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All the homework problems are taken from Complex Variables and Applications, Ninth
Edition, by James Ward Brown/Ruel V. Churchill.

P237-238: 1-4;

1 Find the residue at z = 0 of the function

(a)
1

z + z2
; (b) z cos

(
1

z

)
; (c)

z − sin z

z
; (d)

cot z

z4
; (e)

sinh z

z4(1− z2)
.

2 Use Cauchy’s residue theorem (Sec. 76) to evaluate the integral of each of these func-
tions around the circle |z| = 3 in the positive sense:

(a)
e−z

z2
; (b)

e−z

(z − 1)2
; (c) z2 exp

(
1

z

)
; (d)

z + 1

z2 − 2z
.

3 In the example in Sec. 76. two residues were used lo evaluate the integral∫
C

4z − 5

z(z − 1)
dz

where C is the positively oriented circle |z| = 2. Evaluate this integral once again
by using the theorem in Sec. 77 and finding only one residue.

4 Cse the theorem in Sec. 77. involving a single residue. to evaluate the integral of each
of these functions around the circle |z| = 2 in the positive sense:

(a)
z5

1− z3
; (b)

1

1 + z2
; (c)

1

z
.

P246-247: 1-2, 4, 7;

1 In each case, show that any singular point of the function is a pole. Determine the
order m of each pole, and find the corresponding residue B.

(a)
z + 1

z2 + 9
; (b)

z2 + 2

z − 1
; (c)

(
z

2z + 1

)3

: (d)
ez

z2 + π2
.

2 Show that

(a)Res
z=−1

z1/4

z + 1
=

1 + i√
2

(|z| > 0, 0 < arg z < 2π);

(b)Res
z=i

Logz

(z2 + 1)2
=
π + 2i

8
;

(c)Res
z=i

z1/2

(z2 + 1)2
=

1− i
8
√

2
(|z| > 0, 0 < arg z < 2π).

4 Find the value of the integral ∫
C

3z3 + 2

(z − 1)(z2 + 9)
dz.

taken counterclockwise around the circle (a) |z − 2| = 2; (b) |z| = 4.
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7 Use the theorem in Sec. 77. involving a single residue, to evaluate the integral of f(z)
around the positively oriented circle |z| = 3 when

(a)f(z) =
(3z + 2)2

z(z − 1)(2z + 5)
; (b) f(z) =

z3e1/z

1 + z3
.

P253: 3-4;

3 Show that

(a) Res
z=πi/2

sinh z

z2 cosh z
= − 4

π2
;

(b)Res
z=πi

ezt

sinh z
+ Res

z=−πi

ezt

sinh z
= −2 cos(πt).

4 Show that
(a)Res

z=zn
z sec z = (−)n+1zn where zn = π/2 + nπ (n = 0,±1,±2...);

(b)Res
z=zn

(tanh z) = 1 where zn = (π/2 + nπ)i (n = 0,±1,±2...);.

P254: 7-8;

7 Show that ∫
C

dz

(z2 − 1)2 + 3
=

π

2
√

2
.

where C is the positively oriented boundary of the rectangle whose sides lie along
the lines x = ±2, y = 0, and y = 1.
Suggestion: By observing that the four zeros of the polynomial q(z) = (z2− 1)2 + 3
are the square roots of the numbers 1 ±

√
3i, show that the reciprocal 1/q(z) is

analytic inside and on C except at the points

z0 =

√
3 + i√

2
and − z0 =

−
√

3 + i√
2

.

Then apply Theorem 2 in Sec. 83.

8 Consider the function

f(z) =
1

(q(z))2

where q is analytic at z0, q(z0) = 0, and q′(z0) 6= 0. Show that z0 is a pole of order
m = 2 of the function f , with residue

B0 = − q′′(z0)

[q′(z0)]3
.

Suggestion: Note that z0 is a zero of order m = 1 of the function q, so that

q(z) = (z − z0)g(z)

where g(z) is analytic and nonzero at z0. Then write

f(z) =
φ(z)

(z − z0)2
where φ(z) =

1

[g(z)]2
.

The desired form of the residue B0 = φ′(z0) can be obtained by showing that

q′(z0) = g(z0) and q′′(z0) = 2g′(z0).

2


