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Abstract—Regular expression Denial-of-Service (ReDoS) is
a class of algorithmic complexity attacks. Attackers can craft
particular strings to trigger the worst-case super-linear matching
time of some vulnerable regular expressions (regex) with extended
features that are commonly supported by popular programming
languages. ReDoS attacks can severely degrade the performance
of web applications, which extensively employ regexes in their
server-side logic. Nevertheless, the characteristics of vulnerable
regexes with extended features remain understudied, making it
difficult to mitigate or even detect such vulnerabilities.

In this paper, we aim to model vulnerable regex patterns
generated by popular regex engines and craft attack strings
accordingly. Our characterization fully supports the analysis of
regexes with any extended feature. We develop REVEALER to
detect vulnerable structures presented in any given regex and
generate attack strings to exploit the corresponding vulnerabili-
ties. REVEALER takes a hybrid approach. It first statically locates
potential vulnerable structures of a regex, then dynamically veri-
fies whether the vulnerabilities can be triggered or not, and finally
crafts attack strings that can lead to recursive backtracking. By
combining both static analysis and dynamic analysis, REVEALER
can accurately and efficiently generate exploits in a limited
amount of time. It can further offer mitigation suggestions based
on the structural information it identifies.

We implemented a prototype of REVEALER for Java. We
evaluated REVEALER over a dataset with 29,088 regexes, and
compared it with three state-of-the-art tools. The evaluation
shows that REVEALER considerably outperformed all the existing
tools—REVEALER can detect all 237 vulnerabilities that can
be detected by any other tool, find 213 new vulnerabilities,
and beat the best tool by 140.64%. We further demonstrate
that REVEALER successfully detected 45 vulnerable regexes in
popular real-world applications. Our evaluation demonstrates
that REVEALER is both effective and efficient in detecting and
exploiting ReDoS vulnerabilities.

I. INTRODUCTION

Regular expression (regex) is a powerful technique devel-
oped in formal language theory to denote a regular language
[24] that can be used to describe certain patterns. Regexes have
been extensively used in modern software, including databases,
text editors, search engines, etc. Modern regex engines are
augmented with extended features (e.g., conditionals, named
groups, etc. [17]) for advanced pattern matching and processing.

Regular Expression Denial-of-Service (ReDoS) [18, 27]
attacks are a form of algorithmic asymmetric DoS attacks [8]
targeting the CPU resource of a victim server. Since developers
may craft regexes that exhibit super-linear (e.g., exponential)
worst-case matching time, a specially-crafted (short) input can
spend a server as much as several or more seconds on matching

a vulnerable regex. Since it is hard to split the matching process
of a regex into multiple independent steps, a single malicious
request can block or freeze a (main) thread for a long time
[32]. By supplying multiple such attack inputs, an attacker can
significantly lower the availability of the victim server. Since
regexes are supported by most languages and are widely used
in modern applications, especially web/mobile applications that
extensively rely on regexes to process untrusted user inputs,
such attacks can have a huge impact on a vast number of
applications on the Internet.

The theory of detecting ReDoS vulnerabilities in classical
regular expressions based on statically analyzing NFA [38] has
been well established. However, extended regular expressions
can no longer be represented by an NFA. Hence, researchers
have been working on establishing new theories to model
the extended features [4, 9, 22]. Nevertheless, to the best of
our knowledge, no static analyzer is able to fully support all
extended features so far. Further, static analyzers usually report
many false positives. How to well model the ReDoS problem
in extended regular expressions still remains as a challenge.

Researchers also proposed to use dynamic approaches, e.g.,
fuzzing, to generate malicious inputs to detect ReDoS and
other types of algorithmic DoS vulnerabilities [5, 28, 30]. Such
approaches are very effective in finding easy-to-trigger ReDoS
vulnerabilities, and are able to find vulnerable extended regexes,
because they usually do not require knowledge of the regex
structures. However, they are very limited in detecting complex
ones, because it is difficult to generate the correct sequences
of inputs to reach the vulnerable parts of a regex without
understanding its structure and features. Further, they usually
require a high computation cost for searching different inputs.

In this paper, we aim to tackle the challenge of automatically
detecting and exploiting ReDoS vulnerabilities in extended
regexes. We take a hybrid approach combining both static
analysis and dynamic analysis methods.

We first statically model the ReDoS vulnerabilities in an
extended NFA (e-NFA) [30], which is the structure modern
regex engines use to represent an extended regex. Our theory
is inspired by the vulnerable NFA patterns defined in [38]. We
model two types of vulnerable e-NFA patterns in exponential
worst-case time complexity, and one type in polynomial worst-
case time complexity. Such models allow us to statically locate
the potential vulnerable structures in a regex.

Next, we dynamically exploit the potential vulnerability by
generating attack strings. In particular, we focus on generating
the attack core, whose repetitions in the attack string can lead
to catastrophic backtracking [3] when the engine fails to match



the attack suffix. Our approach is different from fuzzing as we
do not generate attack strings by mutating input seeds. Instead,
we simulate the matching process of an extended regex on
top of an E-TREE, which is our simplified representation of
an e-NFA. Our match simulator can construct a match string
for one or multiple sub regular expressions. By simulating
the match of multiple subexpressions that are detected from
the vulnerable e-NFA structure, we can effectively generate
the attack core. Similarly, we can also accurately generate the
attack prefix for reaching the vulnerable regex pattern, and the
attack suffix that causes backtracking on match failure.

We develop REVEALER, a system for automatically detect-
ing and exploiting ReDoS vulnerabilities. REVEALER takes a
regex as input, and can produce an attack string that can exploit
the ReDoS vulnerability in the regex, if any. It incorporates a
static analysis for locating the vulnerable subexpressions and a
dynamic analysis for producing the attack strings and validating
the potential vulnerabilities. For each potential vulnerable
regex, it dynamically tests it with the attack string for super-
linear matching steps at runtime. Such dynamic verification
helps it exclude any false positives that may be reported by
the static analysis. Further, it can also report the vulnerable
subexpression in the regex to help the developers identify and fix
the vulnerability. We implemented a prototype of REVEALER
based on the Java 8 regex engine. We will make the source
code of our prototype implementation publicly available.

We systematically evaluated REVEALER with a benchmark
dataset containing 29,088 regexes, and compared it with three
state-of-the-art ReDoS detection tools. REVEALER significantly
outperformed all three tools by detecting 213 previously un-
known ReDoS vulnerabilities, and all 237 known ones detected
by the other tools. It beat the best performing tool by 140.64%
in our evaluation, and took several orders or magnitude less
time on analyzing one regex. We further applied REVEALER
to 178 popular open-source projects on GitHub, and detected
45 new vulnerabilities. We responsibly disclosed our detected
vulnerabilities to the relevant developers. The evaluation results
demonstrate that REVEALER can both effectively and efficiently
detect and exploit ReDoS vulnerabilities.

In summary, this paper makes the following contributions:

• We statically modeled ReDoS vulnerabilities for extended
regular expressions based on extended NFA.

• We developed REVEALER, an effective and efficient
system for automatically detecting and exploiting ReDoS
vulnerabilities by using a hybrid approach.
• Using REVEALER, we detected 213 previously unknown

ReDoS vulnerabilities in a benchmark dataset, and 45
previously unknown ReDoS vulnerabilities in popular real-
world open-source applications.

II. BACKGROUND

We introduce the necessary background related to ReDoS
and its existing mitigation approaches in this section.

A. ReDoS Attacks

In general, ReDoS vulnerabilities are caused because the
worst-case time complexity of regex matching algorithm in
modern regex engines is super-linear with the length of input.

Traditionally, regex engines accept only classical regular
expression, which is the expression of a regular language
[24]. From Kleene’s theorem [39], a regular language can be
transferred to an equivalent nondeterministic finite automaton
(NFA). Therefore, we can construct a NFA for each classical
regex. The regex matching algorithm then becomes the process
of verifying whether the NFA accepts a certain input string or
not, whose worst-case complexity is only linear with the input
length because it visits each input symbol once and each visit
takes constant time.

However, modern regex engines add support for extended
features, which require a matching algorithm with super-linear
worst-case complexity. Specifically, in the Chomsky hierarchy,
classical regular expressions are generated by regular grammars,
which belong to context-free grammar. But the expressive power
of many extended features goes beyond context-free grammars
and can only be described by context-sensitive grammars [9].
We use the term extended regular expression to denote the
regular expression containing such features1. For example, the
extended feature “backreferences” can match the same text
previously matched in a capturing group. A regex example using
backreferences is (.+)&\1, which can match “Hello&Hello”
and “World&World” but not “Hello&World”. Regex matching
is NP-hard when regexes are allowed to have backreferences,
as discussed in [16].

Therefore, to fully support these complex extended features,
modern engines first parse the input regular expression into an
NFA like structure (called e-NFA in [30]), and then perform
a backtracking search on top of this structure according to
the input string. Since Shen et al. [30] did not provide a
detailed definition of e-NFA, we will provide one later in
§III-A. In particular, backtracking search is used by modern
regex engines when a regex contains optional quantifiers or
alternation constructs [15]. Such a behavior has been discussed
in [30] and [17].

The search-based algorithm has potential performance
issues. It may lead to catastrophic backtracking since it needs to
check all branches in the e-NFA. For example, regex ^’(a+)*’$
contains a vulnerable subexpression (a+)*. Suppose this
subexpression matches a repeated string “aaaaaa...” of length
n, and its next subexpression ’ fails to match the following
symbol ‘b’, the regex engine would perform backtracking on
the already matched string “aaaaaa...”. Each symbol ‘a’ in
the repeated string can be matched with either the subexpression
(a+) of the outer quantifier *, or the subexpression a of the inner
quantifier +. Since the length of the repeated string is n, there
are 2n possible backtracking searches until the engine declares
a failure. In contrast, the NFA-based matching algorithm would
terminate immediately when it fails to match the symbol ‘b’
using linear time.

Nevertheless, only GO and Rust adopt NFA based matching
algorithm while sacrificing the support for some extended
features. Other popular languages, including JavaScript, Python,
Java, C++, C#, PHP, Perl, and Ruby, implement the e-NFA
based regex engines with super-linear worst-case complexity to
support extended regular expressions [11], which makes ReDoS

1Some extended features like “lookaround” can be simulated in a regular
language by treating its surrounding subexpressions as parts of the language,
so they are not considered as such features.



a common problem.

B. Mitigation of ReDoS Attacks

ReDoS attacks are difficult to prevent because 1) developers
might write vulnerable regex patterns; and 2) regex engines
need to support backtracking and extended features. In practice,
developers lack tools to validate the security of regular expres-
sions they write, and focus on correctness while neglecting the
performance when writing regexes [32]. A survey [23] shows
that only 38% developers are aware of ReDoS attacks, and
even for those that know such problems, there is a lack of tools
or knowledge to help detect such vulnerabilities.

Regex engines can prevent ReDoS attacks by disabling
extended features that cannot be represented by context-free
grammar, but this can significantly limit their functionalities.
Alternatively, some engines limit the number of backtracking
searches (PHP and Perl) or set timeout (the .NET framework)
to stop ReDoS attacks [11]. However, it is difficult to configure
a limit that does not break legitimate regexes.

Recently, researchers focus on detecting vulnerable regexes.
In most of the cases, developers can change the vulnerable regex
to a vulnerability-free one while preserving the functionality. In
some other cases where attack strings that can trigger ReDoS
are under certain patterns (§IV-D), developers can filter such
patterns before sending the input string to the regex. Specifically,
there are two classes of approaches on detecting vulnerable
regexes. We discuss the latest development of them below.

1) Static Analyses: Static analyses detect ReDoS vul-
nerabilities by identifying vulnerable patterns in the regex.
Existing static methods usually build a NFA-based parse
structure, and find vulnerable patterns in the structure. Detecting
vulnerable patterns in NFA has been a theoretically well studied
problem [38]. For extended regular expressions that cannot be
represented by an NFA, researchers try to add support for some
extended features in the parse structure, such as additional
support for “backreferences” [9]; “capture groups” [4]; or
“capture groups”, “greedy quantifiers” and “lazy quantifiers”
[22]. Nevertheless, no parse structure can support all extended
features so far. Further, static analysis approaches usually have
false positives.

2) Dynamic Analyses: Dynamic analyses (or fuzzers) detect
ReDoS vulnerabilities by generating inputs to trigger the
worst-case matching. Such approaches usually do not require
knowledge of the regex structures and are not restricted
by context-free grammars. Therefore, they are able to find
vulnerable extended regular expressions. For example, both
SlowFuzz [28] and ReScue [30] get seeds from the regex
engine and use genetic algorithms to generate inputs.

Fuzzing methods do not work well for finding complex
vulnerabilities. Since vulnerable patterns in e-NFA have not
been well studied, fuzzers usually use only general information
like e-NFA state coverage rate, alphabet strings in regexes, and
the matching steps of a certain input string. Therefore, it is
difficult for these methods to find specially formatted worst-
case inputs for complex vulnerable regexes (e.g., in §VI-C3, the
fuzzing tool ReScue failed to generate the correct prefix, but
all the other static analysis tools succeeded). In addition, while
being effective, fuzzers may spend a lot of time on generating
inputs that cannot trigger the vulnerabilities.

III. PROBLEM STATEMENT

In this section, we first provide the necessary definitions in
our approach (§III-A), then discuss our research goals and the
research challenges (§III-B).

A. Definitions

We present our definition of e-NFA, which was previously
defined in [30] informally. We formalize the common imple-
mentations of modern regex engines, thus support all extended
features naturally. The definition includes the syntax of an
e-NFA (e.g. states, transition functions, etc.), the semantics of
an e-NFA, and the e-NFA match process. We do not formalize
the process that translates a regex to an e-NFA, because our
method depends directly on the e-NFA instead of the specific
translation implementation in a regex engine.

Definition 1 (e-NFA). An e-NFA A is represented by a 6-
tuple (V,Σ,∆,∆′, v0, vf ) where V is a finite set of states and
Σ is a finite alphabet of symbols. Let 0 ≤ p ≤ |s| be the
position in the currently processed input string s, and t as a
snapshot of global matching information when the engine runs
to the current state v. A state v includes several attributes: a
set ASv of strings acceptable for a match, its current match
count cv, its minimum required match count cmin

v , and its
maximum allowed match count cmax

v . The latter two represent
the match count requirements of the state. A state v has also
two corresponding functions: the match function δv in ∆, and
the transition function δ′v in ∆′. δv : (s, p, t) → (Sv, p

′, t′)
produces the status Sv ∈ {0, 1,−1} of state v, and updates
global information p and t if necessary. δ′v : (Sv, t) → v′

produces the next state to transit to from Sv and t. Here,
v0 ∈ V is the initial state, and vf ∈ V is the only accepting
state.

1) The e-NFA Semantics: The e-NFA matches a string s
if there exists a sequence of transitions τ = v0 → · · · → vf
that, starting at (v0, p = 0, t = ϵ) and following the transitions
lead to the accepting state. We call τ as a matching path, and
s is a match string of τ . To consume the substring s[pi : pj ]
while matching s, the e-NFA takes a sequence of transitions
vi → · · · → vj on the path τ . This sequence of transitions (we
simplify as vi, . . . , vj) represents a (sub-) matching path of the
substring s[pi : pj ].

2) The e-NFA Match Process: Regex engines conduct a
match with a stack L that stores a sequence of states v. The
stack starts with the initial state v0, with L0 = {v0} by default.
For each transition v → v′, the engine iteratively computes the
status Sv of the stack’s top element v and pops it if Sv is either 1
(v is matched successfully) or −1 (the match fails). The engine
stops popping when Sv is 0, which indicates that the engine
cannot determine whether v could be matched at this moment,
or v is currently matched but could possibly be backtracked
later. Then, it computes the next state v′ ← δ′v(Sv, t) and
pushes it onto the stack. The match process ends successfully
when the stack gets cleared and A reaches vf .

We use the regex example ^(.|[^"])*" in Figure 1a to
illustrate the above process. Assume the engine tries to match it
with a string “aa”. ① Before the engine consumes any character
(i.e., from v0 to the branch state v4), it first pops v0, then
pushes v1, v2, v3, v4 without popping any state. When v is v4,



v0:Begin ^

v1:ProLog Loop

v2:Loop Loop

v3:GroupHead (

v5:Dot .

v4:Branch |

v6:BranchConn BranchEnd v7:GroupTail )

v8:CharProperty [^”]

v9:Node Exit v10:Single ”v11:LastNode Acc

(a) The e-NFA implementation in the Java 8 engine.

v0:Begin ^

v1:ProLog Loop v2:Loop Loop

v3:GroupHead (

v5:Dot .

v4:Branch |

v6:BranchConn BranchEndv7:GroupTail )

v8:CharProperty [^”]

v10:Single ” v11:LastNode Acc

(b) An E-TREE example.

Fig. 1: An example of regex ^(.|[^”])*”

the engine can select either v5 or v8 as the next state v′. ②
Assume the engine always transits to v5 first by pushing v5.
Its corresponding sub pattern “Dot” matches the first character
‘a’2. Its match function δv5 increments p to 1, and sets its
status Sv5 to 1, which makes the engine pop v5 and push
v6. Since v = v6 is the branch end, the engine pops v6, v4,
and pushes v7. Similarly, it then pops v7 and v3. ③ Now the
loop state v2 is the top element, the engine attempts to match
another repetition of it. With similar steps, it returns to v2 again
with p = 2. ④ The engine cannot find another character to
match either v4 or v10, and has to backtrack by decrementing
p to 1. This time, it transits to v4 and v8 (v5 was marked as
failed), and matches s[1]. After transiting back to v2, it has to
backtrack again by decrementing p to 0. It matches p[0] with
v8

3, and p[1] with first v5 and then v8 in the next backtracking.
The engine can match each ‘a’ with two states. With n ‘a’,
it has to try 2n possible matching paths until it finally fails.

3) The Match Function: δv : (s, p, t)→ (Sv, p
′, t′) has two

behaviors. First, when the acceptable string set ASv of the
state v (e.g., v10: string, v8: set operation, and v5: the ‘Dot’
feature) includes all strings that v can match, δv matches a
string s[p : p′] and updates p → p′, Sv → 1 if s[p : p′] is
in ASv. Second, when the ASv of the state v is empty, δv
determines the match using the information in t, which includes
the status of other states (e.g., v4 is matched if v5 or v8 is
matched) and strings already matched (i.e., capturing groups4

record matched strings in t for backreferences). Note that the
need of run-time variable t makes e-NFA a context-sensitive
grammar. However, the output of the function δv is determined
by s, p, and t.

4) The Transition Function: δ′v : (Sv, t) → v′ determines
v′ using the current match count cv (e.g., cv = 0 if state v has
not been matched yet) for each state v stored in t. cv indicates
the current match status of v. The transition from v to v′ is an

2The “Dot” pattern matches any single character.
3It matches any single character except ".
4They include traditional groups “()”, lookarounds, named groups, and

atomic groups.

inclusion transition if the match of v depends on v′ (i.e., the
match substring of v includes that of v′); and is a connection
transition if v and v′ are matched independently.

Formally, each e-NFA state v represents a subexpression in
the input regex r, which we call the subexpression of state v.
Let r[i : j] and r[i′ : j′] represent the subexpressions of v and
v′, respectively. In Figure 1a, the subexpression of the loop
state v2 is (.|[^"])*, which is r[1 : 10]; the subexpression of
the group head state v3 is (, which is r[1 : 2]; the subexpression
of the single string v10 is ", which is r[10 : 11]. The transition
is an inclusion transition if i′ ≥ i ∧ j′ ≤ j, or a connection
transition if i′ ≥ j. There is no case that two subexpressions
partially overlap. There could be many states reached from v
by inclusion transitions, but at most one state reached from
v by a connection transition. The current state v must be
matched for at least cmin

v times, before the engine can take
a connection transition to match next subexpressions. It can,
however, take an inclusion transition to help match v as long as
cv < cmax

v . For instance, branch state v4 has cmin
v4 = cmax

v4 = 1,
which means it needs to and can be matched only once. When
cv4 = 0, it can be only matched by transiting to v5 or v8 via
inclusion transitions; when cv4 = 1, it has to transit to v6 by a
connection transition. Similarly, the loop state v2 has cmin

v2 = 0
and cmax

v2 = +∞. It can transit to v3 by an inclusion transition
or v10 by a connection transition.

B. Research Goals and Challenges

We aim to investigate the ReDoS problem in extended
regular expressions. More specifically, we study how to
precisely and efficiently detect extended regular expressions
that are vulnerable to ReDoS attacks. Further, we generate
auxiliary information to help mitigate the vulnerabilities, e.g.,
by highlighting the vulnerable subexpressions. We do not claim
to detect all vulnerable regexes, i.e., our method is not sound.
Rather, we aim to develop a complete method that reports only
true positives.

We face the following challenges in detecting vulnerable
regexes with extended features.

1) Definition of Vulnerable Patterns in e-NFA. To pre-
cisely identify vulnerable regexes, we need a clear specification
of the vulnerable e-NFA patterns. Although the theory of ReDoS
vulnerabilities in NFA has been well established, there exists
no formal definition of vulnerable patterns in e-NFA. Unlike
NFA, e-NFA uses a context-sensitive grammar. It is hard to
define a vulnerable pattern that fits in all contexts.

2) Extended Feature Support. Regular expressions have
been extended with rich features to facilitate powerful string
matching. However, the extensive use of those features also
makes it hard to detect vulnerabilities through static analysis.
For example, “backreferences” allow the same text to be
matched more than once. Without executing the matching algo-
rithm, it is infeasible to know the exact text in backreference.
Further, it is difficult for static analysis methods to support all
extended features, because they usually depend on a dedicated
parser. Therefore, static structural analysis is imprecise and
could miss many vulnerabilities.

3) Attack String Generation. In order to identify true
positives from all vulnerable patterns, we need to construct
attack strings to trigger the timeouts. Precisely and efficiently



generating the attack strings, however, is non-trivial. On the
one hand, pure static analysis cannot analyze the meaning of
some extended features and would simply use the literal values
in regexes. For instance, they would use “\s” to represent
a ‘blank’ character, which is apparently incorrect. On the
other hand, dynamic analysis methods, e.g., fuzzers, are usually
inefficient, because they need to search over a huge number of
possible strings.

IV. MODELING REDOS VULNERABILITIES

In this section, we aim to model ReDoS vulnerabilities
by proposing vulnerable e-NFA patterns and corresponding
attack string patterns. We analyze the characteristics of a
critical substring (attack core) in the attack string that would
cause catastrophic backtracking when a match attempt fails
(§IV-A). To define vulnerable e-NFA patterns, we then discuss
the crucial states in an e-NFA that may lead to super-linear
matching behavior (§IV-B). We propose that there are only two
types of such states, and each type can be represented by a
classical feature. Therefore, each vulnerable e-NFA pattern can
be abstracted as a structure composed of these two types of
classical features. Based on the above observations, we propose
different types of vulnerable e-NFA patterns (§IV-C) and attack
string patterns (§IV-D).

A. Attack Core Detection

The attack core is the most crucial part in an attack string.
It has at least two distinct sub-matching paths in the e-NFA,
and the transitions on these paths can be repetitively taken for
matching it. In other words, it is the common match string
of multiple subexpressions and their repetitions. Therefore,
when matching an attack core, the matching algorithm has
multiple traceable options. The repetition of attack core makes
the overall matching complexity super-linear when the engine
backtracks. We propose the following definition of common
match string for subexpressions to help find an attack core.

Definition 2 (Common match string). Several distinct subex-
pressions R = {r0, r1, . . . } have a common match string s if
there exists a string s such that s can match (the repetition of)
each subexpression r ∈ R.

For example, “ab” is a common match string of the two
subexpressions r0 =“(a|b)” and r1 =“ab”. It matches two
repetitions of r0, and (one repetition of) r1.

B. Crucial States in e-NFA

In this section we discuss which states in e-NFA would lead
to super-linear matching behavior. [26] proposes two critical
factors as necessary conditions for repeated backtracking in a
regular expression:

1) the regular expression applies repetition to a complex
subexpression;

2) for the repeated subexpression, there exists a match, which
is also a suffix of another valid match.

Inspired by [26], we consider all states in an e-NFA that
possibly meet the above conditions, and categorize them into
the following two categories.

vi:Loopvi+1:Loopr2

r3

r1 r0

r4

Fig. 2: Loop in Loop vulnerable structure. A dashed curve arrow
denotes a matching path starting with an inclusion transition, and a
solid curve arrow denotes a matching path starting with a connection
transition.

Definition 3 (Loop state). A state v is a loop state if its
maximum allowed match count cmax

v > 1.

Definition 4 (Branch state). A state v is a branch state if v
has more than one outgoing inclusion transition.

We then introduce a theorem that only these two types of
states could lead to the super-linear matching behavior in any
e-NFA. The proof of the theorem is provided in Appendix §A2.

Theorem 1 (States that construct the vulnerable structure). If
an e-NFA has neither loop states nor branch states, then the
e-NFA match process runs in linear time.

Theorem 1 does not suggest that loop states and branch
states can lead to super linear matching time. We will show that
in §IV-C. Knowing that the vulnerable structure could consist
of only loop states and branch states, we analyze how regex
features fall into these two types:

• Loop state: “classical quantifiers ∗ +”, “Greedy quantifiers
{m,n}{n}{m, }”5 and “Lazy quantifiers ?? ∗? +? {}?”6.

• Branch state: “classical branch |” and “Lazy ?”.

“Lazy ?” can be considered as a special case of classical
feature “Branch |”. Greedy quantifiers and lazy quantifiers are
also similar to the ordinary quantifiers ‘*’ and ‘+’ in the
context of ReDoS, because the attack string is crafted to match
toward their maximum repetition limits. Therefore, we can
consider all loop states as classical quantifiers and all branch
states as classical branches, and refer to the complexity theory
of NFA to propose ours.

C. Vulnerable e-NFA Patterns

We define each vulnerable e-NFA pattern as a structure
composed of loop states and/or branch states. The "Loop in
Loop", "Branch in Loop", and "Loop after Loop" vulnerable
e-NFA structures are shown in Figure 2, Figure 3, and Figure 4,
respectively. In these pattern representations, we only remain the
crucial states and simplify the others into subexpressions (e.g.,
Figure 2 represents regexes with the format r0(r1(r2)∗r3)∗r4,
in which ∗ can be replaced by other quantifiers). There is a
special case of “Loop after Loop” vulnerable structure, that is
“Loop in Branch” structure, which has the same polynomial
complexity. We do not provide it here due to page limit.

We provide the proofs of the theorems in Appendix §A3.

Theorem 2 (Loop-in-Loop vulnerable e-NFA pattern). An e-
NFA pattern has exponential worst-case complexity if there
exist two loop states vi and vi+1 that vi+1 can be reached

5They instruct the engine to match as many instances of the quantified
subpattern as possible, thus are called greedy quantifiers.

6They instruct the engine to match as few instances of the quantified
subpattern as needed, thus are called lazy quantifiers.



vi:Loop
vi+2:BranchEnd

r2

r4

r1 r0

r5

vi+1:Branch

r3ε

Fig. 3: Branch in Loop vulnerable structure.

vi:Loopvi+1:Loop

r1

r2 r0

r3

r4

Fig. 4: Loop after Loop vulnerable structure.

via a matching path starting with an inclusion transition from
vi, such that the two subexpressions r1r2r3 and r1r3 have a
common match string.

Theorem 3 (Branch-in-Loop vulnerable e-NFA pattern). An
e-NFA pattern has exponential worst-case complexity if there
exist a loop state vi and a branch state vi+1 that vi+1 can
be reached via a matching path starting with an inclusion
transition from vi, such that the two subexpressions r1r2r4 and
r1r3r4 have a common match string.

Theorem 4 (Loop-after-Loop vulnerable e-NFA pattern). An
e-NFA pattern has polynomial worst-case complexity if there
exist two loop states vi and vi+1 that neither can be reached
via a matching path starting with an inclusion transition from
the other, such that (i) there exists a transition from vi to vi+1

either indirectly through a subexpression r2 or directly (where
r2 = ϵ), and (ii) if r2 = ϵ the two subexpressions r1 and r3
have a common match string, otherwise three subexpressions
r1, r2 and r3 have a common match string.

D. Vulnerable Attack String Patterns

The attack string pattern of vulnerable e-NFA structures
can be represented by s0.s

k.s1, where s0, s1 and s are the
prefix, suffix, and attack core, respectively. We can also locate
the vulnerable structure from two special states: 1) prefix tail,
the last state on the prefix matching path; and 2) suffix head,
the first state on the suffix matching path.

The attack string patterns are constructed as follows: 1)
for all three vulnerable e-NFA patterns, s0 is a match string
of r0, and s1 makes s0.s

k.s1 fail to match the entire regex;
2) for Loop in Loop patterns, s is a common match string of
subexpressions r1r3 and r1r2r3, vi is both the prefix tail and
the suffix head; 3) for Branch in Loop patterns, s is a common
match string of subexpressions r1r2r4 and r1r3r4, vi is both
the prefix tail and the suffix head; and 4) for Loop after Loop
patterns, s is a common match string of subexpressions r1, r2
and r3, vi is the prefix tail and vi+1 the suffix head.

V. REVEALER

In this section, we present REVEALER, a hybrid system
based on the theory in the last section to detect and exploit
ReDoS vulnerabilities. The workflow of REVEALER is shown
in Figure 5. REVEALER first locates vulnerable e-NFA patterns
with a simplified e-NFA structure called E-TREE in static
analysis (§V-B). It then finds a common match string (i.e.,
the attack core) in its dynamic analysis (§V-C), and generates

the attack prefix and the attack suffix to form an entire attack
string (§V-D). It finally validates whether the attack string can
trigger super-linear matching behavior (§V-E). We next discuss
an overview and the novelty of REVEALER in §V-A. We will
also discuss some of its limitations in §V-F.

A. Overview

As we had introduced in §II, both existing static approaches
and dynamic approaches have their limitations in detecting
ReDoS vulnerabilities in extended regexes. On the one hand,
the existing formalization of static approaches, regardless of
the design details, belongs to context-free grammar, which
prevents them from supporting all extended features that can be
described only by context-sensitive grammars. The difficulty of
adopting a context-sensitive grammar lies in not only developing
corresponding theories for formally modeling the problem
(which we did in §III-A and §IV-C), but also solving the
problem of attack string generation that is NP-hard7. On the
other hand, dynamic approaches can be very inefficient in
finding the attack strings especially for complex patterns, as
most fuzzers use only basic genetic methods for generating
inputs, which are unlikely to trigger the vulnerabilities.

We overcome such limitations by proposing a hybrid
approach. First, we design a static analysis to identify the
vulnerable patterns in an e-NFA representation for support-
ing the context-sensitive grammar. Second, we reduce the
problem of attack string generation to one with a polynomial-
time solution by introducing extra constraints—the maximum
string length and the minimum matching step count—on the
generated attack string. To meet the constraints, we design
a dynamic analysis as the constraint solver to generate the
attack core by simulating the existing matching mechanisms
of extended regexes. By leveraging the regex structures, our
dynamic analysis can directly generate the right attack cores
for exploitation in a more intelligent and efficient manner.

B. Static Analysis

Our static analysis consists of two parts. First, we introduce
E-TREE: our simplified data structure of e-NFA; Next, we
traverse the E-TREE to find a set of vulnerable patterns P ,
in which each pattern p is represented by two e-NFA states
⟨v, w⟩.

1) E-TREE: The Java 8 regex engine parses a regex into an
e-NFA A. E-TREE is a simplified representation of A. It reduces
the complexity of searching certain states from in a graph (the
Java e-NFA Figure 1a) to in a tree (the E-TREE Figure 1b).
Searching the loop/branch states for finding vulnerable patterns
on E-TREE is simpler than on the original Java e-NFA data
structure.

To build an E-TREE, we first remove the state ‘Exit’ and its
corresponding transitions from A, because it does not represent
any regex feature. We keep all the other states in E-TREE. Next,
we determine the transitions in E-TREE.

Existing e-NFA implementation does not differentiate the in-
clusion transitions from the connection transitions, but includes
the logic of selecting a transition inside the transition function

7It is equivalent to regex matching, whose difficulty was proved in [16].



e-NFA

regex

Tree Constructor

E-TREE

Potential Vulnerable 
Structure Detector

potential 
vulnerability

Vulnerability 
Validator

Prefix Generator

Suffix Generator

attack core

prefix tail

suffix head

attack prefix

attack suffix Attack Sting Generator

Attack Validator

attack string

attack result

success

fail

INPUT STATIC ANALYSIS DYNAMIC ANALYSIS GENERATION VALIDATION

Fig. 5: An architecture overview of REVEALER.

δ′v. In Figure 1a, all transitions are treated equally, making it
hard to determine a traversal order. We extract the transition
types statically in E-TREE. A solid arrow and a dashed arrow
represent a connection transition and an inclusion transition in
Figure 1b, respectively. Most states, except for ‘BranchEnd’
and states after a ‘GroupTail’ and before a ‘GroupHead’, have
only one incoming transition. For the two types of states, we
keep only one incoming transition in E-TREE. ‘BranchEnd’ has
an incoming connection transition from the ‘Branch’ state, and
one from each branch. We remain the one from the ‘Branch’
state and omit the others (e.g., v5 → v6, v8 → v6). The
second-type states have an incoming connection transition from
‘GroupTail’ and an outgoing inclusion transition to ‘GroupHead’.
We remove such transitions from ‘GroupTail’ (e.g., v7 → v2).

2) Vulnerable Structure Detection: We define the E-TREE
traversal algorithm Traverse for finding states related to
vulnerable patterns. It is basically a depth-first search.
From a state v, Traverse first takes the inclusion tran-
sitions and then the connection transitions to visit other
states. For example, Traverse(v0) visits all states in order
v0, v1, v2, v3, v4, v5, v8, v6, v7, v10, v11.

Since all vulnerable patterns start from a loop state, we
collect all loop states into a list L from Traverse(v0). We
then traverse from each state in L and find other loop/branch
states to get a set P of pairs ⟨v, w⟩ where v is a loop state
and w is a loop or branch state. A pair is a “Loop in Loop” or
“Branch in Loop” pattern, if w can be (indirectly) reached by
taking a direct inclusion transition from v (i.e., w represents
a subpattern of that represented by v). Similarly, a pair is a
“Loop after Loop” pattern, if w can be (indirectly) reached
through a direct connection transition from v.

C. Dynamic Analysis

The static analysis finds a set of potential vulnerable patterns
P = {⟨v0, w0⟩, ⟨v1, w1⟩, . . . }. The dynamic analysis functions
as a constraint solver, i.e., for each vulnerable pattern p ∈ P ,
it verifies whether the corresponding subexpressions r0, r1, r2
(defined in §IV-C) have a common match string s. For example,
in Figure 1a, there is only one “Branch in Loop” pattern ⟨v2, v4⟩.
Its corresponding subexpressions are: r0 =., r1 =[^"], r2 = ϵ.

In §V-C1, we propose the algorithm SingMatch that
generates a match string s for a matching path τ . The algorithm
is based on the existing matching mechanisms in the e-NFA
A. In §V-C2, we present CommMatch, which generates a
common match string s of several matching paths {τ0, τ1, . . . }.
In §V-C3, we demonstrate how dynamic analysis is performed
on top of the algorithm CommMatch.

1) The Single Match Algorithm: The single match algorithm
SingMatch generates a match string s for a single matching
path τ by progressively building s from sub-match string s′.

We defined in §III-A that a state v may have a corresponding
acceptable string set ASv . The match function δv : (s, p, t)→
(Sv, p

′, t′) would search if there exists p′ such that s[p : p′] ∈
ASv . We change the “match” logic into “generation” by starting
with s = ϵ, p = 0, finding a valid match s′ from ASv , extending
s with s′ (i.e., s = s.s′), and then executing the match function
δv. After these operations, δv would match the pre-selected
substring s′ naturally, and p′ would become the length of the
new s. Iteratively, s becomes a match string of the matching
path τ when v successfully reaches the end state.

Take the matching path τ = v2, v3, v4, v8 as an example.
The algorithm follows the transitions along τ until it needs
to generate a match string at state v8. It randomly selects a
symbol as s′ from ASv8 , which includes any symbol in the
alphabet Σ except ‘"’. For example, it selects “a” as s and
sets p as 0 in match function δv8 , and would cause a successful
match. Since v8 is the last state in τ , the algorithm ends with
a valid match string “a”.

2) The Common Match Algorithm: The CommMatch
algorithm generates a common match string s of several
matching paths. Here we discuss only cases with three match-
ing paths: τ0, τ1, τ2; other cases work similarly. It performs
SingMatch on each matching path simultaneously and syncs
on the substring s′ generated in each step.

CommMatch holds a current state vector V , which stores
the current states for all matching paths. It is initialized
by the first states of all the matching paths: e.g., V0 =
[τ0[0], τ1[0], τ2[0]]. Let v′ represent a possible next state v
can transit to if the algorithm can find a substring s′ ∈ ASv′ .
The common s′ is therefore determined by the intersection of
ASv′ for each state v in V . Let V = [v0, v1, v2], the common
acceptable strings ASV would be ASv′

0
∩ASv′

1
∩ASv′

2
. The

algorithm selects one string s′ from ASV for building the
common match string s. CommMatch terminates with a
failure when ASV = Φ and outputs ϵ. It ends successfully
when s can match all matching paths for at least one repetition.

In our example, r2 = ϵ, so we only need to consider r0 and
r1 and run CommMatch(τ0, τ1, ϵ). The only matching paths
of r0 and r1 are τ0 = [v2, v3, v4, v5] and τ1 = [v2, v3, v4, v8],
respectively. We initialize V0 ← [v2, v2], conduct transitions
on τ0 and τ1 simultaneously, until V = [v4, v4]. The next
common acceptable strings for both matching paths would be:
ASV = ASv′

5
∩ ASv′

8
= {α ∈ Σ|α ̸= ”}. If the algorithm

randomly selects “a” from ASV as the common s′, then s =
“a” would lead to two successful matches. Now that τ0 and



τ1 both get matched once, the CommMatch algorithm ends
successfully and outputs a common match string “a”.

3) Performing Dynamic Analysis: We present the entire
dynamic analysis in Algorithm 1. It takes the set of possible
vulnerable patterns found in the static analysis as input. For each
pattern, it extracts the matching paths of the three corresponding
subexpressions, and leverages the CommMatch algorithm to
find a common match string. The common match string will
be repeated as the attack core for many times for generating
the attack string in §V-D.

However, each subexpression could have numerous match-
ing paths, resulting in numerous path combinations for each
group of three subexpressions. Our analysis may spend much
time on analyzing path combinations (especially those including
long matching paths) that might not lead to DoS. Further, we
need a shorter common match string s because more repetitions
of s lead to (exponentially) more backtrackings. To limit the
search space and find more powerful attack strings, we set a
maximum length l′m of the common match string.

We derive l′m from two thresholds—maximum attack
string length lm and minimum matching step count γ—for
vulnerability validation. We set lm as 128 and γ as 105 as we
will explain in §VI-A. Let l denote the length of the attack
string (l ≤ lm) , and l′ denote the length of the common match
string s (l′ ≤ l′m). Let n denote the number of repetitions of s
in the attack string, we have n ≤ nm = ⌊ lml′ ⌋. The maximum
condition happens when both attack prefix and suffix are ϵ.
We set an, a ∈ N∗ as the maximum matching complexity
a vulnerable pattern can trigger, where a is the number of
choices in each backtracking step. One feature (state) can
match multiple characters, and in general at most three states
(feature start, match, feature ends) are used to match a character.
Therefore, we denote k ·l′ as the maximum length of a matching
path of s, where k ≤ 3. When matching the attack string, the
engine backtracks at most an times, and each backtracking
takes at most k · l′ steps, thus the maximum matching step
count is k · l′ · anm , which shall be no less than γ to pass
the runtime validation. Therefore, we have k · l′ · anm ≥ γ,
and thus l′ · a⌊

lm
l′ ⌋ ≥ γ

k . We get l′ ≤ 9 under the settings of
a = 2, k = 3, and set l′m as 9. We use the setting because other
cases (e.g., a regex has a complexity over 2n, or each character
needs more than three states to match) are rare. Besides, even
if a rare case occurs, only under specific conditions, it will
become a false negative (FN). For example, if there exists a
regex with 3n complexity, the result becomes l′ ≤ 16. It would
be a FN only if the common match string happens to have a
length 9 < l′ ≤ 16. In practice, we tried l′m from 9 to 14, and
REVEALER reported the same number of true positives. So we
finalize our setting with l′m = 9.

D. Generation

With the attack core s generated in dynamic analysis, the
generation phase produces attack prefix s0 and attack suffix
s1 of a vulnerable pattern, to generate the final attack string.
We get prefix tail and suffix head from states v and w in a
vulnerable pattern ⟨v, w⟩ according to our definition in §IV-D.

1) Prefix: We use the SingMatch algorithm to generate
a match string for the path τ starting from v0 to the prefix
tail. To make the prefix as short as possible, we instruct the

Algorithm 1 Dynamic Analysis: Getting a common match
string for each potential vulnerable pattern.
Input: P : a set of possible vulnerable patterns
Output: S: a set of vulnerable patterns with corresponding attack strings

1: S ← {}
2: for all p ∈ P do
3: r0, r1, r2 ⇐ p // Get the subexpressions of a vulnerable pattern p
4: T0 ⇐ r0, T1 ⇐ r1, T2 ⇐ r2 // Ti stores all matching paths with the

largest match string length l′m = 9 for a subexpression ri
5: for all τ0 ∈ T0, τ1 ∈ T1, τ2 ∈ T2 do
6: s← CommMatch(τ0, τ1, τ2)
7: if s ̸= ϵ then
8: S ← S ∪ {⟨p, s⟩}
9: break

10: end if
11: end for
12: end for
13: return S

algorithm to take a lazy matching strategy by requiring the
matching count cv of a state v ∈ τ to be no more than cmin

v
(e.g., for a+ we need only one instance of a).

2) Suffix: A valid suffix has to cause the regex match to fail
on all possible matching paths. We first collect states where the
match of attack core s could possibly end in a set ES. We run
CommMatch with initial V = ES, but by generating rejecting
characters Π = Σ−{s[0] | s ∈ ASv′∧v′ = δ′v(Sv, t)∧v ∈ V },
where Σ is the alphabet of symbols. Then we select a character
from Π as s′ to cause next matches of all possible paths to fail.
If Π = Φ, we let CommMatch match one state in a lazy way,
and continue the process until we find a character to make the
next matches fail.

3) Attack String: We combine the attack prefix s0, the
attack core s, and the attack suffix s1 under the format
s0.s

k.s1 to generate the final attack string, where k =
⌊ lm−length(s0)−length(s1)

length(s) ⌋.

E. Validation

In this part, we use the original regex engine together with
an extra variable for counting matching steps to verify if the
attack string can trigger a ReDoS vulnerability. Inside the
original matcher in the Java 8 regex engine, there is a structure
called “Trace”, which records the log information generated
along the matching process. Its log size is the matching step
count. We break the matching process and report a successful
attack if matching step count exceeds the upper limit γ.

Even the dynamic analysis can find a valid attack core, the
final attack string might not trigger a ReDoS. For example,
the vulnerable pattern .*?tn=.*id=.* is for sure of polynomial
complexity, but its attack core tn=id= is relatively long. The
attack string generated cannot pass the validation in our
evaluation (§VI).

F. Limitations

The validation phase of REVEALER ensures it reports no
false positive. However, the choices of the thresholds in the
validation phase can have impact on the results, i.e., a case
may be considerred as either a true positive or a negative
under different attack string lengths and matching step count
thresholds. We demonstrate that in detail in §VI-A.

Further, REVEALER may have false negatives for the
following reasons. First, our definition of vulnerable patterns



in §IV-C may be incomplete. We tried our best to consider
all possible structural patterns. But the completeness of such
definition would need another work to prove. Second, although
e-NFA can describe all extended features, our prototype
implementation does not fully support them. It extracts the e-
NFA from the Java 8 regex engine, which cannot parse regexes
with conditionals. Further, it removes backreferences when
constructing E-TREE. A detailed discussion about extended
features is in §VI-C1. Third, our implementation of the end
state set ES may be incomplete. We only use state v, its next
state v′ through an inclusion transition, and its next state v′′

through a connection transition, i.e., ES = {v, v′, v′′}. Fourth,
we do not find attack cores that are longer than l′m in our
dynamic analysis for targeting the most powerful attack strings
and for efficiency concerns. There might exist false negatives
of which the attack cores are longer than l′m. Nevertheless,
such attack cores result in fewer rounds of backtracking.

VI. EVALUATION

In this section, we evaluate the effectiveness of REVEALER.
We first demonstrate that REVEALER is able to effectively
generate attack strings that help trigger and detect (unknown)
ReDoS vulnerabilities (§VI-B). We then characterize the
detected vulnerabilities (§VI-C), and validate the attacks with
regex engines of other languages (§VI-D). Finally, we apply it
to detect unknown ReDoS vulnerabilities in popular real-world
applications (§VI-E). We describe the experiment setup next.

A. Setup

To evaluate whether REVEALER is able to effectively detect
ReDoS vulnerabilities, we use the dataset—a collection of
29,088 regexes from three different sources—used in [30].
We compare REVEALER with the following three state-of-the-
art ReDoS vulnerability detection tools on the same dataset:
1) ReScue [30], a genetic fuzzing tool for detecting ReDoS
vulnerabilities; 2) RXXR2 [29], an improved version of the
static analysis tool RXXR [18] based on transition production;
and 3) Rexploiter [38], a static analysis tool based on vulnerable
structure identification. These tools were among the best
performing tools used in two recent works about ReDoS
vulnerability detection [11, 30]. Since the authors of [30] did
not disclose publicly their detected vulnerabilities, we cannot
directly compare with their results. We preprocess the regexes
for RXXR2 and Rexploiter according to their requirements.
We apply each tool for generating the corresponding prefix s0,
attack core s1 and suffix s2 to construct an attack string s in the
form s0.s

k
1 .s2 for validating a vulnerability. The experiments

are performed on a 20-core Intel Xeon server with 240 GB
RAM running Ubuntu 16.04.

We limit the length l of the generated attack string to be
less than 1288 by following the practice in [30]. Under such
a limited input length, it is hard to differentiate super-linear
complexity regexes from linear complexity ones by wall-clock
time. A super-linear complexity criteria was proposed in [11]
that a 10-second timeout shall be triggered with at most 85,615
pumps (100K-1M characters)9. We used REVEALER with this
large length limit to generate attack strings and found 2,172

8A larger limit lets ReScue run for longer time without improving its results.
9A pump represents one repetition of the attack core in the attack string.

TABLE I: Matching steps of super-linear regexes.
Range (1e3, 1e4] (1e4, 1e5] (1e5, 1e6] (1e6, 1e7] (1e7, 1e8] (1e8,+∞)
Count 393 1,332 94 92 25 236

TABLE II: The overall evaluation results.

Tool # of Vul. # of FP Error Rate (%) Avg. Time (s)
REVEALER 450 0 0.00 0.0076
ReScue 187 0 0.00 18.2259
RXXR2 112 103 47.91 0.0042
Rexploiter 63 1,959 96.88 0.4472

triggered the timeout. However, by reducing the limit to 128,
these vulnerable regexes can be matched in as low as only
0.159 second, which is even lower than the matching time of
many linear regexes. Therefore, we use matching step count
(also used in [30]) instead of wall-clock time as the metric for
validating an attack.

We conclude that a reported vulnerability is a true positive
if the matching step count is greater than the threshold γ. To
determine γ, we count the matching steps of those 2,172 verified
super-linear cases with a 128-character attack string length
limit and show in Table I. To include all severe vulnerabilities
that could cause a 10-minute timeout with 100 pumps, we
choose 105 as γ because there is one in the (1e5, 1e6] group as
discussed in §VI-B. However, this prevents REVEALER from
reporting more than 1,700 regexes as vulnerable under an attack
string not longer than 128 characters. Indeed, these 1,700+ cases
found by REVEALER can be exploited to cause a DoS if an
attacker uses a very long attack string according to the criteria
in [11].

We also measure the time each tool spends on analyzing
one regex. We found that ReScue can spend up to 12.49 hours
on analyzing one single regex without limitation in one round,
but its reported vulnerable regexes were all found within 250
seconds. Therefore, we set a time limit of 250 seconds per
regex for ReScue in our experiment. In three runs, it initially
found 174 true positives, which were fewer than reported in
[30]. We found using a larger time limit did not help much
and was time-consuming for analyzing all 29K regexes. We
instead focused on the additional ones found by other tools
with the 10-minute limit (as used in [30]), and finally detected
187 vulnerabilities in 20 rounds, which were even 1 more than
reported in [30]. We used the same 108 matching step threshold
as in [30] for ReScue because we found a smaller one would
result in a worse performance, which we will explain in §VI-B.

B. Results

The overall evaluation results are shown in Table II. In
total, the four tools detected 450 true positive regexes that are
vulnerable under ReDoS attacks. The numbers of vulnerabilities
reported by the three tools we compared are close to the ones
reported in [30]. Therefore, we believe our evaluation results are
valid. Note that the validation threshold we used is smaller than
that (108) in [30] as we allow ALL tools to report more super-
linear (and sub-exponential) time vulnerabilities. We draw a
Venn diagram based on the numbers of vulnerabilities detected
by the four tools in Figure 6.

REVEALER significantly outperformed all three state-of-the-
art tools. It could detect all 237 vulnerabilities that were found
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Fig. 7: The matching steps of regexes reported by each tool.

by them. It further detected 213 previously unknown vulnerable
regexes, which is a 89.87% improvement. ReScue performed the
second, by finding 187 (41.56%) vulnerabilities, which were 1
more than it did in [30]. However, it took 20 additional rounds to
find 13 vulnerabilities, indicating that it has a high requirement
on computing resource. RXXR2 and Rexploiter were less
effective, reporting 112 and 63 vulnerabilities, respectively.

Figure 7 presents the matching step distribution of vulner-
abilities reported by each tool. Different groups divided by
matching steps approximately indicate different complexities,
although each group contains both exponential and polynomial
cases. However, some polynomial cases could also cause
noticeable ReDoS in practice. To find the severe cases, we
increase the input length limit by using 100 pumps and set a
10-minute timeout. We confirmed 1, 4, 4 and 229 such severe
cases in the four groups, respectively. Nine cases were not in the
>1e8 group because their attack cores or attack prefixes were
long, resulting in fewer backtrackings when the input lengths
were short (≤ 128). Five cases in the >1e8 group took at least
2.963-second but less than 10-minute matching time using 100
pumps. They were complex “Loop-after-Loop” (polynomial)
cases with short attack cores. They were separated from those
severe cases when the input lengths became large. The rest two
in the >1e8 group took less than 1 second under long inputs,
but more than 10 minutes with 128-character long inputs. We
will discuss them in §VI-D.

Considering only the 238 (52.89%) severe ones, REVEALER
still greatly outperformed the other tools. ReScue detected only
187 regexes in the >1e8 group (183 were severe, 2 were not, 2
were the special cases mentioned above) and did not detect any
in other groups because it used 1e8 at its internal matching
step threshold. Actually, it could not detect some of the 187
vulnerabilities if an internal threshold smaller than 1e8 was
used, because it would stop the search when the matching steps
of a generated input reached the threshold.

TABLE III: Extended features supported by each tool. ✓ means the
feature is supported; × indicates the feature is not supported.

Extended Features REVEALER ReScue RXXR2 Rexploiter
Unicode chars ✓ ✓ × ✓
Set operations ✓ × × ×
Lookarounds ✓ ✓ × ×
Backreferences × ✓ ✓ ×
Non-capturing groups ✓ ✓ ✓ ×
Named groups ✓ ✓ × ✓
Atomic groups ✓ ✓ × ×
Conditionals × × × ×
Greedy quantifiers ✓ ✓ ✓ ✓
Lazy quantifiers ✓ ✓ ✓ ✓
Possessive quantifiers ✓ ✓ × ×

As expected, both RXXR2 and Rexploiter reported high
error rates, which are the ratio of false positivies to reported
positives. This demonstrates that a dynamic approach like
ReScue or a hybrid approach like REVEALER would be better
suited for detecting and exploiting vulnerable regexes, especially
those using extended features.

While being effective, REVEALER can also efficiently detect
ReDoS vulnerabilities. On average, analyzing one regex took it
only 0.0076 second, which is close to the 0.0042 second of the
fastest tool—RXXR2. Rexploiter took two orders of magnitude
longer time than RXXR2 on average. ReScue was the slowest,
and was 2,397 times slower than REVEALER—it spent 18.2259
seconds on analyzing one regex on average. We were unable
to reproduce the 0.6128 second as the authors reported in [30],
even we tried many times with different settings.

C. Characterization of Detected Vulnerabilities

To understand why REVEALER can significantly outperform
the state-of-the-art tools, we characterize the detected vulner-
abilities by extended features (§VI-C1), vulnerable structures
(§VI-C2), and the generated prefixes and suffixes (§VI-C3).

TABLE IV: Breakdown of vulnerable regexes by extended features.

Features REVEALER ReScue RXXR2 Rexploiter
Classical features only 40 10 10 4
Unicode chars 4 3 0 1
Set operations 339 154 89 52
Lookarounds 30 16 0 0
Backreferences 10 7 1 0
Non-capturing groups 95 55 30 7
Named groups 34 10 0 4
Atomic groups 0 0 0 0
Conditionals 0 0 0 0
Greedy quantifiers 156 84 44 26
Lazy quantifiers 107 32 22 10
Possessive quantifiers 10 6 1 0

1) Extended Features: We list the extended features sup-
ported by each tool in Table III. As explained in §V-F,
our prototype implementation does not support all extended
features. Nevertheless, both REVEALER and ReScue support
more extended features than RXXR2 and Rexploiter, and
consequently detected more vulnerable regexes. In Table IV,
we list the categorization of vulnerabilities by extended features.
As shown, only 40 vulnerable regexes do not use any extended
feature, which indicates the need to support them.

Supporting a feature might help a tool detect a vulnerable
regex using such a feature. For instance, Rexploiter supports



TABLE V: Detected vulnerabilities classified by structure.

Type REVEALER ReScue RXXR2 Rexploiter
Loop in Loop 185 142 87 38

(76.76%) (47.03%) (20.54%)
Branch in Loop 50 38 25 3

(76%) (50%) (6%)
Loop after Loop 215 7 0 22

(3.26%) (0%) (10.23%)

‘Unicode chars’ and ‘Named groups’ while RXXR2 does
not, so it detected 1 and 4 vulnerabilities under these two
types while RXXR2 detected none. Similarly, RXXR2 supports
‘Backreferences’ and ‘Non-capturing groups’ while Rexploiter
does not, RXXR2 thus detected 1 and 23 more vulnerabilities
with the two features than Rexploiter, respectively.

A tool could detect vulnerable regexes using a feature it does
not support. All tools detected many vulnerable regexes with
the feature “Set operation” even only REVEALER supported it,
because they substituted the set expression with simpler but
incomprehensive character literals and were able to find some
valid match strings. Similarly, REVEALER detected 10 cases
with ‘Backreferences’ although the prototype did not support
it, because they met one of the following three conditions. C1:
backreference was not on the matching path of the attack
string, so REVEALER did not transit to a state of it. C2:
backreference could be ignored according to the semantics
of the regex, e.g., both (\1)* and (\1)? can be matched
zero time in (a)b(\1)*c(\1)?(d*)*. The generated attack
strings were still valid even by removing it in E-TREE. C3:
backreference matched the attack core. The subexpression state
it referred to was probably on the matching path, e.g., \1 in
a*([a-z])a*(\1)a* can be matched by the attack core “a”.
Thus even it consumed extra attack core(s), the attack was still
valid.

The tools actually have different levels of feature support.
This is also one of the reasons why the tools have different
performances even though they all support the same feature.
ReScue supports most extended features because it drives the
Java regex engine as a gray box. But it does not consider the
real semantics of a feature as REVEALER does. For instance,
ReScue supports ‘Named groups’. But without understanding
the semantics, it adds the name (e.g., “a” is the group name
in (?<a>x)*) as an input seed and could generate many
incorrect inputs. Besides, RXXR2’s ‘Backreferences’ support
is incomplete (and worse than ours), because it ignores such
features under C1 and terminates the analysis under other
conditions. Overall, it cannot support the full semantics of this
feature because it considers only context-free grammars.

2) Vulnerable Structures: Covering all three types of vul-
nerable e-NFA patterns also allows REVEALER to detect more
vulnerabilities. We classify the detected vulnerabilities and
present the breakdown in Table V.

Other than REVEALER, Rexploiter is the only tool con-
sidering the ‘Loop after Loop’ vulnerable structure, and
therefore performed the best among the three tools in detecting
vulnerabilities in this class. But its performance was strictly
limited by its ability of generating attack strings, which we
will discuss in §VI-C3.

ReScue detected over 76% of ‘Loop in Loop’ and ‘Branch
in Loop’ vulnerabilities, but found about only 3% of ‘Loop

after Loop’ cases. This is because the ‘Loop after Loop’
vulnerabilities are more difficult to trigger. The attack string
must match two loops as well as the path in between. But
ReScue does not consider multiple paths at the same time.

3) Prefixes and Suffixes: REVEALER can well generate both
the prefix and suffix of an attack string. This also helps it find
much more vulnerabilities. Without generating a valid prefix,
the attack string cannot drive the regex engine to the repeated
states. A valid suffix is also needed to force the match to fail
at the end such that the regex engine has to backtrack.

Prefix generation is a difficult task for dynamic analysis ap-
proaches, e.g., fuzzers, as they need to produce valid sequences
of symbols to reach certain inner or deep states. Only a very
limited number of sequences are valid whereas the fuzzers might
(blindly) search over a huge number of possibilities. Genetic
algorithms can help, but not much because genetic algorithms
generate offspring by crossing over or mutating the parent
string, which would not directly lead to deeper states. Even
though ReScue tried to alleviate this problem by improving
its node coverage rate, the improvement is still limited by
the huge search space and the time/resource constraint. One
typical example is the regex (<[^>]*?tag[^>]*?(?:identify_-
by)[^>]*>)((?:.*?(?:<[ \r\t]*tag[^>]*>?.*?(?:
<.*?/.*?tag.*?>)?)*)*), where the shortest prefix of an attack
string would be a simple string—“<tagidentify_by>”. Nev-
ertheless, ReScue went into a meaningless search on other
possible inputs and therefore triggered a time-out on each run.
The static analysis approaches, on the contrary, will not get
stuck in exploring all the possibilities, because they directly
find the attack core and pump the shortest prefix. Therefore,
both RXXR2 and Rexploiter were successful in this case.

Suffix generation, however, is a task more suitable for
dynamic analysis. A static method can only generate a string
from the designated transition path, and cannot ensure that the
string will not be matched by other paths. For example, given
the regex ^(\S+\.{1})*([^\.]\s+)?$, whose attack core is
‘.’, RXXR2 and Rexploiter would try to generate a string that
fails to match the suffix regex ([^\.]\s+)? but can actually
match (\S+\.{1})*. Hence the entire attack string is accepted.
REVEALER considered both the attack core and the suffix regex,
and generated the correct suffix ‘\t’. ReScue achieved this
through multiple searches.

By taking a hybrid approach, REVEALER inherits the
strengths from both static and dynamic approaches. It can
statically generate a valid prefix by analyzing the structures,
and dynamically find a valid suffix by testing against multiple
subexpressions. Therefore, it generated much more valid attack
strings that can trigger ReDoS vulnerabilities.

D. Validation with Other Regex Engines

We detected 450 vulnerable regexes with a 105 matching
step threshold and a 128 attack string length limit. In practice,
attackers can choose longer attack strings. To understand their
practical impact, we relax the input limit to up to 65,536 pumps,
and measure the wall-clock matching time in the Java 8 regex
engine on which we built REVEALER. We count the regexes
that take a matching time longer than 10 seconds, which is
the criteria used in [11]. We also cross-validate them on regex



TABLE VI: Number of timeout regexes with different pumps.

# of Pumps 128 1,024 8,192 65,536
Java 8 234 381 443 443
JavaScript 196 239 368 391
Python 198 242 373 398
Ruby 187 227 357 386
PHP 0 0 3 10

engines of other languages—JavaScript, Python, Ruby and PHP.
The results are listed in Table VI.

381 (84.67%) and 443 (98.44%) regexes caused a timeout on
Java 8 regex engine under 1,024 and 8,192 pumps, respectively.
Seven regexes took less than 10 seconds to match even with
65,536 pumps. Four of them (including the 2 special cases
mentioned in §VI-B) start with (?=^.{1,254}$), which limits
the maximum acceptable input length to 254. However, their
matching time could be more than 10 minutes when the number
of pumps was only 128 (and even when the attack string length
was only 128). The other three have strict limit on the repetition
of attack cores. For example, (\\dx\\.]{0,2}(?!\\n)){6,12}
requires the pattern to be matched for no more than 12
times, so longer inputs would not increase the matching time.
Their matching time was as high as 0.578, 0.622 and 6.711
seconds, respectively, which were still quite large for real-time
applications.

Most vulnerabilities REVEALER detected could also lead
to ReDoS on other engines. But up to 64 regexes did not cause
timeout on them even with a 65,536 pump limit for JavaScript,
Python and Ruby. This might be because these engines do not
support some features (e.g., only the Java 8 engine supports
possessive quantifiers among the four), or because the engines
work differently for some features (e.g., the ‘-’ character in
the set operation [\d-z] is treated as a literal in Java, but
as a range sign in JavaScript and Python). As we mentioned
in §II-B, PHP limits the number of backtracking searches to
prevent ReDoS. With 65,536 pumps, 286 (63.56%) of the 450
vulnerable regexes triggered PHP’s internal backtracking limit;
116 (25.78%) reached the stack limit. However, some vulnerable
regexes can still cause a 10-second timeout in PHP, i.e., 3 caused
timeouts with 8,192 pumps, and 10 caused timeouts with 65,536
pumps. These regexes are “Loop-after-Loop” cases, whose
backtracking behavior cannot be detected under PHP regex
engine’s current limit. Our results demonstrate that REVEALER
can also find ReDoS vulnerabilities in PHP programs.

E. Detecting Real-World Vulnerabilities

We have demonstrated that REVEALER is able to effectively
detect both known and unknown ReDoS vulnerabilities in a
benchmark dataset. In this section, we explore whether it can
also detect unknown vulnerabilities in real-world applications.

We extracted regexes from popular open-source projects for
vulnerability detection. Specifically, we searched on GitHub
for popular (with more than 600 stars) Python and JavaScript
projects that contain the keywords “editor”, “web app”, or
“database” in their description. These projects are likely to use
regexes. For Python, we downloaded 28 database, 13 editor, and
7 web app projects. For JavaScript, we downloaded 31 database,
65 editor, and 34 web app projects. We applied REVEALER to
regexes extracted from them with default settings.

1 var styfn = {};
2 styfn.applyFromString = function( string ){
3 // vulnerable to "/*\t\t\t\t\t\t\t\t\t\t\t ... \t\t\t\t\

t\t"
4 var remaining = ’’ + string;
5 remaining = remaining.replace("[/][*](\s|.)+?[*][/]"

, ’’);

Listing 1: A vulnerable regular expression in library cytoscape.

1 def _negotiate_value(response):
2 if hasattr(_negotiate_value , ’regex’):
3 regex = _negotiate_value.regex
4 else:
5 regex = re.compile(’(?:.*,)*\s*Negotiate\s

*([^,]*),?’, re.I)
6 # vulnerable to ",,,,,,,,,,,,,,,,,,, ...

,,,,,,,,,,,,,,,,,,\b"
7
8 if authreq:
9 match_obj = regex.search(authreq)

Listing 2: A vulnerable regular expression in libraries
urllib2-kerberos and requests-kerberos.

REVEALER detected 53 and 169 vulnerable regexes in
Python and JavaScript projects, respectively. We cross-validated
the vulnerabilities, and got 13 and 32 regexes in Python and
JavaScript projects that trigger a 10-second timeout with attack
strings no longer than 128, respectively. We discuss several
interesting cases next.

Branch in Loop vulnerability. OmniDB (2.2K stars) is a
lightweight web application for database management. One
of its library cytoscape.js contains a vulnerable regex in the
code of core functions, as shown in Listing 1. An attacker could
provide a 128-character long attack string for the vulnerable
style function, which would take the OmniDB server more than 24
hours to perform the match. Other users of this web application
would therefore get affected.

The code snippet tries to remove comments from a style
string. However, this regex contains the vulnerable structure
“Branch in Loop”, in which branch \s and branch . both accept
a blank character, e.g., the TAB symbol \t. To mitigate the
vulnerability, we need to remove the overlapping parts of the
two branches. In this case, since . generally includes \s, we
can simply remove the latter branch.

Loop in Loop vulnerability. hue (4.1K stars) is a pop-
ular open-source SQL query assistant for databases and
warehouses. It uses two libraries urllib2-kerberos and
requests-kerberos that both contain such a vulnerable regex
in the authentication handler, as shown in Listing 2. Since
requests-kerberos is a popular library which is also used by
other 600+ repositories, we also reported this vulnerability to
requests-kerberos. If an attacker send the attack string to
these two libraries for Kerberos HTTP negotiate authentication,
it is likely that such authentication would take a large amount
of time (more than 24 hours with a 128-character long attack
string), thus affects other users of the corresponding databases
and warehouses.

As shown, there is a “Loop in Loop” vulnerable structure,
i.e., (?:.*,)*, in which a sequence of ‘,’ can be matched
by both the outer and the inner loop. To solve the problem,
we can change either loop into a quantifier not supporting
backtracking. A quick fix is to use a possessive quantifier by



1 var d = "^[\_$a-z][\_$a-z0-9]*(\[.*?\])*(\.[\_$a-z][\_$a
-z0-9]*\(\[.*?\])*)*$"

2 // vulnerable to "_[._[]._[]._[]._[]._[]._[] ... ._[]._
[]\b"

3 e = ["true", "false"]; return {
4 D: [], Y: function (b) {
5 k = e.substring(d, j +
6 1); b.push(k); var n = "@ko_token_" + (b.length

- 1) + "@",
7 e = e.substring(0, d) + n + e.substring(j + 1),
8 j = j - (k.length - n.length), d = o

Listing 3: A vulnerable regular expression in library dropdownlist.

placing an extra ‘+’ after the original quantifier ‘*’, but since
possessive quantifier is not supported in Python, we can change
the structure to (?:.*,).

Loop after Loop vulnerability. kendo-ui-core (2.3K stars)
is a HTML5, jQuery-based widget library for building modern
web applications. The code in its dropdownlist library contains
a vulnerable regex, as shown in Listing 3. If the attacker is able
to pass a 128-character long attack string to the library, the
corresponding web application would hang for 71.92 seconds.

Specifically, there is a “Loop after Loop” structure,
where two adjacent loops, i.e., ‘.*?’ in (\[.*?\])* and
(\.[\_$a-z][\_$a-z0-9]*(\[.*?\])*)*, both accept “._[]”.
For this kind of vulnerabilities, we need to separate the two
loops by another expression that does not accept “._[]” so that
these two loops will not be directly connected. Alternatively,
we can remove the overlapping parts in the two loops. For
example, we can modify ‘.*?’ to one that will not overlap
with the latter loop.

Responsible Disclosure. We are unable to notify the authors
of the 213 newly detected vulnerable regexes in §VI-B as the
dataset does not include the source of a regex. We did contact
the relevant developers about new vulnerabilities we detected
in §VI-E (including the above three) and are in the process of
obtaining new CVE IDs. At the time of writing, 6 developers
have confirmed and 2 have fixed the vulnerabilities.

VII. RELATED WORK

Empirical Study of Regular Expression. Bates et al. found
regular expressions could be exploited to bypass XSS filters
[1]. Champan et al. studied the usage of regular expressions in
Python [6]. Wang et al. measured the test coverage of regular
expressions in [36]. Rex solves regular expression constraints
using a symbolic representation [35]. EGRET and Reggae
generate test strings to help identify flawed regular expressions
[19, 20]. In [23] and [13], the authors investigated management
difficulties and the portability problem of regular expressions.
REVEALER specifically targets the problem of super-linear
matching complexity in regular expressions and is orthogonal
to these works.

Empirical Studies of ReDoS. ReDoS is found harmful in
many application scenarios. Smith et al. found catastrophic
backtracking being utilized to evade network intrusion detection
[31]. Davis et al. investigated the incidence of super-linear
regular expressions and claimed ReDoS as a common security
vulnerability [11]. Staicu et al. found ReDoS attacks could
compromise the availability of JavaScript-based web servers
[32]. These works are orthogonal to REVEALER, which focuses
on detecting and exploiting ReDoS vulnerabilities.

ReDoS Detection. Previous works have studied the detection
of ReDoS vulnerabilities. Berglund et al. proposed static
analysis methods to identify vulnerable regexes based on
a novel automaton model [3]. Sugiyama et al. measured
the complexity of regular expression matching by simulating
the matching using a tree transducer and analyzing the size
increase of the output tree [33]. Similarly, RXXR2 builds
search trees from regular expressions and characterizes the
exponential branching blowup in the tree as a symbol of super-
linear complexity [29]. These works focus on detecting regex
structures with an exponential matching complexity and would
miss the polynomial vulnerabilities. Weideman et al. [37]
and Rexploiter [38], however, can identify vulnerable NFA
patterns with exponential or polynomial complexity. But all
these static analysis methods support only a limited set of
extended features, and have high false positive because they
cannot verify the attack strings they generated. REVEALER
supports all extended features and reports only true positives
by verifying the vulnerabilities in dynamic analysis. ReScue is
a fuzz testing technique specifically optimized for ReDoS [30].
It generates the attack strings using a genetic algorithm, which
makes it less efficient than static analysis methods.

Several existing works for Algorithmic DoS detection can
also be extended to ReDoS, e.g., fuzzers like SlowFuzz [28],
HotFuzz [5], and hybrid approaches like Badger [25].

ReDoS Mitigation. Several existing works proposed to
mitigate ReDoS vulnerabilities by modifying the structure
of regular expressions. Becchi et al. proposed to merge non-
equivalent states by labeling the transitions [2]. In [7], the
authors searched for variants of regular expressions with
better performance. Merwe et al. removed ambiguity from
regular expressions to mitigate algorithmic DoS vulnerabilities
[34]. Some other works proposed flexible resource allocation
methods to limit the impact of ReDoS attacks. Lin et al. used
hierarchical parallel methods on GPU to accelerate regular
expression matching [21]. DeDoS mitigates asymmetric DoS
attacks by deploying the program in a replicable fusion [14].
Davis et al. incorporated timeouts at the event handler level
to mitigate ReDoS [12]. They also proposed to dynamically
allocate memory to cope with extreme situations in [10]. We aim
to detect ReDoS vulnerabilities and provide useful information
to help developers mitigate ReDoS.

VIII. CONCLUSION

Regular expression Denial-of-Service (ReDoS) attacks can
severely degrade the performance and availability of an applica-
tion and its hosting server. In this paper, we present REVEALER,
which is a hybrid-approach system that automatically detects
and exploits ReDoS vulnerabilities. We statically model the
ReDoS vulnerabilities for regular expressions with extended
features such that REVEALER can locate the vulnerable subex-
pressions of a regex. REVEALER then dynamically simulates
regex matching to generate attack strings to trigger the worst
case matching of a potential vulnerable regex. We thoroughly
evaluated the effectiveness and efficiency of REVEALER on a
benchmark dataset and on real-world popular applications. We
demonstrated that REVEALER can significantly outperform the
state-of-the-art ReDoS detection tools, and can effectively and
efficiently detect unknown ReDoS vulnerabilities.
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Fig. 10: NFA-like structure transformed from the “Loop in Loop”
vulnerable e-NFA structure. r0 to r4 are the same subexpressions as
those in the vulnerable e-NFA structure.
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Fig. 11: NFA-like structure transformed from the “Branch in Loop”
vulnerable structure.
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Fig. 8: The structure of hyper-vulnerable NFA pattern.
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Fig. 9: The structure of vulnerable NFA pattern.

APPENDIX

A. Additional Proofs for Modeling ReDoS Vulnerability

We provide the proofs for the four theorems we defined in
§IV. We first introduce the existing theorems about vulnerable
NFA patterns (§A1) that inspired our modeling. We then prove
the theorem about the crucial states in an e-NFA that may lead
to super-linear matching behavior (§A2). Finally we provide
proofs for our proposed vulnerable e-NFA patterns (§A3).

1) Vulnerable NFA Patterns: Before we introduce our theory
in vulnerable e-NFA patterns, we review necessary background
of vulnerable NFA patterns and corresponding attack string
patterns in [38].

Definition 5 (NFA). An NFA A is a 5-tuple (Q,Σ,∆, q0, F )
where Q is a finite set of states, Σ is a finite alphabet of symbols,
and ∆ : Q× Σ→ 2Q is the transition function. Here, q0 ∈ Q
is the initial state, and F ⊆ Q is the set of accepting states.
We say that (q, l, q′) is a transition via label l if q′ ∈ ∆(q, l).

The notation π denotes an NFA path, which includes a
sequence of NFA transitions (q1, l1, q2), . . . , (qm−1, lm−1, qm)
that starts at q1 and ends at qm. labels(π) denotes the sequence
of labels (l1, . . . , lm−1) for following the transitions in path π.

Theorem 5 (Hyper-vulnerable NFA pattern). An NFA is hyper-
vulnerable (has exponential complexity) iff there exists a pivot
state q ∈ Q and two distinct paths π1, π2 such that (i) both
π1, π2 start and end at q, (ii) labels(π1) = labels(π2), (iii)
there is a path πp from initial state q0 to q, and (iv) there is a
path πs from q to a state qr /∈ F , as shown in Figure 8.

Theorem 6 (Vulnerable NFA pattern). An NFA is vulnerable
(has super-linear complexity) iff there exists two states q ∈ Q,
q′ ∈ Q, and three paths π1, π2, and π3 (where π1 ̸= π2) such
that (i) π1 starts and ends at q, (ii) π2 starts at q and ends at q′,
(iii) π3 starts and ends at q′, (iv) labels(π1) = labels(π2) =
labels(π3), (v) there is a path πp from initial state q0 to q, and
(vi) there is a path πs from q′ to a state qr /∈ F , as shown in
Figure 9.

The ReDoS attack string pattern against the vulnerable
NFA patterns is proposed as s0.s

k.s1, where s0 is the attack
prefix given by labels(πp), s1 is the attack suffix given by
labels(πs), and s is the attack core given by labels(π1). For
example, regex (ab|a|b)* has a hyper-vulnerable NFA pattern,
whose attack core is ‘ab’. The attack core has two distinct
matching paths—(ab){1} for π1, and (a|b){2} for π2 which
is a repetition of the subexpression (a|b). Both labels(π1) and
labels(π2) are equal to the attack core ‘ab’.

2) Crucial States in e-NFA: We provide the proof for
Theorem 1 that the e-NFA match process runs in linear time if
an e-NFA has neither loop states nor branch states.

Proof of Theorem 1: For a state v that is neither a loop
state nor a branch state, it has at most one outgoing inclusion
transition, and cmax

v ≤ 1, which means it can match a symbol
at most once and the e-NFA has to take a connection transition
after the match. Since a state can have at most one outgoing
connection transition as described in §III-A4, the e-NFA can
transit from v to only one state v′ through the only connection
transition t. Let Pv(s) denote the number of possible matching
paths from the start state v0 to v before matching the next
substring s, and s′ denote the remaining unmatched substring
after following the transition t from v to v′. We have Pv′(s′) =
Pv(s). If the e-NFA contains only such states, then all states
would be visited at most once, and the possible matching paths
count keeps the same from the start state to the accepting state,
i.e., Pvf (ϵ) = Pv0(s0) = 1, where s0 is the entire input string.
Since the maximum length for each matching path Lmax is
less than M ×N , where M is the number of states in e-NFA,
and N is the length of s0, the overall matching time would be
less than Pvf (ϵ)× Lmax, and is linear with N .

3) The Sufficiency of Vulnerable e-NFA Patterns: In this
section, we prove the sufficiency of vulnerable e-NFA patterns.

We first discuss two vulnerable e-NFA patterns with
exponential complexity: “Loop in Loop” and “Branch in Loop”.

Loop in Loop. The “Loop in Loop” vulnerable structure and
the corresponding NFA-like structure are shown in Figure 2 and
Figure 10, respectively. We can see similar structures between
Figure 8 and Figure 10 by mapping πp to r0, π1 to r1r3, π2

to r1r2r3, and πs to r1r3r4. We propose the following proof
for the “Loop in loop” vulnerable e-NFA structure.

Proof of Theorem 2: Let s denote the common match
string of r1r2r3 and r1r3, and there are k repetitions of s in
the attack string. When the regex engine fails to match r4 after
accepting sk at vi, for each s, it can backtrack to vi by either
r1r2r3 or r1r3. Each backtracking of string s takes constant
time O(1). Let Tv(k) denote the running time of backtracking
from state v on string sk. For each repetition of s, the total
number of backtracking paths doubles, and the total running
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Fig. 12: NFA-like structure transformed from the “Loop after Loop”
vulnerable structure.

time becomes: Tvi(k) = (O(1)+Tvi(k−1))+(O(1)+Tvi(k−
1)). Iteratively, we have Tvi(k) = O(1) · (2k+1 − 2) = O(2k).
In summary, there are 2k possible backtracking paths, and the
regex engine would end up traversing all possibilities in the
worst case, which is of exponential time with k.

Branch in Loop. The “Branch in Loop” vulnerable structure
and the corresponding NFA-like structure are shown in Figure 3
and Figure 11, respectively. Similarly, paths in Figure 8 can be
mapped to subexpressions in Figure 11 as follows: πp to r0,
π1 to r1r2r4, π2 to r1r3r4, and πs to r1r3r4r5. We propose
the following proof.

Proof of Theorem 3: Let s denote the common match
string of r1r2r4 and r1r3r4, and there are k repetitions of
s in the attack string. Similar to Theorem 2, the number of
backtracking possibilities doubles on each repetition of s, which
leads to exponential time complexity.

We then discuss the vulnerable e-NFA pattern “Loop after

Loop”, which is of polynomial complexity.

Loop after Loop. The “Loop after Loop” vulnerable struc-
ture and the corresponding NFA-like structure are shown in
Figure 4 and Figure 12, respectively. Paths in Figure 9 and
subexpressions in Figure 12 can be mapped as follows: πp to
r0, π1 to r1, π2 to r2, π3 to r3 , and πs to r4. We propose the
following proof.

Proof of Theorem 4: Let s denote the common match
string of r1, r3 (and r2), and there are k repetitions of s in
the attack string. When the regex engine fails to match r4
after accepting sk at vi, for each s, it can backtrack to vi
by either r1r2r3 or r1r3. Each backtracking step of string s
takes constant time O(1). Let Tv(k) denote the running time
of backtracking from state v on string sk. The backtracking
algorithm starts from vi+1 with sk. When the engine backtracks
the first s, it either goes to vi or stays at vi+1, which gives:
Tvi+1(k) = (O(1) + Tvi(k − 1)) + (O(1) + Tvi+1(k − 1)). If
the engine goes to vi, it cannot come back to vi+1, so it can
only perform backtracking on vi afterwards. Thus, we have
Tvi(k − 1) = (k − 1) · O(1) = O(k), and then Tvi+1

(k) =
Tvi+1

(k−1)+O(k). Iteratively we have Tvi+1
(k) = k ·O(k) =

O(k2). In summary, the regex engine would end up running
in polynomial time with k in the worst case.
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