
SELECTFUZZ: Efficient Directed Fuzzing with
Selective Path Exploration

Changhua Luo
Chinese University of Hong Kong

Hong Kong SAR, China
chluo@cse.cuhk.edu.hk

Wei Meng
Chinese University of Hong Kong

Hong Kong SAR, China
wei@cse.cuhk.edu.hk

Penghui Li
Chinese University of Hong Kong

Hong Kong SAR, China
phli@cse.cuhk.edu.hk

Abstract—Directed grey-box fuzzers specialize in testing specific
target code. They have been applied to many security applications
such as reproducing known crashes and detecting vulnerabilities
caused by incomplete patches. However, existing directed fuzzers
favor the inputs discovering new code regardless whether the
newly uncovered code is relevant to the target code or not. As a
result, the fuzzers would extensively explore irrelevant code and
suffer from low efficiency.

In this paper, we distinguish relevant code in the target
program from the irrelevant one that does not help trigger
the vulnerabilities in target code. We present SELECTFUZZ, a
new directed fuzzer that selectively explores relevant program
paths for efficient crash reproduction and vulnerability detection.
It identifies two types of relevant code—path-divergent code
and data-dependent code, that respectively captures the control-
and data- dependency with the target code. It then selectively
instruments and explores only the relevant code blocks. We also
propose a new distance metric that accurately measures the
reaching probability of different program paths and inputs.

We evaluated SELECTFUZZ with real-world vulnerabilities in
sets of diverse programs. SELECTFUZZ significantly outperformed
a baseline directed fuzzer by up to 46.31×, and performed the
best in the Google Fuzzer Test Suite. Our experiments also
demonstrated that SELECTFUZZ and the existing techniques such
as path pruning are complementary. Finally, with SELECTFUZZ,
we detected 14 previously unknown vulnerabilities—including 6
new CVE IDs—in well tested real-world software. Our report
has led to the fix of 11 vulnerabilities.

I. INTRODUCTION

Directed grey-box fuzzing has gained much traction for
its high effectiveness in patch testing [1–3], crash reproduc-
tion [4–6], vulnerability verification [7–9], etc. Unlike general
coverage-guided fuzzers that explore all the code in a target
program, directed fuzzers test the program in direction(s)
towards some specific code location(s). Depending on the
application scenarios, the fuzzing targets can be derived from
bug reports [5, 10, 11], patch change logs [2, 12], and results
of static analysis tools [13–15], etc. Past practices [2, 16, 17]
have shown that directed fuzzers can efficiently validate
vulnerabilities and reproduce crashes.

The existing directed fuzzers (e.g., AFLGo [16]) are usually
built upon AFL [18] and their path exploration strategy follows
that of AFL. Specifically, directed fuzzers generate inputs using
the code coverage feedback. They then favor the inputs that
trigger new coverage. In this work, we argue that this path
exploration strategy could severely limit the performance of

directed fuzzers. This is because it would guide directed fuzzers
to explore mostly irrelevant code, by visiting which the directed
fuzzers make almost no progress in reaching the targets or
triggering the designated vulnerabilities. Our experiments on
real-world programs showed that many fuzzing inputs indeed
triggered only the irrelevant code; we name such inputs as
irrelevant inputs. This observation is consistent with recent
results that the executions of 65.1% of fuzzing inputs do not
help reach the targets [17]. Even if the executions reach the
targets, it has been shown that not all triggered code is critical
in exploitation [19]. Moreover, the exploration of irrelevant
code is likely to lead the directed fuzzers to continue generating
inputs uncovering mostly irrelevant code, which further limits
their efficiency.

The existing directed fuzzers could not effectively exclude
the irrelevant inputs and thus waste much energy on exploring ir-
relevant code. Specifically, most directed fuzzers do not attempt
to distinguish irrelevant inputs (resp. code) from other inputs
(resp. code). They merely consider the distance to the target
code when allocating energy to inputs [1, 6, 12, 16, 20, 21].
Because of the large number of irrelevant inputs in the input
queue, they would unavoidably allocate excessive energy to the
irrelevant inputs and explore irrelevant code, resulting in low
efficiency. To improve the fuzzing efficiency, Beacon—a state-
of-the-art directed fuzzer—terminates the execution of paths
unreachable to the targets [2]. This allows it to exclude the
inputs that discover only unreachable code and thus decrease
the number of irrelevant inputs in the input queue. However, as
we will show in §III-A, reachable code might also be irrelevant
to the target code. Our evaluation results further reveal that a
large proportion (i.e., 87.67%) of reachable code in real-world
programs is actually irrelevant. Consequently, even Beacon
narrows the fuzzing scope to reachable code, it still wastes
much energy on exploring reachable irrelevant code.

This work aims to improve the state-of-the-art directed
fuzzing techniques by avoiding exploring irrelevant code. A
major challenge we face is to precisely identify the relevant
code a directed fuzzer should explore. On the one hand, without
identifying the relevant code, the directed fuzzer would not
distinguish important feedback provided by the relevant code
from that provided by other code, then is unable to prioritize
the inputs. On the other hand, if we mistakenly identify the
relevant code, the directed fuzzer would be misled to explore

irrelevant code and suffer from low efficiency.
The second challenge we encounter is how to exclude the

irrelevant code from directed fuzzing. An intuitive approach
is removing the irrelevant code from the target program using
techniques like software debloating [22, 23]. However, it would
usually cause runtime errors before the executions reach the
target code. Even the fuzzer could generate inputs that reach
the target code and trigger the vulnerabilities, the inputs might
not apply to the original program. Beacon [2] avoids some
unnecessary path exploration by inserting assertions to early
terminate the executions. However, this approach does not
exclude the reachable irrelevant code.

To address the first challenge, we identify code relevant
to a target code location by analyzing its control and data
dependencies with the target code. Our key insight is that
triggering a vulnerability requires satisfying certain control-flow
and data-flow conditions related to the target code. Specifically,
we identify the path-divergent code and the data-dependent
code as relevant code, on which the target code is control-
and data- dependent, respectively. Path-divergent code provides
important feedback for efficiently reaching the target code
(i.e., control-flow conditions). Data-dependent code guides the
fuzzer to explore the target code with different data values (i.e.,
data-flow conditions); it thus assists the exploitation stage.

We selectively instrument only relevant code to address the
second challenge. By instrumenting only relevant code the
fuzzer receives feedback from only the relevant code, though
it might also execute numerous irrelevant code blocks from
which it receives no feedback. It thus would not favor the
inputs uncovering only the irrelevant code as such code is
not visible to the fuzzer. Consequently, the fuzzer has no
incentive in exploring the irrelevant code, which in turn allows
it to allocate its most energy to test the relevant code. This
also avoids the potential runtime errors that might result from
software debloating-based techniques. Besides, not instrument-
ing irrelevant code would reduce the runtime instrumentation
overhead, which also affects the fuzzing efficiency. The AFL-
based fuzzers incur over 30% overhead [24, 25]; the directed
fuzzers introduce even higher runtime overheads because of
the additional distance measurement. Since we instrument only
a small fraction of basic blocks, the instrumentation overhead
could be greatly reduced.

In this work, we present SELECTFUZZ, an efficient directed
fuzzer that employs selective path exploration of only the code
relevant to the fuzzing targets. In the first step, SELECTFUZZ
statically identifies the relevant code with respect to the targets.
To identify the path-divergent code, it needs to determine if
one path can reach the targets. To this end, we propose a new
distance metric to infer if a code block is reachable to the targets.
We also improve the existing input prioritization mechanism
with the new distance metric. Prior works prefer the shortest
paths and might not favor some inputs whose executions are
(very) likely to reach the target code. SELECTFUZZ instead
favors the inputs that are more likely to reach the targets even
the code paths are long. In the second step, SELECTFUZZ
applies coverage and distance instrumentations to only the

relevant code. This allows it to keep progressing towards the
targets instead of being distracted to explore the irrelevant code
paths.

We evaluated SELECTFUZZ on two datasets: 1) a set of
known vulnerabilities that have been evaluated in prior works [1,
2, 16], and 2) the Google Fuzzer Test Suite (GFTS) [26].
Our evaluation results demonstrate SELECTFUZZ’s high effi-
ciency in reproducing known crashes. In the first experiment,
SELECTFUZZ identified and instrumented 1.96% of total
basic blocks (i.e., 12.33% of the reachable basic blocks)
as relevant. It outperformed AFLGo by triggering 7 more
vulnerabilities and achieving a speedup of up to 46.31×.
We further compared SELECTFUZZ with a closely related
work Beacon [2] and found that they exhibited different
improvements and were complementary. In the experiment
on comparing with other complementary fuzzers using the
GFTS, SELECTFUZZ performed the best in 8 out of 17 cases.
Finally, we applied SELECTFUZZ to test the completeness
of vulnerability patches. Interestingly, it discovered 14 new
vulnerabilities—including 6 new CVE IDs—in the software
that has been heavily tested by prior works. At the time of
writing, 13 vulnerabilities have been confirmed and 11 have
been promptly fixed.

In summary, this paper makes the following contributions:
• We propose a new concept of (ir)relevant code and

demonstrate its importance in directed fuzzing.
• We present and implement a novel directed fuzzer,

SELECTFUZZ, that enhances the efficiency of directed
fuzzing with selective path exploration.

• SELECTFUZZ achieved high performance and can well
complement existing approaches such as Beacon.

• With SELECTFUZZ, we detected 14 new vulnerabilities.

II. BACKGROUND

In this section, we introduce directed greybox fuzzing in
§II-A and summarize prior works on improving directed
fuzzing efficiency in §II-B.

A. Directed Greybox Fuzzing

Different from conventional fuzzers that explore the whole
program state space, directed fuzzers are designed to thoroughly
test only a target part of the program [2, 16]. Directed
fuzzing has many applications. First, it can be used to
reproduce known crashes and generate one-day exploits [5, 13].
Besides, it could work with various heuristics (e.g., sanitizer
guided [27], memory-function guided [28, 29], function-
complexity guided [30], and commits guided [2, 16, 31] ap-
proaches etc.) or other security analysis techniques (e.g., static
program analysis [8, 9, 14, 15], concolic execution [13, 32, 33],
etc.) to efficiently find new vulnerabilities. Since real-world
programs are usually very large and complex, prioritizing test-
ing on the potential buggy code could improve the vulnerability
detection efficiency in fuzzing. Indeed, quite a few recent works
adopted directed fuzzing and found many new vulnerabilities
in real-world programs [2, 15, 27, 30, 31].

B. Improving Directed Fuzzing Efficiency

There are two directions towards improving directed fuzzing
efficiency. First, researchers have leveraged various techniques
(e.g., symbolic executions [33] or taint tracking [27]) to
efficiently generate high-quality inputs. Second, a lot of works
have attempted to identify the inputs interesting to directed
fuzzers [1, 2, 6, 12, 16, 17, 21]. Our work focuses on the
second aspect, similar to AFLGo and Beacon,

Identifying and favoring interesting inputs are important
since overly testing uninteresting inputs would significantly
waste the fuzzing efforts. In the following, we investigate how
prior directed fuzzers identify interesting inputs and categorize
them into two types—distance-based input prioritization and
input reachability analysis.

1) Distance-based Input Prioritization: A few works defined
distance metrics to identify interesting inputs in directed
fuzzing. AFLGo is the first work that systematically studied
directed fuzzing and it defined a distance metric to assess
the goodness of an input [16]. The distance between two
basic blocks is calculated on the control flow graph using the
Dijkstra’s shortest path algorithm. If the two blocks are in
different functions, AFLGo adds a pre-defined constant C to
estimate the cross-function distance. For instance, if b1 is a call
site of a function f(), then dbb(b1, b) = C, ∀b ∈ f(). The input
distance is defined as the average distance of all basic blocks
visited by the input to the target blocks. A series of follow-up
works improved AFLGo using either precise program analysis
techniques or new distance metrics [1, 6, 12, 21, 34]. However,
their key ideas are similar—they aim to identify interesting
seed inputs based on their distance metrics and assign more
energy to the interesting inputs.

As pointed out in Beacon [2], one limitation of this line
of research is that it relies on heuristics to prioritize inputs
and offers no guarantee that such prioritization could always
improve the fuzzers’ performance. For instance, AFLGo favored
inputs with smaller distances. However, a few vulnerabilities
are hidden deeply in the longer paths [35] and the inputs to
trigger these vulnerabilities could not be favored. Hawkeye
adopted other heuristics to mitigate this problem and focused on
limited scenarios [1]. Another limitation of the existing distance-
based approaches is that they usually could not improve
fuzzing efficiency much. For instance, the most recent work
WindRanger performed better than AFLGo by just around
44% [6].

2) Input Reachability Analysis: Identifying the unreachable
inputs is another way to filter out uninteresting inputs. The
inputs failing to reach the targets cannot trigger the vulnera-
bilities in the target code and thus could be safely identified
as uninteresting ones. Recent works in this direction proposed
two approaches.
Deep Learning. FuzzGuard [17] trained a deep learning model
to identify and discard unreachable inputs. The key idea is to
identify the pre-dominating nodes iteratively from the fuzzing
targets, then filter out the inputs that could not pass through
the pre-dominating nodes. FuzzGuard built a model to predict

1 int main() {
2 int x,t=input();
3 ...

4 if(x<20) {
5 x=x+10;

6 }

7 if(t>20) {
8 t=t-10;

9 }

10 foo();

11 int y,z=input();
12 // assert(y<20&&z<40); // Beacon’s precondition

13 ...

14 if(y<20) {
15 while(z<40) {
16 crash(x+z); // the fuzzing target

17 z++;

18 }

19 }

20 // assert(false); // Beacon’s precondition

21 ... // other code

22 return 0;
23 }

Listing 1: A motivating example.

if the inputs could pass through the pre-dominating nodes by
learning from previous executions. FuzzGuard was built upon
AFLGo and achieved 5.40× speedup on average compared
with AFLGo.

Path Pruning. Beacon adopted path pruning to early terminate
execution on the unreachable paths [2]. It inserted check-
points on variable-defining statements and branch statements.
Specifically, Beacon performed interval analysis to infer the
preconditions of reaching the target code and inserted assertions
to ensure the preconditions were satisfied. It also terminated the
executions on the branches that would never reach the targets.
Beacon is considered as a state-of-the-art tool. It could be
integrated with AFLGo and outperformed AFLGo by 11.50×.

Discarding unreachable inputs could effectively improve
directed fuzzing performance. However, this approach considers
only reachability. As a result, the directed fuzzers could waste
much energy on exploring reachable yet irrelevant code.

Summary: Identifying the inputs interesting to reaching
the targets is a promising direction in directed fuzzing
research. Existing works identify interesting inputs based
on distance metric or by discarding the unreachable inputs.
Both approaches have non-trivial limitations—the first
would not improve fuzzing efficiency much and could not
guarantee the effectiveness, and the second considers only
reachability and could waste lots of energy on exploring
irrelevant code.

III. PROBLEM STATEMENT

In this section, we provide a motivating example to help
understand relevant code (§III-A). We then discuss the limita-
tions of prior directed fuzzers (§III-B). Finally, we present our
research goals and the challenges in overcoming the limitations
of the existing techniques (§III-C).

 16: crash(x+z)
17: z++

False

True

False

FalseTrue

True

True
False

 10-13: ...
 14: y<20

 15: z<40

 21: ...
 22: return

 5: x=x+10b

e

f

g

h

 7: t>20

 8: t=t-10

c

d

3: ...
 4: x<20a

Fig. 1: Control-flow graph of the motivating example.

A. Relevant Code

Intuitively, relevant code is the code whose executions
progress the directed fuzzing procedure for reaching the targets
or exploiting the vulnerabilities. Since triggering a vulnerability
requires satisfying certain control-flow and data-flow conditions,
we define relevant code as code that determines if the target
code can be reached (i.e., control-flow conditions) or if the
vulnerability can be exploited (i.e., data-flow conditions). Note
that this is different from analyzing whether the executions
would approach the targets. For instance, if the executions
approach the targets by executing the only successor suc of a
reachable basic block bb, executing suc does not help further
reach the targets as the likelihoods of reaching the targets from
bb and suc are the same.

Take Listing 1 as an example, the fuzzing target is in line 16.
The corresponding control-flow graph is depicted in Figure 1.
Based on the definition, it is obvious that the unreachable code
is always irrelevant to reaching the targets. Therefore, a recent
work Beacon [2] inserts assertions in line 12 and line 20 to
prevent the execution of unreachable code.

However, code reachable to the targets might also be
irrelevant code as executing such code would not help further
reach the targets or exploit the vulnerabilities. In Listing 1, only
the code in lines 14-15 necessarily determines if the executions
could reach the target. If we consider control-flow conditions,
a lot of reachable code (i.e., code in lines 2-10) is irrelevant
as the executions could always reach line 11 by taking any
paths. Furthermore, even that some reachable code in lines
11-13 has indirect control-flow dependency with the target,
i.e., they influence the conditional variables in lines 14-15,
instrumenting it provides limited benefits and non-trivial side
effects (more details are in §IV-B1).

We could not exclude all code blocks irrelevant to reaching
the targets from the fuzzing scope as some of them might help
the exploitation stage. For instance, executing line 5 would not
affect whether the executions reach the target, but it changes

the values of variables (i.e., x) used in the target. We thus
include such data-dependent code as relevant code.

B. Limitations of Existing Approaches

In this subsection, we illustrate that exploring irrelevant
code would limit directed fuzzing efficiency. In particular, we
show that existing tools are not efficient because they explore
much irrelevant code. We present our idea using the motivating
example in Listing 1.

Suppose the program takes an input seed and its execution
path is a→ c→ e→ h . Fuzzers generate new inputs from
seed, and M inputs among the new inputs uncover new code.
Among the M inputs, the executions of N inputs uncover f or
b . We consider the N inputs relevant inputs as their executions
uncover relevant code, i.e., f and b . The rest M-N inputs
are irrelevant inputs as they uncover only irrelevant code.
In particular, they make no progress in reaching the targets
compared to seed as they all diverge from the targets at e .
They also trigger no new critical operations (that change the
value of x or z). Our experiments in §VI-C2 showed that the
input queue could contain mainly irrelevant inputs because the
majority of code in a program is irrelevant to a limited number
of targets.

A directed fuzzer would suffer from low efficiency by
exploring irrelevant code because of the following reasons.
First, the mutations on irrelevant inputs would likely generate
new irrelevant inputs that take the fuzzers to continue exploring
irrelevant code. To efficiently reach the target code, we argue
that a fuzzer should assign most energy to the inputs whose
executions reach f , which is necessary for reaching g .
However, we found that the existing directed fuzzers could
unexpectedly assign more energy to irrelevant inputs whose
executions always diverge at e . Even that the AFLGo-
based tools allocate less energy to each irrelevant input as
its distance is larger, they could still allocate much energy
in total because the input queue contains primarily irrelevant
inputs.1 Beacon achieves a good performance by decreasing
the number of irrelevant inputs. Specifically, it includes only
the inputs uncovering reachable code in the input queue. Yet
uncovering reachable code is not equivalent to progressing
towards the targets as many inputs would uncover irrelevant
(yet reachable) code blocks (e.g., d). Similar to the inputs
uncovering unreachable code, these inputs do not progress
towards the targets, either. However, Beacon still favors them
as their executions discover new code blocks.

Second, even the executions reached the target code (e.g.,
g), a fuzzer would not be able to efficiently trigger the vulnera-
bilities if it extensively explored the irrelevant code. Specifically,
a vulnerability could only be triggered when the program
state (in the target code) satisfies certain conditions [36]. Yet
exploring irrelevant code could not change the state in target
code as irrelevant code has no data dependency with the target
code. For instance, suppose inputrea reaches g yet the

1The distance metric of AFLGo-based tools influences energy allocation
up to 32×, yet the number of irrelevant inputs could be orders of magnitude
larger than that of relevant inputs.

vulnerability is not triggered in current values of x and z, and
the new inputs derived from inputrea uncover code blocks in
function foo() (line 10). Existing fuzzers take these inputs as
interesting inputs as they could continuously uncover new code
blocks in foo() even though they are not data dependent with
g . However, such exploration could be useless but preempt the
fuzzer’s energy on mutating the relevant inputs (that uncover
some critical code blocks such as b). Neither AFLGo-based
tools nor Beacon could avoid such exploration because 1)
the executions reach the target code (and thus are favored by
AFLGo-based tools); and 2) the executions uncover reachable
code blocks (and thus are favored by Beacon).

In summary, since existing directed fuzzers prioritize in
mutating primarily irrelevant inputs thus explore mostly
irrelevant code, their efficiency in either reaching the
target code or triggering the vulnerabilities is not great.

C. Research Goals and Challenges

In this work, we aim to improve directed fuzzing efficiency
by developing a better path exploration strategy that focuses
on the interesting code relevant to the targets. Overly fuzzing
irrelevant code would significantly limit fuzzing performance.
Based on this observation, we aim to advance directed fuzzing
by avoiding the exploration of irrelevant code.

We face two challenges in achieving our research goals.
First, although we identify that the programs usually contain
irrelevant code, there is still no formal definition of the
(ir)relevant code in the context of directed fuzzing. Given
the complex states of real-world programs, it is not trivial to
automatically and precisely determine the code that helps the
fuzzers reach the targets or trigger the vulnerabilities. Besides,
how to avoid exploring irrelevant code is another challenge.
Existing approaches like early termination do not work for
the reachable yet irrelevant code. An intuitive strategy is to
remove the irrelevant code such that the fuzzers never execute
irrelevant code. However, it would not work well as removing
irrelevant code might cause errors before the executions reach
the targets. Even if the executions could normally reach the
target code, the inputs might not be valid PoC exploits as they
exploit different (i.e., the simplified) programs. Therefore, it
is necessary to propose other strategies to avoid exploring the
irrelevant code.

IV. SELECTFUZZ

In this section, we present the design details of SELECTFUZZ,
a directed fuzzer employing selective path exploration for
efficient crash reproduction and vulnerability detection. It
overcomes the limitations of the existing works by identifying
and exploring only the code relevant to the fuzzing targets.

The overall architecture of SELECTFUZZ is depicted in
Figure 2. It leverages the new distance metric to identify all the
reachable code. The distance metric estimates the probability
of reaching the target code for better input prioritization. It
enables SELECTFUZZ to more efficiently approach the target
code compared to the existing distance metrics. SELECTFUZZ

Source code

Fuzzing targets Test cases

Distance
computation FuzzingSelective path

exploration

SELECTFUZZ

Fig. 2: Architecture of SELECTFUZZ.

further employs an inter-procedural control-flow and data-flow
analysis to identify and selectively instrument only the relevant
code for code coverage feedback. It assigns the mutation energy
to an input based on its runtime relevant code coverage and
input distance feedback. The selective path exploration allows
SELECTFUZZ to collect high-quality runtime feedback from
only the relevant code blocks and select better interesting
inputs.

A. Distance Metric

We develop a novel distance metric that estimates the multi-
path reaching “probability” from a basic block to the target
code. The input distance of an input is computed from the inter-
procedural block distances to the target(s) of all the relevant
basic blocks—including the ones in other functions—on the
path it explores.

Compared to the existing distance metrics [1, 12, 16], our
distance metric has the following advantages: 1) it compre-
hensively assesses the probability to reach the target code
from a basic block by considering all the possible paths; 2) it
measures the cross-function distance through a precise inter-
procedural control-flow analysis and call target analysis. It
allows SELECTFUZZ to better identify the inputs that are more
likely to reach the targets.

1) Block Distance: The algorithm to compute the block
distance is shown in Algorithm 1. It labels a basic block with
three statuses—0: initial; 1: the distance is being computed; 2:
the distance has been computed. The algorithm first computes
the reaching “probability” Pb of a basic block b in function
cal_prob(). Pb estimates the probability to reach the target
location T from b. It then computes the inverse of the reaching
probability as the block distance to the target, i.e., dbb(b, T),
in function cal_dist().

The key of Algorithm 1 is function cal_prob(). If the basic
block b is in the target location, its reaching probability is set
to 100% (lines 25-26). Otherwise, it recursively computes the
reaching probability from the successor blocks (lines 28-36).
Specifically, the reaching probability of a block b is the average
of the reaching probabilities of all its successor blocks. We
do not consider the complexity of the conditional expressions
and assume each branch of a conditional statement could be
taken with the same probability. This simplification is needed
as the real probability depends on the logical expressions and
the corresponding inputs. Techniques like symbolic execution
would help approximate the reaching probability better, yet

Algorithm 1 Block distance calculation.

1: Input : T, the target code locations;
2: Output : dist, a map to store the block distance.
3:
4: dist← {}
5: prob← {}
6: bb_set ← build_ICFG() // build the inter-procedural

CFG and return all basic blocks
7: for b in bb_set do
8: b.status← 0
9: prob[b]← 0

10: end for
11: for b in bb_set do
12: dist[b]← cal_dist(b)
13: end for
14: function cal_dist(BB b)
15: p = cal_prob(b)
16: if p == 0 then
17: return ∞
18: else
19: return 1/p
20: end if
21: end function
22: function cal_prob(BB b)
23: if b.status == 0 then
24: b.status← 1
25: if b in T then
26: prob[b]← 1
27: else
28: sum← 0
29: for succ in b.Successors do
30: prob[succ]← cal_prob(succ)
31: sum← sum+ prob[succ]
32: end for
33: num← b.getNumSuccessors()
34: if num > 0 then
35: prob[b]← sum/num
36: end if
37: end if
38: b.status← 2
39: end if
40: return prob[b]
41: end function

they still require the input distributions to make an accurate
estimation. We leave this as future work. In the case of multiple
fuzzing targets, the reaching probability of a block estimates
the probability to reach any target blocks.

Programs usually contain loops and recursions. Since we
cannot accurately infer the number of running iterations of
loops/recursions in static distance analysis, we follow the
common practice [37, 38] to unroll loop bodies and recursive
functions once. For instance, we treat f in Figure 1 as an
if statement and compute its reaching probability (and block
distance) only once.

1 void foo(x,y) {
2 if(x>10) {
3 if(y>10)
4 y=y-10;

5 else
6 y=y+10;

7 crash();

8 }

9 return;
10 }

11
12 void bar(x,y) {
13 if(x>10)
14 if(y>10)
15 crash();

16 return;
17 }

Listing 2: An if-else statement and a nested if statement.

inf.

4

2

inf.

1

2

1

11

1

FalseTrue

False

False

True

True
FalseTrue

 3: y>10

 4: y=y-10 6: y=y+10

 7: crash()

 12: x>10

 13: y>10

g

h

 14: crash()i

 15: returnj

 2: x>10

 8: return

a

b

c d

e

f

Fig. 3: Control flow graphs of the code in Listing 2. The red numbers
are the block distances using our distance metric.

To compute the cross-function block distances, the entry
block of a callee function is added as a successor of a call
site. In case of indirect calls, we precisely infer the target
functions and conservatively link the indirect call sites to the
entry blocks of all the possible target functions (more details
are in §V). This design choice allows SELECTFUZZ to further
identify all relevant code (§IV-B1). However, it could also
introduce some false positive paths to reach the target code.
Nevertheless, the corresponding inputs would not be favored
as the actually measured input distance would be quite large
in the cases of false positives.

2) Input Distance: In our distance metric, the input distance
of an input is the shortest block distance of all the basic blocks
that are covered in its run. This is different from the prior
works that compute the average block distance of the covered
basic blocks as the input distance [1, 16]. The intuition behind
this design choice is that the shortest distance could better
reflect the progress of reaching the target code. In other words,
it measures how close the execution is to the target.

3) An Example: We further use Listing 2 to help illustrate
how our metric improves input prioritization. The correspond-
ing control flow graphs are depicted in Figure 3. a has two
successors, and one successor could always reach the target
code. Therefore, we get Pa = (Pb+Pf)/2 = 0.5 and dbb(a, T) =
1/Pa = 2; h also has two successors. We get Ph = (Pi+Pj)/2
= 0.5 and dbb(h, T) = 1/Pf = 2, and similarly dbb(g, T) = 4.
Suppose we have two inputs S1 and S2, and their execution
traces are a→ f and g→ j (i.e., x<=10), respectively.

Using the distance metric in AFLGo, we get dinput(S1, T)
= 3/1 = 3 and dinput(S2, T) = 2/1 = 2. AFLGo would thus
assign more energy to S2 as dinput(S2, T) < dinput(S1, T).
However, by analyzing the control flow, we could infer S1
is more likely to reach the target. Using our distance metric,
we get dinput(S1, T) = dbb(a, T) = 2; and dinput(S2, T) =
dbb(g, T)= 4. Consequently, SELECTFUZZ would prioritize in
S1 over S2.

B. Selective Path Exploration

SELECTFUZZ selectively instruments and explores only code
that is relevant to the fuzzing targets. In the next, we first discuss
how we identify the relevant code (§IV-B1), then introduce
our input prioritization and power scheduling mechanisms
(§IV-B2).

1) Relevant Code Identification: We identify the code with
which the target code is control- or data-dependent as relevant
code. Intuitively, code that can determine the control-flow
or data-flow conditions for triggering the vulnerability is the
relevant code. We define two classes of relevant code: path-
divergent code and data-dependent code. The path-divergent
code is in the last intersection block of a reachable path and
an unreachable path. The data-dependent code influences the
values of critical variables used in the targets; those variables
can be assigned values of some constants or variables (direct
dependency), which could further derive from other variables
in other code blocks (indirect dependency). Note that the
targets are included as relevant code and are considered as
data-dependent code.

Path-divergent code provides important feedback with which
SELECTFUZZ could distinguish the inputs that progress towards
the targets. Specifically, by reaching a path-divergent code
block, a positive feedback would be collected as it has a
non-infinite block distance to the targets. SELECTFUZZ thus
generates new inputs from the better seed inputs and keeps
approaching the targets. It might also generate irrelevant inputs
whose executions uncover only irrelevant code. However, it is
unaware of irrelevant code as the code is not instrumented and
provides neither coverage nor distance feedback. The irrelevant
inputs are thus not favored; this prevents SELECTFUZZ from
generating new irrelevant inputs. This is exactly what we
optimize as such inputs provide feedback that drives the fuzzers
towards different directions from the target code.

Note that we do not instrument the irrelevant code that could
indirectly affect the control flow at the path-divergent code. For
instance, in Listing 1, the path-divergent code in line 14 or line
15 might be data-dependent on some irrelevant code block(s)
omitted in line 13. We trade off instrumenting such code for a
much smaller exploration space. We notice that the reachability
towards the targets is mainly influenced by the path-divergent
code rather than the other code. Specifically, the program would
keep executing on the reachable path (after it reaches one
path-divergent block) until it reaches the next path-divergent
block. The indirect control-dependent code blocks (i.e., those
influencing variables in conditions) on the reachable path would
be visited when the fuzzer tries to reach the path-divergent code

block regardless if we instrument them or not. Instrumenting
the other code on the reachable path does not provide additional
helpful feedback but would increase the runtime overhead. Our
observation is also consistent with the results in a recent work—
WindRanger [6], which demonstrates that only the “deviation
code blocks” are important in reachability analysis.

The data-dependent code might not help reach the target code,
but can help with the exploitation. Since some vulnerabilities
may only be triggered when the critical variables in targets
are in certain values [36], exploring the data-dependent code
could help the exploitation stage of SELECTFUZZ.

SELECTFUZZ currently does not—but can—prune the un-
reachable paths like Beacon [2]. As path pruning saves
unnecessary execution time on unreachable paths, we could
integrate SELECTFUZZ with this approach to further improve
the fuzzing efficiency. We will present the evaluation results
and more discussion about it in §VI-A3.

Back to the example in Figure 1, according to our definition,
the relevant code includes b , e , f , g . Specifically, e
and f are the path-divergent code; b and g are the data-
dependent code. Compared to Beacon that explores the state
space of all code blocks except h , SELECTFUZZ refines the
fuzzing scope to only four code blocks. This allows it to more
efficiently trigger the potential erroneous states in the target
code.

2) Input Prioritization and Power Scheduling: As we
use a different instrumentation strategy for directed fuzzing,
we accordingly change the input prioritization and power
scheduling mechanisms in standard fuzzers. In this subsection,
we introduce SELECTFUZZ’s input prioritization and power
scheduling mechanisms.

Input Prioritization. SELECTFUZZ selects the relevant inputs
that cover new edges between relevant basic blocks or increase
the hit count of an existing edge to a new scale. SELECTFUZZ
might not always find relevant inputs. For instance, it might
fail to generate an input satisfying a critical condition. In cases
where no relevant inputs are found, SELECTFUZZ would select
and mutate the irrelevant inputs with smaller input distances.

Power Scheduling. SELECTFUZZ adopts the annealing-based
power scheduling method in AFLGo [16]. In particular, it
gradually assigns more energy to the inputs that are closer to the
target locations. Some related works proposed different power
scheduling algorithms (e.g., the adaptive power scheduling
in [27]). We could but do not adopt other power scheduling
algorithms for a fair comparison with AFLGo (§VI-A3).
SELECTFUZZ does not include non-instrumented code when
computing input distance, which might affect power scheduling.
We next show that the selective instrumentation does not affect
it.

According to §IV-B1, if a basic block irbb is not a relevant
basic block, it either 1) has a single successor or 2) all its
successors can or cannot reach the targets. In the first case,
dbb(irbb, T) is equal to the distance of its only successor,
thus the input distance does not change regardless if irbb
is instrumented or not. In the second case, assuming all

successors have the same block distance, dbb(irbb, T) would
be the same as its successors’, so the input distance does not
change with respect to irbb. The successors of irbb could
also have different distances. Assume that successor succ1
has the shortest distance that is smaller than dbb(irbb, T)
and successor succ2 has the largest distance that is larger
than dbb(irbb, T). Then the distances of the inputs visiting
succ1 would not be affected (i.e., they are always the shortest
distance dbb(succ1, T)). The distances of the inputs visiting
succ2 would be dbb(succ2, T) if we do not instrument irbb,
or dbb(irbb, T) if we instrument irbb (because dbb(irbb, T) <
dbb(succ2, T)). However, since dbb(succ1, T) < dbb(irbb, T) <
dbb(succ2, T), the inputs visiting succ2 would not be favored
compared to the inputs visiting succ1 regardless of whether
irbb is instrumented. Therefore, the power scheduling works
as intended without instrumenting irbb.

V. IMPLEMENTATION

We implemented a prototype of SELECTFUZZ with around
2,100 lines of C++ code, including ~1,400 LoC for distance
measurement and ~700 LoC for selective instrumentation.
Distance measurement and compile-time instrumentation were
both implemented as compiler passes. SELECTFUZZ supports
analyzing applications with LLVM bytecode. The source
code of our prototype will be available at https://github.com/
cuhk-seclab/SelectFuzz. Next, we discuss a few important
implementation details.
Call Graph. SELECTFUZZ builds call graphs when it com-
putes the cross-function distance. It infers the target functions in
indirect calls using Andersen’s points-to analysis [39]. Addition-
ally, we optimize the imprecise call graph with argument-type-
based pruning and address-taken-based pruning [40]. According
to [40], the optimizations could reduce the number of call edges
by 70% while retaining correct call edges. Since the current
implementation2 supports only C programs, we extend it to C++
programs by supporting polymorphism features. We infer the
target functions of method calls (e.g., Obj.func()) by analyzing
the receiver class types. We then analyze the polymorphism
and find the target functions in the correct classes.
Inter-procedural Data-flow Analysis. SELECTFUZZ per-
forms backward inter-procedural data-flow analysis starting
from the target code to capture data-dependent code. It first
identifies the critical variables used in the targets and then finds
other code that might influence the critical variables. To support
the inter-procedural analysis, SELECTFUZZ analyzes the callee
function of each call site, and identifies the arguments/parame-
ters that the critical variables are data dependent on. It then
analyzes the data-flow relationship on callee function to infer
if its return values have data dependency with the critical
variables. Finally, it propagates the return values of callee
function to the correct call site in a context-sensitive manner
like in [40].
Alias Analysis. Our data-flow analysis incorporates the conser-
vative points-to analysis in [39, 40] to handle pointer aliasing.

2https://github.com/shamedgh/temporal-specialization

Because of the conservative points-to analysis, SELECTFUZZ
has false positives in identifying the aliases thus also the data-
dependent code. For example, it might incorrectly determine
that two pointers point to the same memory location and
consider that they have data dependencies. Advancing points-
to analysis is an open challenge and orthogonal to this work.
Since our focus is to dynamically trigger the vulnerabilities,
similar to other works [40, 41], we do not particularly address
the false positives in existing static analysis tools. We will
discuss the impacts of the false positives in §VII.
Execution Timeout. SELECTFUZZ might insert inputs trigger-
ing timeout into the input queue and assign certain energies to
them. Existing fuzzers discard inputs if their executions trigger
timeout for time efficiency. However, the inputs triggering
timeout might uncover new relevant basic blocks and thus
move the fuzzing progress forward. Because only a small
proportion of inputs are relevant to the target code and make a
progress, such inputs are always retained for future mutations.
However, inputs triggering timeout will be assigned with less
energy compared with the normal inputs with the same input
distance.

VI. EVALUATION

In this section, we evaluate SELECTFUZZ using real-world
vulnerabilities and answer the following questions:

• RQ1 How effective is SELECTFUZZ in triggering known
vulnerabilities?

• RQ2 How does each component of SELECTFUZZ con-
tribute to its performance?

• RQ3 Which factors affect SELECTFUZZ’s effectiveness?
• RQ4 How does SELECTFUZZ perform in a standard

fuzzing benchmark?
• RQ5 Can SELECTFUZZ detect new vulnerabilities in real-

world programs?

A. Triggering Known Vulnerabilities (RQ1)
1) Settings: We choose a set of known vulnerabilities

evaluated in prior works [1, 2, 16] as the evaluation dataset.
These vulnerabilities reside in real-world programs that handle
different file formats, including PDF, executable, XML, etc.
The vulnerabilities and the corresponding programs are listed
in the second and third columns of Table I, respectively.

Directed fuzzers require setting initial seeds and specifying
the target code. In our experiment, we use the seeds provided by
AFLGo in the first eleven cases (i.e., No. 1-11) and obtain seeds
from the corresponding code repositories in the rest cases (i.e.,
No. 12-18).3 We search and select the final crash point as the
fuzzing target for reproducing a crash. For a fair comparison,
we apply the same seeds and fuzzing target per vulnerability
across different directed fuzzers. Similar to Beacon [2], we
conduct the experiment 5 times and set a time budget of 120
hours. All experiments are conducted in Docker running on a
64-bit Ubuntu machine with 8 CPU cores (Intel Xeon(R) CPU
W-2123 @ 3.60GHz) and 16 GB of memory.

3Cases No. 12-18 were evaluated in other works but their initial seeds have
not been released.

https://github.com/cuhk-seclab/SelectFuzz
https://github.com/cuhk-seclab/SelectFuzz

Table I: The evaluation dataset and the average crash exposure time of AFLGo, SELECTFUZZ, Beacon†, and SELECTFUZZ∗. BBtotal,
BBrec, and BBrel denote the total number of basic blocks, the number of reachable basic blocks, and the number of relevant basic blocks in
the programs, respectively. Beacon† denotes our naive path pruning implementation of Beacon; SELECTFUZZ∗ denotes the integration of
SELECTFUZZ and Beacon†. We obtained Beacon’s speedup over AFLGo from its paper [2].

No. CVE-ID Program Vuln. Code BBtotal BBrec BBrel AFLGo SELECTFUZZ Beacon† SELECTFUZZ∗ Speedup

SELECTFUZZ Beacon
1 2016-9827 swftophp-0.4.7 outputtxt.c:144 4,114 717 192 1.07 h 0.25 h 0.46 h 0.22 h 4.28 3.90
2 2017-7578 swftophp-0.4.7 parser.c:68 3,788 323 116 2.41 h 0.77 h 0.83 h 0.70 h 3.13 8.10
3 2018-8807 swftophp-0.4.8 decompile.c:349 3,798 626 298 6.23 h 0.32 h 3.74 h 0.27 h 19.47 5.67
4 2018-8962 swftophp-0.4.8 decompile.c:398 3,798 516 198 29.70 h 0.64 h 4.81 h 0.33 h 46.41 18.37
5 2017-11728 swftophp-0.4.8 decompile.c:868 3,798 484 221 120 h 42.17 h 32.10 h 19.87 h 2.85 10.76
6 2018-20427 swftophp-0.4.8 decompile.c:425 3,798 91 56 120 h 15.26 h 12.78 h 5.14 h 7.86 35.10
7 2017-8846 lrzip-0.631 stream.c:1756 9,454 511 325 120 h 120 h 120 h 120 h 1 N.A.
8 2016-4491 cxxfilt-2.26 cp-demangle.c:4318 42,150 414 163 10.73 h 3.38 h 4.13 h 3.09 h 3.17 3.87
9 2017-9047 xmllint-20904 valid.c:1279 69,696 18,032 1,094 120 h 10.28 h 42.30 h 9.92 h 11.67 6.66
10 2017-9048 xmllint-20904 valid.c:1323 69,696 18,046 1,021 120 h 24.87 h 45.57 h 16.47 h 4.83 6.01
11 2017-9049 xmllint-20902 parser.c:3406 69,853 20,128 4,540 120 h 104.39 h 71.83 h 33.04 h 1.15 3.62
12 2017-8392 objdump-2.28 dwarf2.c:4212 60,482 463 331 1.44 h 0.51 h 0.40 h 0.24 h 2.82 N.A.
13 2017-8396 objdump-2.28 libbfd.c:615 60,518 13,123 3,135 1.98 h 0.53 h 0.65 h 0.44 h 3.74 N.A.
14 2017-8397 objdump-2.28 reloc.c:885 60,518 2,800 697 120 h 2.73 h 43.20 h 2.03 h 43.96 N.A.
15 2017-14940 objdump-2.28 parser.c:3406 60,482 11,601 2,418 2.63 h 1.71 h 2.46 h 1.31 h 1.53 N.A.
16 2019-10872 libpoppler.so.87 Splash.cc:5872 84,662 2,028 91 120 h 5.02 h 59.30 h 4.84 h 23.90 N.A.
17 2019-10873 libpoppler.so.86 SplashXPathScanner.cc:458 84,529 3,942 281 41.52 h 4.13 h 21.25 h 4.03 h 9.95 N.A.
18 2019-14494 libpoppler.so.89 SplashOutputDev.cc:4584 84,925 2,231 111 120 h 120 h 120 h 118.89 h 1 N.A.

2) Performance of SELECTFUZZ: We measured the time
used by SELECTFUZZ to reproduce the crashes. We present the
evaluation results in the ninth column of Table I. In general,
SELECTFUZZ successfully reproduced crashes in 16 out of
the 18 cases. It failed to reproduce 2 crashes (i.e., No. 7 and
No. 18) within the time budget, while other fuzzers could not
trigger them, either. The authors of Beacon claimed to have
triggered the two cases [2]. The different results might be
caused by the different seed inputs used in our experiment
and theirs. The seed corpus could significantly influence the
fuzzing efficiency [42]. To be consistent with our seed selection
strategy, however, we did not separately use other seed inputs
for the two cases. We will discuss it in details in §VI-C2.

3) Comparison with Prior Works: We compare
SELECTFUZZ with the baseline tool—AFLGo [16]—
and a state-of-the-art tool—Beacon [2]. We do not include
other advanced directed fuzzers such as Hawkeye [1] into our
evaluation as Beacon outperformed them in its evaluation. We
do not include directed fuzzers attempting to automatically
specify the target code [3, 27, 30] either as they have a
different focus from SELECTFUZZ. Note that Beacon is not
open-sourced and we used its binary in the Docker image
provided by the authors [43] in our evaluation.
Comparison with AFLGo. The evaluation results of AFLGo
are listed in the eighth column in Table I. AFLGo repro-
duced crashes in 9 out of the 18 cases and failed in 9
cases. SELECTFUZZ outperformed AFLGo by successfully
reproducing 7 more crashes. We carefully compared the time
used for those successful cases. SELECTFUZZ significantly
improved AFLGo with an over 10× speedup in 5 (27.8%)
cases and up to 46.41× speedup. The results demonstrate that
our selective path exploration strategy is highly effective in
improving directed fuzzing efficiency. We further provide the
characterization of SELECTFUZZ’s effectiveness in §VI-C.
Comparison with Beacon. We were unable to fairly evaluate
Beacon in our experiments and had to reuse the results reported
by the authors [2]. We used the Beacon binary in the Docker

image the authors released [43]. We inferred that this binary was
the implementation of Beacon above AFL (i.e., Beacon+AFL),
though the authors stated that they used AFLGo as their primary
fuzzing engine [2]. The reason is twofold. First, our experiment
results were inconsistent with the results the authors presented
in their evaluation using Beacon+AFLGo [2]. Also, our binary
analysis (e.g., reverse engineering and binary diffing [44])
revealed that the provided fuzzing engine was almost identical
to the standard AFL—it lacked a few key components (e.g.,
distance metrics) and the unique fuzzing options (e.g., -z) of
AFLGo. The performance of Beacon+AFLGo should be better
than that of Beacon+AFL according to their paper [2], For a
fair and desired comparison, we should compare SELECTFUZZ
with Beacon+AFLGo, which is not publicly available. We
could thus only reuse the results reported in the paper [2] to
represent the speedup of Beacon+AFLGo. In the following,
we use Beacon and Beacon+AFLGo interchangeably as we
mainly compare SELECTFUZZ with Beacon+AFLGo.

The authors of Beacon did not publish their seed corpus while
the selection of seed inputs is critical for fuzzing. However, the
authors mentioned that they would use the seeds if provided
by AFLGo [2]. Therefore, we were able to compare the
performance of SELECTFUZZ with Beacon in the first eleven
vulnerabilities (i.e., No. 1-11), which were evaluated by both
AFLGo and Beacon. Note that we excluded case No. 7, for
which we measured quite different crash exposure time of
AFLGo, which led us to infer that Beacon used different seeds
in that case.

We list the speedup of Beacon upon AFLGo in the last
column of Table I. Overall, the results indicate that selective
path exploration and path pruning could both improve directed
fuzzing efficiency, but the improvements differ across cases.
As we discussed in §IV-B1, SELECTFUZZ avoided exploring
much irrelevant reachable code that Beacon explored. It also
had less instrumentation overhead compared to Beacon (§VI-C).
Therefore, SELECTFUZZ performed better than Beacon in 4
(out of 10) cases even without adopting path pruning. It also

achieved significantly higher efficiency than Beacon in some
cases such as No. 3 and 4. Beacon performed better than
SELECTFUZZ in several cases. The reason is that SELECTFUZZ
executed some unreachable code, which could be addressed
by path pruning.

Therefore, to measure the exact benefit of our selective
path exploration strategy, we have to integrate SELECTFUZZ
with Beacon which is not open-sourced. To this end, we
implemented a naive prototype of Beacon (we name it Beacon†)
to early terminate unreachable paths and further integrated
SELECTFUZZ with it. Beacon† differs from Beacon in the
aspect that Beacon† prunes only the branches that could never
reach the targets. We name the integration of SELECTFUZZ
and Beacon† as SELECTFUZZ∗.

We list the crash exposure time of Beacon† and
SELECTFUZZ∗ in the tenth and eleventh columns of Table I, re-
spectively. The evaluation results indicated that SELECTFUZZ∗

outperformed Beacon† in all cases, achieving a speedup of
5.23× on average. This suggested that the selective path explo-
ration and the path pruning approaches are well complementary.

Finally, we directly compare SELECTFUZZ∗ to Beacon [2]
using same seeds in the above 10 cases (No. 1-6 and 8-11).
We found that SELECTFUZZ∗ performed better than Beacon
in 6 cases, except for No. 2, 5, 6, and 8. Based on our
experiments, we found that path pruning was very effective
in the four cases. Therefore, by terminating more unreachable
code paths, Beacon could further significantly improve the
fuzzing efficiency. Nevertheless, selective path exploration
still benefited the path pruning approach as SELECTFUZZ∗

improved Beacon† by 15.7%, 61.6%, 59.8%, and 25.2% in
No. 2, No. 5, No. 6, and No. 8, respectively. We are confident
that SELECTFUZZ∗ would also perform better than Beacon in
the four cases if it had terminated all the unreachable paths
identified by Beacon.

B. Ablation Study (RQ2)

As SELECTFUZZ improves directed fuzzing from two
aspects—distance metric and selective path exploration, we
perform an ablation study to evaluate the effectiveness of each
component in this subsection. To evaluate our distance metric,
we modify AFLGo by replacing its distance metric with ours;
we represent this setup as AFLGo+Distance Metric. To evaluate
selective path exploration, we instrument only relevant code but
compute input distance using the distance metric of AFLGo; we
represent this setup as AFLGo+Selective Path Exploration. The
results are shown in Figure 4. Specifically, the blue, red, yellow,
and black bars denote the crash exposure time using AFLGo,
AFLGo+Distance Metric, AFLGo+Selective Path Exploration,
and SELECTFUZZ, respectively.

We first discuss the effectiveness of our distance metric.
Overall, our distance metric improved AFLGo by 39% on
average. The results suggested that prioritizing inputs based on
reaching probability (i.e., our distance metric) is more efficient
than always favoring the shortest code paths (i.e., AFLGo’s
approach). AFLGo performed slightly better than our distance
metric in 3 out of 18 cases (i.e., No. 1, No. 12, and No. 13),

although the exposure time in the 3 cases was trivial. Besides,
our distance metric was quite effective in a few cases such as
No. 14 and No. 16. We found that AFLGo did not perform
well in those cases because it lacked support for a precise
inter-procedural analysis. For instance, as objdump (No. 14)
and poppler (No. 16) extensively use indirect calls, AFLGo
misidentified many unreachable code blocks and that misled its
input prioritization. SELECTFUZZ precisely resolved function
calls when computing the input distance, thus addressing this
problem.

We next study the effectiveness of selective path exploration.
First, we found that selective path exploration greatly improved
the fuzzing efficiency. On average, it enabled AFLGo to
achieve an average 6.68× speedup. That substantiated our
observation in §III-A that existing directed fuzzers would
waste much fuzzing energy on tracing code coverage of
irrelevant code. Besides, SELECTFUZZ performed better than
AFLGo+Selective Path Exploration in most (17 out of 18) cases.
This demonstrated the importance of integrating selective path
exploration with our distance metric, which could further help
select better inputs (from relevant inputs) to reach the targets
and trigger the vulnerabilities.

C. Understanding Performance Boost (RQ3)

In this subsection, we discuss a few important factors that
affect the performance of SELECTFUZZ and other directed
fuzzers. In particular, we show that the instrumentation over-
head, the selection of seed inputs, and the path constraints to
target code could largely affect the crash exposure time.

1) Instrumentation Overhead: Instrumentation can introduce
runtime overhead that slows down the instrumented program,
thus affecting fuzzing efficiency. SELECTFUZZ identifies and
selectively instruments only the relevant basic blocks therefore
introduces low runtime overhead. To demonstrate this, we
investigate the proportion of relevant basic blocks in real-world
programs. The number of total basic blocks, reachable basic
blocks, and relevant basic blocks are listed in the fifth, sixth, and
seventh columns in Table I, respectively. Overall, SELECTFUZZ
identified 15,288 basic blocks as relevant basic blocks (1.96%
of the total basic blocks or 12.33% of the reachable basic
blocks). In other words, SELECTFUZZ instruments significantly
less code than AFLGo-based directed fuzzers.

However, not all instrumentation code would be executed
in fuzzing. To understand the practical benefit of selective
instrumentation, we measure the performance of the vanilla
binaries and the binaries instrumented by SELECTFUZZ and
AFLGo. We found that the run time of the binaries instrumented
by SELECTFUZZ was almost the same as the vanilla binaries. In
comparison, AFLGo’s instrumentation made the programs 57%
slower as the instrumented code is triggered upon executing
each basic block.

2) Exploring Relevant Code: The effectiveness of
SELECTFUZZ is largely affected by the proportion (i.e., Pir)
of the triggered irrelevant code blocks among all triggered code
blocks. Specifically, Pir represents how much irrelevant code
prior works would explore and SELECTFUZZ would exclude.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

20

40

60

80

100

120
Ti

m
e

to
ex

po
su

re
AFLGo

AFLGo+Distance Metric

AFLGo+Selective Path Exploration

SELECTFUZZ

Fig. 4: The component-wise effectiveness of SELECTFUZZ. The y-axis is the crash exposure time.

We observed that Pir was usually very large and that resulted
in low efficiency in existing directed fuzzers. This could be
explained by the results that only 1.96% / 12.33% of total /
reachable code blocks are relevant. In the following, we further
discuss a few factors affecting Pir to better understand the
performance boost.

Seed Inputs. Like in other fuzzing works [2, 16, 18], the
seed inputs greatly affect the code triggered during fuzzing
as all test inputs are derived from the seed inputs. A bad
seed input might trigger much irrelevant code that existing
directed fuzzers would explore but SELECTFUZZ can exclude.
For example, the seed of No. 16 could already reach the target
code location. However, it was a large PDF file (over 55KB)
whose execution visited many irrelevant basic blocks. Because
of the huge exploration state space, AFLGo failed to trigger
the crash within 120 hours. SELECTFUZZ refined the fuzzing
scope to the relevant basic blocks (<0.01% of the total basic
blocks of the test program), and it reproduced this crash using
about 5 hours. To understand the impacts of seeds, we further
removed some unimportant input bytes from the seed of No.
16 and obtained a new PDF file with around 40 KB. Note that
the new seed retained the critical input bytes (specifically, the
form structures) that were relevant to triggering No. 16. The
results showed that with the new seed, AFLGo triggered the
same crash using 71.3 hours and SELECTFUZZ used around 4.3
hours. Crafting good seed inputs could thus improve fuzzing
efficiency.

Complexity of Path Constraints. The complexity of the
constraints on the paths to the target code also affects Pir.
Specifically, the inputs would trigger mostly irrelevant code
blocks if most executions fail to satisfy the path constraints for
reaching the target code. For example, we applied the same
seed input (i.e., a 3.2K ELF file) to test objdump in cases
No. 12-15. AFLGo could reproduce 3 of them but failed for
CVE-2017-8397 (No. 14). We found that compared to the other
three cases, AFLGo could hardly generate inputs satisfying the
constraints on the paths to the target code in this case. However,
many inputs unavoidably uncovered other irrelevant code and
its feedback drove AFLGo to explore other “easier” code
paths. Different from AFLGo, SELECTFUZZ could efficiently
distinguish a few inputs that progress towards the target code.

Once some inputs solved a complex path constraint towards the
target code, only they would be selected for further mutation.
The other unsatisfying inputs would be discarded immediately
even they would uncover other code blocks.

D. Benchmarking (RQ4)

We further evaluate SELECTFUZZ on a standard fuzzing
benchmark to better understand its performance in finding
different types of vulnerabilities.

1) Settings: We compare SELECTFUZZ with AFLGo [16]
(as baseline), Beacon [43], Angora [45], ParmeSan [27], and
AFLChurn [3] using the Google Fuzzer Test Suite (GFTS).
Compared to §VI-A3, we include three more fuzzers (i.e., [45],
[27], and [3]) that specialize in generating high-quality inputs.
This allows us to assess the strengths and limitations of different
techniques (e.g., path pruning, byte-level taint tracking, and
selective path exploration). We do not include other fuzzers
because they are not open-sourced (e.g., [46] and [47]) or their
performance (e.g., [48]) was worse than Angora on GFTS.

We used the initial seeds provided in GFTS when available.
We set a file containing “hi” as the initial seed for a few
programs that the seeds are unavailable. Similar to §VI-A, we
set the final crashing point as the target for each vulnerability.
We also carefully configured the fuzzing options (e.g., -x in
testing libxml), which could have great impacts on fuzzing
performance according to our experiments. Finally, we applied
the same settings to run each fuzzer, and conducted each
experiment 5 times with a time budget of 24 hours.

We followed [3, 49] to set up the fuzzers. Angora’s compiler
does not work for boringssl and we fixed it following [50].
ParmeSan [27] and AFLChurn [3] have an additional target
acquisition step that identifies other target sites. We skipped it
in our experiment and configured the final crashing point as
the target to provide a fair comparison with other fuzzers.

2) Vulnerability Exposure: Table II shows the average time-
to-exposure (TTE) of vulnerabilities of the evaluated fuzzers.
Overall, SELECTFUZZ, Beacon, Parmesan, and AFLChurn per-
formed the best in 8, 4, 4, and 1 cases, respectively. Moreover,
SELECTFUZZ achieved good performance in triggering some
complex cases. For instance, it used about 8 hours (the shortest
TTE) in reproducing the specified crash in libarchive yet other

Table II: The average crash exposure time and the statistical test p values of the evaluated tools for each vulnerability in the Google Fuzz
Test Suite. † Program lcms has two vulnerabilities that crash at the same code location.

Program Vuln. Code AFLGo Beacon ParmeSan Angora AFLChurn SELECTFUZZ

TTE p TTE p TTE p TTE p TTE p TTE p
boringssl asn1_lib.c:459 T.O. - T.O. - 19.92 h 0.043 T.O. - T.O. - T.O. -
c-ares ares_create_query.c:196 <0.01 h 0.011 <0.01 h 0.002 <0.01 h 0.008 <0.01 h 0.075 <0.01 h 0.006 <0.01 h 0.002
guetzli output_image.cc:398 0.58 h 0.006 0.50 h 0.003 0.17 h 0.006 0.62 h 0.028 0.47 h 0.007 0.09 h 0.004
harfbuzz hb-buffer.cc:419 T.O. - 22.11 h 0.008 16.08 h 0.004 T.O. - T.O. - 20.40 h 0.015
json fuzzer-parse_json.cpp:50 0.07 h 0.006 0.03 h 0.000 0.04 h 0.002 0.07 h 0.006 0.06 h 0.005 0.05 h 0.001
lcms cmsintrp.c:642 8.38 h 0.046 4.97 h 0.001 8.18 h 0.006 22.90 h 0.107 7.42 h 0.006 6.23 h 0.004
lcms cmsintrp.c:642† 6.90 h 0.005 5.77 h 0.006 5.58 h 0.018 8.86 h 0.079 7.32 h 0.006 3.52 h 0.004
libarchive archive_read_support_format_warc.c:537 T.O. - T.O. - 13.04 h 0.037 18.06 h 0.219 T.O. - 8.12 h 0.034
libssh messages.c:1001 0.21 h 0.004 0.52 h 0.132 0.22 h 0.008 0.20 h 0.005 0.12 h 0.004 0.09 h 0.002
libxml2 parser.c:10666 0.09 h 0.006 0.02 h 0.002 <0.01 h 0.000 0.42 h 0.002 <0.01 h 0.001 <0.01 h 0.000
libxml2 dict.c:489 0.33 h 0.005 0.26 h 0.004 0.08 h 0.004 0.49 h 0.007 0.19 h 0.001 0.10 h 0.002
openssl-1.0.1f t1_lib.c:2586 <0.01 h 0.001 <0.01 h 0.000 <0.01 h 0.000 <0.01 h 0.001 <0.01 h 0.002 <0.01 h 0.000
openssl-1.0.2d target.cc:145 0.07 h 0.002 0.02 h 0.000 0.05 h 0.006 0.12 h 0.018 0.08 h 0.006 0.05 h 0.000
pcre pcre2_match.c:1426 0.62 h 0.005 0.56 h 0.002 0.60 h 0.003 1.34 h 0.008 0.53 h 0.006 0.40 h 0.006
re2 nfa.cc:532 22.43 h 0.036 10.90 h 0.009 13.12 h 0.004 T.O. - 13.46 h 0.018 9.57 h 0.011
vorbis codebook.c:407 T.O. - 21.55 h 0.040 T.O. - T.O. - T.O. - T.O. -
woff woff2_dec.cc:1274 6.47 h 0.006 6.04 h 0.003 4.93 h 0.001 12.57 h 0.028 6.32 h 0.006 4.56 h 0.004

fuzzers (i.e., AFLGo, Beacon, and AFLChurn) failed to trigger
it within 24 hours.

We also employed a Mann-Whitney U test [51] on the
time-to-exposure to measure the statistical significance of
our experiment results. It can be seen that in nearly all
cases, the results are significant with p < 0.05. Therefore,
the influence of random variations was limited. Compared
to Angora, directed fuzzers usually had a lower p-value (i.e.,
fewer random variations). Since directed fuzzers prioritize in
reaching some specified code locations, intuitively, this reduces
the randomness in exposing the vulnerabilities.

We further study why other fuzzers performed better
than SELECTFUZZ in the 9 cases. One main reason is that
SELECTFUZZ could not efficiently generate the high-quality
inputs to satisfy some complex path constraints. It failed to trig-
ger the crash in boringssl because of this. Incorporating other
advanced input generation techniques (e.g., byte-level taint
tracking) could address this problem. Indeed, this vulnerability
was only triggered by Parmesan, a directed fuzzer utilizing taint-
guided input mutation. Besides, the low fuzzing throughput also
hinders SELECTFUZZ’s efficiency in triggering some crashes.
For instance, when reproducing the crash in vorbis, it executed
only a small number of (e.g., usually less than 10) inputs per
second. Beacon was the only fuzzer triggering that crash as it
greatly improved the execution speed (i.e., hundreds of inputs
per second) with its path pruning technique.

The benchmarking results suggest that our techniques help
improve directed fuzzing performance and can be combined
with the existing techniques for achieving potentially better
performance.

E. Detecting New Vulnerabilities (RQ5)

In this subsection, we apply SELECTFUZZ to detect new
vulnerabilities. We include the applications evaluated in recent
fuzzing works [2, 24, 28] as our testing objects and compile
these programs using default configurations. Since directed
fuzzers require specifying fuzzing targets, we investigate the
recent vulnerabilities in these applications from the CVE
database [52] and use their root cause locations as our

Table III: New vulnerabilities detected by SELECTFUZZ.

Project Root Cause Vul. Type Status CVE
poppler Object.h:435 abort patched issue-1274
poppler XRef.cc:1388 abort patched issue-1278
poppler Object.h:435 abort patched issue-1276
poppler PDFDoc.cc:1755 abort patched issue-1282
poppler Object.h:445 abort patched issue-1289
poppler pdftocairo.cc:731 assertion confirmed issue-1287
libjpeg iostream.cpp:543 infinite loop patched 2022-37768
libjpeg losslessscan.cpp:374 seg. fault patched 2022-37769
libjpeg linemerger.cpp:262 seg. fault patched 2022-37770
tcpreplay get.c:344 heap overflow patched 2022-37048
tcpreplay get.c:150 heap overflow patched 2022-37049
tcpreplay get.c:713 heap overflow patched 2022-37047
libtiff tif_jpeg.c:962 assertion confirmed issue-445
libming parser.c:2431 memory leak - issue-239

fuzzing targets. The rationale is that these erroneous locations
sometimes contain more than one vulnerability [28]. By
setting them as the fuzzing targets, we are likely to find new
vulnerabilities or reveal incomplete patches.

SELECTFUZZ identified 14 new vulnerabilities with a time
budget of 72 hours. The results in Table III also show that it
was able to identify various types of vulnerabilities, including
heap overflow, segmentation fault, memory leak, etc. Moreover,
SELECTFUZZ found new vulnerabilities in complex software
like poppler and libjpeg. We responsibly reported all the new
vulnerabilities to the relevant developers. At the time of writing,
11 vulnerabilities have been patched and 6 have been assigned
with new CVE IDs.

We further provide an example to help understand the
newly detected vulnerabilities. In CVE-2018-20662, the poppler
program invoked getDict() (which is defined at poppler/Object.h
:435) without checking the object type [53]. This vulnerability
was fixed by adding a check of isDict() before the corresponding
call site (i.e., utils/pdfunite.cc:172) of getDict(). However, the
developers called getDict() in other locations without applying
the same check because those call sites were considered as
not vulnerable. We set poppler/Object.h:435 as the target, and
SELECTFUZZ discovered two previously unknown vulnerable
program paths that called getDict() without type checking. The
vulnerabilities have high impacts because poppler is commonly

used in Linux systems4. After our report, the developers fixed
them in two days by adding the isDict() check before the two
newly found vulnerable call sites of getDict() (i.e., poppler/PDFDoc.
cc:889 and utils/pdfunite.cc:200). Note that although poppler has
been continuously fuzzed by the OSS-Fuzz project [54] and
other fuzzers, the vulnerabilities had been hidden in the project
for 3 years until SELECTFUZZ discovered it.

VII. DISCUSSION

In this section, we discuss the limitations of SELECTFUZZ
and the possible future works.
False Positives in Relevant Code Identification.
SELECTFUZZ could overestimate the relevant code. First, since
SELECTFUZZ over-approximates the call relationships and also
performs a conservative alias analysis in data-flow analysis,
it has false positives in identifying both path-divergent code
and data-dependent code. Second, SELECTFUZZ considers
all variables used in the targets as critical variables when
identifying the data-dependent code, while not all variables
used in targets are important for triggering the vulnerabilities.
For example, to trigger an index overflow vulnerability, only
the array and the index are critical.

We did not particularly resolve the false positives in our
current implementation because our design has ruled out a
large portion of code from exploration. However, advancing
the general static analysis techniques could definitely be helpful.
We plan to integrate other advanced static analyses (e.g.,
structure-sensitive points-to analysis in [55]) into SELECTFUZZ
to address this limitation.
Solving Complex Path Constraints. SELECTFUZZ uses
random mutations to generate inputs and is not effective in
solving some complex path constraints. According to our
evaluation, it failed to trigger some crashes (e.g., No. 18 in
Table I) because of this.

Solving complex path constraints to reach deep code
locations is a common challenge in fuzzing. Recent works
have proposed techniques like taint tracking [45–47], symbolic
executions [48, 56], and structure-aware mutations [57] to assist
the fuzzers to generate high-quality inputs. SELECTFUZZ could
be integrated with these techniques to improve its ability to
solve complex path constraints.
Identifying Vulnerable Code Paths. Similar to other directed
fuzzers [2, 16], SELECTFUZZ attempts to explore all the
reachable paths to the targets. However, since not all reachable
paths to the target code are vulnerable, SELECTFUZZ might
extensively explore some reachable yet safe program paths.
In our evaluation, it used much time to trigger some crashes
(e.g., No. 5 in Table I) because of this reason. One possible
orthogonal approach to mitigating this problem is assisting
SELECTFUZZ with additional vulnerability information (e.g.,
the crash dump) besides the target code locations. We leave
this as a future work.

4https://poppler.freedesktop.org/

VIII. RELATED WORK

In this section, we discuss the closely related works.

Improving Directed Fuzzing Efficiency. Many works have
been proposed to improve directed fuzzing efficiency. ParmeSan
performed data flow analysis to identify the input bytes
affecting the conditionals to targets [27] and AFLChurn used
ant colony optimization to evaluate the impacts of input bytes
[3]. They mutated some important input bytes to efficiently
reach the target locations. The other direction to improve
efficiency is identifying the interesting inputs for further
mutation. AFLGo firstly introduced the distance metric and
assigned more energy to the closer inputs [16]. Hawkeye [1]
proposed the augmented adjacent-function distance to avoid the
bias to certain traces. Windranger [6] focused on the deviation
basic blocks for input distance calculation. Recently, researchers
also proposed techniques to filter out unreachable inputs or
code paths. Specifically, FuzzGuard trained a deep learning
model to discard unreachable inputs [17] and Beacon adopted
a lightweight static analysis to prune unreachable paths [2].

SELECTFUZZ adopts selective path exploration by instru-
menting only the relevant code. This is different from all prior
works that either explore the whole program or the reachable
program paths. We believe that our technique is generic and it
could be integrated with existing techniques to further improve
fuzzing efficiency.

Targeted Program Analysis. Apart from directed fuzzing,
some other techniques also adopt the targeted analysis strat-
egy. Directed symbolic execution performs a (heavy-weight)
program analysis and constraint solving to generate inputs
that reach the target code [33, 58, 59]. Chen et al. proposed
selective taint analysis that instrumented taint logic only for
the instructions that might be tainted [60]. The selective taint
approach could improve dynamic taint analysis efficiency by
1.7× in their evaluation [60]. In this work, we applied selective
code instrumentation in directed fuzzing and the results showed
it achieved significant performance improvement.

IX. CONCLUSION

In this work, we present SELECTFUZZ, a new directed
fuzzer that selectively explores program paths for efficient
crash reproduction and vulnerability detection. SELECTFUZZ
identifies and instruments only the code relevant to reaching or
triggering the specified potential vulnerabilities. It also adopts
a new distance metric that accurately measures the reaching
probability of different program paths and inputs. We evaluated
SELECTFUZZ with a set of known vulnerabilities and showed
that it achieved up to 46.41× speedup compared to AFLGo.
It also performed the best in reproducing eight crashes on
the Google Fuzzer Test Suite. We further demonstrate that
SELECTFUZZ is complementary to existing techniques like
path pruning. Finally, with SELECTFUZZ we detected and
reported 14 new vulnerabilities in real-world programs; 11 had
been fixed because of our work.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their helpful
suggestions and comments. The work described in this paper
was partly supported by a grant from the Research Grants
Council of the Hong Kong SAR, China (Project No.: CUHK
14210219).

REFERENCES
[1] H. Chen, B. Chen, Y. Xue, X. Xie, Y. Liu, Y. Li, and X. Wu, “Hawkeye:

Towards a desired directed grey-box fuzzer,” in Proceedings of the 25th
ACM Conference on Computer and Communications Security (CCS),
Toronto, Canada, Oct. 2018.

[2] H. Huang, Y. Guo, Q. Shi, P. Yao, R. Wu, and C. Zhang, “Beacon :
Directed grey-box fuzzing with provable path pruning,” in Proceedings
of the 43nd IEEE Symposium on Security and Privacy (Oakland), San
Francisco, CA, USA, May 2022.

[3] X. Zhu and M. Bohme, “Regression greybox fuzzing,” in Proceedings of
the 28th ACM Conference on Computer and Communications Security
(CCS), Virtual Event, Korea, Nov. 2021.

[4] M. Soltani, A. Panichella, and A. van Deursen, “Search-based crash
reproduction and its impact on debugging,” IEEE Transactions on
Software Engineering, vol. 46, no. 12, pp. 1294–1317, 2020.

[5] W. You, P. Zong, K. Chen, X. Wang, X. Liao, P. Bian, and B. Liang,
“Semfuzz: Semantics-based automatic generation of proof-of-concept
exploits,” in Proceedings of the 24th ACM Conference on Computer and
Communications Security (CCS), Dallas, TX, USA, Oct.–Nov. 2017.

[6] Z. Du, Y. Li, Y. Liu, and B. Mao, “Windranger: A directed greybox
fuzzer driven by deviation basic blocks,” in Proceedings of the 44th
International Conference on Software Engineering (ICSE), Pittsburgh,
PA, USA, May 2022.

[7] Y. Zheng, Z. Song, Y. Sun, K. Cheng, H. Zhu, and L. Sun, “An
efficient greybox fuzzing scheme for linux-based iot programs through
binary static analysis,” in International Performance Computing and
Communications Conference, 2020.

[8] F. Dong, C. Dong, Y. Zhang, and T. Lin, “Binary-oriented hybrid fuzz
testing,” in International Conference on Software Engineering and Service
Science, 2015.

[9] W. Wang, D. Tian, R. Ma, H. Wei, Q. Ying, X. Jia, and L. Zuo, “Shfuzz:
A hybrid fuzzing method assisted by static analysis for binary programs,”
China Communications, 2021.

[10] M.-d. Nguyen, R. Bonichon, I. O. Tweag, and R. Groz, “Binary-
level directed fuzzing for use-after-free vulnerabilitie,” in International
Symposium on Research in Attacks, Intrusions and Defense, 2020.

[11] J. Chen, W. Han, M. Yin, H. Zeng, C. Song, B. Lee, H. Yin, and I. Shin,
“Symsan : Time and space efficient concolic execution via dynamic data-
flow analysis,” in Proceedings of the 31st USENIX Security Symposium
(Security), Boston, MA, USA, Aug. 2022.

[12] G. Lee and B. Lee, “Constraint-guided directed greybox fuzzingg,” in
Proceedings of the 30th USENIX Security Symposium (Security), Virtual
Event, Aug. 2021.

[13] J. Peng, F. Li, B. Liu, L. Xu, B. Liu, K. Chen, and W. Huo, “1dvul:
Discovering 1-day vulnerabilities through binary patches,” in Proceedings
of the 2019 International Conference on Dependable Systems and
Networks (DSN), Portland, OR, USA, Jun. 2019.

[14] V. Wüstholz and M. Christakis, “Targeted greybox fuzzing with static
lookahead analysis,” in Proceedings of the 42nd International Conference
on Software Engineering (ICSE), Seoul, Korea, Jun.–Jul. 2020.

[15] L. Zhang, K. Lian, H. Xiao, Z. Zhang, P. Liu, Y. Zhang, M. Yang,
and H. Duan, “Exploit the last straw that breaks android systems,” in
Proceedings of the 43nd IEEE Symposium on Security and Privacy
(Oakland), San Francisco, CA, USA, May 2022.

[16] M. Pham, V. Thuan, M. D. Nguyen, and A. Roychoudhury, “Directed
greybox fuzzing,” in Proceedings of the 24th ACM Conference on
Computer and Communications Security (CCS), Dallas, TX, USA, Oct.–
Nov. 2017.

[17] P. Zong, T. Lv, D. Wang, Z. Deng, R. Liang, and K. Chen, “Fuzzguard:
Filtering out unreachable inputs in directed grey-box fuzzing through

deep learning,” in Proceedings of the 29th USENIX Security Symposium
(Security), Virtual Event, Aug. 2020.

[18] M. Zalewski, “american fuzzy lop,” 2021, https://github.com/google/AFL.
[19] W. Wu, Y. Chen, J. Xu, X. Xing, X. Gong, and W. Zou, “Fuze: Towards

facilitating exploit generation for kernel use-after-free vulnerabilities,”
in Proceedings of the 27th USENIX Security Symposium (Security),
Baltimore, MD, USA, Aug. 2018.

[20] R. Meng, Z. Dong, J. Li, I. Beschastnikh, and A. Roychoudhury, “Linear-
time temporal logic guided greybox fuzzing,” in Proceedings of the 44th
International Conference on Software Engineering (ICSE), Pittsburgh,
PA, USA, May 2022.

[21] S. Canakci, N. Matyunin, K. Graffi, A. Joshi, and M. Egele, “Targetfuzz:
Using darts to guide directed greybox fuzzers,” in Proceedings of the
17th ACM Asia Conference on Computer and Communications Security
(ASIACCS), Nagasaki, Japan, Apr. 2022.

[22] C. Qian, H. Hu, M. Alharthi, P. H. Chung, T. Kim, and W. Lee, “razor:
A framework for post-deployment software debloating,” in Proceedings
of the 28th USENIX Security Symposium (Security), Santa Clara, CA,
USA, Aug. 2019.

[23] A. Quach, A. Prakash, and L. Yan, “Debloating software through {Piece-
Wise} compilation and loading,” in Proceedings of the 27th USENIX
Security Symposium (Security), Baltimore, MD, USA, Aug. 2018.

[24] S. Nagy and M. Hicks, “Full-speed fuzzing: Reducing fuzzing overhead
through coverage-guided tracing,” in Proceedings of the 40th IEEE
Symposium on Security and Privacy (Oakland), San Francisco, CA,
USA, May 2019.

[25] S. Nagy, A. Nguyen-Tuong, J. D. Hiser, J. W. Davidson, and M. Hicks,
“Same coverage, less bloat: Accelerating binary-only fuzzing with
coverage-preserving coverage-guided tracing,” in Proceedings of the 28th
ACM Conference on Computer and Communications Security (CCS),
Virtual Event, Korea, Nov. 2021.

[26] “Google’s fuzzer-test-suite,” 2022, https://github.com/google/fuzzer-test-
suite.

[27] S. Österlund, K. Razavi, H. Bos, and C. Giuffrida, “Parmesan : Sanitizer-
guided greybox fuzzing,” in Proceedings of the 29th USENIX Security
Symposium (Security), Virtual Event, Aug. 2020.

[28] Y. Wang, X. Jia, Y. Liu, K. Zeng, T. Bao, D. Wu, and P. Su, “Not all
coverage measurements are equal: Fuzzing by coverage accounting for
input prioritization,” in Proceedings of the 2020 Annual Network and
Distributed System Security Symposium (NDSS), San Diego, CA, USA,
Feb. 2020.

[29] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “Collafl:
Path sensitive fuzzing,” in Proceedings of the 39th IEEE Symposium on
Security and Privacy (Oakland), San Francisco, CA, USA, May 2018.

[30] X. Du, B. Chen, Y. Li, J. Guo, Y. Zhou, Y. Liu, and Y. Jiang, “Leopard :
Identifying vulnerable code for vulnerability assessment through program
metrics,” in Proceedings of the 41st International Conference on Software
Engineering (ICSE), Montréal, Canada, May 2019.

[31] X. Zhu and M. Bohme, “Regression greybox fuzzing,” in Proceedings of
the 28th ACM Conference on Computer and Communications Security
(CCS), Virtual Event, Korea, Nov. 2021.

[32] Y. Yu and S. Gan, “Hdbfuzzer – target-oriented hybrid directed
binary fuzzer,” in International Conference on Computer Science and
Application Engineering, 2021.

[33] J. Kim and J. Yun, “Poster: Directed hybrid fuzzing on binary code,” in
Proceedings of the 28th ACM Conference on Computer and Communi-
cations Security (CCS), Virtual Event, Korea, Nov. 2021.

[34] J. Ye, R. Li, and B. Zhang, “Rdfuzz: Accelerating directed fuzzing with
intertwined schedule and optimized mutation,” Mathematical Problems
in Engineering, 2020.

[35] “Aflgo: Directing afl to reach specific target locations.” 2013, https:
//groups.google.com/forum/topic/afl-users/.

[36] A. Fioraldi, D. C. D’Elia, and D. Balzarotti, “The use of likely invariants
as feedback for fuzzers,” in Proceedings of the 30th USENIX Security
Symposium (Security), Virtual Event, Aug. 2021.

[37] Q. Wu, Y. He, S. McCamant, and K. Lu, “Precisely characterizing
security impact in a flood of patches via symbolic rule comparison,”

https://github.com/google/AFL
https://github.com/google/fuzzer-test-suite
https://github.com/google/fuzzer-test-suite
https://groups.google.com/forum/topic/afl-users/
https://groups.google.com/forum/topic/afl-users/

in Proceedings of the 2020 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, USA, Feb. 2020.

[38] J. M. P. Cardoso and P. C. Diniz, “Modeling loop unrolling: Approaches
and open issues,” in Proceedings of the International Workshop on
Embedded Computer Systems, 2004.

[39] L. O. Andersen, “Program analysis and specialization for the c pro-
gramming language,” Ph.D. dissertation, University of Cophenhagen,
1994.

[40] S. Ghavamnia, T. Palit, S. Mishra, and M. Polychronakis, “Temporal
system call specialization for attack surface reduction,” in Proceedings
of the 29th USENIX Security Symposium (Security), Virtual Event, Aug.
2020.

[41] Y. Lyu, Y. Fang, Y. Zhang, Q. Sun, S. Ma, K. Bertino, Elisa anf Lu, and
J. Li, “Goshawk : Hunting memory corruptions via structure-aware and
object-centric memory operation synopsis,” in Proceedings of the 43nd
IEEE Symposium on Security and Privacy (Oakland), San Francisco,
CA, USA, May 2022.

[42] A. Rebert, S. K. Cha, T. Avgerinos, J. Foote, D. Warren, G. Grieco, and
D. Brumley, “Optimizing seed selection for fuzzing,” in Proceedings of
the 23rd USENIX Security Symposium (Security), San Diego, CA, USA,
Aug. 2014.

[43] “Beacon docker image,” 2022, https://hub.docker.com/r/yguoaz/beacon/.
[44] Y. Duan, X. Li, J. Wang, and H. Yin, “Deepbindiff: Learning program-

wide code representations for binary diffing,” in Proceedings of the 2020
Annual Network and Distributed System Security Symposium (NDSS),
San Diego, CA, USA, Feb. 2020.

[45] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled search,”
in Proceedings of the 39th IEEE Symposium on Security and Privacy
(Oakland), San Francisco, CA, USA, May 2018.

[46] J. Liang, M. Wang, C. Zhou, Z. Wu, Y. Jiang, J. Liu, Z. Liu, and J. Sun,
“Pata : Fuzzing with path aware taint analysis,” in Proceedings of the 43nd
IEEE Symposium on Security and Privacy (Oakland), San Francisco,
CA, USA, May 2022.

[47] S. Gan, C. Zhang, P. Chen, B. Zhao, X. Qin, D. Wu, and Z. Chen,
“Greyone: Data flow sensitive fuzzing,” in Proceedings of the 29th
USENIX Security Symposium (Security), Virtual Event, Aug. 2020.

[48] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “Qsym: A practical concolic

execution engine tailored for hybrid fuzzing,” in Proceedings of the 27th
USENIX Security Symposium (Security), Baltimore, MD, USA, Aug.
2018.

[49] “Aflchurn benchmark,” 2022, https://github.com/aflchurn/aflchurnbench/
tree/main/benchmarks.

[50] “Angora in boringssl,” 2022, https://github.com/AngoraFuzzer/Angora/
pull/74/files.

[51] A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests for
assessing randomized algorithms in software engineering,” Software
Testing, Verification and Reliability, vol. 24, no. 3, pp. 219–250, 2014.

[52] MITRE, “Cve database,” 2022, https://cve.mitre.org/.
[53] “Cve-2018-20662,” 2018, https://cve.mitre.org/cgi-bin/cvename.cgi?

name=2018-20662.
[54] Google, “Oss-fuzz,” 2021, https://google.github.io/oss-fuzz/.
[55] G. Balatsouras and Y. Smaragdakis, “Structure-sensitive points-to analysis

for c and c++,” in Springer Berlin Heidelberg, 2016.
[56] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,

Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller : Augmenting
fuzzing through selective symbolic execution,” in Proceedings of the 2016
Annual Network and Distributed System Security Symposium (NDSS),
San Diego, CA, USA, Feb. 2016.

[57] C. Lyu, S. Ji, X. Zhang, H. Liang, B. Zhao, K. Lu, and R. Beyah, “Ems
: History-driven mutation for coverage-based fuzzing,” in Proceedings of
the 2022 Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, USA, Feb. 2022.

[58] P. D. Marinescu and C. Cadar, “Katch : High-coverage testing of
software patches categories and subject descriptors,” in Proceedings
of the 18th European Software Engineering Conference (ESEC) / 21st
ACM SIGSOFT Symposium on the Foundations of Software Engineering
(FSE), Saint Petersburg, Russia, Aug. 2013.

[59] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos, “Dowser :
a guided fuzzer to find buffer overflow vulnerabilities,” in Proceedings
of the 22nd USENIX Security Symposium (Security), Washington, DC,
USA, Aug. 2013.

[60] S. Chen, Z. Lin, and Y. Zhang, “Selectivetaint: Efficient data flow tracking
with static binary rewriting,” in Proceedings of the 30th USENIX Security
Symposium (Security), Virtual Event, Aug. 2021.

https://hub.docker.com/r/yguoaz/beacon/
https://github.com/aflchurn/aflchurnbench/tree/main/benchmarks
https://github.com/aflchurn/aflchurnbench/tree/main/benchmarks
https://github.com/AngoraFuzzer/Angora/pull/74/files
https://github.com/AngoraFuzzer/Angora/pull/74/files
https://cve.mitre.org/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2018-20662
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2018-20662
https://google.github.io/oss-fuzz/

	Introduction
	Background
	Directed Greybox Fuzzing
	Improving Directed Fuzzing Efficiency
	Distance-based Input Prioritization
	Input Reachability Analysis

	Problem Statement
	Relevant Code
	Limitations of Existing Approaches
	Research Goals and Challenges

	SelectFuzz
	Distance Metric
	Block Distance
	Input Distance
	An Example

	Selective Path Exploration
	Relevant Code Identification
	Input Prioritization and Power Scheduling

	Implementation
	Evaluation
	Triggering Known Vulnerabilities (RQ1)
	Settings
	Performance of SelectFuzz
	Comparison with Prior Works

	Ablation Study (RQ2)
	Understanding Performance Boost (RQ3)
	Instrumentation Overhead
	Exploring Relevant Code

	Benchmarking (RQ4)
	Settings
	Vulnerability Exposure

	Detecting New Vulnerabilities (RQ5)

	Discussion
	Related work
	Conclusion

