TCHECKER: Precise Static Inter-Procedural Analysis for Detecting
Taint-Style Vulnerabilities in PHP Applications

Changhua Luo
Chinese University of Hong Kong
Hong Kong SAR, China
chluo@cse.cuhk.edu.hk

ABSTRACT

PHP applications provide various interfaces for end-users to interact
with on the Web. They thus are prone to taint-style vulnerabilities
such as SQL injection and cross-site scripting. For its high efficiency,
static taint analysis is widely adopted to detect taint-style vulnera-
bilities before application deployment. Unfortunately, due to the
high complexity of the PHP language, implementing a precise static
taint analysis is difficult. The existing taint analysis solutions suffer
from both high false positives and high false negatives because of
their incomprehensive inter-procedural analysis and a variety of
implementation issues.

In this work, we present TCHECKER, a context-sensitive inter-
procedural static taint analysis tool to detect taint-style vulnerabili-
ties in PHP applications. We identify that supporting objects and
type systems is critical for statically analyzing programs written in
the dynamic language PHP. We first carefully model the PHP objects
and the related object-oriented programming features in TCHECKER.
It then iteratively performs an inter-procedural data-flow analysis
on PHP objects to refine object types, thus could precisely identify
the call targets. We also take a considerable amount of effort in sup-
porting other dynamic features of PHP such as dynamic includes.

We comprehensively evaluated TCHECKER on a diverse set of
modern PHP applications and demonstrated its high effectiveness
in vulnerability detection. Specifically, TCHECKER successfully de-
tected 18 previously unknown vulnerabilities in these PHP applica-
tions. We compared TCHECKER with the related static analysis tools
and found that it significantly outperformed them by detecting more
vulnerabilities. TCHECKER could also find all the vulnerabilities the
existing tools detect with a relatively good precision. We release
the source code of our prototype implementation to facilitate future
research.

CCS CONCEPTS

« Security and privacy — Web application security.

KEYWORDS

PHP; Taint Analysis; Inter-Procedural Analysis; Taint-Style Vulner-
abilities

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS 22, November 7-11, 2022, Los Angeles, CA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9450-5/22/11...$15.00
https://doi.org/10.1145/3548606.3559391

Penghui Li
Chinese University of Hong Kong
Hong Kong SAR, China
phli@cse.cuhk.edu.hk

Wei Meng
Chinese University of Hong Kong

Hong Kong SAR, China
wei@cse.cuhk.edu.hk

ACM Reference Format:

Changhua Luo, Penghui Li, and Wei Meng. 2022. TCHECKER: Precise Static
Inter-Procedural Analysis for Detecting Taint-Style Vulnerabilities in PHP
Applications. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security (CCS °22), November 7-11, 2022, Los Angeles,
CA, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3548606.3559391

1 INTRODUCTION

PHP is the most popular server-side language. According to a recent
study [48], it is used by around 78% of websites today. PHP appli-
cations are commonly deployed on web servers and they directly
react towards user interactions and requests, e.g., user clicks. Such
an interaction mode opens a huge surface for various attacks where
attackers can exploit the vulnerabilities in the applications. In par-
ticular, PHP applications are prone to taint-style vulnerabilities—a
class of vulnerabilities that occur when the user-supplied data is
used in critical operations without sufficient sanitization.

Taint-style vulnerabilities are fatal. An attacker might exploit a
taint-style vulnerability to extract sensitive data, escape her privi-
lege, or compromise a web server, etc. [2-4, 10]. In the real world,
reports have shown that 64% of companies experienced web-based
attacks [45]; an attack against commercial banks could even cost
over 100K USD per hour to each bank [25].

Due to the high severity and prevalence of taint-style vulnera-
bilities, it is important to apply defensive techniques to mitigate
such threats and protect the relevant parties. Many approaches
have been proposed to detect taint-style vulnerabilities in the wild
(16,18, 21, 22, 26, 28, 29, 34]. They can generally be classified into dy-
namic approaches and static approaches. The dynamic approaches
inject attack payloads and check the corresponding outputs in
deployed web applications [16, 22, 29]. However, because of the
dynamic features and navigational complexities in modern web
applications [18], dynamic approaches usually have a limited code
coverage. Consequently, they cannot reveal the vulnerabilities in
application code that they fail to reach and suffer from high false
negatives. Besides, dynamic approaches usually require manually
configuring the applications, thus having low scalability and can-
not be easily applied to a large number of applications. Static taint
analysis, on the other hand, is fully automated and scalable, and it
can achieve a high code coverage. As a result, static analysis has
been widely adopted and has shown great promise in detecting
taint-style vulnerabilities [21, 26, 28, 36, 46].

We systematically study the existing static taint analysis solu-
tions for PHP applications, and find they also suffer from high
false positives and high false negatives. We identify three inherent
limitations in existing solutions. First, the taint analysis in prior
works is not context-sensitive. Many taint-style vulnerabilities in

https://doi.org/10.1145/3548606.3559391
https://doi.org/10.1145/3548606.3559391
https://doi.org/10.1145/3548606.3559391

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

modern PHP applications are context-dependent. They are only
manifested when the corresponding functions or methods are called
in specific contexts. However, existing works fail to implement a
comprehensive context-sensitive analysis because they cannot pre-
cisely infer the target functions of method calls. Specifically, finding
target functions of method calls requires identifying the class of
the receiver objects (e.g., $obj in $obj->£Q)) in the call sites. This
is challenging because PHP is a dynamically-typed language and
the receiver objects are usually defined without specifying any
type annotations. As a result, the type of an object in PHP can
hardly be determined before runtime execution. The commonly
used approach to finding target functions is to match the called
function/method names (£0 in $obj->£()) with the function defi-
nitions. However, this approach leads to either over-tainting (by
overly matching call targets) [1, 26, 28, 46] or under-tainting (by
conservatively matching no targets) [21, 36].

Second, because of the difficulties in statically analyzing PHP
code, the existing tools simplify taint analysis with some assump-
tions that might not (always) hold. For instance, the state-of-the-art
commercial tool RIPS-A [28] assumes a call site in PHP applications
always invokes the same target function. However, the call sites in
PHP applications can invoke different functions in different call-
ing contexts. Other open-source taint analysis tools make strong
assumptions that the return values of call sites are tainted if any
of the arguments are tainted [1]. Such simplifications could lead to
an imprecise taint analysis and introduce false positives and false
negatives in vulnerability detection.

Third, the existing tools do not support commonly used advanced
PHP features. PHP supports a few complex features, including
dynamic constants (e.g., constant ($con), variable variables (e.g., $$a),
etc. Although those important features have been well discussed in
prior works [26], we find that no open-source taint analysis tool
has modeled these advanced features. Failure in modeling these
features could lead to the early termination of a data flow analysis
and thus cause false negatives.

In this work, we aim to address the above-mentioned limitations
of the existing works and develop a precise static inter-procedural
taint analysis. However, the high complexity of PHP language
brings several technical challenges. First, it is challenging to pre-
cisely determine the call targets of method calls in PHP applications.
Specifically, analyzing call targets requires an inter-procedural data
flow analysis on the receiver objects to infer their types. However,
performing the inter-procedural data flow analysis in turn requires
a comprehensive call relationship analysis. Second, implementing
a taint tracking algorithm to overcome the limitations of existing
taint tracking implementation requires non-trivial engineering ef-
forts. In particular, the taints could be propagated from a call site to
different target functions in different calling contexts. We should
not only implement an inter-procedural taint analysis but also con-
sider the calling contexts when propagating taints into different
target functions. As a function or a method can be called in various
contexts at runtime, to statically support multiple calling contexts
in a scalable way is very challenging. Third, we need to design a
taint analysis tool that is able to model the complex features of
PHP applications. Otherwise, even that we could develop a good
call relationship analysis and a good inter-procedural taint analysis,
the tool might still not be able to propagate the taints correctly

Changhua Luo, Penghui Li, and Wei Meng

because of the inability to model the semantics of a few complex
PHP features or operations.

We present TCHECKER, a context-sensitive inter-procedural static
taint analysis tool for PHP applications. TCHECKER overcomes the
above-mentioned challenges with several new techniques. Specifi-
cally, it iteratively performs an inter-procedural data-flow analysis
on PHP objects to infer their types or values. This helps it precisely
identify the call targets of the method calls to incrementally build a
precise call graph, which further benefits the inter-procedural data
flow analysis. Furthermore, since a call site might invoke different
callee functions in different contexts, TCHECKER analyzes the call
sites in a context-sensitive manner. Instead of always regarding
all the possible target functions as the target functions of a call
site, it determines the target function based on the calling context
and propagates the taints to the correct target function. We also
spend a considerable amount of effort on modeling the complex
and common PHP features in TCHECKER and addressing several
implementation challenges in taint analysis of PHP applications.
Specifically, TCHECKER tracks taints in object properties, analyzes
a few commonly used dynamic features such as dynamic includes,
and encodes the semantics of PHP built-in functions, etc. This would
enable TCHECKER to comprehensively track the taint propagation
in complex PHP applications.

We implemented a prototype of TCHECKER using 7.3K lines of
Java code. We thoroughly evaluated TCHECKER on a dataset of 17
representative PHP applications. TCHECKER detected 131 true posi-
tive taint-style vulnerabilities in the dataset, including 18 previously
unknown vulnerabilities. Our comparison to the state-of-the-art
tools further shows that TCHECKER significantly outperforms them
by detecting 50 more vulnerabilities. TCHECKER could also find
all the vulnerabilities the existing tools detected with a relatively
good precision. We characterized the 18 new vulnerabilities and
found that they could be potentially exploited for severe security
consequences. For example, a new XSS vulnerability in osCom-
merce2 (v2.3.4.1) could allow unprivileged attackers to compromise
the victim user accounts. We have responsibly reported the new
vulnerabilities to the relevant vendors. At the time of writing, 5 vul-
nerabilities, including 2 CVEs, have been acknowledged or patched.

In summary, this paper makes the following contributions:

o We designed and implemented TCHECKER, a precise context-
sensitive inter-procedural static taint analysis framework
with object-oriented programming support for PHP applica-
tions.

o TCHECKER significantly outperformed the state-of-the-art
tools and detected 18 previously unknown vulnerabilities.

e We release the source code of TCHECKER at https://github.
com/cuhk-seclab/TChecker to facilitate future research.

2 BACKGROUND AND MOTIVATION

In this work, we focus on PHP—the most popular server-side pro-
gramming language, used by 78.4% of websites [48]. We introduce
first the PHP features (§2.1) and PHP program analysis (§2.2), then
taint-style vulnerabilities, and existing detection methods and their
limitations (§2.3).

https://github.com/cuhk-seclab/TChecker
https://github.com/cuhk-seclab/TChecker

TCHECKER: Precise Static Inter-Procedural Analysis for Detecting Taint-Style Vulnerabilities in PHP Applications

2.1 PHP Features

As a language especially on the web, PHP is designed with complex
and dynamic features [26, 33]. In this section, we introduce several
important PHP features for program analysis.

Method Calls. PHP applications usually declare lots of methods.
The methods are invoked through an instantiated receiver object,
i.e, $o->£(), or a static keyword, e.g., parent->£(). A method call site
can invoke different methods depending on the types of receivers
at runtime.

Variable Functions. The name of the callee function at a call
site in PHP applications can be built dynamically. Specifically, PHP
evaluates a variable and then executes the function with the name
the variable evaluates to. For instance, $£ = "g"; $£() would invoke
a function named as g. Callbacks are common instances of variable
functions. In the following sections, we call the variables used in
variable functions as function name variables.

Dynamic Includes. File inclusion statements in PHP open a spec-
ified file and evaluate its PHP code. The file names can also be built
dynamically, e.g., require $a.

Object Properties. Object properties (e.g., Sobj->prop) are com-
monly used in PHP applications. Similar to global variables, object
properties can be defined and then used in different function scopes.
The types of receivers in object properties (i.e., $obj in $obj->prop)
are known mostly at runtime.

2.2 PHP Program Analysis

In this subsection, we introduce the challenges in static PHP pro-
gram analysis.

Call Relationship Analysis. As pointed out by prior works, vari-
ables (especially, tainted variables) are often defined and used in dif-
ferent functions [21, 51]. Performing inter-procedural program anal-
ysis is thus important for tracking the data flow of these variables.
Analyzing call relationships is the prerequisite of inter-procedural
program analysis. Finding the target functions is straightforward if
no variable is used in the call sites (e.g., a0)), because the target func-
tions can be directly inferred based on the called function names.
However, inferring the target functions of method calls (e.g., $obj
->£()) and variable functions (e.g., $£0) is very hard, because the
types of the receiver objects (e.g., $obj) or the values of the function
name variables (e.g., $f) are determined by PHP at runtime.

The following features make it even more challenging to pre-
cisely reason about the call relationships in PHP programs. First,
PHP is a weakly-typed language and the variables are usually de-
clared without specifying any type annotations. As a result, one has
to perform data flow analysis on a receiver object to find the class
that it is instantiated into. Second, PHP is dynamically-typed; the
type of the receiver object is checked and determined at runtime
and can change in different calling contexts. Therefore, instead of
assuming that the target functions of call sites are deterministic,
analyzing call relationships requires a context-sensitive data flow
analysis on the receiver objects in call sites. Third, PHP offers the
spl_autoload_register function that is used to automatically load
external classes and interfaces. The developers could invoke the

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

methods in external classes without explicitly including the corre-
sponding PHP files. This increases the difficulties in type inference
as the objects might be in any type declared in the applications.

Data Flow Analysis. Data flow analysis allows us to obtain the
possible set of values of the variables that we are interested in. While
it is the basic technique and is well studied in other languages, data
flow analysis on PHP programs brings new challenges. First, we
need to perform call relationship analysis to track the data flow
across function boundaries. However, performing call relationship
analysis on PHP programs requires a data flow analysis on the
receiver objects in call sites. The analysis thus becomes a cycle
and making it very difficult to perform data flow analysis precisely
because of the difficulty in doing the call relationship analysis.
Besides, PHP supports a few unique features, including dynamic
constants (e.g., constant ($con)), variable variables (e.g., $$var), etc.
Failure in modeling such features would lead to early termination
of the data flow analysis. Yet statically analyzing the above features
is an open challenge because of the dynamic nature of PHP code
[26].

2.3 Taint-Style Vulnerabilities and Taint
Analysis

2.3.1 Taint-Style Vulnerabilities. Web applications often provide
many features for end-users and act correspondingly on user in-
puts and interactions, e.g., form submissions or clicks. A security
vulnerability occurs when the user-supplied data (i.e., taint) is not
sufficiently sanitized and is used in critical operations (i.e., sinks) of
the application. Such vulnerabilities are known as taint-style vul-
nerabilities [26]. Taint-style vulnerabilities have been a persistent
security threat to web applications. Common types of vulnerabili-
ties, such as cross-site-scripting (XSS), SQL injection (SQLA), etc., are
instances of taint-style vulnerabilities. An attacker might exploit
such a flaw by providing malicious inputs to change the expected
behavior of the application, e.g., injecting malicious code.

2.3.2 Taint Analysis. Taint analysis is the de facto approach to find-
ing taint-style vulnerabilities in practice. It tracks the propagation of
taints originated from external sources (e.g., untrusted user-supplied
data) along the program execution, checks if the tainted data could
flow to the critical program locations (sinks), and finally reports
the sinks that can potentially be manipulated by attackers.

Generally, there are both dynamic and static taint analysis ap-
proaches. Dynamic methods [22, 29] often inject special payloads
and check their reappearance in a black-box manner on deployed
web applications. However, due to the complexity of modern web
applications [18], such methods can only reach and test a small
proportion of an application. The rest of the application is left
unchecked and the vulnerabilities in it thus cannot be revealed.
Besides, dynamic methods are not scalable because they require
manual efforts to deploy and configure an application.

Static methods analyze the source code to report potential taint-
style vulnerabilities [18, 21, 26, 36, 46]. They can achieve a high
code coverage, and are more efficient and scalable.

2.3.3 Existing Solutions. Many static taint analysis tools have been
proposed to detect taint-style vulnerabilities. Since call graph and
data flow analysis are essential components in static taint analysis,

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

researchers have proposed different designs to handle the chal-
lenges we discussed in §2.2. We summarize the key ideas below.

(Partial) Matching of Function Names. Analyzing call relation-
ships is necessary for tracking the taints propagated across function
boundaries. To address the challenge of determining method call
targets, one common approach is to ignore the receiver objects
in call sites and match the called method names only. There are
different design choices to this end. RIPS [1] compares the called
method names £() with function definitions in the whole PHP pro-
gram and regards the matched ones as the target functions of the
call sites $obj->£(). This approach can find all the target functions
but has many false positives because the methods in other class
scopes might be mistakenly regarded as the call target functions.
PHPJoern instead considers only the function calls with unique
called function names. For example, if there is only one method
definition with method name £(, then the target function of call
site $obj->£() can be determined. However, PHPJoern might suffer
from high false negatives—it maps only 29% of call sites in Joomla
according to our experiment results (see §6.2.1).

Data Flow Analysis. An advanced approach to resolving call rela-
tionships is to leverage data flow analysis. The proprietary version
of RIPS (we call it RIPS-A) is a state-of-the-art tool in doing data
flow analysis for PHP programs. It performs an intra-procedural
data flow analysis on a receiver object to infer its type, then identi-
fies the target function of a method call. It also performs the same
analysis on some function name variables (e.g., $a in $aQ) to find
the target functions in variable function calls. However, because
of the lack of an inter-procedural analysis, RIPS-A cannot infer
the types or values of the variables (e.g., function parameters) that
are assigned in other function scopes. Therefore, it also fails to
support a few common call patterns in PHP applications. Moreover,
RIPS-A is not open-sourced. Researchers have to implement the
static analysis techniques (e.g., the call graph) on their own or upon
open-source tools such as PHPJoern [18].

Function Summary. Performing inter-procedural data flow anal-
ysis requires analyzing the target function of a call site. To avoid
duplicated analysis, a function summary is created to summarize
the data flow within a function [28, 36]. Because a function might
contain call sites, the prior works assume that each call site invokes
the same function(s) in whatever calling contexts and then merge
the function summaries of all the called functions as the effect of
one call site [28]. Finally, each function is analyzed once and the
function summary is used when the function is invoked again. The
use of function summaries greatly improves analysis efficiency, as a
function needs not to be repeatedly analyzed many times. However,
it sacrifices analysis precision for performance, because the use of
function summaries implies that the data flow of each function is
deterministic regardless of the calling contexts.

2.3.4 A Motivating Example. We illustrate the limitations of ex-
isting taint analysis tools with an example. Listing 1 has an XSS
vulnerability. The src property in the IMG tag is defined as a re-
turn value of the base_ur1() function. The user-controlled input
$_POST['image'] is used as an argument of that function call and it
is finally outputted without undergoing sanitization. Therefore, the

Changhua Luo, Penghui Li, and Wei Meng

attackers can craft payloads through the $_POST['image'] parameter
to perform XSS attacks.

To detect such a vulnerability, a taint analysis tool shall ana-
lyze the function calls in lines 2, 5, 13 and propagate taints from
arguments (e.g., Suri) to local variables (e.g., $uri in line 5, 13, and
17) and finally the return value of function base_ur1() in line 2. We
study how the existing open-sourced taint analysis tools handle
such a case. PHPJoern fails to report this vulnerability because it
does not propagate taints from function returns (i.e., the taints in
return statements in lines 13 and 17 are not propagated). RIPS can
detect this vulnerability while it also reports a lot of false positives.
In addition to the problem of over-estimated call graph (by par-
tially matching function names), RIPS performs taint analysis in
a context-insensitive way—it taints the return value of a function
call if any argument is tainted. As a result, RIPS taints the return
value of function base_ur1() even uri has been properly sanitized in
base_url(). We are unable to apply RIPS-A because its source code
is not publicly available. However, detecting such a vulnerability is
challenging because performing intra-procedural analysis is insuffi-
cient to infer the type of the receiver object in line 5. RIPS-A could
mistakenly propagate the taints to the incorrect target functions,
thus it could also suffer from false negatives.

3 PROBLEM STATEMENT

In this section, we first present the research scope and research
goals of this work. We then discuss the research challenges we
encounter.

3.1 Research Scope and Research Goals

In this work, we aim to improve static analysis techniques to assist
detection of taint-style vulnerabilities in PHP applications. We focus
on static approaches because of its wide adoption in both academia
[21, 36, 41, 42, 46] and industry [12, 14]. We have identified several
limitations in the existing static taint analysis tools. In this work,
we aim to address these limitations by developing a comprehensive
inter-procedural static taint analysis tool for detecting taint-style
vulnerabilities in PHP applications.

3.2 Research Challenges

Designing and implementing a static taint analysis tool for PHP
applications has been known to be challenging. First, it is difficult
to handle the call relationship inference and inter-procedural data
flow analysis. Specifically, the interleaving of inter-procedural anal-
ysis and call relationship analysis makes it notoriously difficult
to address both problems. As an example, to identify the target
function of the call site get_instance()->config->base_url() in line
5 in Listing 1, we need to infer the type of the receiver object
get_instance()->config. To this end, we perform data flow analysis
to find the class(es) it can be instantiated into; then infer all the
functions that invoke the function base_ur1() in line 3 because the
object can be instantiated in different calling contexts. However,
the callers of base_ur1() can only be determined after we complete
call relationship analysis, which is not the case because we are still
in the process of finding target functions of the call site in line 5.
Besides, we need to propose a new inter-procedural taint tracking
algorithm. The taint tracking algorithm should be precise—the

TCHECKER: Precise Static Inter-Procedural Analysis for Detecting Taint-Style Vulnerabilities in PHP Applications

1 <?php
2 <img src="<?= base_url('attachments/blog_images/"'
$_POST['image']) ?>">

3 function base_url($uri = '', $protocol = NULL) {

5 return get_instance()->config->base_url($uri,
$protocol);
}

6
7
8 //system/core/Config.php
9 class CI_Config {

0

1

1 .

1 public function base_url($uri = '', $protocol =
NULL) {

12 .

13 return S$base_url.$this->_uri_string($uri);

14 }

15 protected function _uri_string($uri) {

16 -

17 return $uri;

18 }

19 3}

Listing 1: An XSS vulnerability found by TCHECKER.

taints should only be propagated to the target functions that are
invoked in the current calling contexts, and efficient—the algorithm
shall efficiently determine the target function of a call site in a
specified calling context because the call site might be executed
many times.

Third, we need to model a few complex yet commonly-used fea-
tures in PHP programs (e.g., dynamic includes and object properties)
to address the implementation issues of existing tools. Modeling
the dynamic features in PHP is known to be hard, yet it allows us
to understand the semantics of more PHP operations and to find
the vulnerabilities that reside deeply in the applications.

4 TCHECKER

We present TCHECKER, a precise context-sensitive inter-procedural
static taint-analysis tool with object-oriented feature support to
identify taint-style vulnerabilities in PHP applications. We first
introduce the high level design of TCHECKER in §4.1, then its two
major components in §4.2 and §4.3.

4.1 Overview

As discussed earlier, it is important to perform an inter-procedural
taint analysis to detect the vulnerabilities in PHP applications. The
main challenge of doing inter-procedural taint analysis on PHP
programs is to analyze call relationships. To this end, TCHECKER
first builds a call graph, which helps it later perform more accurate
taint propagation across function calls. The benefit of building call
graph before propagating taints is twofold. First, the call graph is
built to contain already all the possible target functions of a call
site in a context-sensitive way. Thus, given a specific calling con-
text, TCHECKER can directly select the correct target function of a
call site from the possible target functions. The selection is a map-
ping process from calling contexts to target functions (see §4.3.2)
and it allows TCHECKER to obtain the target functions efficiently.
Without constructing the call graph in advance, TCHECKER has to
repeatedly infer the call target of a call site each time it is met (even

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

in the same context) in the taint analysis. Second, the call graph
allows TCHECKER to perform selective taint analysis. For instance,
TCHECKER could skip the taint analysis for a call site if all its target
functions do not use any tainted variable. This could avoid unneces-
sary analysis on irrelevant functions and thus improve the overall
analysis efficiency.

The architecture of TCHECKER is depicted in Figure 1. Given the
source code of a PHP application, TCHECKER incrementally con-
structs its call graph by inferring the call targets at each call site; it
then performs a whole-program context-sensitive inter-procedural
taint analysis to identify taint-style vulnerabilities.

4.2 Constructing Call Graph

While call graph is the basic component in many security applica-
tions such as vulnerability detection [26, 28], sandboxing [23], etc.,
finding the target functions of method calls and variable functions
has been an open problem. Analyzing target functions of call sites
in a context-insensitive way could lead to the over-approximation
problem [28]. As discussed in [28], RIPS-A cannot find target func-
tions of call sites whose receiver objects are defined in other func-
tions because it employs only an intra-procedural analysis. RIPS-A
would still suffer from inaccurate call target inference even in some
cases where it could correctly identify the possible call target func-
tions of a call site, because it merges the function summaries of all
the target functions at a call site whereas the call site invokes only
one function in a specific context.

However, it would also be very inefficient if we analyze a call site
each time it is encountered, because the call site might be analyzed
many times in similar contexts. To tackle this problem, we design
a new algorithm that analyzes a call statement only when it is
executed in a new context.

Specifically, TCHECKER takes two stages to incrementally con-
struct a call graph. In the first stage, TCHECKER performs a back-
ward data-flow analysis on the receiver objects and variable func-
tion names to find the function name of each call site (§4.2.1). In
the second stage, it connects one call site to its call targets (§4.2.2).
More importantly, TCHECKER performs the two steps iteratively. By
adding new call target functions (in new contexts) to the call graph,
new data flow relationships can be discovered, allowing TCHECKER
to determine the values of more function name variables or classes
of more receiver objects based on the new data flow relationship
and then to further find corresponding new call targets.

We use the example in Listing 1 to further illustrate the idea. The
base_url() function at line 3 is invoked by multiple call sites in the
application. When TCHECKER connects a new call edge from the call
site in line 2 to the function definition in line 3, it checks if the newly
introduced caller functions (i.e., all the function nodes reaching the
base_url() function node through the newly connected call edge)
contain assignments to get_instance()->config. It there is one such
assignment in function p(), TCHECKER performs a backward data
flow analysis on get_instance()->config starting from function pQ
to infer its type. TCHECKER then updates the target functions of
the call site get_instance()->config->base_url() in line 4.

4.2.1 Identifying Function Names of Call Sites. Finding the call tar-
get of a call site requires identifying the name of its called function.
Besides directly invoking a function using its literal name, call sites

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

Changhua Luo, Penghui Li, and Wei Meng

Constructing call graph

Identifying called
function names

PHP code ||

Taint spec

sources = {...}
sinks = {...}

sanitizers = {...}

Taint analysis

Intra-procedural taint
propagation

Y

L]

Connecting call targets

Call graph

1

Inter-procedural taint
propagation

Y

Figure 1: The overall architecture of TCHECKER.

in PHP include method calls and variable function calls. Therefore,
TCHECKER infers the type of the receiver object of a method call,
and the value of the variable of a variable function call.

Inferring Receiver Object Type. Method calls are invoked with
receiver objects that can be in multiple classes, which might all
define a function with the same name. Therefore, TCHECKER needs
to infer the types of receivers to find the correct called methods. To
this end, it iteratively analyzes the data flow of the receiver, $rec.
$rec might be assigned by a local variable or a variable defined
outside the current function (e.g., a global variable). For simplicity,
we call the variables that are defined/assigned in other function
scopes as external variables. If $rec is assigned by a local variable
$1loc, TCHECKER backward analyzes the data flow of $loc. If $loc is
instantiated from a new statement, i.e., new A(Q), TCHECKER directly
returns A as the type of recv. Otherwise, TCHECKER backward traces
$loc till it finds the type of $loc or $loc is assigned by an external
variable, $ev. TCHECKER then performs inter-procedural data flow
analysis on $ev in the following ways.

(1) If sevis a function parameter with a type declaration, TCHECKER
returns the declared type as the type of sev. If sev is a function pa-
rameter without a type declaration, TCHECKER searches the call
sites of the current function, £(). It then backward traces the cor-
responding argument in each call site to find the possible types of
the function parameter sev. When a new call site of £() is added,
TCHECKER iteratively repeats the above analysis.

(2) If sev is the return value of a function call (e.g., $ev=$obj->func()),
TCHECKER enters the call target functions (could be multiple) to
analyze the data flow. Specifically, it performs the same backward
data flow analysis at each return statement in each call target func-
tion. The function call might also use variables, i.e., $obj->func()
or $func(). If the type or value of the corresponding variable is
unknown, TCHECKER also performs this data flow analysis on it.
(3) If sev is an object property, e.g., sev=$0->p, TCHECKER infers the
type of the parent object so for further determining the type of the
property p. TCHECKER first searches the type c of the object $o based
on two constraints: 1) the class ¢ must contain an object property
with name p; 2) the object property c: :p must be instantiated from a
new statement or be assigned by other variables that are instantiated
from a new statement. If there is only one candidate, the type of $o can
be known directly. Otherwise, TCHECKER continues the backward
data-flow analysis further on $o. Next, it searches all classes that

are instantiated to $o->p to determine the class of p hence that of
Sev.

(4) If sev is a global variable used in the current function f£Q,
TCHECKER backward tracks the data flow to sev in £ and its caller
functions. TCHECKER also enters call targets of sibling function
calls in £ and in its caller functions to ensure it does not miss
any assignment to $ev. Similarly, $ev might be assigned by another
variable. TCHECKER thus identifies the classes instantiated to the
relevant variables to determine the type of sev. The process is also
iterative. When TCHECKER finds a new caller function of £0, it
repeats the analysis in the new caller function.

Analyzing Variable Functions. TCHECKER attempts to statically
infer the value of the variables in a variable function (e.g., $funcQ)
to identify the function name. It models the semantics of relevant
statements and performs also the backward data-flow analysis. Dif-
ferent from receiver object type inference, inferring the variable
values is much more challenging. Many complex PHP language
features, including the numerous string operations, dynamic typing
(e.g., 'test'+1="test1"), and dynamic constants (e.g., constant ($const
)), etc., are involved during the analysis to construct the strings
representing variable function names. To the best of our knowl-
edge, only the proprietary RIPS-A partially supports such complex
features with an intra-procedural data analysis.

Although TCHECKER performs an inter-procedural analysis on
the variable functions, it might not be able to statically infer the
values of a few variables because of the high complexity of modern
PHP applications. It thus ignores the call sites it fails to analyze, fol-
lowing the common practice [28]. This could lead to false negatives
because it might fail to find target functions for a few call sites. In
our evaluation, TCHECKER fails to analyze up to tens of variable
functions among the tens of thousands of call sites. We believe
that such a low failure rate is acceptable especially compared with
other open-source taint analysis tools that do not support variable
functions.

TCHECKER might also infer part of the function name for a few
call sites. For example, the called function names of the call site sy
where $y is previously assigned with 'get'.$x, might not be fully
inferred statically if $x is unknown. However, its data flow points
out that the called function names shall start with 'get'. TCHECKER
thus uses a wildcard to replace the unknown variables, e.g., $x in

TCHECKER: Precise Static Inter-Procedural Analysis for Detecting Taint-Style Vulnerabilities in PHP Applications

('get'.$x) Q. Such partial values could help match with the target
functions in practice.

4.2.2 Connecting Call Targets. TCHECKER then connects one call
site with the corresponding call targets. Specifically, it first matches
the called function name of one call site with all function defi-
nitions. It then filters out the invalid call target candidates that
are introduced when matching called function names containing a
wildcard.

Determining Called Function Names. Because of class inheri-
tance, the called function names may not be literally equal to that
of the target function definition. To this end, TCHECKER parses the
extends keywords and builds an inheritance tree. It then extracts
the class from the called function name. If the class name is a static
keyword (e.g., parent) or $this, TCHECKER replaces it with the corre-
sponding type. Afterward, TCHECKER searches the target function
by matching available function definitions (i.e., namespace\(class_-
name::)function_name) with the called function name i.e., N\C: :p. If
TCHECKER does not find a match in class C, it iteratively replaces
the class name with its parent class name. It stops the analysis until
it finds a matching function definition or the class has no parent
class.

Validating Call Targets. TCHECKER performs function prototype
checks to remove the invalid call target candidates. It determines a
call target candidate as invalid in the following situations: 1) the
static function call invokes non-static functions; 2) the number
of arguments in a call site is less than the number of required
parameters in the candidate; 3) the access modifier of a candidate
method is private and the call site is not in the class scope of that
method; 4) the access modifier of a candidate method is protected
and the call site is not in the scope of a class inheriting the class of
that method. Call relationships that meet the above conditions are
filtered out because they violate PHP coding standards [5].

4.2.3 Simulating File Includes. TCHECKER also analyzes the inclu-
sion statements (e.g., require) because they introduce new code
defined in other PHP files. It handles the inclusion statements as
call sites and the corresponding included files as user-defined func-
tions in the call graph. We face the similar challenges of determining
variable names when analyzing dynamic includes. In the case where
the file name is not a static string, TCHECKER performs a similar
data-flow analysis to reconstruct the file name. Prior works suggest
to use a PHP profiler to track file dependencies of a PHP applica-
tion [18, 20]. In the case where profiling is allowed, TCHECKER is
also able to interpret the profiling outputs!. Dynamic approaches
such as crawling are required when profiling PHP applications. We
tested a few PHP applications with a spider (i.e., a crawler) and
found the spider could help discover additionally less than 1% of
all call edges. Therefore, profiling is only provided as an option to
complement static analysis.

4.24 An Example. We finally illustrate how TCHECKER constructs
a call graph with the example in Listing 1. There are three call sites
in this example. TCHECKER can determine the target function of
call site base_url() in line 2 by simply matching the called function

ITCHECKER currently supports XDebug.

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

name base_url. To get the target function of the call site get_instance
O ->config->base_url(), TCHECKER first determines the type of the
object property get_instance()->config. It finds that cI_config is the
only class that 1) has been instantiated to an object property with
property name config and 2) has a method with name base_ur1().
Please note in such a case we do not need to perform type analysis
for the return value of the get_instance() function call. Therefore,
TCHECKER connects the function in line 11 as the only target func-
tion invoked by the call site in line 5. Finally, to obtain the target
functions of the call site $this->_uri_string() in line 13, TCHECKER
performs an object analysis on the keyword sthis. Instead of simply
identifying cI_config as the class of $this where CI_Config is the
class defining the caller method of the call site $this->_uri_stringQ,
TCHECKER infers the class of $this based on the current object class
to handle polymorphism. For instance, the function base_url() con-
taining call site $this->_uri_string could be invoked by a method
defined in the class sub, where sub is the child class of cI_config. In
such a case, TCHECKER would identify the called function name
to be Sub::_uri_string() and find the overridden target function
accordingly.

4.3 Taint Analysis

TCHECKER performs a static context-sensitive inter-procedural taint
analysis to find the sensitive operations that can potentially be con-
trolled and exploited by attackers. Similar to other works [21, 26, 36],
TCHECKER treats external inputs (e.g., $_GET) as taint sources. It re-
ports a vulnerability if the tainted data could be used in a sensitive
operation, i.e., the sink. In our current implementation, TCHECKER
detects three common types of taint-style vulnerabilities—XSS, SQLi
and Denial-of-Service (DoS) vulnerabilities. It regards database
(e.g., mysql_query()) operations, content generation (e.g., echo()) op-
erations, and variables in loop termination conditions as sinks,
and considers the corresponding sanitizers (e.g., htmlspecialchars(),
mysql_real_escape_string()). TCHECKER is implemented as an multi-
tag taint analysis tool. It can separately propagate and maintain the
taints for different types of vulnerabilities. For instance, it maintains
taint status separately for XSS, thus the XSS sanitizer functions
remove only the corresponding XSS taint tag. One can easily ex-
tend TCHECKER to detect other types of taint-style vulnerabilities
by including new sink functions and sanitization rules.

TCHECKER starts its analysis from the top-level function of each
PHP file. It propagates the taints and reports a vulnerability if any
tainted variables are used in sinks without sanitization. It completes
the analysis after all functions on the call graph have been analyzed.
We describe the details below.

4.3.1 Intra-Procedural Taint Propagation. TCHECKER propagates
taint information from the right hand operands to the left hand
operands for each assignment-like statement. A simple statement
might contain nested assignment-like statements. For instance, in
a function call $a = f(func($b)), there are three assignment-like
statements: the right hand operands are $b, return values of func(),
and return values of £0; the left hand operands are the parameter
of func(), the parameter of £(), and $a, respectively. To this end,
TCHECKER first identifies assignment-like statements based on the

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

predefined symbols (e.g., operator =, function calls, etc.). It recur-
sively parses the nested assignment-like statements until it finally
analyzes the outermost one (i.e,, $a = £0).

To parse an assignment-like statement, TCHECKER first analyzes
the taint status of the assignment operands. If an operand is sani-
tized, TCHECKER cleans its taint tag. Otherwise, TCHECKER consid-
ers an operand tainted in the following situations: 1) the operand is
a source; 2) the operand is literally equal to a tainted variable; 3) the
operand might be a tainted array element (see §5); 4) the operand is
a tainted return value. Since TCHECKER tracks data flow in object
properties, the taints are also maintained for individual properties.
TCHECKER then propagates taints. If the right hand operands are
tainted, TCHECKER taints the left hand operands; otherwise, if the
untainted right hand operands are assigned to a tainted left hand
operand, TCHECKER cleans the taint tag in the left hand operand.

4.3.2 Inter-Procedural Taint Propagation. TCHECKER analyzes call
statements and propagates taints across function boundaries. It
should be noted that a precise inter-procedural taint analysis is very
expensive. First, the taints might be propagated through multiple
function boundaries. Besides, each call statement shall be analyzed
because its call targets might define new sources or use tainted
global variables. To address this issue, TCHECKER skips the analysis
of the call targets that are not likely to be called in current calling
contexts or use no tainted variable.

Selecting Target Functions. TCHECKER first selects the target
functions likely to be called in the current calling context. The call
site might have many call targets in the call graph. However, it in-
vokes one call target in a specific calling context. TCHECKER takes
heuristics to narrow the potential call targets down. We observe
that the ambiguous call targets are mostly methods, because call
sites having multiple call targets are mostly non-static method calls.
To call a method, the application code first invokes the class con-
structor. Also, the methods using object properties (i.e., $this->prop)
usually have data dependency relationships with other methods in
the same class scope. Therefore, TCHECKER prioritizes a call target
£0 if other functions (including the constructors) in the same file of
£(have ever been called. If there is no such a function, TCHECKER
selects call targets in the sub-folders until it finds at least one. Fi-
nally, TCHECKER obtains a subset of call targets from call graph.
This approach avoids over-tainting and improves analysis efficiency.
However, it could lead to under-tainting because TCHECKER may
miss a true call target. Nevertheless, the results in §6 show its effec-
tiveness: TCHECKER could find all the vulnerabilities that existing
tools detect.

Preprocessing Target Functions. TCHECKER preprocesses a call
target, e.g., £, to find whether it uses any tainted variables. If
not, the taint analysis for such callee functions could be skipped.
Specifically, TCHECKER finds all the assignment-like statements
using external variables into the set asg_global. It then collects the
functions of these statements into the set func_global. It also collects
all the functions that include assignment-like statements using
source into the set func_source. This search process takes a one-time
cost when TCHECKER parses PHP code into ASTs. Afterward, given
a call target £(), TCHECKER searches £() and its callee functions
in func_global and func_source. TCHECKER skips the analysis for
function £() directly if it finds no match and no argument of £0

Changhua Luo, Penghui Li, and Wei Meng

is tainted. The idea of selective taint analysis has been discussed
and shown to be able to improve the analysis efficiency in other
languages such as C [24].

Analyzing Target Functions. TCHECKER finally enters the tar-
get functions of a call statement. Before that, it identifies if a tar-
get function is recursively called, e.g., a function £() calls itself.
TCHECKER skips the analysis for recursive function calls, follow-
ing the common practices [26, 28]. TCHECKER simulates context
switches during function invocation and initializes the tainted local
variables to be any tainted function parameters. It then performs
the standard intra-procedural taint analysis in the target function.
A call site might have multiple call targets. If any of the target
functions at a call site returns a tainted value, the left hand operand
in the corresponding assignment statement in the caller is tainted.

5 IMPLEMENTATION

We implemented a prototype of TCHECKER upon PHPJoern [21],
with 7.3K lines of Java code. We use php-ast [8] to parse PHP
source code into ASTs, and use PHPJoern to build the Control Flow
Graphs (CFGs) and Data Dependency Graphs (DDGs) for the intra-
procedural data flow analysis. The original DDG cannot distinguish
different object properties (e.g., $obj->p1 and $obj->p2). To address
this problem, TCHECKER additionally uses the property name (e.g.,
pl and p2) to identify an object property.

Built-in Functions. TCHECKER models the following built-in
functions. First, it models string functions (e.g., substr()) to resolve
the variable function names and file names. Second, it identifies
callbacks in built-in functions (e.g., array_walk()) and resolves the
callbacks. TCHECKER also analyzes the effects of built-in functions
on taint propagation. For instance, the return value of substr() is
tainted if its first argument is tainted.

Conditional Statements and Loops. TCHECKER merges the
taints from all branches of a conditional statement following the
common practices [26, 28]. This would introduce over-tainting. One
solution to tackle this problem is modeling the constraints of a con-
ditional statement [18]. Since constraint solving is orthogonal to
our design, we leave it as a further work. TCHECKER treats loop
statements as conditional statements and unrolls them only once.

Arrays. Arrays in PHP are hash tables that map keys to values.
The array keys and values can both be variables, e.g., $arr[$key] =
$val. The array structure can also be dynamically changed using
the built-in functions such as array_push(). Modeling the dynamic
array structure and dynamic array access is known to be hard
[26]. The common practice is to only model the array elements
with concrete key values [35, 36]. We adopt this approach in our
implementation. Additionally, we taint array elements in two cases.
First, we taint an array element (e.g., Sarr['a'][$var]) if it is an item
of another tainted array element (e.g., $arr['a']). Second, since an
array element indexed by a variable key might be any array element,
we taint an array element (e.g., $arr[s$i]) if it could be another
tainted array element (e.g., $arr['a']). The reason we taint $a[$i]
without actually analyzing the value of $i is that we observe the
array elements are usually iteratively accessed in a loop structure.
The index $i can be any key value in many cases.

TCHECKER: Precise Static Inter-Procedural Analysis for Detecting Taint-Style Vulnerabilities in PHP Applications

6 EVALUATION

In this section, we evaluate the effectiveness of TCHECKER in detect-
ing taint-style vulnerabilities. We apply TCHECKER to a diverse set
of PHP applications and also compare it to existing taint analysis
tools. The rest of this section introduces the dataset and setup (§6.1),
then presents the detection results (§6.2) and detection performance
(§6.3), and last shows several case studies (§6.4).

6.1 Dataset and Setup

We select 17 PHP applications with over 1M total LLoC as our
evaluation dataset. They are listed in the first column of Table 1.
Our evaluation dataset consists of two categories of applications.
First, it includes popular and well-known real-world PHP applica-
tions such as WordPress, MediaWiki, and Joomla. Using the same
standard in [36], we choose 9 PHP applications that either have
over 0.1% market share [13] or have over 2K stars on GitHub, and
they are tagged with superscript & in Table 1. Second, it includes
relatively less popular applications. We thoroughly include 8 such
applications that were evaluated by prior works [18, 26, 28].

We compare TCHECKER with the latest open-source versions of
PHPJoern[21] and RIPS [1], which are two advanced static analysis
tools on vulnerability detection in PHP applications. We are unable
to compare with other taint analysis tools because either they are
not open-sourced [28, 46] or the code is incomplete [6]. For a fair
comparison, we apply the same definitions of sources, sinks, and
sanitization rules to TCHECKER, RIPS and PHPJoern.

6.2 Detection Results

We apply TCHECKER to detect SQLi, XSS, and DoS vulnerabilities in
the dataset and present the results in Table 1. We use the superscript
T to denote the results of TCHECKER. In total, TCHECKER reported
284 vulnerabilities (including false positives).

To understand the true positives and false positives, we conduct
a systematic validation for each reported vulnerability. Though
Navex has demonstrated the feasibility of automated vulnerability
validation using symbolic execution [18], unfortunately, we cannot
apply it in this work because of its incomplete released code. We
thus validate the vulnerabilities manually. Specifically, we have de-
signed TCHECKER to dump the complete call stack for each reported
vulnerability. We first apply code review to filter out obvious false
positives, i.e., the vulnerabilities that are reported due to explicit
flaws in detection tools. For instance, we could quickly identify the
vulnerabilities found in the test files as false positives. Afterward,
we attempt to construct exploits for the reported vulnerabilities. For
vulnerabilities in old versions of applications, their proof-of-concept
(PoC) exploits are usually publicly available. Therefore, we simply
search online for the sink locations of reported vulnerabilities, and
then exploit the applications with the existing PoC exploits. If we
could not find a PoC directly, we manually analyze the call stack
and related data flows to construct exploits ourselves. We leverage
the similar characteristics shared by several vulnerabilities to ease
the effort to develop exploits for the vulnerabilities. For instance,
we could usually use the same payload to perform XSS attacks
on multiple web pages of an application. Finally, we attribute a
reported vulnerability to a false positive if it cannot be exploited or
is considered as a legitimate feature of an application. The manual

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

code review and exploitation experiment were conducted by one
of the authors with about 50 hours.

We use TP and FP in Table 1 to represent the numbers of true
positives and false positives. Overall, TCHECKER detected 131 true
positive vulnerabilities and 153 false positives. Its precision is 46.1%,
which is very close to the highest (47.9% of PHPJoern) among the
three tools. Perhaps unsurprisingly, most (about 80%) vulnerabilities
TCHECKER found were from non-popular applications. Neverthe-
less, TCHECKER is capable of finding vulnerabilities in well known
applications like Joomla due to its precise inter-procedural analysis.

Statically detecting vulnerabilities in complex PHP programs
requires the support of multiple language features. However, in our
current design, it would be difficult to separate TCHECKER’s individ-
ual components, which have strong dependencies with the others.
For instance, the call graph construction and the inter-procedural
data flow analysis help each other. We thus present TCHECKER as
a whole and do not separately evaluate each component (e.g., call
graph). In a case study, we found that TCHECKER was able to cor-
rectly analyze a few complex features including dynamic includes
and object-oriented features, and tens of non-static method calls
to reveal one SQL injection vulnerability in Joomla. This shows
that the good detection performance of TCHECKER results from its
strong support of modern PHP features.

We finally evaluate TCHECKER's ability to find new vulnerabil-
ities. We consider a true positive as new (i.e., NP in Table 1) if 1)
we cannot find its bug report on the Internet; and 2) it exists in
the latest version of the application. TCHECKER reported 18 new
vulnerabilities—7 SQLi, 10 XSS, and 1 DoS vulnerabilities. The vul-
nerabilities could severely affect the applications and their users. In
our experiment, all the 7 SQLi vulnerabilities allow the unprivileged
users to manipulate the database; 5 XSS vulnerabilities allow the
unprivileged users to steal session cookies; and the DoS vulner-
ability allows the attackers to directly control the iteration times
of a loop statement. Fortunately, only one new vulnerability was
found in a popular application (i.e., osCommerce2 (2.3.4.1)). This
vulnerability could allow the unprivileged users to hijack the user’s
session and it has been promptly fixed because of our report. We
have responsibly disclosed our new findings to the relevant vendors.
At the time of writing, 5 vulnerabilities, including 2 new CVEs?,
have been acknowledged or patched.

6.2.1 Comparison with Related Works. In this section, we compare
TCHECKER with related works and discuss how the different design
choices affect the detection results.

In Table 1, we use the superscripts J and R to denote the results
of PHPJoern and RIPS, respectively. UP denotes the vulnerabilities
found by only TCHECKER and UN denotes the ones found by the
other tools but not by TCHECKER. UP and UN could indicate how
TCHECKER and other static analysis tools could potentially comple-
ment each other. In general, TCHECKER significantly outperformed
PHPJoern and RIPS, and detected all the vulnerabilities reported by
them (i.e., UN = 0) and 50 vulnerabilities (i.e., UP) they did not find.
We present more detailed characterization below.

Comparison with RIPS. TCHECKER detected 50 vulnerabilities
RIPS failed to find. In 27 out of the 50 vulnerabilities, the taints were

2CVE-2022-35212, CVE-2022-35213.

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

Changhua Luo, Penghui Li, and Wei Meng

Table 1: Evaluation results of vulnerability detection. TP denotes true positives; FP denotes false positives; The superscripts T, J, R denote
the results of TCHECKER, PHPJoern, and RIPS. UP denotes the number of vulnerabilities found by TCHECKER but not PHPJoern and RIPS.
UN denotes the number of vulnerabilities found by PHPJoern and RIPS but not TCHECKER. NP denotes the number of new vulnerabilities
TCHECKER finds. A dash means we failed to apply a tool to the application. ¥ denotes popular and well-known real-world PHP applications in

the first category; other untagged applications are in the second category.

T

R

Application LLoCc TPT FPT Time?T TP/ FP/ Time/ TPR FPR TimeR UP UN NP
MediaWiki (1.36.2)i 178,616 0 8 91 m 0 6 11m 0 54 4m 0 0 0
Collabtive (3.1) 71,705 1 2 46 m 1 0 3m 1 19 1m 0 0 0
Ecommerce-Codelgniter-Bootstrap 25,421 14 0 5m 8 0 1m 10 10 1m 4 0 4
WeBid (1.2.2) 19,595 18 10 42 m 1 0 2m 1 0 5m 17 0 2
WordPress (5.4.8) 98,099 0 7 68 m 0 0 6 m - - - 0 0 0
CPG (1.6.12) 30,553 1 1 8m 1 0 3m 1 1 6m 0 0 0
Webchess (0.9) 1,569 27 9 3m 27 9 3m 27 12 2m 0 0 0
Joomla (3.7.0)¢ 134,692 3 7 86 m 0 0 13 m 0 1 5m 3 0 0
Joomla (3.10.3)i 156,172 0 7 93 m 0 0 13 m 0 1 5m 0 0 0
osCommerce2 (2.3.4.1)i 27,284 15 12 12m 0 10 4m 4 156 3m 11 0 1
phpBB (3.3.3) 194,312 0 3 72m 0 1 3m 0 9 7m0 0 0
stock-management 21,466 7 0 3m 0 0 2m 0 0 0m 7 0 7
PHPLiteAdmin (1.9.8.2)* 3,288 1 0 1m 1 0 1m 1 41 Im 0 0 0
Zen-Cart (1.3.8)T‘ 46,804 4 45 55m 0 9 4m 3 519 2m 1 0 0
Zen-Cart (1.55)1: 51,099 1 42 57 m 0 42 9m 1 529 3m 0 0 0
Codiad (2.8.4) 2,275 33 0 9m 32 0 3m 32 3 1m 1 0 0
monstra (3.0.4) 6,827 6 0 10 m 0 0 4m 0 1 2m 6 0 3
Total 1,069,777 131 153 661m 71 77 85 m 81 1356 47m 50 0 18

propagated through the complex object properties before reaching
the sinks. The object property support of TCHECKER allows it to
detect them, whereas RIPS could not. RIPS could not identify the
other 23 vulnerabilities because of implementation issues, e.g., it
failed to resolve some assignment-like statements and the dynamic
includes when propagating taints.

TCHECKER has a much higher precision (46.1%) compared with
RIPS (about 6%). Many vulnerabilities reported by RIPS were false
positives, mainly because it adopts an over-tainting strategy when
handling function calls. Unlike TCHECKER that performs a precise
context-sensitive inter-procedural data flow analysis, RIPS simply
considers that the return value is tainted if one of the arguments is
tainted without analyzing the actual behaviors of the callee function.
Such a strategy might label a return value as tainted even if all data
flows to it are sanitized. As a result, many false positives reported
by RIPS were found in applications (e.g., Zen-Cart) that extensively
used tainted arguments in function calls. Besides, RIPS did not
analyze the class type of receivers. It over-approximated calling
relationships by regarding all the methods whose names matched
with the called method names as call targets, resulting in tens of
false positives. Note it is very time-consuming to manually validate
if a call edge is valid. This further demonstrates the need and benefit
of building a precise call graph.

Comparison with PHPJoern. PHPJoern adopts a different strat-
egy from RIPS. Instead of using an over-tainting strategy, PHPJoern
selectively propagates taints—it only tracks taints in local variables
and function parameters. As a result, PHPJoern reported the fewest
false positives (77) among the three tools and had the highest pre-
cision (47.9%). Most false positives in PHPJoern were caused by

the inherent limitations of static analysis. For example, PHPJoern
reported vulnerabilities in dead code.

Nevertheless, PHPJoern reported also much fewer true positives
(TPs), i.e., it found 60 fewer TPs than TCHECKER and 10 fewer TPs
than RIPS. PHPJoern exhibits similar limitations as RIPS, e.g., it does
not support object properties. Additionally, it supports only method
calls with unique names. For instance, several applications declared
multiple query() functions in their database modules. These query
O functions were invoked through one method call $db->query).
PHPJoern could not find the correct call targets of the function call
$db->query() and thus failed to detect SQLi vulnerabilities in these
query() functions.

6.2.2 False Positives. TCHECKER reported 153 false positives. We
attribute its false positives to four aspects.

Incomplete Sanitizers. TCHECKER does not model all sanitizers.
For example, MySQLIi query supports typecasting by invoking the
casT() function. TCHECKER does not analyze the semantics of argu-
ments in query function calls, which causes several false positives.
Intended Features. Some applications allow the administrator
users to send arbitrary inputs to the sink functions. For example,
the Zen-Cart implements a debug feature that executes arbitrary
MySQLi query statements provided by the administrators. Our
communication with the developers helped us learn that 9 false
positives were actually the intended application features.
Implementation Issues. Some false positives were introduced be-
cause of implementation issues of TCHECKER. Specifically, TCHECKER
over-approximates arrays—it taints an array when one of the array
elements is tainted. This introduces a few false positives. TCHECKER
does not solve the constraints of conditional statements but merges

TCHECKER: Precise Static Inter-Procedural Analysis for Detecting Taint-Style Vulnerabilities in PHP Applications

the taint information from all branches, which leads to another tens
of false positives.

Dead Code. TCHECKER also reports vulnerabilities in dead code
(e.g., the unused components of third-party libraries and test files).
The vulnerabilities in dead code are not exploitable and lead to over
half of the total false positives of TCHECKER. Note the vulnerabilities
in third-party libraries might lead to vulnerabilities in other PHP
programs [11]. However, we did not report these vulnerabilities to
third-party vendors as we cannot exploit them in our experiments.

6.2.3 False Negatives. Although TCHECKER identifies all the vul-
nerabilities RIPS and PHPJoern detect, it still has false negatives
in reporting all the taint-style vulnerabilities. For instance, the
mysql_real_escape_string() adds preceding backslash to escape spe-
cial characters in a string to be used in an SQL query. However, if the
user input is not embedded into quotes within an SQL query, such a
sanitization is insufficient and the application becomes vulnerable.
TCHECKER does not sufficiently model the sanitization code and
cleans taints in such (incompletely) sanitized variables, thus could
have false negatives.

To understand the false negatives of TCHECKER, we collect from
the CVE database all the known vulnerabilities in our evaluated
versions of applications to obtain the ground truth. Note that this
is an underestimation of false negatives as the CVE database might
not contain all known vulnerabilities of an application. We also
exclude second-order vulnerabilities as they are outside the scope
of TCHECKER. Overall, we found that TCHECKER was able to detect
all known vulnerabilities in 7 applications including Webchess 0.9
and osCommerce2 2.3.4.1. Yet it also had false negatives in several
other applications. For instance, it failed to detect 6 known vulnera-
bilities in Joomla 3.7.0. We manually analyzed a few vulnerabilities
TCHECKER failed to detect and found that they were caused by in-
sufficient sanitization. This indicated that by better modeling the
(custom) sanitization code in PHP programs [34], we could further
reduce the false negatives. As this is orthogonal to this work, we
leave it as a future work.

6.3 Performance

In this subsection, we discuss the performance of each detection
tool. We list the analysis time for each tool in columns Time!,
Time/, and TimeR. The analysis time of TCHECKER includes the
time spent on call graph construction and taint analysis. In particu-
lar, TCHECKER used 661 minutes to finish all the analysis. Compared
with RIPS and PHPJoern, TCHECKER spent more time on analyzing
a PHP application because of its comprehensive data flow anal-
ysis. However, given TCHECKER could report more true positive
vulnerabilities with a relatively good precision, we believe that the
additional analysis time remains acceptable and manageable.

6.4 Case Study

We further showcase the effectiveness of TCHECKER with two new
vulnerabilities it detected in the current version of Stock-Management-
System [9] and osCommerce2 [7].

Stock-Management-System. As shown in Listing 2, the user
input $_REQUEST is saved into an object property in line 3 and is

3CVE: https://cve.mitre.org/.

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

<?php

//bootstrap/app.php

self::$data = $_REQUEST;

//routes/ApiRoutes.php

ProductController::insert(self::$data);

//controllers/ProductController.php

if(ValidateParams::productName($data['name'])) {
$product->insert($data);

}

//helpers/ValidateParams.php

static function productName ($name) {
$name = self::security($name);

© 0N O VTR WN

el
w N =2

// return if $name is secure
}
private static function security($data) {
$data = trim($data);
$data = stripslashes($data);
$data = htmlspecialchars($data);
return $data;
}
//model /Product . php
function insert($data) {
24 $sql = "INSERT INTO products (name) VALUES ('"
$data['name'] . "')";
25 if ($this->conn->query($sql) === TRUE) {
26
27 }
28 %}

NNNNRB R B 2 2 &
WNRSWO®NOO U

Listing 2: An SQLi vulnerability in Stock-Management-System. The
code is simplified for demonstration purpose.

used as an argument of function call in line 5. The called function
ProductController: :insert() invokes the productName() function to
check the validity of the argument $data, which is tainted. However,
the productName () function does not sanitize $data against SQLI, al-
though it invokes the custom security() function that calls a few
sanitizers such as htmlspecialchars(). In line 8, the tainted variable
$data is then used as an argument of the call to the Product: :insert ()
function, which finally constructs a SQL query string using $data
and executes the unsafe SQL query in line 22.

To detect such a vulnerability, TCHECKER tracks taints in ob-
ject property self::$data and infers the call targets of the method
call $product->insert() in line 8. Besides this application, we find
several applications, including Joomla, save the user inputs into
object properties before processing them. The existing tools fail
to detect vulnerabilities in these applications as they cannot track
taints through object properties. The ambiguous method names
(e.g., inject) also hinder the detection performance of RIPS and
PHPJoern.

osCommerce2. Listing 3 shows an example of XSS vulnerability
TCHECKER found in osCommerce2 [7]. The application executes
SQL statement in line 2 or echo the $query parameter back to users
if function mysqli_query() returns error. The tainted $query parame-
ter is sent from users to the mysqli_query() function and sanitized
against SQL injection attacks. However, it is not sanitized against
XSS vulnerabilities. If the unprivileged user sends an invalid query
parameter that causes the function mysqli() to return error, the
output function die() in line 6 will echo the tainted $query, leading
to an XSS attack.

https://cve.mitre.org/

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

1 <?php

2 $result = mysqli_query($$link, S$query) or tep_db_error
($query, mysqli_errno($$link), mysqli_error(
$$1ink));

// includes/functions/database.php

function tep_db_error($query, $errno, S$error) {
die('<font ..." . $query . '... ');

}

© N o VAW

9 // admin/includes/functions/database.php

10 function tep_db_error($query, $errno, S$error) {
11 die('<font ..."'" . $query . '... ');

12 3}

Listing 3: An XSS vulnerability in oscommerce2 v2.3.4

The function tep_db_error() is declared twice in the osCom-
merce2 application. PHPJoern fails to identify the target function
of function call in line 2 and misses this vulnerability. RIPS instead
connects the function call to all the declared tep_db_error() func-
tions. Further, it does not step into any target function but reports
XSS vulnerability because of the tainted argument $query. Therefore,
RIPS reports many false positives—it reports the same vulnerability
even in the patched version in which $query is sanitized. TCHECKER
determines the target function based on the calling contexts. It
finds the tep_db_error() function in line 5 which is included in the
current scope when propagating taints through the call sites in line
2.

7 DISCUSSION

In this section, we discuss the limitations of TCHECKER and the
possible future works.

7.1 PHP Static Analysis

TCHECKER is designed to model the complex features in PHP appli-
cations. However, it still fails to fully support a few PHP features,
including the dynamic arrays, the variable functions, etc. In our
evaluation, TCHECKER suffers from a few false positives for it. We
emphasize the challenges in statically modeling these PHP features.
In the future, new algorithms and implementations might be de-
veloped upon TCHECKER to further improve the static techniques.
Also, many works simplify static analysis with some assumptions. It
would be interesting to study the effects of the simplified modeling
on different features given different scenarios. In this work, we also
demonstrate the importance of context-sensitive inter-procedural
analysis on detecting taint-style vulnerabilities in PHP applications.

7.2 Applications of Call Graph

In this work, we demonstrate that a precise call graph could help
find more taint-style vulnerabilities in PHP applications. In addition
to the application in taint analysis, call graph has been used in many
security scenarios. Saphire resolves dynamic includes to identify
and filters the unused dangerous system calls [23]. Varis builds call
graph to provide IDE extensions that allow the user to navigate
between the caller functions and callee functions [41]. Torpedo mod-
els database statements of PHP applications to detect second-order
vulnerabilities whereas call graph is the fundamental component

Changhua Luo, Penghui Li, and Wei Meng

of its static analysis [42]. Note that TCHECKER currently does not
consider second-order vulnerabilities as analyzing database state-
ments is orthogonal to this work. Nevertheless, we believe that the
techniques we propose could help future research on PHP applica-
tions. For instance, it would be good to further implement database
statement modeling upon TCHECKER for detecting second-order
vulnerabilities. The static analysis can further work with dynamic
approaches as demonstrated in [18]

7.3 Automated Validation

Static analysis usually reports false positives in vulnerability de-
tection. Navex has demonstrated the feasibility of automated bug
validation using symbolic execution [18]. Unfortunately, we cannot
apply it in this work because of its incomplete released code. In
the future, we plan to implement symbolic execution to validate
and exploit the vulnerabilities found by TCHECKER. Automatically
validating bugs found by TCHECKER is hard. In addition to imple-
menting the symbolic execution algorithm on PHP applications,
we need to address a few additional challenges. For instance, the
call site in TCHECKER might have multiple call targets while the
conventional symbolic engines consider only one target function
for a call site [18, 37]. To address this issue, one solution is to model
the path constraint of each target function and then feed the inputs
satisfying different path constraints to the program. We leave it to
future work.

8 RELATED WORK

In this section, we discuss TCHECKER with the related works.

8.1 Vulnerability Detection in PHP Applications

The detection of PHP vulnerabilities has drawn significant atten-
tion over the past years. Prior studies on static security analysis
focus on data-flow (taint) analysis to identify cross-site scripting
[15, 19, 21, 26, 39, 40], SQL injection [19, 21, 26, 40, 49], denial-of-
service [42, 46], and other types of vulnerabilities [27, 28, 36, 40].
TCHECKER proposes several generic techniques such as precise
inter-procedural data-flow analysis and object property handling,
aiming to improve the state-of-the-art static analysis in PHP. The
techniques are shown to bring many benefits in terms of precision
and scalability. Although we currently implement them for PHP,
we believe that they can be extended to other languages to further
help the whole community in the field of static program analysis.

Orthogonal to our research, another line of studies utilizes dy-
namic scanning methods [16, 29-31, 43, 47] to detect vulnerabilities
in PHP. Such tools drive the concrete execution of PHP code and
thus can literally support the dynamic PHP language features. How-
ever, the key challenges like the inter-state dependencies [29] make
these dynamic scanning tools less effective to reach deep code. Hy-
brid approaches like Navex [18] and Chainsaw [17] apply static
symbolic execution to model the inter-state dependencies, which
can produce seeds to guide the dynamic scanner to find vulnerabil-
ities hidden deeply in code. Similarly, our refinement of call graphs
can help improve the static symbolic execution.

TCHECKER: Precise Static Inter-Procedural Analysis for Detecting Taint-Style Vulnerabilities in PHP Applications

8.2 Call Graph Analysis

Call graph analysis is a foundational program analysis technique
used for various tasks such as vulnerability detection, control-flow
integrity [20], etc. Besides PHP, call graph analysis has been an im-
portant topic for other programming languages [32, 38, 44, 50-52].
Yamaguchi et al. integrate call graph into code property graph to
model common vulnerabilities in C/C++ programs [50] and further
extend it with an inter-procedural analysis [51]. Most recently, Lu
and Hu refine indirect-call targets with multi-layer type analysis
for C/C++ programs based on structure types and pointer analysis
[38]. However, unlike other languages, PHP, as a weakly-typed and
dynamically-typed language, lacks necessary variable type informa-
tion, making it even more challenging to perform call graph analysis.
TCHECKER addresses those PHP-specific features and challenges,
and achieves a precise call graph analysis.

9 CONCLUSION

Vulnerability detection in PHP is essential to web security. In this
paper, we identified several fundamental limitations that hinder
prior static approaches from a precise and practical analysis for
detecting taint-style vulnerabilities. We presented TCHECKER, a pre-
cise context-sensitive inter-procedural static taint analysis system
to detect taint-style vulnerabilities in PHP applications. TCHECKER
incrementally builds a precise call graph by iteratively performing
an inter-procedural data flow analysis. We also take a considerable
amount of engineering effort to support a few complex object-
oriented features in modern PHP applications. With these tech-
niques, TCHECKER successfully identified 18 previously unknown
vulnerabilities. The comparison with the related detection tools
demonstrates that TCHECKER outperformed them with more vul-
nerabilities detected. The impressive evaluation results show that
TCHECKER is highly effective in detecting taint-style vulnerabilities
in modern PHP applications. We believe that the techniques can
shed light on future research of PHP program analysis.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for their
helpful suggestions and comments. We also thank Yanting Chi for
helping us validate the reported vulnerabilities. The work described
in this paper was partly supported by a grant from the Research
Grants Council of the Hong Kong SAR, China (Project No.: CUHK
14210219).

REFERENCES

[1] 2017. RIPS scanner. https://sourceforge.net/projects/rips-scanner//.

[2] 2020. SQL injection vulnerability in Joomla. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2020-35613.

[3] 2020. XSS in Drupal Core. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

2020-13688.

[4] 2020. XSS in OpenCart. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2020-15478.

] 2021. Basic Coding Standard. https://www.php-fig.org/psr/psr-1/.

] 2021. Incomplete Navex source code. https://github.com/aalhuz/navex/issues/6.

] 2021. osCommerce Online Merchant. https://www.oscommerce.com.

] 2021. php-ast. https://github.com/nikic/php-ast.

] 2021. Stock-Management-System: An Introductory Stock Management System
built on PHP, jQuery with AJAX in MVC pattern. https://github.com/haxxorsid/
stock-management-system.

[10] 2021. XSS in WordPress. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

2021-39202.

(1]

[12]

(17

(18]

[19

)
=

[22

[23

[24]

[26

[27

[28

[29

@
=

[31

(32]

[33

[34

[35

[36

CCS ’22, November 7-11, 2022, Los Angeles, CA, USA

2022. CWP CentOS Web Panel - preauth RCE. https://octagon.net/blog/2022/
01/22/cve-2021-45467-cwp-centos-web-panel-preauth-rce/.

2022. Pulse. https://www.pulse.codacy.com/?utm_source=codacy&utm_
medium=referral&utm_campaign=codacy_link&utm_content=nav_dropdown.
2022. Usage statistics of content management systems. https://w3techs.com/
technologies/overview/content_management.

2023. RIPS-tech. https://blog.sonarsource.com/.

Wasef Abdalla, Zarul Marashdih, Zaaba Fitri, and Suwais Khaled. 2018. Cross Site
Scripting: Investigations in PHP Web Application. In International Conference on
Promising Electronic Technologies.

Doupé Adam, Cavedon Ludovico, Kruegel Christopher, Vigna Giovanni, and
Barbara Santa. 2014. Enemy of the State: A State-Aware Black-Box Web Vul-
nerability Scanner. In Proceedings of the 21st ACM Conference on Computer and
Communications Security (CCS). Scottsdale, Arizona.

Abeer Alhuzali, Birhanu Eshete, Rigel Gjomemo, and VN Venkatakrishnan. 2016.
Chainsaw: Chained automated workflow-based exploit generation. In Proceedings
of the 23rd ACM Conference on Computer and Communications Security (CCS).
Vienna, Austria.

Abeer Alhuzali, Rigel Gjomemo, Birhanu Eshete, and VN Venkatakrishnan. 2018.
NAVEX: Precise and Scalable Exploit Generation for Dynamic Web Applications.
In Proceedings of the 27th USENIX Security Symposium (Security). Baltimore, MD.
Algaith Areej, Nunes Paulo, Jose Fonseca, Gashi Ilir, and Vieira Marco. 2018.
Finding SQL Injection and Cross Site Scripting Vulnerabilities with Diverse Static
Analysis Tools. In European Dependable Computing Conference.

Amin Azad Babak, Laperdrix Pierre, and Nikiforakis Nick. 2019. Less is More:
Quantifying the Security Benefits of Debloating Web Applications. In Proceedings
of the 28th USENIX Security Symposium (Security). Santa Clara, CA.

Michael Backes, Konrad Rieck, Malte Skoruppa, Ben Stock, and Fabian Yamaguchi.
2017. Efficient and flexible discovery of php application vulnerabilities. In Pro-
ceedings of the 2nd IEEE European Symposium on Security and Privacy (EuroS&P).
Paris, France.

Jason Bau, Elie Bursztein, Divij Gupta, and John Mitchell. 2010. State of the Art:
Automated Black-Box Web Application Vulnerability Testing. In Proceedings of
the 31th IEEE Symposium on Security and Privacy (Oakland). Oakland, CA.
Alexander Bulekov and Manuel Egele. 2020. Saphire: Sandboxing PHP Appli-
cations with Tailored System Call Allowlists. In Proceedings of the 29th USENIX
Security Symposium (Security). Boston, MA.

Sanchuan Chen, Zhiqiang Lin, and Yinqian Zhang. 2020. SELECTIVETAINT:
Efficient data flow tracking with static binary rewriting.. In Proceedings of the
29th USENIX Security Symposium (Security). Boston, MA.

Penny Crosman. 2015. Banks Lose Up to $100K/Hour to Shorter, More Intense
DDoS Attacks. https://www.americanbanker.com/news/banks-lose-up-to-100k-
hour-to-shorter-more-intense-ddos-attacks.

Johannes Dahse and Thorsten Holz. 2014. Simulation of Built-in PHP Features
for Precise Static Code Analysis. In Proceedings of the 2014 Annual Network and
Distributed System Security Symposium (NDSS). San Diego, CA.

Johannes Dahse and Thorsten Holz. 2014. Static detection of second-order
vulnerabilities in web applications. In Proceedings of the 23rd USENIX Security
Symposium (Security). San Diego, CA.

Johannes Dahse, Nikolai Krein, and Thorsten Holz. 2014. Code Reuse Attacks
in PHP : Automated POP Chain Generation. In Proceedings of the 21st ACM
Conference on Computer and Communications Security (CCS). Scottsdale, Arizona.
Benjamin Eriksson, Giancarlo Pellegrino, and Andrei Sabelfeld. 2021. Black
Widow: Blackbox Data-driven Web Scanning. In Proceedings of the 42nd IEEE
Symposium on Security and Privacy (Oakland). San Francisco, CA.

Duchene Fabien, Rawat Sanjay, Richier Jean-Luc, and Groz Roland. 2013. Ligre:
Reverse-engineering of control and data flow models for black-box xss detection.
In Working Conference on Reverse Engineering.

Duchene Fabien, Rawat Sanjay, Richier Jean-Luc, and Groz Roland. 2014.
Kameleonfuzz: evolutionary fuzzing for black-box xss detection. In Proceedings
of the ACM conference on Data and application security and privacy.

David Grove, Greg DeFouw, Jeffrey Dean, and Craig Chambers. 1997. Call graph
construction in object-oriented languages. In Proceedings of the 12th Annual ACM
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA). Atlanta, Georgia.

Mark Hills1, Paul Klint, and Jurgen Vinju. 2013. An empirical study of PHP
feature usage: a static analysis perspective. In Proceedings of the 22nd International
Symposium on Software Testing and Analysis (ISSTA). Lugano, Switzerland.
Hough Katherine, Welearegai Gebrehiwet, Hammer Christian, and Bell Jonathan.
2020. Revealing Injection Vulnerabilities by Leveraging Existing Tests. In Proceed-
ings of the 42nd International Conference on Software Engineering (ICSE). Seoul,
Korea.

Etienne Kneuss, Philippe Suter, and Viktor Kuncak. 2010. Phantm: PHP analyzer
for type mismatch. In Proceedings of the 18th ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE). Santa Fe, NM.

Penghui Li and Wei Meng. 2021. LChecker: Detecting Loose Comparison Bugs
in PHP. In Proceedings of the Web Conference (WWW). Ljubljana, Slovenia.

https://sourceforge.net/projects/rips-scanner//
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-35613
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-35613
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13688
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-13688
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15478
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15478
https://www.php-fig.org/psr/psr-1/
https://github.com/aalhuz/navex/issues/6
https://www.oscommerce.com
https://github.com/nikic/php-ast
https://github.com/haxxorsid/stock-management-system
https://github.com/haxxorsid/stock-management-system
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-39202
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-39202
https://octagon.net/blog/2022/01/22/cve-2021-45467-cwp-centos-web-panel-preauth-rce/
https://octagon.net/blog/2022/01/22/cve-2021-45467-cwp-centos-web-panel-preauth-rce/
https://www.pulse.codacy.com/?utm_source=codacy&utm_medium=referral&utm_campaign=codacy_link&utm_content=nav_dropdown
https://www.pulse.codacy.com/?utm_source=codacy&utm_medium=referral&utm_campaign=codacy_link&utm_content=nav_dropdown
https://w3techs.com/technologies/overview/content_management
https://w3techs.com/technologies/overview/content_management
https://blog.sonarsource.com/
https://www.americanbanker.com/news/banks-lose-up-to-100k-hour-to-shorter-more-intense-ddos-attacks
https://www.americanbanker.com/news/banks-lose-up-to-100k-hour-to-shorter-more-intense-ddos-attacks

CCS *22, November 7-11, 2022, Los Angeles, CA, USA

[37] Penghui Li, Wei Meng, Kangjie Lu, and Changhua Luo. 2020. On the feasibility of

automated built-in function modeling for PHP symbolic execution. In Proceedings
of the Web Conference (WWW). Taipei, Taiwan.

Kangjie Lu and Hong Hu. 2019. Where does it go? refining indirect-call targets
with multi-layer type analysis. In Proceedings of the 26th ACM Conference on
Computer and Communications Security (CCS). London, UK.

Kumar Mukesh, Mahesh Gupta, Govil Chandra, and Singh Girdhari. 2015. Pre-
dicting Cross-Site Scripting (XSS) Security Vulnerabilities in Web Applications.
In International Joint Conference on Computer Science and Software Engineering.

[40] Jovanovic Nenad, Kruegel Christopher, and Kirda Engin. 2006. Pixy: a static

analysis tool for detecting Web application vulnerabilities. In Proceedings of the
27th IEEE Symposium on Security and Privacy (Oakland). Oakland, CA.

Hung Viet Nguyen, Christian Kastner, and Tien N. Nguyen. 2015. Varis: IDE
Support for Embedded Client Code in PHP Web Applications. In Proceedings of
the 37th International Conference on Software Engineering (ICSE). Florence, Italy.
Olivo Oswaldo, Dillig Isil, and Lin Calvin. 2015. Detecting and Exploiting Second
Order Denial-of-Service Vulnerabilities in Web Applications. In Proceedings of the
22nd ACM Conference on Computer and Communications Security (CCS). Denver,
Colorado.

Giancarlo Pellegrino, Constantin Tschiirtz, Eric Bodden, and Christian Rossow.
2015. jak: Using dynamic analysis to crawl and test modern web applications. In
Proceedings of the 18th International Symposium on Research in Attacks, Intrusions
and Defenses (RAID). Kyoto, Japan.

Michael Reif, Michael Eichberg, Ben Hermann, Johannes Lerch, and Mira Mezini.
2016. Call graph construction for java libraries. In Proceedings of the 24th ACM
SIGSOFT Symposium on the Foundations of Software Engineering (FSE). Seattle,

Changhua Luo, Penghui Li, and Wei Meng

WA.

AAG IT Services. 2019. How often do Cyber Attacks occur? https://aag-
it.com/how- often-do- cyber-attacks-occur/.

Sooel Son and Vitaly Shmatikov. 2011. SAFERPHP: Finding semantic vulnerabili-
ties in PHP applications. In Proceedings of the ACM SIGPLAN 6th Workshop on
Programming Languages and Analysis for Security.

Felmetsger Viktoria, Cavedon Ludovico, Kruegel Christopher, and Vigna Gio-
vanni. 2010. Toward automated detection of logic vulnerabilities in web ap-
plications.. In Proceedings of the 19th USENIX Security Symposium (Security).
Washington, DC.

W3Techs. 2021. Usage statistics of PHP for websites. https://w3techs.com/
technologies/details/pl-php.

Gary Wassermann and Zhendong Su. 2007. Sound and precise analysis of web
applications for injection vulnerabilities. In Proceedings of the 2007 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI). San
Diego, CA.

Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. 2014. Modeling
and discovering vulnerabilities with code property graphs. In Proceedings of the
35th IEEE Symposium on Security and Privacy (Oakland). San Jose, CA.

Fabian Yamaguchi, Alwin Maier, Hugo Gascon, and Konrad Rieck. 2015. Auto-
matic Inference of Search Patterns for Taint-Style Vulnerabilities. In Proceedings
of the 36th IEEE Symposium on Security and Privacy (Oakland). San Jose, CA.
Chao Zhang, Dawn Song, Scott A Carr, Mathias Payer, Tongxin Li, Yu Ding, and
Chengyu Song. 2016. VTrust: Regaining Trust on Virtual Calls.. In Proceedings of
the 2016 Annual Network and Distributed System Security Symposium (NDSS). San
Diego, CA.

https://aag-it.com/how-often-do-cyber-attacks-occur/
https://aag-it.com/how-often-do-cyber-attacks-occur/
https://w3techs.com/technologies/details/pl-php
https://w3techs.com/technologies/details/pl-php

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 PHP Features
	2.2 PHP Program Analysis
	2.3 Taint-Style Vulnerabilities and Taint Analysis

	3 Problem Statement
	3.1 Research Scope and Research Goals
	3.2 Research Challenges

	4 TChecker
	4.1 Overview
	4.2 Constructing Call Graph
	4.3 Taint Analysis

	5 Implementation
	6 Evaluation
	6.1 Dataset and Setup
	6.2 Detection Results
	6.3 Performance
	6.4 Case Study

	7 Discussion
	7.1 PHP Static Analysis
	7.2 Applications of Call Graph
	7.3 Automated Validation

	8 Related Work
	8.1 Vulnerability Detection in PHP Applications
	8.2 Call Graph Analysis

	9 Conclusion
	References

