Differentiation- Supplement Solution Set

See If You Need This Video!

1. Answer: B.

Definition of differentiation

$$\left. \frac{\mathrm{d}f(x)}{\mathrm{d}x} \right|_{x=x_0} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

≪Basic idea of differentiation≫

Episode 1- Cantonese: 0:45 English: 0:38 Putonghua: 0:36

- 2. Answer: C.
 - 1. This is true and an important idea in physics.
 - 2. It is true.
 - 3. It is false.
 - 4. Consider

$$\frac{\mathrm{d}\left(f\left(x\right) +C\right) }{\mathrm{d}x}$$

The results are the same for all constant C.

 \ll Basic idea of differentiation \gg

Episode 1- Cantonese: 0:45 English: 0:38 Putonghua: 0:36

3. Answer: C.

$$1. \ \frac{\mathrm{d}x^n}{\mathrm{d}x} = nx^{n-1}$$

1.
$$\frac{dx^n}{dx} = nx^{n-1}$$

2. $\frac{d\cos x}{dx} = -\sin x$, don't forget the minus sign.

$$3. \ \frac{\mathrm{d}\sin x}{\mathrm{d}x} = \cos x$$

4. Differentiating a constant is 0, or you may consider
$$\frac{dx^0}{dx} = 0$$
.

 \ll Derivative of $x^n \gg$

$$\ll$$
Derivative of sinusoidal functions \gg

4. Answer: E.

1.
$$\frac{\mathrm{d} \ln x}{\mathrm{d} x} = \frac{1}{x}$$
2.
$$\frac{\mathrm{d} e^x}{\mathrm{d} x} = e^x$$

$$2. \ \frac{\mathrm{d}e^x}{\mathrm{d}x} = e^x$$

$$3. \ \frac{\mathrm{d}x^{-2}}{\mathrm{d}x} = -2x^{-3}$$

 \ll Derivative of $x^n \gg$

$$\ll$$
Derivative of exponential function \gg

5. Answer: D.

By linearity of differentiation

$$\frac{\mathrm{d}\left[f\left(x\right) + g\left(x\right)\right]}{\mathrm{d}x} = \frac{\mathrm{d}f\left(x\right)}{\mathrm{d}x} + \frac{\mathrm{d}g\left(x\right)}{\mathrm{d}x}$$

So

$$\frac{\mathrm{d}\left[x^2 + \cos x\right]}{\mathrm{d}x} = 2x - \sin x$$

 \ll Linearity of differentiation \gg

Episode 2- Cantonese: 2:15 English: 2:22 Putonghua: 2:15

 \ll Derivative of $x^n \gg$

Episode 2- Cantonese: 0:36 English: 0:41 Putonghua: 0:30

«Derivative of sinusoidal functions»

Episode 2- Cantonese: 1:23 English: 1:27 Putonghua: 1:19

6. Answer: D.

By product rule

$$\frac{\mathrm{d}\left[f\left(x\right)g\left(x\right)\right]}{\mathrm{d}x} = g\left(x\right)\frac{\mathrm{d}f\left(x\right)}{\mathrm{d}x} + f\left(x\right)\frac{\mathrm{d}g\left(x\right)}{\mathrm{d}x}$$

So

$$\frac{\mathrm{d}[x^2 \ln x]}{\mathrm{d}x} = \ln x \frac{\mathrm{d}x^2}{\mathrm{d}x} + x^2 \frac{\mathrm{d}\ln x}{\mathrm{d}x}$$
$$= 2x \ln x + x$$

≪Product rule of differentiation≫

Episode 2- Cantonese: 2:40 English: 2:46 Putonghua: 2:48

 \ll Derivative of $x^n \gg$

Episode 2- Cantonese: 0:36 English: 0:41 Putonghua: 0:30

«Derivative of natural logarithm»

Episode 2- Cantonese: 1:03 English: 1:12 Putonghua: 1:01

7. Answer: C. By chain rule

$$\frac{\mathrm{d}f\left(g\left(x\right)\right)}{\mathrm{d}x} = \frac{\mathrm{d}g\left(x\right)}{\mathrm{d}x} \frac{\mathrm{d}f\left(g\left(x\right)\right)}{\mathrm{d}g\left(x\right)}$$

So

$$\frac{\mathrm{d}e^{-t\ln 2/T}}{\mathrm{d}t} = \frac{\mathrm{d}\left(-t\ln 2/T\right)}{\mathrm{d}t} \frac{\mathrm{d}e^{-t\ln 2/T}}{\mathrm{d}\left(-t\ln 2/T\right)}$$
$$= -\frac{\ln 2}{T}e^{-t\ln 2/T}$$

 \ll Chain rule \gg

Episode 2- Cantonese: 3:45 English: 3:54 Putonghua: 4:01

 \ll Derivative of exponential function \gg

Episode 2- Cantonese: 1:03 English: 1:12 Putonghua: 1:01

 \ll Derivative of $x^n \gg$

Episode 2- Cantonese: 0:36 English: 0:41 Putonghua: 0:30

8. Answer: D.

With product rule and chain rule

$$\frac{d(xe^{-x})}{dx} = e^{-x} - xe^{-x}$$

$$\frac{d^2(xe^{-x})}{dx^2} = \frac{d}{dx} \left(\frac{d(xe^{-x})}{dx} \right)$$

$$= \frac{d(e^{-x} - xe^{-x})}{dx}$$

$$= -2e^{-x} + xe^{-x}$$

≪Chain rule of differentiation≫

Episode 2- Cantonese: 3:45 English: 3:54 Putonghua: 4:01

≪Product rule of differentiation≫

Episode 2- Cantonese: 2:40 English: 2:46 Putonghua: 2:48

9. Answer: B.

With product rule and chain rule

$$\frac{\mathrm{d}\left[\sin \omega x/\left(x-1\right)\right]}{\mathrm{d}x} = \frac{1}{x-1} \frac{\mathrm{d}\sin\left(\omega x\right)}{\mathrm{d}x} + \sin\left(\omega x\right) \frac{\mathrm{d}\left(x-1\right)^{-1}}{\mathrm{d}x}$$
$$= \frac{1}{x-1} \omega\cos\left(\omega x\right) - \sin\left(\omega x\right) \frac{1}{\left(x-1\right)^{2}}$$

«Chain rule of differentiation»

Episode 2- Cantonese: 3:45 English: 3:54 Putonghua: 4:01

≪Product rule of differentiation≫

Episode 2- Cantonese: 2:40 English: 2:46 Putonghua: 2:48

10. Answer: B.

This result can be memorized for convenience.

$$\frac{d \tan x}{dx} = \frac{d}{dx} \left(\frac{\sin x}{\cos x} \right)$$

$$= \frac{1}{\cos x} \frac{d \sin x}{dx} + \sin x \frac{d (\cos x)^{-1}}{dx}$$

$$= \frac{\cos x}{\cos x} + \sin x (-1) \left(\frac{-\sin x}{\cos^2 x} \right)$$

$$= 1 + \frac{\sin^2 x}{\cos^2 x}$$

$$= (\cos x)^{-2} = \sec^2 x$$

≪Product rule of differentiation≫

Episode 2- Cantonese: 2:40 English: 2:46 Putonghua: 2:48