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ABSTRACT
The prosperous trend of deploying complex applications to web
browsers has boosted the development of WebAssembly (wasm)
compilation toolchains. Software written in different high-level pro-
gramming languages are compiled into wasm executables, which
can be executed fast and safely in a virtual machine. The perfor-
mance of wasm executables depends highly on compiler optimiza-
tions. Despite the prosperous use of wasm executables, recent re-
search has indicated that real-world wasm applications are slower
than anticipated, suggesting deficiencies in wasm optimizations.

This paper aims to present the first systematic and in-depth un-
derstanding of the status quo of wasm optimizations. To do so, we
present Ditwo, a differential testing framework to uncover missed
optimizations (MO) of wasm optimizers. Ditwo compiles a C pro-
gram into both native x86 executable and wasm executable, and
differentiates optimization indication traces (OITraces) logged by
running each executable to uncover MO. Each OITrace is composed
with global variable writes and function calls, two performance
indicators that practically and systematically reflect the optimiza-
tion degree across wasm and native executables. Our analysis of
the official wasm optimizer, wasm-opt, successfully identifies 1,293
inputs triggering MO of wasm-opt. With extensive manual effort,
we identify nine root causes for all MO, and we estimate that fixing
discovered MO can result in a performance improvement of at least
17.15%. We also summarize four lessons from our findings to deliver
better wasm optimizations.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; Compilers.
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1 INTRODUCTION
WebAssembly (wasm) is an increasingly important low-level web
language [36, 38] with a multitude of source languages compiled
to it [3]. It is widely supported in browsers and used by diverse
web applications [4, 62, 73], from “serverless” cloud computing [84],
to smart contract platforms [6–8], to sandbox libraries in native
applications [12, 61], and even as universal bytecode executed by
stand-alone wasm runtimes [11, 13–15].

The wasm community has provided wasm compilers for convert-
ing popular high-level languages, including C/C++ [23], Rust [10],
and Go [9], to wasm executables. Moreover, Binaryen [31], the offi-
cial wasm compiler infrastructure library, is provided to facilitate
the development of wasm compilers. Binaryen’s core component,
wasm-opt [32], comprises classic compile-time optimizations and
wasm-specific optimizations to effectively improve wasm code size
and speed, aiming to “make Binaryen powerful enough to be used as
a compiler backend by itself.” To date, wasm-opt has been employed
by many industrial-level wasm compilers [2, 9, 10, 23, 24, 43, 69].

Holistically, browser vendors promote wasm with the aim of
speeding up web applications [38] and replacing JavaScript (JS),
which dominates client-side scripting for decades [64].With tremen-
dous resources invested in developing the wasm ecosystem, the
community generally expects wasm to attain performance compa-
rable to that of native code [33, 38]. However, recent works have
shown that wasm programs can be twice as slow as native code [44].
It is also found that wasm may not significantly outperform JS in
terms of speed and memory use [87].

Previous studies [44, 87] generally attributed wasm’s (counter-
intuitive) performance deficiency to the ineffective compile-time
(and runtime) optimizations. Nevertheless, a systematic character-
ization of under-optimized wasm code remains absent, let alone
the exploration and classification of the root causes in wasm op-
timizers. Thus, this paper aims to provide a comprehensive and
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in-depth investigation of missed optimizations (MO) of wasm opti-
mizers. While this may be partially accomplished by reading the
wasm optimizer documents and code, in practice the feasibility is
limited by the complexity of the wasm optimizer as well as the
nature of program optimizations: optimization opportunities may
be subtle and certain optimizations are deemed “missed” only when
processing specific code emitted by compiler frontends.

In principle, deciding MO of wasm optimizers would require a
“ground truth” (e.g., manually crafting some fully-optimized wasm
executables) to compare with, which is challenging to obtain. In-
spired by contemporary research on testing C compiler optimiza-
tions [80], we instead explore a differential testing setting, by treat-
ing native x86 executables fully optimized bymodern C compilers as
the “reference” to unveil MO. This enables an automated, systematic,
and scalable testing of wasm optimizers. Overall, we present Ditwo,
a differential testing framework for wasm optimizers. Ditwo dif-
ferentiates runtime behaviors of wasm binary code and its native
x86 counterparts compiled from the same C code to uncover MO.

The key technical challenge is to select proper “performance
indicators” from the wasm runtime logs that are practically feasible
to compare and uncover the neglect of various wasm optimization
opportunities. To do so, Ditwo launches both wasm and native
executables to log two indicators: global variable writes and func-
tion calls. These logs form a pair of optimization indication traces
(OITraces) for cross-comparison. According to our observations,
global variable writes and function calls are resilient across wasm
and x86 executables, i.e., they are roughly close regardless of the
differences in two executables. Moreover, such indicators are in-
fluenced by an extensive amount of optimization passes in both
compilation pipelines. Thus, by differentiating OITraces, we com-
pare the wasm optimizations to mature C compiler optimizations;
inconsistencies exposed by cross-comparison indicate missed wasm
optimization opportunities.

Ditwo is employed to test wasm-opt, the prevailing optimizer
maintained by the wasm community and is extensively used by
most wasm compilers. Thus, MO found in wasm-opt can impede
delivering fast and portable wasm applications in various platforms.
With 16K randomly generated C programs as test inputs, Ditwo
uncovers 1,293 inputs that result in under-optimized wasm pro-
grams. With about 140 man-hours, we manually diagnose the root
causes behind all exposed MO. Moreover, with semi-manual study
of five real-world applications, we estimate the lower bound of
performance improvement, on average 17.15%, after fixing the MO
cases. The results indicate the severity of MO identified by Ditwo.
We further summarize four lessons to better optimize wasm code.
In sum, this research makes the following contributions:

• This work champions an important yet unaddressed focus on
wasm optimizations. We aim to uncover and investigate MO,
representing hurdles that may considerably undermine the per-
formance of wasm executables.

• To systematically and practically uncover MO, we design Ditwo,
a differential testing-based framework. Ditwo cross-compares
a wasm executable and its native x86 counterpart over well-
selected performance indicators.

• We extensively tested wasm-opt, the core component of the of-
ficial wasm compiler library. We found 1,293 inputs triggering

source code
C/C++, Rust,

TypeScript, …
Compilation & Optimization

source to wasm
emscripten, clang,

Asterius, …
JavaScript 
glue code

wasm
binary code

Compiled Output Runtime

Binaryen

wasm to wasm
wasm-opt

Figure 1: A holistic view of wasm compilation, optimization,
and execution pipeline.

MO. With extensive manual effort, we identified nine root causes,
subsuming all uncovered MO cases. All root causes are reported
to and confirmed by developers. Our empirical evaluation sug-
gests that fixing such MO can notably speedup wasm code, and
we summarize four lessons to better optimize wasm code.

Artifact availability. We have released Ditwo [5] for wasm opti-
mizer testing to facilitate further research.

2 BACKGROUND
In this paper, we refer to a compiler that compiles high-level lan-
guage (e.g., C/C++) source code to wasm code as a source-to-wasm
(SW) compiler or simply a “wasm compiler.” Likewise, we refer
to an optimizer that takes wasm code as input, applies multiple
optimization passes, and outputs the optimized wasm code, as a
wasm-to-wasm (WW) optimizer or simply a “wasm optimizer.” We
aim to uncover missed wasm optimization opportunities when ap-
plying WW optimizer on SW compiler-emitted wasm code.
wasm Compilation. Fig. 1 presents a holistic view of the typical
wasm compilation and optimization pipeline. Generally, programs
written in high-level languages, such as C/C++, Rust, and Haskell,
can be compiled into wasm code and executed in wasm runtimes. In
particular, programs written in different languages can be compiled
into wasm binary code using existing compiler infrastructures (e.g.,
with Clang), or the community-offered compilers like Emscripten
(emcc; for C/C++) andWasm-Bindgen (for Rust). Then, Binaryen, as
the de facto wasm compiler and toolchain infrastructure library, per-
forms various optimizations on wasm binary. Especially, it employs
wasm-opt to optimize wasm binary code with a set of optimiza-
tion passes, which significantly impact the code size and runtime
performance of the generated wasm binary code.
wasm Execution. wasm application is often not a self-contained
wasm executable. wasm code ismainly used to speed up computation-
intensive tasks (e.g., 3D rendering), while JS glue code handles in-
vocations of network and IO interfaces. Typically, web applications
use JS to instantiate and invoke the interfaces of certain functions,
whose underlying implementation is provided in the wasm binary
in a high-speed, compact format.

As illustrated in Fig. 1, wasm applications, including the wasm
binary and the JS code, are unitedly executed in wasm/JS runtimes,
which are often embedded in browsers’ JS engines. Unlike JS code
which is frequently optimized by Just-in-time (JIT) compilers, run-
time optimizations for wasm binary is still an open problem. wasm
runtimes leverage techniques varying from ahead-of-time (AOT)
compilation to interpretation to execute wasm binary code.
wasm Executable and Runtime Memory Layout. Fig. 2 illus-
trates a simplified wasm binary (the left half) and its memory lay-
out in the runtime (the right half). Similar to x86 executables, each
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(unused)

data
(source global vars)

stack
(one frame per func)

high

low

grow

linear memory

global region

$foo’s local region
…

wasm runtime

functions

allocate

wasm binary

heap

(module
(global $__stack_pointer (mut i32) 

(i32.const 5243920)) 
(global $__stack_end (mut i32) 

(i32.const 0))
...
(func $foo (param i32) (result i32)
(local i32)
global.get $__stack_pointer
i32.const 16
i32.sub
local.tee 1
global.set $__stack_pointer
...

)
...
(data $.data (i32.const 1620) 

"\00\00\00\00") 
)

Figure 2: Example of wasm binary and its memory layout.

wasm binary contains multiple sections. First, a wasm binary con-
tains a global section (the red region) and a function section (the
blue region) holding a list of functions. Note that there are no reg-
isters in wasm runtime. Instead, intermediate values are stored in
local variables (the yellow region). For instance, the localmemory
region for function foo is created each time when foo is called, and
destructed when foo returns.

Moreover, the wasm runtime offers a linear memory region, de-
noting a byte-addressable, contiguous memory array. The wasm
runtime will not partition the memory section. Rather, SW com-
pilers divide the linear memory into stack frames (for each wasm
function call), heap, and global data. Particularly, mimicking the
stack in x86 architectures, a memory stack, whose top is pointed by
the stack-top pointer (i.e., $__stack_pointer; as in Fig. 2), is main-
tained. The SW compiler-inserted function prefix code allocates a
new stack frame each time a function is called.

To clarify, contemporary SW compilers generally insert source
code global variables into the “global data region” of the linear mem-
ory (at the bottom). In contrast, while the wasm specification (and
WW optimizers) anticipates to see global variables in the global
section (the red region), SW compilers insert only wasm-utility
variables into that section, such as the stack-top pointer. Similarly,
while the wasm runtime offers a local region (the yellow region)
for local variables, SW compilers store function local variables in
the corresponding stack frame in linear memory. This “mismatch”
is reasonable, given that the supported high-level languages like
C/C++ were not originally designed for wasm. For instance, wasm
does not support pointers, and to mimic pointers in C code, the
SW compiler has to put the pointed data 𝑑 into the linear memory,
and uses 𝑑’s offset in the linear memory as its “memory address”
for manipulation. This mismatch, however, introduces hurdles for
WW optimizers, as uncovered in our evaluation (see Sec. 7).
Tracking Data Access in Linear Memory. Our study focuses
on the WW optimization phase where the input, wasm binary
code, is parsed into the Binaryen IR, and processed by a rich set
of optimization passes in wasm-opt. We introduce the research
motivation of detecting MO in wasm-opt in Sec. 3 and discuss the
pipeline of Ditwo in Sec. 4.

One performance indicator (i.e., a testing oracle) leveraged by
Ditwo is variable access patterns. The access patterns of source-
level local and global variables can reflect optimization strategies
applied over the wasm binary by wasm-opt. Compiling wasm bi-
nary code with debug information allows each global variable (in
the linear memory region) to be easily recognized. Nevertheless,
local variable names are removed in wasm binary; it is difficult to
track local variables in the linear memory even with the debug
information enabled. Thus, we use global variable accesses to form
our performance indicator (see Sec. 4) to enable smooth tracking.

3 MOTIVATION
The Demand of wasm-to-wasm (WW) Optimization. With
various wasm runtimes and compilers on the market, developing
optimization strategies specifically within each SW compiler would
be tedious and costly. To avoid reinventing the wheel, the wasm
community has advocated optimizing wasm programs at the binary
level; this would result in a unified optimizer for different SW com-
pilers. As described in Sec. 2, the official WW optimizer, wasm-opt,
comprises a rich set of WW optimization passes.

SW compilers may reuse optimizations offered by existing com-
piler infrastructures, e.g., emcc (derived from the LLVM framework)
can use LLVM optimization passes prior to generating wasm binary.
Nevertheless, we argue that enhancing WW optimizations (this
paper’s focus) is demanding for two reasons. First, not all SW com-
pilers are accompanied by mature optimization passes, particularly
compilers that accept scripting languages (e.g., TypeScript) as input.
From the wasm community’s perspective, it is unclear when those
SW compilers, often maintained by specific programming language
communities, would update their optimizers to reach optimization
capabilities of mainstream C compilers. Second, existing SW com-
piler optimizations (such as those in LLVM) are primarily tailored
for native executables. Due to the mismatches between the x86
(register-based) execution model and the wasm execution model
(i.e., stack-based virtual machine), SW compilers may inevitably
generate under-optimized wasm binary [87]. Thus, it is demanding
to develop a high-quality WW optimizer that extensively optimizes
wasm binary code, the output of SW compilers.
The Status Quo. wasm-opt currently provides over 90 optimiza-
tion passes written in about 26K lines of C++ code. wasm-opt em-
ploys classic optimization strategies similar to those of mainstream
compilers, such as function inlining, dead code elimination, and
common subexpression elimination. Besides, wasm-opt provides
a series of wasm-specific optimizations like memory packing and
removing unused branch instructions. wasm-opt offers O0 to O4 op-
timization levels, with Os and Oz focusing on minimizing code size.
While these optimizations are compiler- and runtime-independent,
wasm-opt is expected to complement most compilation-stage opti-
mizations and even works as a standalone compiler backend. It is
anticipated that wasm-opt can greatly improve code performance
before feeding wasm binary to runtimes [1, 2, 32, 43].
Research Objective. Although the concept of “one unified wasm
optimizer for all compilers” is appealing, it remains unclear to
what extent existing wasm-based optimizations are adequate as a
standalone compiler backend. The wasm specification defines a suc-
cinct instruction set with around 500 elementary instructions for all
arithmetic, memory loading/storing, and control transfers. Unlike
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native x86 programs, wasm code is deterministic and contains only
structured control flows. Therefore, optimizing wasm code would
be less complex than optimizing native x86 programs. Moreover,
during theWW phase, both wasm-specific and classic compile-time
optimizations can be fulfilled, whereas during the SW phase, the
optimizations are mostly target-agnostic, potentially losing opti-
mization opportunities and being less comprehensive than the later
phase. In practice, however, it is hard to implement comprehensive
optimization passes at the WW phase. As an assembly-like lan-
guage, wasm lacks high-level abstraction compared with compiler
IR. It becomes technically harder for the optimizer to collect context
information from wasm code, as illustrated in R1–3; see Sec. 7.1.
While recent research has conducted empirical studies to evalu-
ate MO in GCC/Clang [79, 80], they mainly focus on dead code
elimination and code size optimization when compiling C code to
x86 executables. To systematically assess the status quo of WW
optimizations, we detect missed optimizations in live code blocks
that are likely executed in runtime. From this point, the issues we
found should be more severe, impeding program performance if
not properly handled.

We aim to provide an up-to-date assessment of present WW
optimizations and identify their MO. We will investigate and
categorize root causes of the detected MO cases, and harvest
lessons to serve as guidelines for better WW optimizations.

4 APPROACH OVERVIEW
This section describes the challenges in detecting missed optimiza-
tion opportunities in the WW optimizer, wasm-opt. We accordingly
present several design considerations that form Ditwo, a differen-
tial testing-based framework.
Ground Truth. The first challenge to detecting optimization oppor-
tunities missed by the WW optimizer is to obtain the optimization
ground truth, which indicates the optimal optimization state the
wasm program can achieve. The ground truth, i.e., fully-optimized
wasm executables, is not readily available without extensive manual
effort to craft. To shed lights on the “full potential” of WW optimiz-
ers, we instead take the modern production C compiler, Clang, as
the reference to compare with. Specifically, given a C source code
𝑃 as input, we use Clang with the O3 option to compile it into a
fully-optimized native x86 executable 𝐸𝑜86. Next, we compile 𝑃 into
wasm binary 𝐸𝑤 with all SW optimizations disabled to leave all
optimization opportunities to the WW optimizer. We then config
wasm-opt with the highest optimization level to optimize 𝐸𝑤 into
𝐸𝑜𝑤 . 𝐸𝑜86 and 𝐸

𝑜
𝑤 are compared over several performance indicators

(see below) to uncover MO in wasm-opt.
Optimization Comparison. Comparing two intensively opti-
mized wasm and x86 binary code, 𝐸𝑜𝑤 and 𝐸𝑜86, to uncover MO
in wasm-opt is not as simple as expected. We now present and
analyze three design considerations below.
Static Comparison. Since wasm follows a stack-based computation
paradigm whereas x86 is a register-based computation model, stati-
cally comparing instructions in 𝐸𝑜𝑤 with their counterparts in 𝐸𝑜86
is challenging: inconsistency in instructions may be due to distinct
computation models rather than MO. Moreover, the lack of wasm

static analysis tools make it hard to decide if two pieces of wasm in-
structions and x86 instructions are compiled from the same source
code. In conclusion, launching static comparison is hardly feasible.
Coarse-Grained Dynamic Comparison. Given that function names
can be retained in 𝐸𝑜𝑤 (when compiling with debug information
preserved), we can match each wasm function to its x86 assembly
function. Then, to unveil MO in a wasm function, we can execute
this function and its x86 counterpart and record their execution
time. However, such a function-level, coarse-grained comparison
does not provide sufficient information other than that one function
is better or worse optimized than another.
Comparing Optimization Indication Traces (OITraces). Ditwo ex-
tracts two performance indicators, global variable writes and func-
tion calls, from the runtime logs of 𝐸𝑜𝑤 and 𝐸𝑜86. These two indicators
form a pair of OITraces for comparison, with inconsistencies be-
tween the traces indicating MO. Our key observations are two-fold:
(1) Variable writes are often preceded by a series of computations
on the written value. Usually, optimizable computations and the
variable write would be optimized away simultaneously, making
variable writes a good indicator of how well the code has been opti-
mized. (2) According to recent research [79], function inlining has a
substantial impact on program performance, not only by reducing
function call costs, but also by increasing opportunities for the rest
of the (intra-procedural) optimization pipeline.
Incomplete Debug Information.When compiling C code into
x86 binary code, we can enable debug information to annotate func-
tions, global variables, and local variables. Nevertheless, tracking
variable writes and function calls imposes a new challenge. Among
two well-developed C-to-wasm compilers, emcc and Cheerp [78],
only emcc has mature debugging support while Cheerp cannot
attach debug information to wasm binary. However, debug infor-
mation inwasm binary (inserted by emcc) is incomplete. In short, the
debug information can only help flag each global variable, whereas
local variables are hard to track. On the other hand, our test suite,
generated by Csmith [88] (see details in Sec. 6), is carefully con-
structed to involve global variables in most computations. We there-
fore track and compare only global variable accesses.
Overview. Fig. 3 depicts Ditwo’s high-level workflow to explore
missed opportunities in wasm optimizations. Given a test C pro-
gram, we compile it into a fully-optimized native x86 executable
using Clang with O3 option, and a wasm binary using emcc with
O0 option (no optimization). The wasm binary is then optimized us-
ing wasm-opt with the highest optimization option.1 Next, the x86
executable and wasm binary are instrumented and executed to log
OITraces. Note that our test C programs (generated by Csmith [88];
see Sec. 6) do not need user-specific inputs. We use Intel Pin [56]
for the x86 executable and implement a static instrumentor for
the wasm binary. The logged OITraces are then used for trace
consistency checks (inconsistencies denote potential MO cases).
Each OITrace comprises global variable writes and function calls,
two “performance indicators” that are influenced by an extensive
amount of optimization passes in both compilation pipelines. Sub-
stantial manual efforts are then spent on studying the root causes

1We enable the -O3 option and extra optimization passes to unleash the full optimiza-
tion capability of wasm-opt; see a list of employed optimization passes at [5].
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Figure 3: Workflow of detecting MO in wasm optimizers. Our test C programs (generated by Csmith [88]) do not need user-
specific inputs; see Sec. 6.

of exposed MO. Sec. 5 introduces how we differentiate OITraces in
detail.

5 TRACE CONSISTENCY CHECKS
This section introduces two performance indicators, resulting in
two types of OITrace consistencies, to detect MO. They are:

Global Variable Write Consistency (GW) checks for redun-
dant assignments (memory writes) to global variables.
Function Call Consistency (FC) checks for function calls that
the WW optimizer fails to inline.

Clarification. Note that we do not aim for false negative-free
testing, i.e., our trace consistency checks are not complete, and
even if both GW and FC are satisfied, potential MO can still ex-
ist in wasm-opt-optimized binary. Ditwo uses these two checks,
given their generally promising comprehensiveness and high imple-
mentation feasibility; as clarified in Sec. 4 and argued by relevant
works [79, 80], GW and FC heavily depend on the whole optimiza-
tion pipeline. Thus, inconsistencies reflect missed GW/FC optimiza-
tion opportunities, or other MO that have dependency with GW/FC.
Overall, we believe through the lens of GW and FC, we shed light
on optimizations to quantify how well wasm-opt optimizes wasm
binary. Also, other consistency checks could be defined to capture
finer-grained program runtime states, and we present relevant dis-
cussions in Sec. 8. We now elaborate on checking each indicator
below.

5.1 Global Variable Write Consistency (GW)
We assume that if a global variable write is optimized out by the
mainstream C compiler, then it should be equally optimizable for
wasm-opt. Therefore, we record all global variable writes and check
if wasm-opt performs identical or superior optimizations on global
variables than its x86 counterpart. Following notations in Sec. 4,
let 𝐸𝑜86 and 𝐸𝑜𝑤 be the wasm-opt-optimized wasm executable and
its x86 counterpart, respectively, we formulate GW as follows:

Definition 5.1. (GW). For each global variable 𝐺 encountered
during executing 𝐸𝑜𝑤 , we use 𝑇𝐺

𝑤 and 𝑇𝐺
86 to denote two lists of

written values toward𝐺 when executing 𝐸𝑜𝑤 and 𝐸𝑜86. GW is satisfied
if 𝑇𝐺

𝑤 is the Longest Common Subsequence (LCS) of 𝑇𝐺
𝑤 and 𝑇𝐺

86 .

Violation of GW. Fig. 4(a) presents a sample code snippet that
violates GW when being compiled with emcc and optimized by
wasm-opt. In this case, both the global pointer 𝑝 and the local
pointer 𝑑 point to the same element, 𝑎𝑟𝑟 [4]. Thus, the assignment
statements at lines 6 and 7 could be merged. However, Ditwo de-
tects that in 𝐸𝑜𝑤 , the written data toward 𝑎𝑟𝑟 [4] is {110, 21} (corre-
sponding to two writes at lines 6 and 7), while in its x86 counterpart

Violation of FC

int32_t arr[9]; 
int32_t *p = &arr[4];
int8_t foo () {
uint8_t c = 110;
int32_t *d = &arr[4];
*p = c;    //arr[4] = 110
*d ^= 123; //arr[4] = 21
return *d;

}
void main () {
int e = foo();
printf("%d\n", arr[4]+e);

}

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.

Violation of GW

int32_t a, b, c[] = {8, 8};
int8_t foo (int8_t d) {
for (; d; d += 3)
return d;

}
uint32_t func_1 () {
for (b = 13; b < 27; b++)
a += foo(c[1]) * foo(b);

}
int main () {
func_1();
printf("%d, %d\n", a, b);

}

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.

(a) (b)

Figure 4: Code examples for GW and FC violations.

𝐸𝑜86, the written data toward the same variable is {21}. According
to Def. 5.1, we detect a GW violation, given that the wasm trace
{110, 21} is by no means a LCS of {110, 21} and {21}. With manual
inspection, we confirm this finding as an MO case.
Validity of Assumption. One may wonder if register allocation
would break this assumption. That is, modern C compilersmay store
a variable in a register; all writes to that variable will be converted to
mov operations to the register and thuswill not be tracked byDitwo.
Nonetheless, according to our empirical observation, allocating
global variables to registers is rare, possibly due to the complexity
of global register allocation in Csmith-generated test cases (see
Sec. 6; we use Csmith to generate random test inputs). In fact, after
manually investigating all of our findings, we confirmed that no
false positives were encountered during our evaluation.

5.2 Function Call Consistency (FC)
To check FC, we record all function calls occurred when execut-
ing 𝐸𝑜𝑤 , and compare with those logged when executing the x86
counterpart, 𝐸𝑜86. Ditwo collects the “function call” information by
logging each callee function name, all its arguments passed by the
caller, and its return value.

With years of improvement, production C compilers can achieve
(near) optimal decision in inlining functions for common cases [79].
To lower the cost of function calls and, more importantly, to increase
the optimization space for consequent intra-procedural optimiza-
tions, wasm-opt should be highly capable (close to the C compiler)
of identifying and performing function inlining in wasm code.

Definition 5.2. (FC). For each function 𝐹 covered during execut-
ing 𝐸𝑜𝑤 , we use 𝑇 𝐹

𝑤 and 𝑇 𝐹
86 to denote two lists of function calls

toward 𝐹 when executing 𝐸𝑜𝑤 and 𝐸𝑜86. FC is satisfied if 𝑇 𝐹
𝑤 is the

LCS of 𝑇 𝐹
𝑤 and 𝑇 𝐹

86. Note that to compare two function calls (ele-
ments in𝑇 𝐹

𝑤 and𝑇 𝐹
86), we require that they have the same arguments

and return values.
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Violation of FC. Fig. 4(b) presents a C code snippet that triggers an
FC violation. When compiled with Clang and optimized under O3,
foo and func_1 are both inlined. The inlined function body (loop)
allows subsequent intra-procedural analysis to optimize the state-
ment at line 8. Eventually, the optimized x86 executable contains
only one printf statement with a and b in constant values. How-
ever, wasm-opt opts to inline func_1 while leaving foo unchanged.
This missed function inlining hinders further optimizations, leaving
28 function calls to foo in the wasm binary.

6 IMPLEMENTATION AND STUDY SETUP
Ditwo is implemented in Python, with approximately 3.6K LOC.
We use llvm-dwarfdump [26] for parsing debug information, and
WABT [34] for converting wasm binary code into the text format
before static instrumentation. In the rest of this section, we report
the implementation details of Ditwo and our study setup.
Toolchain. Ditwo compiles C source code into native x86 executa-
bles using clang-12. wasm currecntly only supports the ILP32-bit
platform, i.e., int, long, and pointer are defined as 32 bits. Con-
sequently, all C programs are compiled with the -m32 option to
produce 32-bit x86 executables. We use emcc (ver. 3.1.14) to com-
pile C programs into unoptimized wasm binary code (we disable
optimization options in emcc), and then we use wasm-opt provided
by Binaryen [31] (ver. 109) to fully optimize wasm binary code.
Instrumenting x86 and wasm Binary. Ditwo compares the
OITraces logged during runtime to detect MO. For x86 executables,
we use Intel Pin [56], a dynamic binary instrumentor, to (1) hook
all function entry points (except C standard library functions) to
record function call information (for FC), and (2) instrument each
instruction to record its accessed global variable, if any, and the
written value (for GW).

An Intel Pin-like dynamic binary instrumentor for wasm does
not exist. Thus, we implement static instrumentation by inserting
logger code snippets into the wasm binary to record function call
and global data access information for FCs and GWs. To avoid
possible degradation of wasm optimization due to inserted logger
code, we statically instrument wasm-opt-optimized wasm code.
This way, the inserted logger code is transparent to wasm-opt.
Trace Consistency Checks. The trace consistency checks require
to compute the LCS, which can be finished in𝑂 (𝑛𝑚) time, where 𝑛
and𝑚 are the lengths of two traces. Ditwomaintains a symbol map
by parsing the debug information.With the symbolmap, a variable’s
address in wasm binary can be mapped to the same variable’s
address in the x86 executable, and vice versa. The symbol map is
used for pointer value comparison. For instance, given two pointer
values in wasm and x86 trace, we deem two pointer values as equal
if they both point to the same symbol or both point to unknown
symbols. Ditwo currently does not support recursive comparisons
of pointers or C structs. If a pointer points to another pointer or a
C struct, this pointer is ignored during trace consistency checks.
Testcases.We generate random C test cases with Csmith 2.4.0 [88],
while the technical pipeline of Ditwo is independent of the test
cases. The C programs generated by Csmith contains complex con-
trol flow and a large number of global variables. It does not require
user-provided inputs, performs extensive arithmetic computations
among global variables, and returns a checksum of all global vari-
ables as the output. Randomly generated programs contain plenty

of dead code and can be used to stress optimizers. Therefore, Csmith
has been used extensively to test C compilers [47, 48, 76]. We use
clang-tidy [25] to rule out test cases with undefined behavior be-
fore usage. We also limit the size of the Csmith-generated code to be
less than 50KB to prevent the program from producing excessively
huge traces. However, Csmith-generated programs might poten-
tially deviate from real-world programs. To estimate the potential
performance improvement (see Sec. 7.2), we also pick five real-
world programs from the CHStone benchmark [39] in accordance
with previous work [87].
Study Setup. In total, 16,000 C programs were generated for the
testing pipeline described in Sec. 4. We ran the experiment on
a server with an AMD Ryzen Threadripper 3970X Processor and
256GB RAM. The entire experiment can be finished within 24 hours.
Case Reduction.We use C-Reduce [65] to minimize C programs
that trigger MO. Specifically, we assign a unique identifier for each
GW/FC. During reducing, we ensure that GWs/FCs related to the
MO case are untouched and the MO is still triggered. This step is
costly: each time C-Reduce attempts to modify the source code, the
testing pipeline depicted in Fig. 3 is invoked to verify if the change
is desired. Nonetheless, reducing test cases could largely alleviate
the manual efforts required to investigate the root causes of MO.

7 FINDINGS
Overview.We have reported the evaluation setup in Sec. 6. Overall,
we use Csmith to generate 16,000 random C programs as test inputs,
in which we detected 1,293 programs triggering MO. Two authors
then spent approximately 140 man-hours manually investigating
the root causes of all exposed MO. Each author has an in-depth
knowledge of compiler, binary analysis, and wasm. This ensures
the credibility of our findings to a great extent.

We summarize nine root causes of all MO. Links to bug reports
are provided on our website [5]. We further harvest four lessons to
better optimize wasm code. Besides, we estimate the lower bound
of performance gain when the identified MO are fixed. Following,
we elaborate on our findings via three research questions. RQ1:
What are the characteristics of uncovered MO? RQ2: What is the
potential performance gain after fixing these MO? RQ3: What
lessons can we deduce from analyzing the MO?

7.1 RQ1: Characteristics of Missed Opt.
We start by answering RQ1. To that end, we conduct a labor-
intensive manual investigation. Table 1 classifies all the root causes
of MO into nine categories. Note that the total number of cases for
all root causes exceeds 1,293, as a single case may fall into multiple
categories. We elaborate on each root cause below.
R1: Global variables in linear memory As noted in Sec. 2, wasm
specification defines the global section to store global variables;
nevertheless, contemporary SW compilers mainly use this global
region for wasm-utility variables only, and store source code global
variables implicitly in the linear memory region. Consider the ex-
ample in Fig. 5, where 𝑔_4 is a global variable in C code. During
compilation, the SW compiler uses a fixed memory offset (1620) to
represent the variable 𝑔_4, and all reads and writes to this variable
are converted into load and store instructions via offset 1620 to
the 4-byte memory in the linear memory region.
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Table 1: Our testing uncovered 1,293 programs triggering MO. We manually investigate and categorize root causes for all cases
in this table.

root causes R1: global in R2: global R3: local R4: unopt. R5: func not R6: func not inlined R7: func not inlined R8: insufficient R9: redundant
linear mem pointer pointer loop inlined (stack) (unopt. structure) (lib func call) peephole opts initialization

#cases 108 126 476 767 58 35 8 39 100

i32.const 1620 ;; offset of g_4
i32.const 1620
i64.load32_s
i64.const 2999063379
i64.or
i64.store32     ;; line 3 in C
i32.const 1620
i32.const 0
i32.store ;; line 4 in C
...
(data $.data (i32.const 1620) 
"\35\89\76\00") ;; g_4

int32_t g_4 = 7768373;
int8_t b () {
g_4 |= 2999063379;
g_4 = 0;

}

1.
2.
3.
4.
5.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.

(c) Optimizable wasm code pattern. (b) wasm-opt-optimized wasm code. 

global.get $g_4
...
i32.const 0
global.set $g_4

1.
2.
3.
4.

(a) C source code.

Figure 5: Global variable stored in linear memory (R1).

i32.const 1620 ;; 1620 -> b
i32.load
...
i64.load         ;; load e
i64.store16 ;; *b = e;
i32.const 1792 ;; 1792 -> g_693
...
i64.load         ;; load e
i64.store32 ;; g_693 = e;
...
(data $.data (i32.const 1620) 
"\00\07\00\00")  ;; 0x700 = 1792

static int32_t g_693; 
uint16_t *b = &g_693;
int16_t c () {
uint64_t e = 42;
*b = e; //optimizable
g_693 = e;

}

1.
2.
3.
4.
5.
6.
7.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.

(a) C source code. (b) wasm-opt-optimized wasm code. 

Figure 6: Global variable write via global pointer (R2).

Such code generation patterns notably hinder wasm-opt to op-
timize wasm binary code. The mappings from memory offsets to
C global variables are obscure to wasm-opt. Without source code
or debug information, it is not easy for wasm-opt to infer whether
two store instructions are writing to the same memory region, i.e.,
statically determining the written addresses of store instructions
requires flow-sensitive pointer alias analysis, particularly in the
case of indirect addressing. In this example, store instructions in
lines 6 and 9 of Fig. 5(b), corresponding to lines 3 and 4 in Fig. 5(a),
both write to 𝑔_4, and thus the first store can be eliminated by
optimizations. wasm-opt failed to recognize this opportunity.

We find that wasm-opt can optimize global variables in the
global section (the red region in Fig. 2), where each global variable
is annotated with a global keyword. A case is in Fig. 5(c), where the
global.set/get instructions explicitly specify accessed variables.
wasm-opt can correctly optimize out the first global variable write
in this case. Overall, the two distinct code styles, although semanti-
cally equivalent, could make significant differences for subsequent
WW optimizations. We further discuss the possible considerations
behind storing global variables in linear memory and alleviations
in Sec 7.3.
R2: Writes via global pointers We find 126 MO cases caused by
global pointers. As discussed previously, SW compilers are prone to
placing C global variables in the linear memory region without their
variable name attached. Global pointers are compiled in the same
way. Fig. 6 depicts an example. The global pointer 𝑏 is mapped to
the memory region beginning at offset 1620, where the hexadecimal
offset of 𝑔_693 (1792) is stored. The store instruction at line 5 of

Fig. 6(b) writes to the address stored in address 1620, which is read
and pushed onto the stack by the load instruction at line 2.

The compiled wasm code is functionally correct. Nevertheless,
it exacerbates the root cause illustrated in R1. With global pointers,
it is hardly feasible to infer the written address of each store
instruction, unless wasm-opt is aware of each global variable’s
address and runtime value during static optimization. As a result,
wasm-opt fails to decide two store instructions access the same
global variable, and cannot remove the first store.

In this case, optimizing the redundant variable write requires
wasm-opt to determine that the content at address 1620 (line 11
in Fig. 6(b)) denotes a memory address, therefore recognizing a
global variable at address 1792. This is a classic challenge in binary
code analysis, known as “symbolization” [81, 82], which demands
a static analyzer to distinguish memory addresses from constant
values. Although many works have attempted to solve this problem,
it is not yet resolved in the most general case [27, 28]. Specifically,
given that the value stored in address 1620 is 0𝑥700, we cannot
decide whether it is a constant or an address. However, even though
“symbolization” is inherently hard to resolve, it can be circumvented
by leveraging debug information that marks pointers. We discuss
leveraging debug information in Sec. 7.3. In short, with marked
pointers, it is feasible to perform pointer analysis to decide the alias
relationship of two store instructions and remove the first store.
R3: Writes via local pointers We find a total of 476 MO cases
due to global variable writes using local pointers. Similar to R2,
R3 hinders wasm-opt from inferring the written address of store
instructions, resulting in amore ambiguousmapping between linear
memory offsets and global variables.

As shown in Fig. 7(b), at the beginning of the function, the
wasm global variable $__stack_pointer (abbreviated as $_s_p),
which points to the top of the memory stack, is subtracted by 16
and updated (lines 2-6). This stack frame allocation operation is
analogous to sub esp, 16 in 32-bit x86 assembly. On line 5, the
local.tee instruction (assigning the stack address to c) allocates
stack space for the wasm local variable c. At the end of the function,
$__stack_pointer is incremented by 16 and updated again to
deconstruct the stack frame (not shown in Fig. 7 due to space limit).

The ambiguity caused by local pointers is similar to R2: the writ-
ten address of each store instruction is unknown, as the optimizer
does not know to which variables pointers refer. In contrast to R2,
the problem caused by local pointers is less complicated. Since the
lifetime of local pointers is restricted within a function, we antici-
pate that wasm-opt can statically infer pointer values using mature
intra-procedural alias analysis techniques [75].
R4: Loops with global variables In R1, we described how SW
compilers store global variables in the linear memory region, result-
ing in a considerable number of MO cases. Such code patterns not
only prevent wasm-opt from detecting unnecessary global variable
writes but also block various follow-up loop-related optimizations,
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local.tee $c ;; alloca
global.set $_s_p
local.get $c
i32.const 1728
i32.store offset=8 ;; *c = &g_6
local.get $c
i32.load offset=8 ;; push c
i32.const 1
i32.store ;; *c = 1
i32.const 1728
i32.const 0
i32.store ;; g_6 = 0;

int32_t g_6;
int32_t b () {
int32_t *c = &g_6;
*c = 1;
g_6 = 0;

}

1.
2.
3.
4.
5.
6.

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.

(a) C source code. (b) wasm-opt-optimized wasm code. 

(local $c i32)
global.get $_s_p
i32.const 16
i32.sub

1.
2.
3.
4.

Figure 7: Global variable write via local pointer (R3).

(func $foo (param $d i32) 
(result i32)
(local $e i32)
global.get $__stack_pinter
i32.const 16
i32.sub
local.tee $e
local.get $d
i32.store offset=12
local.get $e
i32.const 1776  ;; g_3 addr
i32.load
i32.store offset=8
local.get $e
i32.load offset=8

)

define i32 @foo(i32 %0){
%2 = alloca i32
%3 = alloca i32
store i32 %0, ptr %2
%4 = load i32, ptr @g_3
store i32 %4, ptr %3
%5 = load i32, ptr %3
ret i32 %5

}

1.
2.
3.
4.
5.
6.
7.
8.
9.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.

(b) LLVM IR code (-O0). (c) wasm-opt-optimized wasm code. 

int32_t g_3; 
int32_t foo (int32_t d){
int32_t e = g_3;
return e;

}

1.
2.
3.
4.
5.

(a) C source code.

Figure 8: Redundant store instructions in function (R5).

such as loop invariant code motion, loop reduction, and loop un-
rolling, especially when loop variables are global. The rational is
similar: the target addresses of load and store instructions are
unknown until runtime. Thus, wasm-opt cannot statically identify
loop variables or loop-invariant code. This observation shows the
validity of our approach and the importance of our findings, such
that GW consistency check detects under-optimized global variable
writes and, more importantly, uncovers subsequent (loop-related)
optimization opportunities that are also missed. We find a total
of 767 R4 cases out of 1,293 under-optimized inputs, indicating a
considerable optimization space that is absent in wasm-opt.
R5 & R6: Stack variables and unoptimized loops in functions
As one of the essential compiler optimizations, function inlining re-
places function callsites with the callee’s function body. Intuitively,
function inlining reduces the cost of function calls and, more impor-
tantly, brings more opportunities to consequent intra-procedural
optimizations to further shrink binary size and improve perfor-
mance [79]. However, we observed that wasm-opt does not always
determine the optimal function inlining strategy.

According to our investigation, one primary cause of inline fail-
ures is that not-inlined wasm functions contain redundant variables
stored in the stack. Considering Fig. 8, where the sample C code is
first compiled into LLVM IR (by emcc with O0 optimization), and
then into wasm code (the output of emcc). Two variables declared at
lines 2 and 3 in the LLVM IR are stored in the stack, and accordingly,
they are stored on the stack referred to by $__stack_pointer in the
wasm binary code (Fig. 8(c)). As previously discussed, since wasm
store instructions can write to any valid address, they are harder
to analyze and optimize than LLVM store operations, which only
write to explicitly pre-allocated memory objects. Consequently,

(func $func (param i32) 
(result i32)

(local i32 i32)
...
call $memset
...

)
(func $memset (param i32 i32

i32) (result i32)
(local i32 i32 i64 i32)
...

)

define i16 @func(i8 %0) {
%2 = alloca [56 x i32]
call void @llvm.memset(…)
ret i16 %0

}

1.
2.
3.
4.
5.

1.

2.
3.
4.
5.
6.
7.

8.
9.
10.

(b) LLVM IR code (-O0). (c) wasm-opt-optimized wasm code. 

uint16_t func (int8_t n) {
uint32_t o[56] = { };
return n;

}

1.
2.
3.
4. 

(a) C source code.

Figure 9: Library function in WebAssmebly (R7).

these two wasm store instructions (and related code), though re-
dundant, are not optimized. This results in a much lengthy function
body and impedes inlining function $foo.

Similarly, loops with global variables as loop counters are also
hard to optimize (R4). Such loops inside wasm functions tend to
survive aggressive optimizations, leaving complicated control flows
in the optimized functions. Although the conditions that determine
whether a function is inlined are complex and varied [20, 70, 89],
generally, longer functions are less likely to be inlined. These in-
linable functions are thus not chosen for inlining by wasm-opt,
hindering subsequent optimization passes.
R7: Library function calls in functions C compiler-generated
code may implicitly invoke dynamically linked C standard library
functions to reduce the binary size or speed up program execution.
Nonetheless, when the backend target is set to be wasm and no
runtime library is available, such library functions will be compiled
into wasm code. Fig. 9 illustrates an example that a function call to
memset is implicitly inserted when compiling C code into LLVM
IR (Fig. 9(b)). In this scenario, LLVM IR-based optimizations can
model and optimize the memset function call (if we enable optimiza-
tion levels like O2). However, once the LLVM IR is compiled into
wasm code (Fig. 9(c)), the library function is supplied with a wasm
implementation, whose derived code is not distinguishable from
user-coded functions. The wasm implementation of memset is not
recognized as the standard “memset” utility by wasm-opt. There-
fore, it requires cumbersome analyses to summarize the memset
function’s semantics. As a result, wasm-opt failed to optimize the
array allocation (line 2 of Fig. 9(a)) and func is not inlined.
R8: Insufficient peephole optimizations As an indispensable
component inmodern compilers, peephole optimizations (e.g., arith-
metic simplifications) are performed by locally rewriting a small
set of instructions (known as peephole) without analyzing con-
text information [55, 58]. wasm-opt offers a sophisticated peephole
optimization pass with a growing list of optimizable instruction
patterns [35]. Given that said, we find several missed peephole op-
timization patterns in the evaluation. The uncovered patterns can
be added to the peephole optimization list to augment wasm-opt.

We report two examples in Fig. 10. Both examples contain re-
dundant instructions that can be safely removed in the absence of
undefined behaviors. In Fig. 10(a), the wasm code snippet is equiv-
alent to ∗𝑡𝑚𝑝 = ∗𝑡𝑚𝑝 in C code, in which the value loaded from
address $tmp is stored again in the memory region denoted by $tmp.
All four instructions could be removed if the store instruction does
not incur undefined behavior (e.g., out-of-boundary). Similarly, in
Fig. 10(b), line 3 writes 0 to the address stored in 1620, but another
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i32.const 1620
i32.load
i32.const 0
i32.store ;;store 0 in *1620
...
local.tee $tmp
i64.const 0
i64.store
i32.const 1620
i32.load
local.get $tmp
i64.load
i64.store32 ;;overrides line 4

local.tee $tmp
;; copy value to tmp
local.get $tmp
;; push the value of tmp
i32.load 
;; read value from *tmp
i32.store 
;; write value to *tmp

;; *tmp = *tmp

1.

2.

3.

4.

1.
2.
3.
4.

5.
6.
7.
8.
9.
10.
11.
12.

(a) Pattern 1. (b) Pattern 2.

Figure 10: Examples of peephole optimization patterns (R8).

i32.const 1728 ;; addr of g_359
i32.const 230 ;; 0xE6 (-26) 
i32.store8
...

static uint8_t g_359;
int main () {
for (g_359 = -26; 0;){
int i = 0, j = 0;
for (; i < 6; i++){
for (; j < 1; j++)
...

}
}

1.
2.
3.
4.
5.
6.
7.
8.
9.

1.
2.
3.
4.

(a) C source code.

(b) wasm-opt-optimized wasm code. 

...
(data $.data (i32.const 1728) 
"\E6")

1.
2.
3.

(c) Expected optimized wasm code. 

Figure 11: Examples of optimizable initialization (R9).

write later overrides the result at line 10. When both store op-
erations are valid, the first store operation could be eliminated
without affecting the final result.
R9: Redundant initialization The last root cause is less signif-
icant at first glance but once fixed, it may effectively reduce the
binary size and promote follow-up optimizations by creating more
optimization opportunities. Fig. 11 depicts a code example, where
the global variable g_359 is initialized to −26 at line 3 in the C code.
The assignment statement is compiled into wasm code listed in
Fig. 11(b), which stores 0xE6 (−26) in the memory block at offset
1728 (address of g_359). The store operation is already in its most
succinct form. However, users may expect an alternative, more
compact representation: as illustrated in Fig. 11(c), the initialization
could be directly moved to the data section in the linear memory.

Once global variable initializations are moved to the data section,
wasm binary size can be reduced by removing redundant assign-
ment statements. More importantly, it reduces the number of store
instructions that are generally hard to analyze. As discussed in R1
and R2, predicting the target addresses of store and load instruc-
tions is generally challenging and frequently hinders wasm-opt.
Eliminating such instructions would presumably increase the like-
lihood of applying subsequent optimizations.

7.2 RQ2: Improvement Estimation
To answer RQ2, we aim to evaluate the potential performance im-
provement gained by fixing MO presented above. However, Csmith-
generated programs contain only random computations and control
flows, which cannot represent real-world scenarios. Thus, we em-
ploy the CHSTone benchmark [39] as per the previous study [87].
Since we are focusing on optimized code, we discard floating-point
computations and cryptographic algorithms in the CHStone bench-
mark, as these programs do not demonstrate a noticeable perfor-
mance improvement after optimizations. In short, we select all four
image/video/audio editing/recognition algorithms and one platform
simulation program (MIPS) as our benchmark.

Table 2: Statistics of five real-world programs.
Name LOC Description
MIPS 304 Simplified MIPS processor
ADPCM 680 Speech signal processing algorithm
GSM 520 Speech signal processing algorithm
JPEG 2,638 JPEG image decompression
MOTION 709 Motion vector decoding for MPEG-2

Note that we use the modified version of CHStone benchmark
provided by a relevant study [87]. The five real-world programs
have been edited to be compatible with emcc. Also, since Ditwo
employs GW, an oracle over global variables, we modify each bench-
mark program to relocate all local variables as global variables. We
clarify that, as in Fig. 2, global and local variables are both in lin-
ear memory and are accessed in an identical way. Thus, it may be
accurate to assume that relocation (from local to global) does not
primarily impact the optimization strategies of wasm-opt and its
underlying MO issues. Table 2 lists the statistics of our benchmark.

To clarify, fixing all root causes discussed in RQ1 would require
extensive engineering work toward emcc and wasm-opt, which is
technically infeasible on our end. Therefore, we are not able to
evaluate the ideal (upper bound) performance improvement that
could be achieved by fixing all the MO. To evaluate the performance
improvement at our best effort, we explore estimating a practical
lower bound of performance gains after fixing eight out of the nine
root causes. The potential improvement of fixing R4 (optimizable
loops) is not estimated as it is difficult to reckon the cost of a
redundant loop. We detail our estimation methods below.
Lower Bound. Since patching wasm-opt is technically challenging,
we estimate the lower bound of potential performance improvement
by assessing the cost of redundant global variable writes (GW) and
function calls (FC). Note that this is deemed as a practical “lower
bound”, given that we omit consequently enabled optimization
opportunities when GW/FC are fixed.

It is worth noting that wasm, as a VM specification, does not
restrict runtime implementation. The same instruction may incur
different costs in different runtimes. Thus, we cannot accurately
time the execution of an instruction. Moreover, removing redundant
instructions is also difficult. Thus, program execution time before
and after fixing is unmeasurable. Instead, we use the number of
executed wasm instructions as the program performance indicator.
Lower Bound—GW. To estimate the cost of a redundant GW, we
implement a wasm-based backward taint analysis to identify in-
structions related to redundant store instructions. We deem those
tainted instructions as optimizable, after the MO are fixed. Experi-
ments on our benchmark indicate that one redundant GW involves
an average of 5.35 optimizable instructions. Thus, we estimate the
improvement lower bound as the proportion of redundant instruc-
tions, i.e., 𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 (𝐺𝑊 ) = 5.35 ∗ #opt. GW

#wasm inst . As shown in the
3rd row of Table 3, the average lower bound (GW) is 13.10%.

One outlier is MOTION, which has only a 0.33% improvement
according to our estimation. We discovered that it has limited opti-
mization space w.r.t. GW and FC. Table 4 reports the statistics of
MOTION x86 executables. As implied, there is no discernible differ-
ence between O0 and O3 binaries in terms of GW, FC, and binary size.
Thus, we interpret that this exception as reasonable, and it should
not undermine our estimation results in normal circumstances.
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Table 3: Performance improvement estimation.
Metrics∗ MIPS ADPCM GSM JPEG MOTION Average

#wasm inst 82,794 408,453 97,680 8,539,943 82,552 1,842,284
#opt. GW 2,113 22,359 3,919 197,065 51 45,101

Lower Bound
(GW) 13.65% 29.29% 21.46% 12.35% 0.33% 13.10%

#opt. FC 0 1,349 475 20,778 3 4,521
Lower Bound

(FC) 0% 5.45% 8.02% 4.01% 0.06% 4.05%

Lower Bound
(overall) 13.65% 34.74% 29.48% 16.36% 0.39% 17.15%

∗ “#wasm inst” denotes #executed instructions when executing 𝐸𝑜𝑤 . “#opt. GW”
denotes #redundant GWs, “#opt. FC” denotes #inlinable FCs.

Table 4: Statistics of MITION under different compile options.
Metrics Clang -O0 Clang -O3 GCC -O0 GCC -O3

Binary Size
(#assembly inst) 1,301 1,287 1,652 2,054

#FC 32 13 32 11
#GW 8,494 8,441 8,494 8,437

Lower Bound—FC. We dissect the extra cost of a function call into
three parts, including passing arguments and return values, stack
frame allocation and deconstruction, and storing temporary vari-
ables in stack.We use taint analysis to scope these three components
to estimate the average function call cost. Our result shows that
inlining a function call could save on average 16.5 instructions. We
thus estimate the improvement lower bound of inlining function
calls as 𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 (𝐹𝐶) = 16.5 ∗ #opt. FC

#wasm inst .
The overall (FC+GW) lower bounds are reported in the 6th row

in Table 3. On average, fixing all MO discovered in this study
would bring approximately a minimum performance improvement
of 17.15%. Again, our estimation is conservative, as we do not take
the consequent optimization opportunities, after removing redun-
dant GW and performing function inlining, into account. In sum,
by exploring and detecting MO to improve wasm-opt with a large
margin, the importance of our findings is reasonably justified.

7.3 RQ3: Lessons and Future Improvements
We find that unanticipated code generation patterns applied by SW
compilers are one leading cause of MO. Specifically, SW compilers
store global variables in the linear memory instead of explicitly
declaring them as global variables in wasm. To understand this
mismatch, wasm is designed to be safe, fast, and portable. Espe-
cially, wasm is a hardware- and platform-independent language
with deterministic and easy-to-reason semantics [38]. In contrast,
C/C++, despite its efficiency, is notorious for security flaws. Indeed,
some flexible C/C++ concepts, such as pointers, are not incorpo-
rated in the design of wasm. Thus, SW compilers must employ a
workaround to compile C code with pointers to wasm code.

In practice, wasm binary code compiled by emcc stores all global
variables in the linear memory and assigns memory addresses to
pointers. Local variables are similarly stored in stack frames allo-
cated in linear memory. Such a workaround not only re-introduces
security flaws (e.g., buffer overflow) to wasm [49], but also pre-
vents the de facto WW optimizer, wasm-opt, from reaching its full
potential. Below, we discuss four lessons harvested from our study.
Minimize the Usage of Stack. As reflected in R3, SW compilers
are encouraged to allocate local variables into the local region
of the wasm runtime (the yellow region in Fig. 2). Local variables

should be put in the stack of linear memory only when necessary.
To do so, SW compilers should recognize which variables are never
referred by pointers. Such variables do not need to be in linear
memory to expose their addresses, and can be safely allocated in
the local region. Advanced pointer analysis infrastructures [75]
can be integrated during compilation to deliver the needed analysis.
We deem that pointer analysis simpler in this scenario because the
lifetime of a local variable is constrained in a function.
Avoid Storing Global Variables in Linear Memory. Likewise,
as reflected in R1 and R2, source-level global variables should be
declared in the global region of the wasm runtime (red region
in Fig. 2) whenever possible. However, it is more challenging to
identify global variables that are never referred to by pointers, re-
quiring sophisticated whole-program pointer analysis. Thus, as an
alternative, we advise avoiding using global variables (or not using
pointers to point to global variables) when writing wasm applica-
tions in high-level languages like C/C++. This way, global variables
can be safely stored in the global region for better optimization.
Recover Variables from Memory. As reflected in our study, it
is currently unavoidable for wasm-opt to optimize wasm code that
exploits linear memory to implement pointers. To bridge the gap be-
tween the SW compiler-emitted wasm code and the code expected
by wasm-opt, a possible workaround is to convert SW compiler-
emitted code into an optimization-friendly form. That is, we need to
analyze wasm programs to (partially) recover variables from linear
memory (e.g., by extending relevant x86 techniques [16, 17, 41]).
The identified variables used in a function can be replaced with the
wasm-defined local or global variables.
Employ Debug Information. As discussed in Sec. 7.1, to optimize
redundant GWs caused by pointers, wasm-opt needs to identify
pointers (and their pointed memory locations) in linear memory
to enable follow-up alias analysis. To do so, we advocate for SW
compilers to better attach debug information in their emitted wasm
code. By leveraging debug information, wasm-opt can easily rec-
ognize pointers and variables, thereby greatly easing subsequent
WW optimizations. To date, nearly all SW compilers cannot fully
attach debug information into their outputs. We deem this as an
important improvement to reduce the hurdles of wasm-opt.

8 DISCUSSION
We discuss the validity, extension, and limitation of our technique
and findings in this section from the following aspects.
Generalization of Our Findings. While this study extensively
detects MO and reveals their hidden root causes, a major threat is
that our experiments only cover wasm binary code compiled from
C source code. We believe that our findings are not limited in the
C-to-wasm context. As discussed in Sec. 7.3, the extensive usage of
pointers in C/C++ demands SW compiler to findworkarounds when
emitting wasm code, which leads to many MO. Note that pointers
are not limited to C/C++; hence, we anticipate that “mismatches”
between source languages and wasm commonly exist in different
SW scenarios and result in many MO. As discovered by recent
work [42], over 80% of real-world wasm binaries are compiled from
source languages that support pointers like C/C++, Rust, and Go.
Moreover, a previous study [49] revealed that the wasm binary
compiled from Rust shares a similar linear memory subdivision
as the wasm binary compiled from C/C++. We also tentatively
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explored the wasm binary compiled from Go and found similar
code patterns that exploit the linear memory. Therefore, in addition
to C/C++, we expect other high-level languages with native x86
executables as compilation targets could encounter similar MO
problemswhen compiled towasm.We thus believe that our findings
are general and instructive for developing other SW compilers.

To clarify, our findings are not specific to Csmith-generated pro-
grams. As reflected in Sec 7.2, we found similar MO issues in five
real-world programs. Furthermore, our conclusion regarding redun-
dant GW is applicable to local variable writes: for WW optimizers,
there is nomajor difference between local and global variable writes,
as both of them are in the linear memory region and accessed in an
identical way; thus, we suppose they differ less at the wasm level
than that of source level. In sum, while the findings (MO patterns
and analyses) are obtained over Csmith programs, our findings and
conclusions should be realistic and applicable to real-world wasm
code.
Other Languages. The current implementation of Ditwo focuses
primarily on emcc, one of the most concerned C-to-wasm compilers
in the community. We tentatively explored extending Ditwo to
compilers that accept other high-level languages as inputs. However,
we noticed that other SW compilers do not showmature support for
debug information. For example, Wasm-Bindgen, a Rust-to-wasm
compiler, tends to produce incorrect debug information when opti-
mizations are enabled. Therefore, considerably more false positives
and negatives will be incurred when using wasm binary code gen-
erated by Wasm-Bindgen. Besides, no random program generators
comparable to Csmith exist for other high-level languages. Col-
lecting test cases for languages like Rust will require significantly
more manual effort. Nevertheless, the differential testing pipeline is
mostly platform- and language-independent. Thus, we envision pos-
sible migration of Ditwo to test SW compilers for other languages,
when their debug information support is improved.
Other Performance Indicators. The Ditwo prototype logs two
performance indicators, global variable writes and function calls,
for comparison. While these two indicators are effective at uncov-
ering MO, false negatives are inevitable. Other indicators could be
incorporated to suppress false negatives. For instance, arithmetic
operations, which reflect a program’s computational complexity,
may be used to quantify how well a program is optimized. However,
due to distinct syntactical forms of x86 and wasm instruction sets,
comparing arithmetic consistency necessitates a more elaborate
design. We leave exploring other indicators as future work.

9 RELATEDWORK
Analysis and Testing of wasm Applications. Wasabi offers the
first general-purpose wasm analysis framework for dynamic wasm
binary code analysis [50]. Recent works have also explored static
analyses like program slicing [74] and taint analysis [29, 77] of
wasm binary code. SnowWhite [51] introduced the first learning-
basedmethod for recovering high-level parameters and return types
of wasm functions. WASim [68] predicts the purpose of a wasm
module using machine learning. Given the high demand of fast
wasm applications, existing studies have also focused on bench-
marking or optimizing the speed of wasm applications [44, 86].

From the security perspective, wasm instruction features a set
of design principles (e.g., sandboxes), with the primary goal of

protecting host machine from malicious wasm code. However, the
wasm code itself is not protected. Recent works have shown that
wasm applications suffer from memory exploitations like buffer
overflow [49]. A recent empirical study [42] of 8,461 wasm binaries
sheds light on the security properties, source languages, and use
cases of real-world wasm applications. We also notice several recent
works launching fuzz testing and security hardening of wasm appli-
cations [30, 46, 57, 59, 71]. Swivel [60] introduced a new compiler
framework to protect wasm from Spectre attacks. WAFL proposes
a lightweight, VM snapshot-based approach to fuzz wasm binary
code [40]. Fuzzm [52] inserts stack canaries and mitigates buffer
overflows with static binary rewriting.
Analysis and Testing of wasm Toolchains. We have noticed
recent works launching empirical studies to characterize wasm
compiler bugs and performance defects [67, 87]. A recent research
characterizes standalone wasm runtimes and advocates for effec-
tive and low-cost runtime wasm optimizations [83]. In addition to
empirical studies, we have also noticed some community efforts
launching fuzz testing toward wasm VMs [19, 85]. Ditwo aims
to expose and explore more stealthy MO that can induce perfor-
mance defects. To the best of our knowledge, this has not been
comprehensively studied by previous works.
Differential Testing for Systems Software. Differential testing
(DT) is used in different software domains, including databases [66,
72], Java Virtual Machines (JVMs) [21, 22], symbolic execution en-
gines [45], disassemblers [63], decompilers [54], and deep learning
systems [37]. Beyond finding functionality bugs, recent work also
explores locating missed optimization opportunities with DT to
improve C compiler infrastructures [18, 80]. CompDiff [53] detects
undefined behavior in C/C++ programs with compiler-driven DT.

10 CONCLUSION
This study systematically investigated the hidden MO of wasm
optimizers with Ditwo, a differential testing framework to cross-
compare wasm executables and their x86 counterparts. Our study
exposes a large number of MO. We analyze root causes of all un-
covered MO, and outline the key takeaways from this study. This
work may serve as a roadmap for researchers and users to improve
wasm program performance with optimizers.
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