otherwise 

(4-12) 

The last, but not least, important property of Ko is that, based on 
the motion state s(TC) at the current time TC, we can efficiently4 
compute the state at TC+t (i.e., t timestamps later) as: 

so(TC+t) = Ko
t⋅so(TC)     (4-13) 

Evidently, Ko
t (also a (d⋅f)×(d⋅f) matrix) must satisfy equation 4-

11, or specifically: c = Ko
t⋅c for any translation vector c. This is 

implied by 4-11, since Ko
t⋅c = Ko

t−1⋅(Ko⋅c) = Ko
t−1⋅c =…= Ko⋅c = 

c.  
Finally, note that a motion matrix does not specify the 

concrete function parameters, which are implicitly determined by 
state so(t−1). For example, the velocity v in the linear model is 
decided by o(t−1)−o(t−2), whereas Kline simply indicates a line 
trajectory. Thus, the prediction task is now reduced to finding the 
correct Ko (i.e., determining the corresponding movement type) 
after which the parameters of this movement are automatically 
finalized by so(t−1). In the next section, we provide a technique to 
compute Ko and the individual recursive function for each object, 
using its locations at the recent past. 

4.2 Motion estimation 
Let lo(t) be the actual location of object o at time t. Given 
lo(TC−h+1), lo(TC−h+2), …, lo(TC) at the h most recent 
timestamps, our goal is to decide a function o(t) that minimizes 
the summed squared distances (ssd) between the computed (by o) 
and actual locations: 

2

1

| ( ) ( ) |
C

C

T

o

t T h

ssd t t
= − +

= −∑ l ο     (4-14) 

                                                                 
4 Ko

t can be computed in O(log2(t)). For example, if t=13, we first 
calculate Ko

2, Ko
4 (obtained by Ko

2⋅Ko
2), K8 (=Ko

4⋅Ko
4) and 

finally Ko
13=Ko⋅Ko

4⋅Ko
8. 

where |lo(t)−o(t)|2=∑d
i=1[lo(t).xi−o(t).xi]

2 and lo(t).xi is the coordinate 
of lo(t) on the i-th dimension. Equation 4-14 provides a metric to 
evaluate the quality of any motion function o(t). For instance, in 
the linear model minimizing ssd is equivalent to finding the best 
fitting line (going through all o(i), TC−h+1≤i≤TC), which can be 
easily computed using the least squared error method. On the 
other hand, for recursive motion functions the objective is to 
decide the optimal Ko that minimizes equation 4-11, using the 
properties discussed in Section 4.1.  

Recall that Ko involves d2⋅f unknowns, which constitute the 
first d rows from k1* to kd*. The h locations define h−f+1 motion 
states (where f is the retrospect)5, or specifically: 

so(TC−h+f)={lo(TC−h+f), lo(TC−h+f−1),…, lo(TC−h+1)} 
so(TC−h+f+1)={lo(TC−h+f+1, lo(TC−h+f),…, lo(TC−h+2)} 

… 
so(TC)={lo(TC), lo(TC−1),…, lo(TC−f+1)} 

(4-15) 

Therefore, the optimal Ko should satisfy the following h−f 
equations: 

so(t) = Ko⋅so(t−1) for TC−h+f +1≤t≤TC    (4-16) 

We solve the equations corresponding to a row (from k1* to kd*) at 
a time. It suffices to elaborate the solution for k1* (i.e., an 1×(d⋅f) 
vector) as the extension to the other rows is straightforward. 
Consider, for simplicity, the case d=f=2, where each equation in 
the set 4-16 is in the form of formula 4-5. Since we focus on k1*, 
we extract the relevant part of the formula into equation 4-17: 

l(t).x1=k11⋅l(t−1).x1+ k12⋅l(t−1).x2+ k13⋅l(t−2).x1+ k14⋅l(t−2).x2  

 (4-17) 

The above equation can be written into the following form which 
also holds for general d and f (recall that s(i−1) is a (d⋅f)×1 
vector): 

l(t).x1 = k1*⋅s(t−1)     (4-18) 

Since a similar formula is obtained from all (h−f) equations in 4-
16, we obtain h−f (linear) equations for the d⋅f variables in k1* and 
organize them into a matrix format (notice that k1* now appears 
on the right of the multiplication sign): 
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where the superscript T stands for transpose. Let us denote: 
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where S is a (h−f)×(d⋅f) matrix and l a (h−f)×1 vector. A robust 
solution of the linear equation set S⋅k1*=l can be obtained using 
singular value decomposition (SVD) [PFTV02]. SVD 
decomposes S into U⋅W⋅VT, where U is a (h−f)×(d⋅f) column-

                                                                 
5 We assume that f≤h, namely, the number of locations in one 
state cannot exceed the total number of historical locations 
maintained.  



orthogonal matrix, W=[diag(w1,w2,…,wd⋅f)] a (d⋅f)×(d⋅f) diagonal 
matrix with positive elements w1, w2, …, wd⋅f on the diagonal, and 
V a (d⋅f)×(d⋅f) orthogonal matrix (i.e., V⋅VT=I, the identity 
matrix). Thus, k1* is solved as: 

k1* = V⋅[diag(1/w1, 1/w2,…, 1/wd⋅f)] ⋅(UT⋅l)     (4-21) 

Two points worth mentioning are: (i) if |wi| is sufficiently close to 
zero (typically, wi<10-12), its corresponding element in equation 4-
21, is simply replaced by 0; (ii) when h−f≤d⋅f, equation 4-21 
yields a k1* which strictly satisfies equation 4-19. On the other 
hand, if h−f>d⋅f, we have more equations than unknowns, in 
which case SVD produces a k1* that minimizes |S⋅k1*−l|2 
[PFTV02]. This is exactly what we need in order to minimize ssd, 
since equation 4-14 can be re-written as: 
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|S⋅k1*−l|2=∑TC
t=TC−H+1

|lo(t).x1−o(t).x1|
2, i.e., i=1 in the above equation. 

Similarly, the solution for the i-th row ki* of Ko minimizes 

∑TC
t=TC−H+1

|lo(t).xi−o(t).xi|
2; thus the overall Ko optimizes ssd. Note 

that, if the object locations lo(TC−h+1), lo(TC−h+2), …, lo(TC) fall 
perfectly on a curve represented by Ko, equation 4-21 will always 
yield a perfect solution (i.e., strictly satisfying equation 4-19), 
even if h−f>d⋅f (i.e., in this case, some equations are unnecessary 
due to their linear dependence on the others).  

We close this section with another heuristic that produces a 
robust motion matrix Ko (prior to performing SVD). The heuristic 
is based on equation 4-12, which gives d additional constraints for 
solving k1* from equation 4-19. Let us introduce d translation 
vectors (1≤i≤d) ci={c1,c2,…,cd, c1,c2,…,cd, …, c1,c2,…,cd} (as 
mentioned in Section 4.1, c1,c2,…,cd is repeated f times) with cj=1 
(1≤j≤d and j=i) and cj=0 (1≤j≤d and j≠i). For example, c1={1,0, 
…,0, 1,0,…,0, …, 1,0,…,0} and cd={0,0,…,1, 0,0,…, 1,…,0, 
0,…,1}. We modify equation 4-19 by adding d rows to S and L as 
follows:   
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In general, when solving ki*, the i-th number added in L (i.e., the 
right hand side vector of equation 4-23) should be 1 and the other 
ones should be 0. After obtaining Ko, we can predict the motion 
state at any future timestamp with equation 4-16, using the most 
recent state s(TC). 

5. THE SPATIO-TEMPORAL PREDICTION TREE 
As discussed in Section 3, we can choose any function for 
representing trajectories at the server, including the linear model, 
in which case the TPR-tree can be applied directly. A coarse 
function, however, may lead to poor performance, because it is 
likely to generate (i) large horizon bounds do (and therefore 
numerous false hits during query processing) and (ii) frequent 
error-driven updates (and large communication costs). On the 
other hand, although a refined function provides more accurate 
approximation alleviating the above problems, it involves a large 

number of parameters, requires more storage space, and is more 
difficult to manipulate. Our solution constitutes a trade-off 
between the two cases. In particular, we assume that the motion of 
all objects at the server side is represented as a polynomial 
function mS

o with arbitrary degree D: 

 mS
o(t)=o(to)+c1⋅(t−to)+c2⋅(t−to)

2+...+cD⋅(t−to)
D     (5-1) 

where (i) to is the reference time of object o (i.e., the last 
timestamp that o updated mS

o(t)), (ii) o(to) is its location at to, and 
(iii) c1, c2, ..., cD are constant d×1 vectors decided based on the 
precise motion function o(t). Equation 5-1 can be transformed into 
the matrix form.  

mS
o(t) = o(to)+B⋅{t−to, (t−to)

2, ..., (t−to)
D}T     (5-2) 

where the polynomial matrix B is a d×D constant matrix whose D 
columns are  c1, c2, ..., cD, and {t−to, (t−to)

2, ..., (t−to)
D} is a 1×D 

vector (equation 5-2 uses its transpose). Following the 
terminology of Section 4, bij is the element of B on the i-th row 
and j-th column, and bi* (a 1×D vector) is the i-th row.  

In addition to their flexibility for tuning the motion resolution 
(by setting the appropriate value of D), polynomial functions are 
axis-independent, which, as shown shortly, facilitates the design 
of efficient spatio-temporal access methods. Section 5.1 discusses 
the computation of mS

o(t) based on the individual object function 
o(t), and clarifies the error-driven update algorithm. Section 5.2 
presents the spatio-temporal prediction tree (STP-tree), used to 
support general polynomial movements at the server. Finally, 
Section 5.3 discusses processing of predictive range queries.  

5.1 Optimal polynomial derivation 
Given the degree D of mS

o(t) (which is set in advance based on the 
aforementioned trade-off) and an individual motion function o(t) 
(computed using the techniques of Section 4), our goal is to 
compute the parameters of mS

o(t) that minimize the squared sum 
of the distances between mS

o(t) and o(t) during the next H 
timestamps: 
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where mS
o(t).xi is the coordinate of mS

o(t) on the i-th axis 
(similarly for o(t). xi). Since mS

o(t) is axis-independent, it suffices 
to discuss metric ssd1

S on the first dimension: 
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The value of b1* that minimizes ssd1
S is the one that best satisfies 

the following equation: 
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(5-5) 

The solution (similar to equation 4-19) is again based on SVD and 
omitted. The point that requires clarification concerns the 
frequency of the above computations. At every timestamp, each 
object first calculates its individual function o(t) and the 
maximum difference dmax between o(t) and mS

old(t) for the next H 
timestamps, where mS

old(t) is its previous representation at the 
server. According to the error-driven update policy of Section 3, if 



dmax≤do (last reported value of the horizon bound), the object does 
not need to issue an update (since it will not cause a false miss) 
and the computation of mS

o(t) is avoided. On the other hand, if 
dmax>do, the object calculates the new mS

o(t) and do (this time 
based on mS

o(t)) and transmits them to the server. Figure 5.1 
summarizes these procedures. 
 
Algorithm object_update 
Input lo(TC−h+1), lo(TC−h+2), …, lo(TC): object locations at the h 
most recent timestamps, mS

old(t) and dold: last transmitted values 
for the server motion function and the horizon bound 
1. compute current motion function o(t)  
2. dmax=max{dist(o(t), mS

old(t)), for TC≤t≤TC+H} 
3. if dmax>dold 
4.  compute the new optimal mS

o(t) 
5.  do= max{dist (o(t), mS

o(t)), for TC≤t≤TC+H} 
6.  transmit mS

o(t) and do to server 
End object_update 

Figure 5.1: Error-driven update algorithm at each timestamp 

The computations of mS
o(t) and the update messages can be 

reduced at the expense of the query cost. In particular, instead of 
the horizon bound do, the object can send a larger value in order to 
delay its potential violation in the future. However, this will 
increase the number of false hits during query processing. The 
trade-off depends on the relative frequency of updates and 
queries. In update-intensive applications a large bound would be 
appropriate, while in systems with heavy query workload the 
actual horizon bound should be used. 

5.2 STP-tree construction algorithms 
The STP-tree constitutes the generalization of the TPR and TPR*-
trees to arbitrary polynomial functions. Each leaf entry keeps the 
reference time to of an object o, its location o(to) at to, the horizon 
bound do, and the polynomial matrix B. A non-leaf entry e stores 
(i) a timestamp te, which is the maximum of all the reference 
timestamps of the objects in its sub-tree, (ii) a distance de which is 
the largest horizon bound of its children (iii) two points emin and 
emax that define the opposite corners of a d-dimensional rectangle 
enclosing the locations of the children at time te, and (iv) two 
matrices Bmin Bmax such that each element in Bmin (Bmax) is the 
smallest (largest) of the corresponding element (i.e., at the same 
row and column) of all the polynomial matrices in its sub-tree. For 
D=1 (i.e., linear movement), the representation of the STP-tree 
degenerates to that of the TPR-tree.  

For an intermediate entry e, we define its MBR eMBR(t) at any 
future timestamp t as the rectangle with opposite corners emin(t), 
emax(t) computed as follows. 

emin(t) = emin+Bmin⋅{t−te, (t−te)
2, ..., (t−te)

D}T      
emax(t) = emax+Bmax⋅{t−te, (t−te)

2, ..., (t−te)
D}T    

(5-5) 

It can be shown that eMBR(t) covers the location o(t) of each child 
object o, which is a prerequisite for avoiding false misses. We 
further define the integrated perimeter of e during the horizon 

[TC, TC+H] as ∑TC+H
t=TC

(2⋅Manh(emax(t) −emin(t))), where Manh is the 

Manhattan norm of a vector, i.e., for a d-dimensional vector v, 
Manh(v)=∑d

i=1(v.xi), where v.xi is its coordinate on the i-th axis.  
The construction algorithms of the STP-tree follow those of 

the TPR- and TPR*-trees as reviewed in Section 2. The insertion 
algorithm first identifies the path (from the root to a leaf) that 
incurs the minimum increase of the integrated perimeter sum 
(among all the paths), using the TPR*-tree choose path method. If 

the leaf node overflows, some entries, selected by the TPR*-tree 
pick worst algorithm, are re-inserted, after which any node that 
overflows is split. Deletion first locates the object (with 
polynomial matrix B) to be deleted, using its location at the 
current time, by descending nodes whose Bmin and Bmax include B 
(i.e., each element of B falls in the range defined by the 
corresponding elements in Bmin and Bmax). If the deletion causes 
the corresponding leaf node to underflow (the minimum 
utilization is set to 40% of the capacity), the node is removed and 
its entries are re-inserted. Overflows and underflows at the upper 
levels are treated in the same way; e.g., the removal of a leaf node 
will delete an entry from its parent, which may lead to an 
underflow at the next level etc.  

The STP-tree also adapts the sorting split method of the 
TPR*-tree (reviewed in Section 2.3), which obtains D+1 sorted 
lists on the coefficients of the polynomial motion function (i.e., 
o(to), c1, ..., cD in equation 5-1) and decides the final split 
according to the entry distribution that minimizes the integrated 
perimeter sum. The efficiency of the original algorithm, however, 
drops as D increases because, for larger D, the effect of each 
coefficient on the MBR size diminishes; thus, lowering its value 
may not decrease the MBR size considerably, which is also 
decided by the other coefficients. Motivated by this, we present an 
alternative split strategy called the rank split, which works as 
follows. Starting with the first axis, the algorithm sorts the 
coordinates of the current locations, and associates each object 
with a rank, i.e., its sequence number in the sorted list. To 
illustrate this, consider Figure 5.2, which shows the location 
(black dots) of 4 linearly moving points at the current time TC=0, 
and their location (white dots) at time H. The sorted list (at time 0) 
on the x-dimension is {o1, o3, o2, o4}, and the ranks of o1, o2, o3, 
o4 are 1, 3, 2, 4 respectively.  
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Figure 5.2: Illustration of the STP split algorithm 

Next, the algorithm performs another sorting of the coordinates 
(on the same dimension) at time H and assigns ranks accordingly. 
The ranks of o1, o2, o3, o4 in the second sorted list are 2, 1, 4, 3. 
The total rank of each object is the sum of its ranks in the two 
lists, i.e., 3, 4, 6 and 7 for o1, o2, o3 and o4, respectively. Finally, 
the objects are sorted on their total ranks and distributed 
accordingly to the new nodes. Assuming that each node contains 
at least two entries, o1, o2 are placed into the first node and o3, o4 
into the second one. Having finished with the x-axis, the 
algorithm repeats the above steps on the y-dimension, and the 
final split is the better of the two distributions. The total number 
of sorting operations is 3d (i.e., independent of D) as opposed to 
d⋅(D+1) for the sorting split method. As shown in the 
experiments, the rank split leads to a more efficient STP-tree for 
D≥3. Finally, splitting a non-leaf node is reduced to the above 
case by taking the centroids of the MBRs.    

5.3 Query processing 
We now illustrate the algorithm for answering a range query, 
which constitutes the main target of predictive spatio-temporal 



indexes (e.g., TPR- and TPR*- trees aim at the optimization of 
range search). Given a query centered at qP, with radius e and 
interval qT=[qT−, qT+], we first show how to decide whether a leaf 
entry is a definite or a candidate result. Figure 5.3 illustrates the 
approximate locations of two objects o1, o2 at timestamps qT− 
(black dots) and qT+ (white) respectively. Particularly, the circle 
around each dot indicates the area that contains the actual object 
location at the corresponding timestamp, according to its horizon 
bound. We can assert that o1 definitely satisfies the query (without 
examining its individual motion function), since there exists a 
timestamp t∈ qT such that dist(mS

o1(t),qP)+de≤e, i.e., the circle 
centering at mS

o1(t) with radius do1 completely falls in the query 
region. On the other hand, object o2 is not a definite answer 
because dist(mS

o2,qP,qT)+de > e for each t∈ qT. Nevertheless, o2 is a 
candidate since the circle around mS

o2(qT-) intersects the search 
area, implying that the actual location o2(qT-) may be within the 
area.  

 
Figure 5.3: Qualifying and candidate objects 

Figure 5.4 formally demonstrates the processing method based on 
the above description. The algorithm starts from the root of the 
STP-tree and descends each intermediate entry satisfying 
dist(entry,qP,qT) ≤ e+de, where dist(entry,qP,qT) is the minimum 
distance between entryMBR and qP during qT, and de is the 
maximum horizon bound of all the children of entry. If 
dist(entry,qP,qT) > e+de, the entry is pruned, because for all 
objects o in its sub-tree: dist(o,qP,qT) ≥ dist(entry,qP,qT) > e+de ≥ 
e+do. When a leaf entry (e.g., an object o) is encountered, the 
algorithm, (i) either reports o immediately, if it is a definite result, 
or (ii) it requests its precise location, if o is a candidate.  

Algorithm range_query (qP, e, qT, nd) 
Input: query point q, search radius e, query interval qT=[qT−, qT+], 
node nd being processed  
Output: objects satisfying q 
1. if nd is an intermediate node 
2.  for each entry in nd  
3.   if dist(entry,qP,qT) ≤ e+de 
4.    let cnd be the child node of entry 
5.    range_query(qP, e, qT, cnd)  
6. else // nd is a leaf node 
7.  for each object o in nd  
8.   if dist(mS

o1,qP,qT)+do ≤ e  
9.    output o // definite  result 
10.   else if dist(mS

o,qP,qT) < e+do //candidate 
11.    contact o and wait for o(t) 
12.    if dist(o,qP,qT) < e 
13.     output o  
End range_query 

Figure 5.4: The predictive range search algorithm 

6. EXPERIMENTS 
In this section, we demonstrate the effectiveness of the proposed 
techniques with an extensive experimental evaluation. Section 6.1 
first investigates the expressive power of the recursive motion 
function, and then Section 6.2 studies the performance of the 
query processing architecture. 

6.1 Motion function evaluation 
The first experiment aims at verifying the correctness of the 
theoretical derivation in Section 4. Towards this, we use four 
types of mathematical curves, namely, polynomial, sinusoid, 
circle, ellipse as demonstrated in Figure 4.1. In particular, 
polynomial is the composite of two independent movements x(t), 
y(t) on the x- and y-axes respectively, where x(t)=v⋅t (i.e., constant 
velocity v=10) and y(t)=v⋅t+(a⋅t2)/2 (i.e., v=10 and constant 
acceleration a=1). Sinusoid is also the result of two independent 
motions: x(t)=t, y(t)=sin(ω⋅t), where ω is fixed to π/50. The circle 
and ellipse are obtained using a fixed angular speed ω=π/50; for 
circle, x(t)=cos(ω⋅t), y(t)=sin(ω⋅t), while for ellipse x(t)= 
100cos(ω⋅t), y(t)=50sin(ω⋅t) (i.e., the major and minor axes of the 
ellipse have lengths 100 and 50, respectively). These curves are 
regular, meaning that they can be captured precisely by the 
proposed recursive motion function (RMF). The first two lines of 
their motion matrices are: [ ]2 0 -1 0 0 0

0 3 0 -3 0 1  (polynomial), 

[ ]2 0 -1 0 0 0
0 1−α−β 0 α 0 β

 (sinusoid) and [ ]1+cos(ω) -2sin(ω) -cos(ω) 2sin(ω)
sin(ω)/2  1+cos(ω)  −sin(ω)/2  −cos(ω)  

(ellipse), where α= 1−cos(ω)
 cos(2ω)−cos(ω) and β=2cos2(ω)−2cos(ω)

 cos(2ω)−cos(ω) . The remaining 
lines are determined by equation 4-6, whereas the matrix for 
circle is given in equation 4-8. Note that the motion matrices for 
polynomial and sinusoid have 6 rows and columns, in contrast to 4 
(rows/columns) for circle and ellipse.  

    

(a) Polynomial (b) Sinusoid (c) Circle (d) Ellipse 
Figure 6.1: Movements with known motion matrices 

We utilize the techniques described in Section 4 to perform 
prediction on these curves using, however, the minimum amount 
of space. Specifically, the retrospect f (i.e., the number of 
locations in one state) equals the minimum value that is necessary 
for deriving the motion matrix of the corresponding trajectory. For 
polynomial and sinusoid, f=3 (hence, their matrices have 6=3×2 
rows, for dimensionality d=2), and for circle and ellipse f=2. 
Further, the number of historical locations maintained at all times 
equals 3f, which is the minimum requirement in order to correctly 
solve the motion function; otherwise, the number of equations is 
smaller than that of unknowns. We do not explicitly input the 
motion matrices, but use our algorithm to discover them and then 
apply equation 4-13 to compute the location of the moving point 
at H (i.e., horizon) timestamps later. The error is defined by the 
distance between the computed and actual locations. All the 
curves are scaled so that their minimum bounding rectangles have 
length 10000 on each axis. For comparison, we also employ a 
linear model (denoted as LM in the sequel), where the velocity of 
the line is decided from the same number of historical locations 
using the least square error method, that minimizes the sum of 
the squared distances between the actual and computed locations. 

Figure 6.2 illustrates the average prediction error over 200 
consecutive timestamps for all trajectories. It is clear that, even for 
the farthest horizon (H=20 timestamps), RMF incurs negligible 



error (i.e., below 1 in a data space 100002), confirming the 
validity of our analysis. As expected, the linear model completely 
fails to capture these movements, i.e., its largest error is over 
2000. The slight degradation of RMF as H increases is caused by 
some imprecision in the motion matrix, which is “magnified” in 
the final prediction due to the matrix-power computation (i.e., we 
need to calculate the power H of the motion matrix). Since LM is 
erroneous in all cases, we omit it in the following discussion.  
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Figure 6.2: Prediction error for regular movements  

The next experiment evaluates the expressive power of the 
recursive function using unknown complex movements that 
cannot be represented as the linear recursive form (see Figure 6.3) 
in an obvious manner. Specifically, spiral is the composition of 
the linear and circular movements, i.e., x(t)=v⋅t+cos(ω⋅t), and 
y(t)=v⋅t+sin(ω⋅t). The values of v and ω are set to 10 and ω=π/50 
respectively. Peach, swirl, parabola are generated using the 
formula (in the polar space) r(t)p=cp⋅cos(c⋅ω⋅t), where c (=3) and 
ω (=π/2) are constants deciding the curve size, and p another 
constant that determines the motion type (p=0.5, 0.1, −0.5 for 
peach, swirl, and parabola, respectively6). All curves are 
normalized to the data space with axis length equal to 10000.  

    
(a) Spiral  (b) Peach (c) Parabola (d) Swirl 

Figure 6.3: Movements with unknown motion matrices 

The difference between the unknown and the regular movements 
of Figure 6.1 is that, for unknown curves, the motion matrix varies 
(sometimes periodically) with the concrete location of the point 
(i.e., the matrix captures the tendency of the recent movement). 
Therefore, we do not know the minimum number f of locations in 
one state required to capture this movement. Further, unlike the 
regular motions (where we can restore the entire curve using a 
few locations), for unknown ones we may need longer history 
(i.e., larger h) in order to sufficiently train the matrix. Obviously, 
both f and h are highly related to H (i.e., how many timestamps in 
the future we wish to predict). For example, a good estimation for 
the near future may be possible by inspecting only recent history. 

In order to study the relationship between these factors, in 
Figure 6.4 we vary the retrospect f from 2 to 6 and measure the 
average prediction error of 200 timestamps, after setting h=4f and 
H to 10. When f=2, the error for spiral and peach is large (Figure 
6.4a), indicating that RMF cannot capture these movements by 
                                                                 
6 We mention that the parabola thus generated cannot be written 
as the conventional form x(t)=y2(t)+2y(t)+1 (which can be 
captured by RMF). Particularly, it is not the composition of two 
independent x- and y- movements.  

using a state with only two locations. However, if we allow only 
one more location in each state, the estimation error drops from 
around 500 to below 10. The precision continuously improves as 
each state includes more locations and the error eventually drops 
below 1. Figure 6.5 shows the trajectories of the predicted peach 
for f=2 and 3, where the improvement is clearly visible. Similar 
behavior is also observed for parabola and swirl in Figure 6.4b, 
except that the error for f=2 is smaller.  
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(a) Spiral and peach (b) Parabola and swirl 

Figure 6.4: Prediction error vs. the retrospect (h=4f, H=10) 

  
(a) f=2 (b) f=3 

Figure 6.5: Improvements in peach with larger retrospect 

In Figure 6.6 we fix f=4, H=10 and measure the prediction error as 
a function of h (from 3f=12 to 5f=20). For spiral and swirl the 
accuracy increases monotonically with h, but for peach and 
parabola, the error initially decreases, and then grows 
(nevertheless, the final error is still very small). In these cases, as 
h becomes larger, it is more difficult for RMF to quickly adapt to 
the motion changes since it is also influenced by old locations 
leading to biased estimation. Therefore, blindly increasing the 
history length does not necessarily enhance the prediction. Figure 
6.7 illustrates the error of predicting different timestamps in the 
future using f=4 and h=16. As in Figure 6.2, the accuracy 
gradually decreases, but the highest error is still very small (25, or 
0.25% of the length of the data axis) even for the farthest horizon. 
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Figure 6.6: Prediction error vs. the history length (f=4, H=10) 
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Figure 6.7: Prediction error vs. horizon (f=4, h=16) 



6.2 Query processing evaluation 
This section evaluates the efficiency of the STP-tree as well as the 
filter-refinement processing strategy. Due to the lack of real 
spatio-temporal data, we generate synthetic movements following 
the methodology of previous work [SJLL00, TPS03]. Specifically, 
1k terminals are first randomly selected from a real point dataset 
([Tiger]) and the data space is scaled to length 10000 on each 
axis. Each object decides a source and destination terminal, whose 
distance is larger than 1000 (i.e., 1/10 of the axis length). The 
movement from the source to the destination consists of three 
phases. In the first phase, the object accelerates with constant 
acceleration 2 on each axis towards the direction of the 
destination. The accelerative phase lasts 10 timestamps after 
which the velocity equals 20. In the second phase, the object 
moves towards the destination along an arc of a circle or a 
parabola. These two curves are representatives of the regular and 
unknown movements examined in the previous section. Their 
parameters are decided so that the object, maintaining constant 
speed 20, travels roughly 50 timestamps to reach the position 
where it starts the last decelerating phase. In this phase, the object 
slows down with acceleration −2 on each dimension before 
arriving at the destination (the phase lasts 10 timestamps). Then, 
the object selects the next destination, and repeats the above 
movements. The dataset contains the simulation of 10k objects 
over 200 timestamps, i.e., a total of 2 million location changes.  

At each timestamp, we execute 50 queries whose locations 
follow the distribution of the terminals, and the radii of their 
(circular) search area constitute a workload parameter e (denoted 
as a percentage of the axis length). Each query is associated with a 
(future) time interval qT=[qT−, qT+] such that (i) the interval length 
qtlen is also a parameter, and (ii) qT randomly distributes in next 
H=20 timestamps (i.e., the horizon). We measure two types of 
costs: (i) the number of candidate objects that qualify the filter 
step (which determines the communication overhead of the 
refinement step), and (ii) the I/O cost (in terms of the number of 
node accesses) at the server index. The page size is set to 4k bytes 
for all experiments. The node capacity of the STP-tree depends on 
the highest degree D of the polynomial motion function and 
ranges from 37 (D=5) to 92 (D=1).  

The first experiment studies the effect of D on the 
communication overhead, which involves (i) the error-driven 
object updates, and (ii) the refinement step of query evaluation. 
Figure 6.8a illustrates the average number of updates per 
timestamp, as a function of D. When D=1, every object must issue 
an update at each timestamp, resulting in prohibitive overhead. In 
this case an object is approximated by the line tangent to the 
actual motion at its current location. As it deviates from the 
location, its distance to the tangent line always increases (a 
property for all smooth curves), thus triggering the update at the 
next timestamp. The number of updates decreases sharply for 
D=2, indicating that the expressive power of a 2-degree 
polynomial is significantly higher. As D increases further, 
however, the update savings diminish and the improvement for 
D≥3 is only marginal. This indicates that the assumed 
(accelerative, circular, parabola) movement types can be 
adequately approximated using a 3-degree polynomial. Figure 
6.8b plots the average number of refinement candidates per query 
(e=2.5% and qtlen=10%). Similar to Figure 6.8a, the 
improvement drops quickly when D exceeds 3.   
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Figure 6.8: Influence of D on the network cost 

Figure 6.9 shows the average number of node accesses for 
answering a query (e=2.5% and qtlen=10) as a function of D, for 
the trees obtained by the sorting split and rank split algorithms. 
Interestingly, the query cost decreases until D reaches a certain 
threshold 3 (for rank split) or 2 (for sorting split), but increases as 
D grows further. To understand this, note that a larger D lowers 
both the node fanout (which deteriorates query performance) and 
the objects’ distance bounds (which improves performance). 
When D is small, the benefits of increasing the node size 
outweigh the shortcomings, explaining the initial performance 
improvement. As D crosses the threshold, however, the 
shortcomings dominate the benefits. Rank split outperforms the 
sorting split for D≥3, while as discussed in Section 5.2 it incurs 
smaller computational overhead. For the remainder of the section 
we apply rank split and set D=3, since this value leads to a 
balanced behavior with respect to update, refinement and query 
processing costs.  
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Figure 6.9: Server I/O cost vs. D (e=2.5%, qtlen=10) 

The next experiment compares STP- and TPR-trees (we use the 
TPR* implementation). Figure 6.10a (6.10b) fixes e to 2.5%, and 
illustrates the refinement (I/O) cost, as a function of qtlen. In both 
cases, the STP-tree outperforms the TPR-tree significantly. In 
particular, the number of candidate objects in STP is about 15% 
larger than the actual query size (also included in the diagrams). 
On the other hand, the number of candidate objects retrieved by 
TPR is 3-4 times larger. The difference in the performance of the 
two structures increases with qtlen. Similar observations hold for 
Figure 6.11, which measures performance with respect to the 
range radius e, fixing qtlen to its median value 10.  
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Figure 6.10: Query costs vs. qtlen (e=2.5%) 
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Figure 6.11: Query costs vs. e (qtlen=10) 

Figures 6.12a and 6.12b exhibit the average refinement and server 
costs at individual timestamps, for queries with parameters 
e=2.5% and qtlen=2.5%. Although the number of candidate 
objects remains roughly the same with time, the I/O overhead 
gradually increases due to the structural deterioration of the both 
trees. This is consistent with the results of the previous work 
[SJLL00, TPS03]. Nevertheless, the STP-tree still outperforms the 
TPR-tree in all cases. The last experiment concerns the update 
cost. Specifically, Figure 6.13a plots the number of updates per 
timestamp, issued by objects whose horizon bound has been 
exceeded. As discussed in the context of Figure 6.8a, in case of 
D=1 (i.e., the TPR-tree) each object must issue an update at every 
timestamp. Since the STP-tree uses a higher (D =3) degree, the 
number of updates is significantly smaller. Figure 6.13b illustrates 
the average cost of each update (including insertions and 
deletions) in the corresponding structure. Similar to Figure 6.12b, 
the increase in the update cost is caused by the structural 
degradation.   
  

50

200

num. of candidate obj./query
STP TPR

0

100

150

250

1 40 80 120 160 200
num. of elasped timestamps  

num. of node accesses/query

num. of elasped timestamps

STP TPR

0
5

10
15
20
25
30

1 40 80 120 160 200
 

(a) Refinement cost vs. time (b) Server I/O cost vs. time 
Figure 6.12: Query cost vs. time (e=2.5%, qtlen=10) 
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7. CONCLUSION 
Previous techniques for prediction in spatio-temporal databases 
usually assume linear movements, which seriously hinders their 
applicability in practice. Our paper overcomes the shortcomings 
of linear prediction with a novel architecture that supports 
arbitrary motion patterns, not necessarily known in advance. 
Further, we propose the concept of recursive motion functions and 

prove, both theoretically and empirically, that it can accurately 
express a large number of movements. Finally, we develop a 
spatio-temporal access method that generalizes the current state-
of-the-art indexes to polynomial of higher (than 1) degrees.  We 
believe that this work lays down a solid foundation for future 
research on the management and indexing of moving objects. For 
example, existing results on predictive selectivity estimation 
[CC02, TSP03] are applicable only to the filter step of our 
architecture, while the selectivity estimation of actual object 
trajectories remains an open problem.  

ACKNOWLEDGEMENTS 
This work was supported by grant HKUST 6180/03E from Hong 
Kong RGC. 

REFERENCES 
[AAE00] Agarwal, P., Arge, L., Erickson, J. Indexing Moving 

Points. PODS, 2000. 
[AA03] Aggarwal, C., Agrawal, D. On Nearest Neighbor 

Indexing of Nonlinear Trajectories. PODS, 2003 
[BKSS90] Beckmann, N., Kriegel, H., Schneider, R., Seeger, B. 

The R*-tree: An Efficient and Robust Access Method 
for Points and Rectangles. SIGMOD, 1990. 

[CC02] Choi, Y., Chung, C. Selectivity Estimation for Spatio-
Temporal Queries to Moving Objects. SIGMOD, 
2002. 

[HKT03] Hadjieleftheriou, M., Kollios, G., Tsotras, V. 
Performance Evaluation of Spatio-temporal 
Selectivity Estimation Techniques, SSDBM, 2003.  

[HKTG02] Hadjieleftheriou, M., Kollios, G., Tsotras, V., 
Gunopulos, D. Efficient Indexing of Spatiotemporal 
Objects, EDBT, 2002.  

[ISS03] Iwerks, G., Samet, H., Smith, K. Continuous K-
Nearest Neighbor Queries for Continuously Moving 
Points with Updates. VLDB, 2003. 

[KGT99] Kollios, G., Gunopulos, D., Tsotras, V. On Indexing 
Mobile Objects. PODS, 1999. 

[PFTV02] Press, W., Flannery, B., Teukolsky, S., Vetterling, W. 
Numerical Recipes in C++ (second edition). 
Cambridge University Press, ISBN 0-521-75034-2, 
2002. 

[PSTW93] Pagel, B., Six, H., Toben, H., Widmayer, P. Towards 
an Analysis of Range Query Performance in Spatial 
Data Structures. PODS, 1993. 

[SJ02]   Saltenis, S., Jensen, C. Indexing of Moving Objects 
for Location-Based Services. ICDE, 2002. 

[SJLL00] Saltenis, S., Jensen, C., Leutenegger, S., Lopez, M. 
Indexing the Positions of Continuously Moving 
Objects. SIGMOD, 2000. 

[Tiger] http://www.census.gov/geo/www/tiger/ 
[TP02] Tao, Y., Papadias, D. Time-Parameterized Queries in 

Spatio-Temporal Databases. SIGMOD, 2002. 
[TPS03] Tao, Y., Papadias, D., Sun, J. The TPR*-Tree: An 

Optimized Spatio-Temporal Access Method for 
Predictive Queries. VLDB, 2003. 

[TSP03] Tao, Y., Sun, J., Papadias, D. Selectivity Estimation 
for Predictive Spatio-Temporal Queries. ICDE, 2003. 

[TUW98] Tayeb, J., Ulusoy, O., Wolfson, O. A Quadtree-Based 
Dynamic Attribute Indexing Method. The Computer 
Journal, 41(3): 185-200, 1998.  

 


