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All the homework problems are taken from Complex Variables and Applications, Ninth
Edition, by James Ward Brown/Ruel V. Churchill.
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1 In each case, write the principal part of the function at its isolated singular point and
determine whether that point is a removable singular point, an essential singular
point, or a pole:

(a) z exp (1/z); (b)
z2

1 + z
; (c)

sin z

z
; (d)

cos z

z
; (e)

1

(2− z)3
.

2 Show that the singular point of each of the following functions is a pole. Determine
the order m of that pole and the corresponding residue B.

(a)
1− cosh z

z3
; (b)

1− e2z

z4
; (c)

e2z

(z − 1)2
.

3 Suppose that a function f is analytic at z0 and write g(z) = f(z)/(z − z0). Show that
(a) if f(z0) 6= 0, then z0 is a simple pole of g, with residue f(z0);
(b) if f(z0) = 0, then z0 is a removable singular point of g.
Suggestion: As pointed out in Sec. 62, there is a Taylor series for f(z) about z0
since f is analytic there. Start each part of this exercise by writing out a few terms
of that series.
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3 In each case, find the order m of the pole and the corresponding residue B at the
singularity z = 0;

(a)
sinh z

z4
; (b)

1

z(ez − 1)
.

5 Find the value of the integral ∫
C

dz

z3(z + 4)

taken counterclockwise around the circle (a) |z| = 2; (b) |z + 2| = 3.

6 Evaluate the integral ∫
C

cosh πzdz

z(z2 + 1)

when C is the circle |z| = 2, described in the positive sense.
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5 Let C denote the positively oriented circle |z| = 2 and evaluate the integral

(a)

∫
C

tan zdz; (b)

∫
C

dz

sinh 2z
.

1



6 Let CN denote the positively oriented boundary of the square whose edges lie along the
lines

x = ±
(
N +

1

2

)
π and y = ±

(
N +

1

2

)
π,

where N is a positive integer. Show that∫
CN

dz

z2 sin z
= 2πi

[
1

6
+ 2

N∑
n=1

(−1)n

n2π2

]

Then, using the fact that the value of this integral tends to zero as N tends to
infinity (Exercise 8. Sec. 47), point out how it follows that

∞∑
n=1

(−1)n+1

n2
=
π2
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