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ABSTRACT

Graph database systems (GDBs) have supported many important
real-world applications such as social networks, logistics, and path
planning. Meanwhile, logic bugs are also prevalent in GDBs, leading
to incorrect results and severe consequences. However, the logic
bugs largely cannot be revealed by prior solutions which are un-
aware of the graph native structures of the graph data. In this paper,
we propose GAMERA (Graph-aware metamorphic relations), a novel
metamorphic testing approach to uncover unknown logic bugs in
GDBs. We design three classes of novel graph-aware Metamor-
phic Relations (MRs) based on the graph native structures. GAMERA
would generate a set of queries according to the graph-aware MRs
to test diverse and complex GDB operations, and check whether
the GDB query results conform to the chosen MRs.

We thoroughly evaluated the effectiveness of GAMERA on seven
widely-used GDBs such as Neo4j and OrientDB. GAMERA was highly
effective in detecting logic bugs in GDBs. In total, it detected 39
logic bugs, of which 15 bugs have been confirmed, and three bugs
have been fixed. Our experiments also demonstrated that GAMERA
significantly outperformed prior solutions including Grand, GD-
smith and GDBMeter. GAMERA has been well-recognized by GDB
developers and we open-source our prototype implementation to
contribute to the community.
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1 INTRODUCTION

Graph database systems are a typical type of database systems for
processing graph data containing nodes and edges. They have pow-
ered many applications such as social networks [29], knowledge
graphs [23, 40], and fraud detection [36]. GDBs are widely used
in practice to enable efficient storage and queries of graph data.
For instance, the leading provider of graph technology and the
most popular GDB, Neo4;j [5, 13], has been used by more than 950
enterprise customers, and supported more than 75% of connected
data applications of the Fortune 100 [27].

Similar to other software systems [41, 42], GDBs contain logic
bugs, which could cause unexpected behaviors and lead to severe
consequences. For example, a logic bug in a social network GDB
might cause incorrect friend recommendations, leading to user
dissatisfaction. Logic bugs in GDBs refer to the errors or flaws in
the way graph data is represented, stored, or queried that lead to
erroneous results, e.g., omitting an anticipated node in the query
result. These bugs mainly stem from incorrect implementation or
optimization [39] of the GDB engines. Since logic bugs usually do
not crash the systems, automatically detecting them is inherently
challenging. We need testing oracles to verify whether the expected
behaviour is observed in each test.

1 MATCH path=(a)-[*]-(b) WHERE ID(a)=0 AND ID(b)=1
RETURN COUNT (path)

2 // >0

3 MATCH path=(a)-[*]-(b) WHERE ID(a)=1 AND ID(b)=2
RETURN COUNT (path)

4 /J/ -> 4

MATCH path=(a)-[*]-(b)-[*]-(c) WHERE ID(a)=0 AND ID(b)

=1 AND ID(c)=2 RETURN COUNT(path)

6 // -> Error 4 != 0%4

Listing 1: A logic bug detected in RedisGraph. The number of paths
in the third query result is incorrect.

Listing 1 shows a real-world logic bug we detected in Redis-
Graph !. The query in line 1 counts the number of paths between
the first node with id 0 and the second node with id 1. Line 3 calcu-
lates the number of paths between the second node and the third

IThe issue can be found at https://github.com/RedisGraph/RedisGraph/issues/2929.
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node with id 2. The first two queries get results of zero and four,
respectively. It is evident that the number of paths that start from
the first node, pass the second node, and finally reach the third
node should be identical to the multiplication of these two queries’
results, i.e., zero. However, the query in line 5 returns four incor-
rectly, which indicates a logic bug. The RedisGraph developers have
confirmed this bug and are working on fixes at the time of writing.

To detect logic bugs in GDBs, multiple approaches have been
proposed. GDsmith [32] and Grand [47] leverage differential test-
ing [38]. They generate syntax-correct queries and feed the same
queries to multiple GDBs for checking inconsistent results among
the GDBs. The limitations of such differential testing approaches
are that all GDBs yielding the same result does not necessarily
indicate correctness because the tested GDBs could all suffer from
the same bugs, and they can only test the functionalities overlapped
across the tested GDBs. Metamorphic testing approaches [26] do not
have such a limitation. Metamorphic testing uses a set of carefully-
designed Metamorphic Relations (MRs) to mutate test inputs and
expose bugs by checking if the outputs violate certain (invariant)
properties specified by the MRs. In relational database systems,
SQLancer [18] leverages ternary logic partitioning (TLP) [42] and
non-optimizing reference engine construction (NoREC) [41] to form
MRs and detect logic bugs. To our best knowledge, GDBMeter [34]
is the only work adopting metamorphic testing to test GDBs. It ports
the idea of TLP to split a given query into three sub-queries, and
the MRs it employs specify that the union of the three sub-query
result sets should be equal to the original result set.

However, prior metamorphic testing approaches cannot effec-
tively detect many logic bugs (e.g., the one in Listing 1) because
they are unaware of the graph native structures. Specifically, the
graph data manipulated by GDBs contains complex semantics and
relationships among the graph native structures—i.e., nodes, edges
and paths—such as various types of directed edges, cycles, etc. GDBs
thus have specific code logic for handling the graph native struc-
tures. However, prior solutions do not analyze the graph native
structures and cannot effectively reveal the related logic bugs. They
further have two fundamental problems. First, they have limited
support for graph query syntaxes and are unable to comprehensively
exercise the GDBs’ operations on the graph native structures. For
instance, they even do not support the commonly-used path tra-
versal syntax, union clauses, etc. They thus cannot thoroughly test
the related important functionalities of GDBs. Second, they lack
necessary testing oracles to effectively identify bugs related to graph
native structures. They directly reuse oracles (e.g., TLP) from rela-
tional database system benchmarking, which cannot capture the
graph native structures in graph data. In order to comprehensively
test GDBs, new MRs derived from the graph native structures need
to be proposed.

In this paper, we propose GAMERA (Graph-aware metamorphic
relations), a novel metamorphic testing solution to uncover logic
bugs in GDBs. Based on the features of graph native structures, we
design a set of new graph-aware MRs and oracles, and support the
related query language syntaxes to address the above-mentioned
issues. In particular, GAMERA employs three classes of novel graph-
aware MRs. We first design several elementary MRs to test and
cover the fundamental graph data operations over the primitive-
type graph data. We then construct the compound MRs from the

elementary MRs for testing more complex GDB functionalities. We
design two graph query pattern manipulation techniques to trans-
form the existing basic (or complex) query patterns to equivalent
but more complex (or simpler) ones for developing the compound
MRs. Finally, we consider the dynamic update of the graph data in
the GDBs and propose several dynamic MRs that are derived from
our novel graph mutation techniques. Based on the three classes
of graph-aware MRs, GAMERA generates a set of queries and uses
oracles to check if the results conform to the chosen MR. In addi-
tion, GAMERA resolves the syntax support problem by handling a
more comprehensive set of graph query syntaxes in graph query
languages, such as path traversals, union clauses, etc.

We implemented a prototype of GAMERA with 14,000 lines of code
for testing Cypher and Gremlin based GDBs. We thoroughly evalu-
ated the effectiveness of GAMERA on seven widely-used GDBs such
as Neo4j [13] and OrientDB [15]. At the time of writing, GAMERA
has detected in total 39 bugs, of which 15 bugs have been confirmed,
and three bugs have been timely fixed. The good performance of
GaMERA resulted from all the three classes of MRs. We found that
our compound MRs were the most effective by contributing to the
detection of 30 bugs. The elementary and dynamic MRs helped
detect five and four bugs, respectively. We also compared GAMERA
with three state-of-the-art GDB benchmarking tools (GDsmith [32],
Grand [47] and GDBMeter [34]) on the same set of GDBs. GAMERA
was able to detect all the eight and five bugs that Grand and GDBMe-
ter could detect, respectively, and GAMERA outperforms GDsmith
in detecting logic bugs. This further demonstrates the advantage of
our techniques over the prior ones and the importance of employing
graph-aware MRs for detecting logic bugs in GDBs. Our automated
benchmarking approach received positive feedback from the GDB
community and we have publicly released our research artifact of
GAMERA to further contribute to it.

In summary, our paper makes the following contributions:

e We propose a set of novel graph-aware MRs to facilitate
logic bug detection in GDBs.

e We design and open-source a new system, GAMERA, for
benchmarking Cypher-based and Gremlin-based GDBs.

e With GAMERA, we have detected 39 bugs, among which 15
bugs have been confirmed by the developers.

2 BACKGROUND AND MOTIVATION

2.1 Labeled Property Graph in GDBs

Labeled property graph model [44] is commonly used by graph
database systems (GDBs) such as Neo4j, RedisGraph, OrientDB, and
JanusGraph to represent their graph structures. It contains a set of
nodes and a set of edges associated with those nodes. Each node or
edge has an attached label to separate it into a specific group. A set
of key-value pair attributes is used to describe the properties and
provide additional metadata of the nodes or edges.

Figure 1 shows an example of a labeled property graph, which
consists of two nodes and one edge. Specifically, a node (v:1) with
label person has properties name and age, while a node (v2) with
label software has properties name and lang. One directed edge (e:1)
labeled by created has the since property, which indicates when
a person created the software. In this paper, we define the nodes,
edges, and paths of labeled property graphs in GDBs as graph native



name: Alice name: demo
age: 29 lang: python
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Figure 1: A labeled property graph. A unique identifier is assigned
for each node and edge, e.g., v:1 represents a node with an id 1.

structures. To guarantee the fundamental functionalities, GDBs need
to naturally handle such graph native structures in graph data.

2.2 Graph Query Languages

Unlike relational database systems which support the standard-
ized Structured Query Language (SQL), different GDBs support
distinct graph query languages. GDBs utilize these graph query
languages to create, access, and modify graph data. For example,
Neo4j [13] develops Cypher [30]; TinkerPop [21] develops Grem-
lin [43]; TigerGraph [19] develops GSQL [28]; and ArangoDB [3]
develops AQL [2], etc. Specially, most of the GDBs use Cypher and
Gremlin for graph data management [5]. Therefore, in this paper
we mainly focus on Cypher-based and Gremlin-based GDBs. We
introduce the main syntaxes of these two popular languages as
follows.

Cypher. Cypher is a declarative and SQL-like query language that
allows for matching nodes and edges in labeled property graphs.
Cypher uses the ASCII-art syntax. For instance, it represents nodes
using round brackets and edges using arrows. Here we give an
example of Cypher query: MATCH (p:person)-[:created]->(:software
) WHERE p.age > 25 RETURN p.name}. It returns the names of persons
who are over the age of 25 and have created the software. In this
query, MATCH is an operator usually used to describe the subgraph
for finding nodes, edges, or paths; WHERE is used to add additional
constraints to the subgraphs and filter out unwanted ones; and
RETURN specifies how the results should be outputted. Cypher
provides various syntaxes and constraints [4] for querying graph
data, including specifying patterns, filtering patterns, indexing,
aggregation, etc.

Gremlin. Gremlin is a functional language whereby traversal oper-
ators are chained together to form path-like expressions. A Gremlin
query consists of a sequence of Gremlin traversal primitives [10],
which ultimately calculate the final outputs. We provide an example
of Gremlin query here: g.v() .where(values('name').is(eq('Alice")
)) .outE('created').inV() .hasLabel('software').values('lang'). This
query first gets all nodes using g.V(). It then filters the nodes
whose name equals to Alice using where() and eq(). The software
created by Alice can be accessed by traversing the edges using
outE(’created’).inV(). Finally, it returns the language of the software
by hasLabel() and values(). In this example, a nested query exists in
the where() AP, in which is() is used to assess whether a property
value matches the predicate. The traversal style of Gremlin is no-
ticeable in this case since we retrieve the final results by calling a
sequence of functional APIs.

Table 1: Comparison of existing approaches.

Type Graph Query Lang,. Graph Native Graph-
P Lang. Syntaxes Structure aware MRs
GDsmith [32] DT Cypher © O O
Grand [47] DT Gremlin © O O
SQLancer [18] MT O O O
TLP [42] MT O O O O
GDBMeter [34] MT  Cypher & Gremlin © O O
GAMERA MT  Cypher & Gremlin [ J [ J [ J

O/©/® denote a tool is incapable/partially capable/fully capable.

2.3 Existing Approaches and Limitations

We summarize existing GDB benchmarking solutions in Table 1.
Some prior approaches such as GDsmith [32] and Grand [47] em-
ploy differential testing (DT). They feed the same queries into multi-
ple GDBs, aiming to find inconsistent results among them. However,
all GDBs returning the same result does not necessarily imply cor-
rectness. Using inconsistency as the oracle in DT inherently brings
two issues: 1) it cannot detect the bugs that exist in all the tested
GDBs as they would always return the same incorrect results [47];
and 2) it can only test the common functionalities overlapped across
the tested GDBs but not the unique functionalities of a specific GDB.

Metamorphic testing (MT) [26, 37] alleviates the (differential)
testing oracle problem with Metamorphic Relations (MRs). To test
a program, MT mutates program inputs and detects bugs by check-
ing if the outputs violate certain (invariant) properties specified by
the MRs. As an example, to test the implementation of sin(x), MT
asserts whether the MR sin(x) = sin(z — x) always holds when
arbitrarily mutating x. A bug in sin(x) is detected when input x
and its variant = — x produce inconsistent outputs. MT thus does
not require the existence of multiple similar program implementa-
tions (e.g., multiple database systems in GDB testing). To date, MT
methods have found hundreds of bugs in database systems, demon-
strating its effectiveness [18, 41, 42]. However, most prior database
MT works focus on relational database systems [18, 41, 42]. Due to
the huge differences between relational and graph database systems
(e.g., query languages, structures of stored data, etc.), most of them
cannot be directly applied to the domain of GDBs. To the best of
our knowledge, GDBMeter [34] is the only MT tool for GDBs. It
ports the idea of ternary query partitioning [42] used in relational
databases to GDBs. It splits a given query into three derived sub-
queries, in which the predicates are evaluated to TRUE, FALSE, and
IS NULL, respectively. It then validates the consistency between
the union of the derived result sets and the original one.

GDBs are designed and expected to properly handle the graph
native structures for manipulating the graph data. However, exist-
ing MT solutions are unaware of graph native structures in GDBs;
this hinders their effectiveness. The reasons are two-fold. First,
graph query languages of GDBs contain a comprehensive set of
language syntaxes related to the graph native structures, whereas
prior MT approaches only cover limited syntaxes. For instance, the
commonly-used path traversal syntax and union clauses are not
supported by prior works. As a result, they cannot well test all
the fundamental operations in GDBs and reveal related logic bugs
(more details are in §6.3).

Second, prior MT approaches lack necessary testing oracles to
effectively detect bugs related to graph native structures. Given
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the unique features of graph data in GDBs, existing testing oracles
cannot sufficiently identify related bugs like the one in Listing 1.
For instance, GDBMeter directly reuses the existing ternary query
partitioning MR from relational database systems but does not
analyze the unique graph native structures. Therefore, it cannot
thoroughly test GDBs. Without testing oracles associated with
the graph native structures, lots of severe logic bugs would not
be identified. Defining oracles, however, is a non-trivial and well-
known research challenge in MT.

3 OVERVIEW

In this paper, we aim to advance the benchmarking technique of
graph database systems and address the limitations of the prior
works. We propose GAMERA, an effective and automated meta-
morphic testing solution to detect logic bugs in graph database
systems. We tackle the first limitation by supporting more graph
query syntaxes (e.g., path traversals, union clauses, etc.) for the two
mainstream graph query languages—Cypher and Gremlin. Besides,
we resolve the second limitation by proposing a set of novel graph-
aware MRs in GAMERA. The new MRs perceive the graph native
structures and features to define effective testing oracles. These
MRs are categorized into three classes, which could comprehen-
sively test the various functionalities of GDBs. The comprehensive
language syntax supports and the new graph-aware MRs enable
GAMERA to expose new classes of logic bugs related to graph native
structures, which cannot be found by the prior solutions.

Figure 2 shows the workflow of GAMERA. In (D, GAMERA gen-
erates the graph schema to define the labels of nodes and edges,
as well as their property names and corresponding types. In @,
it randomly creates graph data based on the schema. The graph
data is inserted by a sequence of random graph queries (e.g., cre-
ate and update queries) to create the graph database. According
to the generated graph data, GAMERA refers to our novel graph-
aware elementary MRs (), compound MRs (@), and dynamic MRs
(®) for testing GDBs. In each test, it generates a set of queries
(e.g., Q1,Q2, Q3) based on the graph-aware MRs. Finally, GAMERA
uses the corresponding oracles to label and report bugs. The oracle
checks if the result sets Ry, Rz, R3 produced by these queries con-
form to the selected MR. A consistency violation of such an MR
indicates a logic bug in the GDB.

We further use the example in Listing 1 to demonstrate the work-
flow of GaMERA for detecting logic bugs in GDBs. First, GAMERA

randomly generates a graph schema and graph data with 100 nodes
and 200 edges. The number of nodes and edges can be customized.
It then generates three testing queries according to the MR shown
in Listing 1. Specifically, Q; (line 1), Q2 (line 3), and Q3 (line 5) are
generated to count the number of paths between nodes. Q3 is the
corresponding oracle statement, which checks whether R3 (line 6)
is consistent with the result computed from R; (line 2) and Ry (line
4). As there is an MR violation, GAMERA reports it as a bug.

In the following content, we describe how GAMERA generates the
graph schema (D) and the initial graph data (). In §4, we elaborate
on our core design of different graph-aware MRs, and introduce
each query generation based on the MRs and the corresponding
oracle in detail.

Graph Schema Generation. A graph schema defines the types
of nodes and edges as well as their properties in a labeled property
graph. By enforcing graph schema, GDBs ensure that only valid
queries can be executed on the data. The graph schema guarantees
that the queried nodes, edges, and properties actually exist and are
correctly referenced. It prevents executing queries that reference
nonexistent nodes, edges, or properties, thus avoiding meaningless
queries. For example, for the graph data shown in Figure 1, the
query statement querying the nodes with system label would be
blocked from execution by GDBs; GDBs will warn the user that the
query structure is incorrect as it violates the graph schema.

In the labeled property graph model, a node contains a label
and a set of properties. We represent a node V as <Ly, Py >, where
Ly describes the label for the node and Py describes its corre-
sponding properties. A directed edge contains a label, a set of
properties, a starting node, and an ending node. Similarly we rep-
resent a directed edge E as <Lg, Pg, startV, endV>, where Lg de-
scribes the label for the edge and Pk describes its properties, and
startV, endV belongs to the node set V. Concretely, Ly, L are ran-
domly generated strings; and Py, Pg are sets composed of elements
<propertyName, T>, where propertyName and T represent the
property name and data type (e.g., integer, float, strings, booleans,
and points), respectively. For instance, the node v:1 in Figure 1 can
be represented as <person, «name, String>, <age, Integer»>. Follow-
ing the above definitions, GAMERA would randomly generate a set
of graph schemas in the GDBs.

Initial Graph Data Generation. Given a graph schema, GAMERA
further generates the corresponding graph data that includes n
nodes and m edges, where n and m are configurable parameters.
Specifically, we first create n nodes. Then, among all the potential
directed edges between any two nodes, we randomly create m edges
from |n X n| possible edges. To create a node or an edge, we assign a
label as well as the properties selected from the available properties
set in the graph schema to them. The properties are name-value
pairs in a set. The property value is randomly generated based on
a property’s type. For each edge, we also specify its starting and
ending nodes. We implement the graph data generation process by
automatically submitting a series of graph queries (e.g., creation
and updating queries) to the GDB with the corresponding graph
schema. The graph data generation procedure is randomized and
would generate a variety of diverse complex graphs (e.g., graphs
with different average degrees).



Table 2: Overview of graph-aware MRs.

Class MRs
Node & Spouse / Ancestor / .Descendant Nodes
K-hop Neighbours
Edge Levels .
Edge Properties
Elementary —
Connectivity
Path Level Path Number Calculation
Shortest Path
Pattern Fusion
Compound o
Pattern Partitioning
Dvnamic Data Addition / Deletion / Update
4 Irrelevant Data Manipulation

4 GRAPH-AWARE MRS

We aim to test the most fundamental and commonly-used opera-
tions in GDBs, and reveal logic bugs in them. Since GDBs store and
manage graph data in its native structures, the native structures of
graph data allow us to derive a set of new graph-aware MRs (shown
in Table 2).

We first propose the elementary graph-aware MRs to test the
fundamental functionalities of GDBs. The graph native structures
consist of several graph primitive types such as nodes, edges, and
paths. Support for manipulating these graph primitive types is
the most fundamental and important operation of GDBs. The el-
ementary MRs can assess the correctness of these functionalities.
Next we propose the compound graph-aware MRs to test and stress
more complex functionalities in GDBs. The interactions between
the graph native structures are diverse and complex. For example,
the varied distribution of nodes and edges reveals different pat-
terns of behaviors in the graph—that is, graphs contain diverse
clusters or communities. Nodes can involve multiple types of di-
rected edges and also include cycles. Besides, graphs have various
types of path connectivity patterns such as dense or sparse graphs,
and regular or irregular graphs. Checking the connectivity (i.e.,
confirming whether a path exists) involves many path traversal
algorithms [16]. Based on the complex intrinsic interactions of the
graph native structures, the compound MRs are proposed corre-
spondingly to ascertain their correctness. Moreover, we propose
the dynamic graph-aware MRs to test the GDB’s functionalities to
support dynamic data updates. The graph data in GDBs can be
dynamic, meaning that they can change over time because of graph
queries. This can lead to complex and unpredictable behaviors, as
nodes can form new edges and existing edges can break down. The
dynamic MRs can verify whether these work perfectly.

In the rest of this section, we first present the elementary MRs
testing fundamental graph data operations in §4.1, then compound
MRs that exercise complex GDB operations in §4.2, and finally
the dynamic MRs that are derived from our novel graph mutation
techniques in §4.3.

4.1 Elementary MRs

We first define two types of elementary graph-aware MRs to detect
logic bugs in the fundamental GDB operations for manipulating
graph data. We design comprehensive query patterns to cover most
fundamental GDB operations. Based on the graph data type in
the queries, the elementary MRs are categorized into node and

edge level MRs, and path level MRs. In the rest of this section, we
elaborate on each type of the elementary MRs.

We use the following definition throughout this section. Let
G = (V,E) denote a directed graph G, where V is the vertex set and
E is the edge set. Let a vertex v; € V, and an edge e = (v1,0v2) € E,
indicating that there is a directed connection from v; to v.

4.1.1 Node & Edge Level MRs We first develop MRs to test GDB
functionalities related to node and edge operations. As nodes and
edges are the two fundamental and related types of data in graphs,
they are commonly manipulated together and the operations on
nodes and edges are essential to all other functionalities of GDBs.
Therefore, we discuss node and edge level MRs together.

Node Level MR. We first propose several MRs that test the rela-
tionship between nodes. As shown in Table 2, we cover common
node relationships, including spouse, ancestor, and descendant re-
lationships.

Spouses are nodes that have the same child node(s), i.e., they
have outgoing edges connecting to the same child node(s). In Fig-
ure 3(a), we can see that v:1 and v:2 are spouses. We then can
develop the spouse MR with the following queries. First, we obtain
the set spouses(va) of all spouse nodes of node A; for any node
B in spouses(v4), we obtain its spouses as in the set spouses(vp).
Then node A must be a member of the set spouses(vg), which can
be validated by the oracle for reporting bugs. A violation of the
inclusion relation between the node and the spouse set implies a
logic bug.

Ancestors and descendants of a node would also be commonly
queried. If one can follow a sequence of directed edges from anode A
to reach a node B, then node B is a descendant of node A, which is an
ancestor of node B. The ancestral and descendant relationships also
imply that the ancestor and descendant are connected. In Figure 3(a),
we can see that v:1 is the ancestor of v:3, while v:5 is the descendant
of v:2. Similarly, we develop the ancestor/descendant MR as follows.
The oracle can check that if node A is inside the set ancestors(vg),
then node B must be in the node set descendants(v4), and vice
versa.

K-hop Neighbour MR. K-hop neighbourship is another classic
relationship among nodes and edges. The k-hop neighbour nodes
of a node A are the set of nodes that can be reached from node A
by going through k directed edges in either incoming or outgoing
direction. For example, in Figure 3(a), node v:5 is an outgoing 2-hop
neighbour node of node v:2. The k-hop neighbours of node A can be
formally defined as: neighbours(va, k) = {v € V | distance(va,v) =
k}. Similarly, we can develop an MR with the following queries. If
node B is inside the outgoing k-hop neighbours neighbours(vy, k)
of node A, then the oracle can check that node A must also be inside
the incoming k-hop neighbours neighbours(vp, k) of B. If node A
is omitted from this set, then a logic bug is found.

Edge Property MR. We next design MRs to test the relationships
between edges. In particular, we design edge property MR on top of
node level MR and k-hop neighbour MR to increase the complexity
of the queries. We consider two types of edge relationships. We
define edges with the same property name as homogeneous edges,
and edges with different property names as heterogeneous edges. In
Figure 3(a), we can see that edges e:1, and e:2 in red color represent
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edges with the same property, and edges (e.g., e:1, e:3, and e:4) in
different colors represent edges with diverse properties.

When traversing a graph to find the nodes’ spouses, ancestors or
descendants, and k-hop neighbours in our design, the above node
level MR and k-hop neighbour MR do not specify the properties
of the edges. By considering the edge properties, we can further
select homogeneous edges of the same property or heterogeneous
edges of a selected set of properties during the graph traversal to
increase the complexity of node level MR and k-hop neighbour
MR. Therefore, these edge property MRs would be able to cover
more code related to edge property processing in the GDBs. We
use the following queries as an example. First, we obtain the set
spouses’ (v4) of all spouse nodes connected to node A by the edges
of the selected properties; for any node B in spouses’ (v4), we obtain
its spouses with the same selected properties of the edges as in
the set spouses’ (vg). Then node A is expected to be within the set
spouses’ (vg) and the oracle can check that.

4.1.2 Path Level MRs The GDBs implement diverse path finding
algorithms [16, 22] for retrieving paths in the graphs. The correct-
ness of such operations is important to a lot of computation tasks
such as logistics and navigation. We design several path level MRs
to test the correctness of those relevant implementations in the
GDBs.

We first test the connectivity in the GDBs. The connectivity
between two nodes indicates whether there exists at least one path
between the two nodes in the graph. Our intuition is that two
nodes would be connected if they can be connected via another
node. Therefore, we develop a set of connectivity queries according
to this connectivity MR. Specifically, if a node A is connected to
node B, and node B is connected to node C, then the oracle can
check that there exists at least one path from node A to node C,
regardless of whether there is a directed edge from A to C or not. For
instance, as shown in Figure 3(a), v:2 is connected to v:4 and v:4 is
connected to v:6, therefore v:2 should also be connected to v:6. Note
that since the edges (hence paths) are directed, the connectivity
is also directional—A being connected to B does not necessarily
indicate that B is connected to A.

We next test the path number calculation in the GDBs. Com-
puting the number of paths between any two nodes is also a fre-
quently used feature in GDBs. To test such a functionality, our core

idea is to develop queries that directly and indirectly calculate the
number of paths between two nodes and then ask the oracle for
consistency check. We consider three randomly chosen nodes—A,
B and C; we calculate the number of paths from A to B as x, the
number of paths from B to C that do not include A as y, and the
number of paths from A to C via B as z. Specifically, the paths are
all simple paths. Then the oracle would be able to tell whether z
is the product between x and y and help report inconsistencies as
bugs. It is important to note that we do not query all the paths from
A to C as they may or may not contain the node B, which makes it
difficult to establish a deterministic metamorphic relation. As we
already discussed an example in Listing 1, the number of paths that
start from v:0, pass v:1, and end at v:2 should be zero, which equals
the first result (zero) multiplied by the second result (four). The
transit node v:1 is necessary for establishing the relationship. Our
evaluation results show that such an MR facilitates uncovering sev-
eral errors in complex and large-scale graphs like RedisGraph [17]
and OrientDB [15].

We finally propose an MR to test the shortest path implementa-
tion in the GDBs. Searching the shortest path between two nodes
is also a critical operation that is widely used in many application
scenarios such as route planning, logistics, navigation, etc. Similarly,
we consider the shortest paths related to three nodes in the graph.
Our intuition is that the shortest path between two nodes would
not become shorter if a critical node on the original shortest path is
removed. Specifically, we first query the shortest path p from node
A to node B and pick an intermediate critical node C on the path p.
Next we exclude node C from the graph and query the new shortest
path p’ from A to B. Then the oracle would check if p is not longer
than p’ by evaluating length(p) < length(p’). In Figure 3(a), we
can see that the length of the shortest path from v:2 to v:6 is 2.
After excluding v:4, the shortest path’s length becomes 3, which is
greater than or equal to 2.

4.2 Compound MRs

We have covered the elementary graph-aware MRs, which we pro-
pose to test the fundamental GDB operations over graph data. How-
ever, the elementary MRs can test only the individual basic graph
manipulation functionalities, e.g., querying for a small number of
certain nodes, edges, or paths. Many logic bugs would be manifested
only when the GDBs are stressed with more complex operations.
Therefore, we further propose several compound MRs for testing
more complex GDB functionalities.

We construct the compound MRs from the elementary MRs by
generating more complex graph query patterns from the simpler
basic query patterns in the elementary MRs. We propose two graph
query pattern manipulation techniques (i.e., MRs) to transform the
existing basic (or complex) query patterns to equivalent but more
complex (or simpler) ones. These techniques allow us to create
new complex MRs from the existing ones and test complex GDB
operations.

4.2.1 Query Pattern Generation We first discuss how to gen-
erate some basic graph query patterns for later generating more
complex patterns that can exercise the complex functionalities of
GDBs. The basic patterns would serve as the building blocks for



producing more complex query patterns using our pattern manip-
ulation techniques. We define a graph query pattern as a graph
matching pattern for querying primitive graph data such as nodes,
edges, or paths. We develop two methods to generate the basic
query patterns.

First, we generate basic query patterns directly according to the
elementary MRs we earlier defined. In the elementary MRs, the
involved query patterns instruct the GDBs to perform the basic
graph data operations over the primitive types of graph data. For
instance, such basic query patterns can query the neighbour or
spouse nodes of a node, or query the (shortest) paths between any
two nodes.

Second, we generate basic query patterns that query the GDBs for
some random portion of the graph data with randomly constructed
matching criteria. For example, we may randomly specify some
matching rules on the properties of the nodes or edges, or add
constraints (e.g., including or excluding some specific transit nodes)
to the paths between some nodes. By combining multiple random
matching criteria, the generated query patterns would invoke quite
complex operations in the GDBs.

4.2.2 Query Pattern Transformation We further propose two
query pattern manipulation techniques to generate complex query
patterns for triggering more code in GDBs as shown in Figure 3(b).
The query pattern manipulation techniques can transform existing
query patterns into different but equivalent ones, thus generating
new MRs that can help uncover logic bugs related to the corre-
sponding complex operations.

We first propose the pattern fusion technique to generate com-
pound MRs. It fuses two or more graph query patterns into a more
complex one with logical operations such as and and or. Therefore,
the query result of the fused pattern would be the same as the
result computed by applying the same logical relationship to the
query results of the original patterns. Specifically, given two query
patterns Q; and Q3 and their query results Ry and Ry, we compute
a fused query pattern Q3 by using logical and or or operations and
obtain its query result R3. The oracle could check if R3 is the in-
tersection or union of Ry and Ry and report inconsistencies as bugs.
For instance, Q1 queries node A’s spouses as Ry and Q3 queries its
3-hop neighbour nodes as Ry; applying the and fusion we derive Q3
that queries nodes that are both the spouses and 3-hop neighbours
of node A as Rs. Then it is expected that Ry intersects Ry should
equal to Rs.

The pattern fusion technique would allow us to generate many
complex MRs, which greatly facilitate testing. We currently limit
fusion on patterns querying for the same types of graph data as
the logical operation should be applied to query results in the same
type. It is important to note that the pattern fusion transformation
can be applied to more than two query patterns to construct even
more complex queries and MRs.

We next propose the pattern partitioning technique to gener-
ate compound MRs by extending the query partitioning technique
in the literature [34, 42]. Contrary to the pattern fusion technique
that combines simpler patterns to a complex one, the pattern parti-
tioning technique divides one complex pattern into several simpler
sub patterns. Similarly, the query result of the original complex
pattern would be related to those of the divided simpler sub query

patterns. Specifically, given an original complex query pattern Q,
we divide it into three sub query patterns—Q1, Q2 and Qs, of which
the predicates are evaluated to TRUE, FALSE, and IS NULL, respec-
tively. For the three sub queries, we generate three predicates: p,
NOT p, and p IS NULL. Each predicate is used in a filter clause to
partition the original pattern result set. For example in Figure 3(b),
p is used to match the nodes in orange color, then NOT p is used to
match the nodes in non-orange color (i.e., the purple nodes), and p
IS NULL returns empty. These three return sets form the complete
set of pattern one. This partitioning transformation then leads to
a new compound MR: Q’s query result R would be the union of
the query results (e.g., R1, Rz and R3) of the three sub patterns, ie.,
R = Ry URy U R3. Specifically, our technique extends the previous
work [34]. As elaborated earlier, we generate more comprehen-
sive query patterns, for example, we support queries with complex
path retrieval and new syntaxes etc. Thus this pattern partitioning
technique allows us to generate many complex MRs to stress the
GDB.

4.3 Dynamic MRs

In this section, we introduce several dynamic MRs by considering
the dynamic update of the graph data in the GDBs. The prior ele-
mentary and compound MRs mostly query over the static initial
data we randomly generated. In other words, the queries would
only cover GDB functionalities for searching and retrieving static
data. However, real-world GDB workloads would involve frequent
data updates, including the addition, deletion, and modification of
graph data. Furthermore, GDBs support much more flexible data
schemas to allow diverse data update operations, compared to rela-
tional databases, which follow certain constraints (e.g., primary key
constraint, foreign key constraint, etc.) to update data. Therefore,
we also design new dynamic MRs for testing the correctness of
GDBs that support dynamic data updates.

We design several graph data mutation techniques to update the
graph data, and accordingly develop new dynamic graph-aware
MRs between queries before and after the data mutation. Our main
idea is that the data mutation would result in either expected
changes or no change in the query results of the same queries.
By submitting the queries before and after certain graph data mu-
tation, we would be able to tell if the new query result is correct
or not and thus detect logic bugs. Based on how the data can be
updated, we specifically propose the following four graph data mu-
tation techniques and the corresponding dynamic MRs. Note that
the dynamic MRs do not require changes of the query patterns and
we can reuse the query patterns generated in the elementary or
compound MRs.

Data Addition. The first technique mutates the graph data by
inserting new data (e.g., nodes, edges, or properties) into the graph.
The data addition mutation would lead to several MRs where the
new query results would be updated accordingly. We illustrate some
examples below. First, given a query pattern, we insert data that
matches the pattern, so that the added data would be returned as
part of the new query result after the data addition. Second, given
two existing nodes that are not connected, we insert new edges
between them or between other intermediary nodes, so that a path
between the two nodes would be found after the data addition



whereas the same query for finding the path would return nothing
previously. Third, given two connected nodes A and B and another
node C that is isolated from the two, we connect an edge between
B and C, so that any path from A to C would then include a path
from A to B as a prefix after the data addition.

Data Deletion. The second technique mutates the graph data by
deleting existing data (e.g., nodes, edges, or properties) from the
graph. Similarly, we could propose several dynamic MRs where the
query results would change after the deletion mutation. We also
discuss some examples next. First, given a query pattern, we delete
existing data that matches the pattern, so that new query result
should not include the deleted data after the data deletion. Second,
given two connected nodes, we delete all the edges connecting
them directly or indirectly, so that no path between the two nodes
would be found after the data deletion. Third, given two connected
nodes, we delete some of the edges or nodes on the paths between
them, so that fewer paths between them would be returned after
the deletion mutation.

Data Update. The third technique mutates the graph data by
updating existing data (i.e., the node or edge properties) in the
graph while considering the immutability of labels for nodes and
edges in GDBs. Similarly, we propose several dynamic MRs to
update the graph data. After applying these MRs, the query results
will change accordingly. First, given a query pattern related to
specific properties, we update the properties of some returned
results to other irrelevant values, so that the number of returned
results decreases after the data update. Second, by updating the
properties of other nodes or edges to the values of the properties
in the returned results, the number of new query results would
increase.

Irrelevant Data Manipulation. In addition to developing MRs
where the query results are changed after data mutation, we could
also design MRs where the query results remain the same regardless
of data updates. To this end, the fourth technique still mutates the
graph data by either addition, deletion, or update of data that is
irrelevant to the selected query patterns. Since the data update is
irrelevant to the query patterns, the query results should not be
affected by the update. For example, given a query pattern, we add,
delete, or update some redundant and unrelated nodes or edges, and
yet these data would not be returned as part of the query results.

5 IMPLEMENTATION

We implemented a prototype of GAMERA for two mainstream graph
query languages—Cypher and Gremlin. The techniques proposed
in this work are generic and can be naturally ported to other lan-
guages such as GSQL and AQL with only engineering efforts. For
graph schema and graph data generation, we generate a customized
number of nodes and edges in each test. We used prior approaches
to generate valid Cypher and Gremlin queries. For Cypher language,
we followed GDsmith [32] and used its skeleton-based and com-
pletion technique to generate queries. For Gremlin language, we
used Grand’s abstract Gremlin traversal model to construct valid
Gremlin queries [47]. We then integrated our MRs in the query
generation strategies and significantly advanced these approaches
in supporting syntaxes (e.g., path traversal syntax, union clauses,

Table 3: The basic information of the GDBs evaluated in this work.
Ranks refers to the ranking of this GDB in DB-Engines Ranking [5].
LoC refers to the total lines of code calculated by cloc [1]. All num-
bers are the latest as of March 2023.

GDB Query Lang. Version Rank Github Stars LoC
Neo4j Cypher 5.4.0 1 11.2k 663k
RedisGraph Cypher 2.10.9 - 1.8k 654k
OrientDB Gremlin 3.2.14 5 4.6k 582k
JanusGraph Gremlin 0.6.2 7 4.8k 72k
HugeGraph Gremlin 0.12.0 22 2.2k 89k
TinkerGraph Gremlin 3.6.2 26 1.7k 532k
ArcadeDB Gremlin 22.12.1 28 291 179k

etc.) related to graph native structures. Based on that, we developed
our oracles to check the corresponding results.

We implemented GAMERA in about 7,000 lines of code (LoC) for
each query language, in total 14,000 LoC. The implementation of
graph-aware MRs took about 4,000 LoC for each language. We have
made our prototype implementation of GAMERA publicly available
as a contribution to the GDB community.

6 EVALUATION

To evaluate the effectiveness of GAMERA in finding real-world logic
bugs, we apply GAMERA on a list of popular GDBs. In this section,
we first introduce the evaluation setup in §6.1, then analyze the
results of bug detection in §6.2, next compare GAMERA with other
existing works in §6.3, and finally list several case study in §6.4.

6.1 Evaluation Setup

Testing GDBs. Our implementation of GAMERA currently sup-
ports benchmarking Cypher and Gremlin based GDBs. We thus
include seven GDBs into our evaluation dataset, including two
Cypher-based GDBs, i.e., Neo4j [13], RedisGraph [17], and five
Gremlin-based GDBs, i.e., OrientDB [15], JanusGraph [12], Huge-
Graph [11], TinkerGraph [20], and ArcadeDB [14]. As shown in
Table 3, these GDBs are popular. According to DB-Engine Ranking
of Graph DBMS [5], these GDBs are among the top 30 GDBs. Their
repositories have received several hundreds to thousands of stars
on GitHub. For instance, Neo4j is the market leader, as it is the
most widely deployed graph data platform. RedisGraph is an exten-
sion of the well-known NoSQL database Redis. It is designed with
in-memory architecture to support graph queries with high perfor-
mance. Specifically, three GDBs (i.e., JanusGraph, HugeGraph, and
TinkerGraph) encapsulate a Gremlin server in their own servers,
while the other two OrientDB and ArcadeDB implement their own
TinkerPop3 [21] interface. These GDBs are generally complex and
have a large codebase ranging from 72k LoC to 654k LoC. They
have been well-tested in prior works [32, 34, 47].

Testing Method. GAMERA provides customized parameter config-
urations, where users can set the number of nodes and edges for
each graph data generation, as well as the number of testing rounds
and query groups generated after a certain MR is selected. Each
graph data generation is randomized under the constraints of the
graph schema, thus generating a wide variety of complex graphs.
Each query group consists of multiple queries designed according
to the MR, and each query group matches different subgraphs to



Table 4: Bugs found by GAMERA. The numbers of detected, confirmed,
and fixed bugs are listed.

GDB Detected Confirmed Fixed
Neodj 10 1 0
RedisGraph 9
OrientDB 3
JanusGraph 5
7
4
1

HugeGraph
TinkerGraph
ArcadeDB
Total 39 15
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enhance the testing variability. In our experiment, we configure
GAMERA to run 10 rounds under each graph-aware MR of different
classes on every benchmarking GDB. In each testing round, we
create a graph database with 100 nodes and 200 edges, and 1,000
groups of queries are generated to test the GDB. Since the data
deletion MR in the dynamic class needs to delete nodes or edges,
the size of graph data will be significantly reduced after several
rounds of testing, making it easy to return empty results. Therefore,
we design 1,000 rounds of testing for data deletion MR, and each
round of testing will generate a new graph and 10 groups of queries,
which mitigates the above problem. GAMERA finished all the testing
on all GDBs within a total of 48 hours. GAMERA records and reports
a bug if the result does not conform to the chosen metamorphic
relation. For each reported bug, we manually analyze it to confirm
whether it is a real logic bug (true positive). Additionally, we filter
out duplicate test cases that trigger the same issue.

The choices of using 100 nodes and 200 edges are made from
our preliminary quantitative study. Specifically, we first evaluate
GaMERA with different sizes of the generated graphs. The results
show that augmenting the graph size has negligible impact on the
bug detection capability; rather, larger size prolongs the execution
time for each testing round. Larger size also increases the com-
plexity of bug-triggering proof of concept (PoC) inputs, making
it challenging for GDB developers to diagnose and reproduce the
bugs. Therefore, we choose the same testing graph size as other
research [47] for the experiments.

Testing Environment. We used a machine with a 2.6 GHz 6-Core
Intel Core i7 CPU and 32 GB of memory running macOS 13.2.1 for
our experimental benchmarking. To run GAMERA, we used Java 11
and Apache Maven for project management. All the testing GDBs
are installed on the same machine.

6.2 Bug Detection

Our experiments show that logic bugs are widespread in real-world
GDBs and GAMERA is highly effective in finding them. As shown
in Table 4, GAMERA has detected a total of 39 bugs on these well-
tested GDBs. We responsibly reported all identified bugs to the
corresponding developers or vendors. At the time of writing, 15 of
the 39 bugs have been confirmed by the developers. Specifically,
three of these bugs have been fixed, and the developers promised
to patch them in the next versions. The remaining bugs are on the
way to be confirmed. Since some logic bugs are complex or related
to the internal features of the GDBs, it will take some time for
the developers to locate their root causes. We are still proactively

Table 5: Bug categorization by different classes of graph-aware MRs.
Node & Edge, and Path refer to the node & edge level MRs, and path
level MRs, respectively. Compound refers to the compound MRs and
Dynamic represents the dynamic MRs.

GDB Node & Edge Path Compound Dynamic
Neo4j 1 1 6 2
RedisGraph
OrientDB
JanusGraph
HugeGraph
TinkerGraph
ArcadeDB
Total
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communicating with developers to help them reproduce and fix the
bugs.

Impacts of GAMERA. GAMERA has made real-world impacts to
the GDB community. For example, the developers of TinkerGraph
emphasized the significance of GAMERA: “That’s very interesting.
We have looked into an automatic and effective GDBs benchmark-
ing technique from time to time. Some folks here will also find it
interesting. If it will eventually be made open source, it could have
an open-source home here at Apache TinkerPop someday.”. Besides,
the developers of HugeGraph acknowledged our findings and ac-
tively confirmed that they will patch them in the next release. The
developers of OrientDB also marked the bugs and added them to
their milestone version. Given the optimistic feedback, we believe
that our novel graph-aware MRs and prototype implementation of
GaMERA would benefit the GDB community in the long term. We
thus are enthusiastic about open-sourcing GAMERA and contribut-
ing to the community to help build correct and robust GDBs.

Efficacy of MRs. The MRs proposed in this work are essential for
revealing these new bugs. We classify the bugs into categories based
on the class of graph-aware MRs GAMERA uses to trigger the bugs
and show the details in Table 5. Specifically, if the simplified test
case that triggers the bug is closely related to a certain class of MRs,
we classify the logic bug into this category. Among the seven GDBs,
the elementary MRs trigger five bugs, including 3 path retrieval
bugs and 2 node and edge matching bugs. We find that some GDBs
would calculate the incorrect number of paths when they traverse
some complex graphs. The result of relatively few bugs is reasonable
because GDBs normally have been well-tested regarding such basic
features of the graph structure.

Furthermore, we find that the majority (30 out of 39) of bugs
are triggered by compound MRs. This demonstrates that generating
complex query statements through fusing or partitioning different
graph-matching patterns can better stress the GDBs. Out of these 30
bugs, 25 are detected using pattern fusion MR and five are patterns
partitioning MR. Since GDBMeter has already used query partition-
ing to test the older versions of GDBs in our dataset for a long time,
many related bugs have been found and fixed on the latest versions.
Therefore, it is reasonable for GAMERA to find only five such bugs.
Among the detected bugs in this category, most of them are due
to the omission of nodes or edges in the process of fusing patterns
or decoupling patterns, resulting in incorrect result sets. There are
also cases where nodes or edges are redundantly counted inside



Table 6: Types of the bugs found by GAMERA and existing tools on
latest version GDBs. Logic refers to logic bugs. Crash refers to crash
bugs that can cause the GDB server to exit abnormally. Error refers
to unexpected internal error bugs.

GDB GAMERA Grand GDsmith GDBMeter
Logic Crash Error | Crash Error | Crash Error Logic
Neo4j 5 4 1 - - 3 1 2
RedisGraph 6 1 2 - - 1 2 1
OrientDB 3 0 0 0 0 - - 1
JanusGraph 3 0 2 0 2 - 0
HugeGraph 2 3 2 2 1 - 1
TinkerGraph 1 1 2 1 2 - - 0
ArcadeDB 1 0 0 0 0 - 0
Total 21 9 9 3 5 4 3 5

the results. The causes of these bugs include errors in numerical
and value calculations, or design flaws in some query syntaxes, etc.

As for the dynamic MRs, four logic bugs were detected. These
bugs include path retrieval errors after adding nodes and edges,
as well as unexpected exceptions thrown when deleting the data.
Though GDBs mostly well support the graph dynamic features such
as various APIs for updating graph data, bugs still remain in the
commonly-used APIs. GAMERA could use its dynamic MRs to expose
such bugs effectively. Specially, the data update and irrelevant data
manipulation MR did not trigger any bug. Despite the fact that
we constantly update graph data such as properties, and increase
or reduce irrelevant graph data in large quantities, most GDBs
can still function normally, and guarantee the correctness of their
large-scale data manipulation.

Bug Types. We show in Table 6 the different types of bugs found
by GAMERA. Though GAMERA aims to find logic bugs, it has also
detected crashes and errors. Overall, there are 21 logic bugs. These
bugs are distributed in every GDB, demonstrating the significance
and necessity of detecting this type of vulnerability. We summarize
five primary root causes that trigger the logic bugs. First, GDBs have
erroneous support for path retrieval functionalities. Some exact
path length queries or multi-hop queries do not follow the actual
path length. Second, wrong numerical calculations in GDBs lead to
inaccurate results. The bugs are caused by incorrect results when
calculating Not a Number (NaN) values, infinity, and strings, etc.
Third, some logic bugs are due to the incorrect implementation
of the Gremlin APIs (e.g., outside(), gte(), and Ite(), etc.). Fourth,
other logic bugs are caused by design flaws when querying for the
intersection of patterns using union syntax or mid-traversal E(),
etc. Last, there are also many logic bugs that come from erroneous
omissions or redundant calculations of nodes or edges.

GAMERA also found nine crash bugs and nine error bugs. Specif-
ically, crash bugs are the type of bugs that cause the GDB server to
exit while executing the queries. Error bugs mean that they would
cause unexpected internal errors, but the GDBs can continue to
process the subsequent queries. Crash and error bugs—though they
might not be related to logic handling of GDBs—are important
side-products because they can also cause severe consequences. For
instance, when such crashes or errors occur in production GDBs,
they would cause denial-of-service and interfere with all active
users. Through manual analysis of these crash and error bugs, we
further found that the root causes of these bugs can be traced back
to some single queries. We can reproduce these bugs by executing

only those single queries, without the need to apply a series of
other MR queries.

For the remaining unconfirmed bugs, we are still actively com-
municating with the developers to help them confirm and fix the
bugs. There are several reasons why they have not been confirmed
in a timely manner. First, for bugs where path retrieval and match-
ing nodes return incorrect results, although there have been some
discussions, the developers have not yet located the root causes,
hence unable to confirm these bugs. Second, for bugs in JanusGraph
and HugeGraph, the developers suspect that they are due to the
embedded TinkerPop server and have not yet confirmed whether
the bugs are caused by their own database design. Third, develop-
ers are still determining if some bugs originate from the same root
cause and try to deduplicate them. Moreover, we are still awaiting
further responses from the developers regarding some other bugs.

6.3 Comparison with Existing Works

We further compare GAMERA to related GDB benchmarking tools.
As we have discussed in §2.3, Grand [47], GDsmith [32], and GDB-
Meter [34] are three closely related works for benchmarking GDBs.
Grand and GDsmith test GDBs by leveraging differential testing,
and GDBMeter is the only tool that utilizes metamorphic testing.
These three works do not support or implement any oracles of
GAMERA, except that GDBMeter partially supports a simple ver-
sion of the pattern partitioning oracle. We are able to include all
of these three works into our comparison. In particular, they are
all open-sourced [6-8]. We reuse the same set of GDBs in §6.1 for
comparison. Specifically, we followed the identical experiment con-
figurations and running procedures as described in their artifacts,
and obtained the results consistent with their reports in the respec-
tive papers. These three experiments were all completed within 48
hours. The comparison results are shown in Table 6.

Comparison with Grand. We tried our best to conduct a fair com-
parison with Grand. Grand is designed for benchmarking Gremlin-
based GDBs. We thus applied it on the five Gremlin-based GDBs
for 10 rounds, each round generating 1,000 queries, using the same
evaluation setup in §6.1. We then manually analyzed the bug reports
to confirm true-positive bugs.

GAMERA significantly outperforms Grand by identifying more bugs.
Out of 10,000 queries, Grand reported a total of 1,420 potential bugs.
We then manually analyzed Grand’s bug reports to identify the
true-positive bugs. Our analysis revealed that Grand could detect
eight crash and error bugs in total, spanning all five Gremlin-based
GDBs. It did not detect any logic bug, which demonstrates the need
for our graph-aware MRs to reveal logic bugs. These eight crash and
error bugs were all successfully detected by GAMERA.

GAMERA also beats Grand in terms of false-positive rate. The
results also showed that Grand reported a large number of false
positives (1,412 out of 10,000). The authors of Grand mentioned in
their GitHub issue? that there are generally two reasons for the
large false positive alarms: (1) the bugs in their tool such as wrong
inputs or unsupported language syntaxes, and (2) Grand would
classify the same exception between different GDBs as distinct ones
and wrongly report bugs due to the different output string repre-
sentations across GDBs. GAMERA, on the other hand, has no false

2The issue can be found at https://github.com/choeoe/Grand/issues/1.
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positives since it is a metamorphic testing approach. The reasons
why GAMERA performs better than Grand are due to the limitations
of Grand’s differential oracle and its failure to consider the effective
graph-aware MRs.

Comparison with GDsmith. We also tried to conduct a fair
comparison with GDsmith. GDsmith is designed for benchmark-
ing Cypher-based GDBs. We applied it on the two Cypher-based
GDBs (i.e. Neo4j and RedisGraph) that GAMERA currently supports.
Similarly, we followed the same evaluation setup in §6.1 and use
the same number of testing queries and testing rounds. We chose
the differential oracle in GDsmith’s artifact for testing. GDsmith
reported a large number of discrepancies in its differential testing.
Although we tried to manually eliminate the false positives and
duplicated cases, without the help of GDsmith’s authors or devel-
opers, we cannot give the exact number of true-positive bugs at the
time of writing.

We finally decided to inspect whether GDsmith can detect those

bugs that GAMERA has already detected. The result showed that
GAMERA presents better performances in the ability to detect logic
bugs. GDsmith could detect a total of seven crash and error bugs de-
tected by GAMERA, but could not detect any logic bugs that GAMERA
identified. Since GDsmith and GAMERA have different testing ora-
cles, they have different advantages and can complement each other.
After examining GDsmith’s bug reports, our analysis demonstrates
that GDsmith cannot detect any logic bugs related to the graph na-
tive structures, since GDsmith does not support graph-aware MRs.
For example, 11 bugs detected by GAMERA in Neo4j and RedisGraph
require the utilization of graph-aware MRs as testing oracles; GD-
smith thus could not find any of them. However, GAMERA cannot
detect some bugs identified by GDsmith such as the bugs caused by
the different support of Cypher standards in different GDBs, etc.,
because GDsmith adopts a more sophisticated statement generation
and mutation strategy. In the future, we will consider integrating
both techniques to achieve better performance.
Comparison with GDBMeter. Overall, GDBMeter could find
only a small subset of bugs that GAMERA could identify. GDBMe-
ter detected five logic bugs, which were all successfully identified by
GAMERA. These five bugs are mainly caused by miscalculations of
the values, or design flaws of Gremlin APIs (e.g., inside(), outside(),
etc.). In fact, GDBMeter previously detected a total of 40 bugs on
older versions of the tested GDBs. Since most of these types of bugs
have been fixed in newer versions of GDBs, thus it is reasonable
that we can hardly detect new bugs based on this oracle in the lat-
est versions. The rest 34 bugs could not be detected by GDBMeter
because triggering them requires support for advanced graph query
language syntaxes (e.g., path traversals, union clauses, etc.) and our
graph-aware MRs.

6.4 Case Study

In this section, we showcase some interesting bugs GAMERA found.
We mainly show some bugs related to the graph native structures.
We simplify some test cases for brevity.

K-hop Nodes Relationship Bug in RedisGraph. Listing 2 shows
a case that produces false results that violate the k-hop neighbour
MR. We construct the following scenario. The first query finds all
the distinct outgoing 2-hop nodes of the node with id 1, which

returns a result set containing that a node with id 2. The second
query finds all the distinct incoming 2-hop nodes of the node with
id 2. Obviously, the node with id 1 should exist in the result set
of the second query. However, our testing found that RedisGraph
omitted this node from the result set, leading to a logic bug. The
developers confirmed this bug and fixed it timely. They admitted
that the bug was due to an error that the multi-hop traversal in
RedisGraph does not respect the actual path length.

1 MATCH path=(a)-[*2..2]->(b) WHERE (a<>b) AND (ID(a)=1)
RETURN DISTINCT b

2 MATCH path=(a)<-[*2..2]-(b) WHERE (a<>b) AND (ID(a)=2)
RETURN DISTINCT b

Listing 2: A k-hop node relationship bug in RedisGraph.

Union Fusion Bug in JanusGraph. Listing 3 shows one of the
test cases about the logic bug when we fuse two patterns with
the union relationship. In lines 1-2, we first randomly generate
two queries, and then GAMERA would calculate the union set of
their results. The third query in line 3 utilizes union() syntax to
fuse two queries matching two diverse patterns into a new one.
However, its result is different from the former calculated union
set. This discrepancy is due to the flaw in the design of union() in
JanusGraph.

1 g.VQ.has('vp3',0.096).and(__.values('vp3'))

2 g.V(Q.has('vll', 'vp®',neq(18))

3 g.V(Q .union(__.has('vp3',0.096).and(__.values('vp3')),
__.has('vll', 'vp®',neq(18))).dedup()

Listing 3: Incorrect result when merging queries in JanusGraph.

RedisGraph Incorrect Result after Graph Data Mutation. List-
ing 4 shows another logic bug in RedisGraph path search after
mutating the graph data. We first count the number of paths from
node one with id 3 and node two with id 1 (line 1). Then we create
anew redundant node three and add a directed edge from node two
to node three (lines 3-4). The expected result of line 5 is that the
number of paths between node one and node three should be the
same as the result of line 1. However, in the case of complex graphs,
RedisGraph omits some paths and returns inaccurate results. This
is because of the immature design of RedisGraph in terms of the
path functionalities.

1 MATCH path=(a)-[*]->(b) WHERE ID(a)=3 AND ID(b)=1
RETURN COUNT (path)

2 /) > 2

3 CREATE (n:new {key: 'val'}) RETURN ID(n)

4 MATCH (a),(b) WHERE ID(a)=1 AND ID(b)=104 CREATE (a)
-[:e]l->(b)

5 MATCH path=(a)-[*]->(b) WHERE ID(a)=3 AND ID(b)=104
RETURN COUNT (path)

6 // -> 1 1= 2

Listing 4: Inaccurate results after adding redundant nodes and edges.

Erroneous Value Handling in HugeGraph. In Listing 5, we
show another two examples of logic bugs related to the incorrect
value calculation. In HugeGraph, the Gremlin APIs (e.g., gte(), It(),
etc.) do not correctly support some value calculations such as strings.
We found these bugs when we used pattern fusion MR for testing.
These types of values will be converted into floating-point numbers
before performing operations. Thus the wrong conversions would




filter out the wrong results in line 1. Similarly, the Gremlin API
outside() fails to properly handle the case of parameters with the
same value, and would finally return incorrect results. HugeGraph
developers confirmed these bugs and promised to fix them in the
near future.

1 g.VQ.has('vp®',not(gte('iln2s').or(lt('73'))))
2 g.V(Q.has('vle','vpl',outside(false, false)).has('vpl')

Listing 5: An erroneous value handling bug in Hugegraph.

7 DISCUSSION

Portability and Extensibility. GAMERA is a black-box MT ap-
proach tailored for GDBs using Cypher and Gremlin. We have
benchmarked several commercial GDBs (e.g., Neo4j, OrientDB, Tin-
kerGraph). GAMERA can be directly applied to other GDBs using
the query languages. For instance, GAMERA can be integrated into
the GDB benchmarking process of the Apache TinkerPop commu-
nity, which includes other GDBs. There are also many other re-
search prototype GDBs such as GraphflowDB [35], LiveGraph [48],
Grasper [24], and GTran [25], etc. GAMERA can be extended to sup-
port them with moderate engineering effort. Besides, the idea of
designing MRs based on the graph native structures is generic. It
can be leveraged to implement testing oracles for GDBs using dif-
ferent query languages beyond Cypher and Gremlin, such as the
GSQL and AQL languages, etc. We open-source GAMERA and plan to
contribute to the GDB community to help build precise and robust
GDBs in the long term.

Approach Comprehensiveness and Completeness. We believe
our approach is comprehensive and exhaustive as we have covered
the graph-aware MRs related to the most commonly-used GDB
operations and our compound-level MR could gradually generate
complex ones from the elementary ones. Since there are always new
feature updates to the GDBs as well as other corner cases, we admit
that we cannot engineer all the graph-aware MRs, limited by our
manpower. Nevertheless, we have implemented GAMERA in a highly
extensible manner. Other researchers can add new testing oracles
incorporating the ideas of elementary, compound, and dynamic
MRs atop our open-source tool in the future.

Besides, as a common issue of dynamic bug detection approaches
(including both DT and MT), there is always no guarantee that all
logic bugs can be found. This is because the random nature of dy-
namic testing in terms of input generation and mutation makes it
very challenging to achieve complete code and program state cover-
age. As a result, some potential logic bugs could remain undetected.
Extending the experiment time might improve the comprehensive-
ness of the testing.

Limitations. GAMERA might generate duplicate bug reports, be-
cause it would generate distinct test cases to trigger bugs with the
same root cause like other black-box benchmarking approaches.
Our analysis currently requires human efforts to simplify the test
cases and deduplicate the reports. Automated bug deduplication for
logic bugs remains an open research challenge [18], and we leave
it as a future exploration direction. In addition, GAMERA’s current
support of the complex syntaxes related to graph native structures
is incomplete. There are still syntaxes that it does not support, e.g.,
graph algorithm operations (e.g., pageRank() [9]), etc. We plan to

supplement GAMERA with these syntax supports to further improve
its effectiveness in the future.

8 RELATED WORK

DT for Database Systems. DT [38] is a commonly used approach
to detect bugs in different domain systems. In relational database
systems, one direction [31, 45] is to run queries with different rela-
tional databases and check the inconsistency of the results. Another
direction [33, 46] is to run queries with different settings of one
relational database, like versions or optimization levels. RAGS [45]
first leverages DT to detect logic bugs in relational database sys-
tems. APOLLO [33] uses DT to find performance regression bugs.
As for graph database systems, GDsmith [32] and Grand [47] are
the first work to use DT to detect bugs in Cypher-based GDBs and
Gremlin-based GDBs, respectively. According to the number of
bugs eventually confirmed in different GDBs, both of these works
prove to be effective bug detection tools. However, as discussed in
§2.3, they share some fundamental limitations of DT. This paper
leverages MT to tackle the oracle problem and performs a more
comprehensive benchmarking of every single graph database.

MT for Database Systems. MT [26] is first proposed to alleviate
the absence of testing oracles. The main idea of this approach is
to design MRs and validate the outputs. SQLancer [18] is designed
to detect logic bugs in relational database systems. It integrates
several novel MT approaches. NoREC [42] compares the execution
results of a given optimized query with its non-optimized version,
to detect bugs related to optimization. TLP [41] partitions a query
into three sub-queries, and detects logic bugs by comparing the
combination result of three sub-queries with the original result.
GDBMeter [34] also leverages the idea of TLP to detect logic bugs
in GDBs. However, all the above methods are designed for database
systems using query languages such as those SQL-like or other
graph query languages. These methods do not consider the graph
native structures and correspondingly propose a set of graph-aware
MRs. We have thoroughly analyzed these techniques in §2.3.

9 CONCLUSION

Logic bugs in GDBs related to graph native structures are under-
explored. In this work, we proposed GAMERA, an effective and au-
tomated metamorphic testing approach to detecting logic bugs
in GDBs. We developed three classes of novel graph-aware MRs—
elementary MRs, compound MRs and dynamic MRs—for generating
high-quality tests to cover diverse and complex GDB operations.
Our evaluation of GAMERA on seven widely-used Cypher-based and
Gremlin-based GDBs found 39 bugs, 15 of which have been con-
firmed by the developers. GAMERA also significantly outperformed
previous works by detecting all bugs they could find. Our research
demonstrates the importance of employing graph-aware MRs for
detecting logic bugs in GDBs.
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