Exponential Functions & Logarithm-Supplement Solution Set

See If You Need This Video!

- 1. Answer: E
 - 1. $2^3 = 2 \times 2 \times 2$
 - $2. \ 4^{0.25} = \sqrt[4]{4}$
 - 3. Negative index means putting it at denominator.
 - 4. By $a^b \times a^c = a^{b+c}$

«List of rules of exponential functions»

Cantonese: 0:44 English: 0:41 Putonghua: 0:50

- 2. Answer: E
 - 1. Because $a^0 = 1$, for all a.
 - 2. 10^x can never be negative if x is real number.
 - $3. \ 3^2 = 9$
 - 4. $4^{0.5} = 2$

 \ll Basic idea of logarithm and rules of exponential functions \gg Cantonese: 0:44 English: 0:41 Putonghua: 0:50

3. Answer: A

- 1. By $\log_a b + \log_a c = \log_a (b + c)$
- 2. The identity above is invalid for logarithm with different bases.
- 3. The addition or subtraction cannot penetrate the logarithm operation.

«Addition and subtraction operation of logarithms»

Cantonese: 1:22 English: 1:09 Putonghua: 1:34

4. Answer: A

- 1. By $A \log B = \log B^A$
- 2. From the above identity you know it is wrong.
- 3. As 2, it is generally hard to simplify the product of two. logarithms.
- 4. As 3.

«Multiplication and division involving logarithm»

Cantonese: 1:37 English: 1:21 Putonghua: 1:53

5. Answer: B

We change the base of logarithm to something else here. By

$$\log_A C = \frac{\log_B C}{\log_B A}$$

Only choice B is correct.

«Changing base of logarithm»

Cantonese: 1:55 English: 1:36 Putonghua: 2:10

6. Answer: C

All the five curves are $\log - \log$ plot. Let's take logarithm to the equation first.

$$\log y = \log (3x^{-2})$$
$$= \log 3 + \log x^{-2}$$
$$= \log 3 - 2\log x$$

No matter what base the logarithm is, the relation looks like this. Then if we plot $\log y$ against $\log x$, it should be a straight line, and its slope is -2 here.

So we get the answer, this technique helps treating experimental data very much in studying physics.

≪Log-log plot≫

Cantonese: 2:25 English: 1:59 Putonghua: 2:47

7. Answer: C

- 1. Yes, it is.
- 2. $e = \sum_{n=0}^{\infty} \frac{1}{n!}$, it is an irrational number.
- 3. It is very important to have a sense that it is larger than one, for observing the tendency of exponential decay or grow.
- 4. NO!!! Natural numbers are non-negative integers (some says it should not include 0). *e* is called Euler's number.

≪Some knowledge about Euler's number≫

Cantonese: 3:50 English: 3:12 Putonghua: 4:05