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ABSTRACT. This lecture note mainly introduces basic concepts in machine learning. Sec-
tion 2 and Section 3 follow [2]. The proofs in Section 4 are taken from [3].
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1. NEURAL NETWORKS

Let D = {(xi,yi) ∈ X × Y}
N
i=1 be a data set containing N samples. Each instance xi

is a feature vector in the feature space X ⊆ Rdx . yi is called label and Y ⊆ Rdy is the
label space.

A neural network is given by specifying a sequence of L + 1 natural numbers: n0 =
dx, n1, n2, . . . , nL = dy , and a set of L affine maps

Tk : Rnk → Rnk+1 , Tk(x) =Wkx+ bk

for k = 0, 1, . . . , L− 1.
A function from X → Y represented by this neural network is in the form

fL,n = TL ◦ σ ◦ TL−1 ◦ σ · · · ◦ T2 ◦ σ ◦ T1

where σ is an activation function. The first space X ⊆ Rn0 is the input layer and the
last one Y ⊆ RnL is the output layer and the rest are called hidden layers. L is the
number of layers and n =

∑
i ni is the size of this neural network. A neuron (Figure 1) is

an information-processing unit that is fundamental to the operation of a neural network (
Figure 2). Historically the activation function is the sigmoid function σ(x) = 1/(1+ e−x)
and the more popular one is the rectified linear unit (ReLU) activation σ(x) = max{0, x}.
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FIGURE 1. Nonlinear model of a neuron, labeled k.

FIGURE 2. A fully connected neural network.

2. APPROXIMATION PROPERTY

A fundamental question is the approximation property of a neural network. Let us
consider the simplest case: one single hidden layer, i.e., a 3-layer neural network, and the
output layer is R, the neural network function of size n is in the form

(1) fn(x) =

n∑
i=1

ciσ (ai · x+ bi) + c0, ai ∈ Rd, bi, ci ∈ R.

It is shown by Barron [1] that using one single hidden layer and the sigmoidal function,
there exists a n-term linear combination of sigmoidal functions fn of the form (1) such that

(2) ∥f − fn∥ ≤
Cf√
n
.
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The approximation rate n−1/2 is universal since it is independent of the dimension in
contrast to a typical rate n−1/d, known as ”the curse of dimensionality”, in the classical
approximation theory.

We first present an approximation result in Hilbert spaces. LetH be a separable Hilbert
space with inner product (·, ·) and norm ∥ · ∥. Let {ϕk}k=1,2,... be an orthonormal basis
forH. As {ϕk}k=1,2,... is an orthonormal basis, we have the representation

f =

∞∑
k=1

fkϕk :=

∞∑
k=1

(f, ϕk)ϕk

and
∥∥{fk}∥∥

l2
= ∥f∥ < ∞. In Barron’s result, the assumption is essentially to ask∥∥{fk}∥∥

l1
<∞ which requires additional smoothness of f as for sequences

∥∥{fk}∥∥2
l2
=

∞∑
k=1

∣∣fk∣∣2 ≤ ( ∞∑
k=1

∣∣fk∣∣)2

=
∥∥{fk}∥∥2

l1

Theorem 2.1. Given a function f ∈ H, if
∥∥{fk}∥∥

l1
<∞, then for any positive integer n,

there exists an n-term approximation

fn =

∥∥{fk}∥∥
l1

n

n∑
i=1

sign
(
fki
)
ϕki ,

such that

∥f − fn∥ ≤

(∥∥{fk}∥∥2
l1
−
∥∥{fk}∥∥2

l2

)1/2
√
n

.

Proof. The proof is a simple modification of Barron’s. Write

f =

∞∑
k=1

fkϕk =

∞∑
k=1

∣∣fk∣∣ sign (fk)ϕk =

∞∑
k=1

pkψk

where, as
∥∥{fk}∥∥

l1
< ∞, pi :=

∣∣fk∣∣ / ∥∥{fk}∥∥
l1
, i = 1, 2, . . . defines a probability

density function, and the rescaled basis
{
ψi :=

∥∥{fk}∥∥
l1
sign

(
f i
)
ϕi

}
.

Introduce a random variable g with distribution Pr {g = ψi} = pi for i = 1, 2, . . ..
Then

E(g) =
∞∑
i=1

piψi = f

and
Var(g) = E

(
∥g∥2

)
− ∥E(g)∥2 =

∥∥{fk}∥∥2
l1
−
∥∥{fk}∥∥2

l2

Using this distribution, we draw n i.i.d. samples gi and let fn = 1
n

∑n
i=1 gi be the

sampled mean. Then by the linearity of expectation, E (fn) = f . By the independence of
gi, we compute the variance

E
(
∥fn − f∥2

)
= Var (fn) =

1

n
Var(g) ≤ 1

n

(∥∥{fk}∥∥2
l1
−
∥∥{fk}∥∥2

l2

)
.

Therefore there exists a realization of the sampled mean satisfies the estimate. □

Then (2) can be proved by showing that the function in the form of (1) is dense in C(Rd

which contains the Fourier basis. Indeed it can be shown that such density result holds for
any non-polynomial activation function.



4 JINGRONG WEI

3. LOSS FUNCTION AND BACK PROPOGATION

A loss function is usually in the form

L =
1

N

N∑
i=1

Ji, with Ji = J (W, b;xi,yi)

where we use a single letter for all weights and bias for all layers

W = (W1, . . . ,WL) , b = (b1, . . . , bL)

If we denote by ŷi = fL,n (xi;W, b), the loss function is a comparison of the true
function value yi with the predicted value ŷi. The simplest example is the least square
problem:

(3) min
W,b
L(W, b) = 1

N

N∑
i=1

∥ŷi − yi∥
2
,

where Ji = ∥ŷi − yi∥
2 is the l2-difference. Loss functions are designed based on the

problem to be solved.
To find the optimal weights, we can apply the gradient descent method to solve (3). In

machine learning tasks, this is called the training process.
To apply gradient descent, we explain the way to compute the derivative ∇W,bL. We

write the variables in a forward pass of the neural network:

x
W1,b1−−−−→ α1

σ−→ β1
W2,b2−−−−→ α2

σ−→ β2 · · ·
WL−1,bL−1−−−−−−−→ αL−1

σ−→ βL−1
WL,bL−−−−→ ŷ

J−→ L.
Given weights Wk, k = 1, . . . , L, we can evaluate all intermediate variables αk, βk.

To compute the derivative, we shall go backwards and the corresponding algorithm is
known as back propagation. We start from the first two weights matrices. To be precise,
we first write the component-wise formula and then abbreviate by matrix notation.

The component form of ŷ =WLβL−1 + bL is: for i = 1, 2, . . . , nL :

ŷi =

nL−1∑
j=1

W i,j
L βj

L−1 + biL,

where WL = (W i,j
L ) and bL =

(
b1L, x

2
L, . . . , b

nL

L

)⊤
. Then for i = 1, 2, . . . , nL, j =

1, 2, . . . , nL−1 :
∂Ji

∂W i,j
L

=
∂Ji

∂ŷi

∂ŷi

∂W i,j
L

=
∂Ji

∂ŷi
βj
L−1,

which can be written as
∂L
∂WL

=
∂L
∂ŷ

∂ŷ

∂WL
=
∂L
∂ŷ

β⊤
L−1.

Here the gradient ∂L
∂ŷ (ŷ) is a column vector of size nL evaluated at ŷ and β⊤

L−1 is a row
vector of size nL−1 so that the product is a matrix with consistent dimension of WL.

To go further, by chain rule, formally we have

∂L
∂W i,j

L−1

=
∂L
∂ŷ

∂ŷ

∂βi
L−1

∂βi
L−1

∂αi
L−1

∂αi
L−1

∂W i,j
L−1

=
∂L

∂βi
L−1

∂αi
L−1

∂W i,j
L−1

for i = 1, 2, . . . , nL, j = 1, 2, . . . , nL−1, which can be written as

∂L
∂WL−1

=

(
∂L

∂βL−1
. ∗ ∂βL−1

∂αL−1

)
∂αL−1

∂WL−1
=

(
∂L

∂βL−1
. ∗ ∂βL−1

∂αL−1

)
β⊤
L−2.
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We now introduce notation to simplify the computation. Denoted by gL = ∂L
∂ŷ , gk =

∂L
∂αk

and lk = ∂L
∂βk

for k = L − 1, . . . , 1. The vectors gk, lk can be computed by the
backward pass (back propagation). Using gL, we have

lL−1 =
∂L

∂βL−1
=W⊤

L

∂L
∂ŷ

=W⊤
L gL.

The derivative ∂βi
L−1

∂αi
L−1

= σ′ (αi
L−1

)
, and the action lL−1. ∗ ∂βL−1

∂αL−1
:= lL−1. ∗ σ′ (αL−1) is

the component-wise product (so-called Hadamard product) and . * is the MATLAB nota-
tion for such product. For sigmoidal function σ, there is a simple formula on its derivative

σ′(x) = σ(x)(1− σ(x)).

For ReLU, the derivative is even simpler σ′(x) = 1 if x ≥ 0 and σ′(x) = 0 otherwise.
Inductively going backword, we have the diagram

x
W⊤

1← g1
σ′

← l1
W⊤

2← g2
σ′

← l2 · · ·
W⊤

L−1← gL−1
σ′

← lL−1
W⊤

L← gL
J′

← L.

If we collect the forward pass and backward pass together, we can find they are kind of
dual to each other which makes the back propagation is easy to derive.

x
W1−−→ α1

σ−→ β1
W2−−→ α2

σ−→ β2 . . .
WL−1−−−−→ αL−1

σ−→ βL−1
WL−−→ ŷ

J−→ L

x
W⊤

1← g1
σ′

← l1
W⊤

2← g2
σ′

← l2 · · ·
W⊤

L−1← gL−1
σ′

← lL−1
W⊤

L← gL
J′

← L.
The derivative to the weights can be computed by

∂L
∂Wk

= gkβ
⊤
k−1,

∂L
∂bk

= gk.

Noted that∇(W,b)L =
∑N

i=i∇(W,b)Ji. In each iteration of gradient descent, we need to
compute the back propagation sequence for each data pair (xi,yi). To save compuatation
cost, we shall introduce stochastic gradient descent, which approximates the derivative
using only partial data.

4. STOCHASTIC GRADIENT DESCENT

We use x = (W, b) to denote the weights and bias. Let x0 ∈ Rd and {γk > 0} a
sequence of step sizes. The Stochastic Gradient Descent (SGD) algorithm is given by

(4) xk+1 = xk − γk∇Jik
(
xk
)
,

where ik ∈ {1, . . . n} is sampled with probability 1
n .

Given two random variables x, y in Rd, we note:

• the expectation of x as E[x],
• the expectation of x conditioned to y as E[x|y],
• the variance of x as V[x] := E

[
∥x− E[x]∥2

]
.

An important feature of the SGD Algorithm is that at each iteration we follow the di-
rection −∇Jik

(
xk
)
, which is an unbiaised estimator of −∇L

(
xk
)
. Indeed, since

E
[
∇Ji

(
xk
)
| xk

]
=

n∑
i=1

1

n
∇Ji

(
xk
)
= ∇L

(
xk
)
.
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Lemma 4.1. Suppose Ji is convex and Li-smooth. Let Lmax = maxi Li. Then L is
Lmax-smooth in expectation, in the sense that for all x, y ∈ Rd,

1

2Lmax
E
[
∥∇Ji(y)−∇Ji(x)∥2

]
≤ L(y)− L(x)− ⟨∇L(x), y − x⟩.

Proof. For each i = 1, 2, . . . , N , using co-coercivity applied to Ji, together with the fact
that Li ≤ Lmax, allows us to write

1

2Lmax
∥∇Ji(y)−∇Ji(x)∥2 ≤ Ji(y)− Ji(x) + ⟨∇Ji(x), y − x⟩ .

To conclude, multiply the above inequality by 1
N , and sum over i, using the fact that

1
N

∑
i Ji = L and 1

N

∑
i∇Ji = ∇L.

□

As direct consequence we have the following bound at x∗.

Corollary 4.2. Suppose Ji is convex and Li-smooth. Let Lmax = maxi Li. Then, for
every x ∈ Rd and every x∗ ∈ argminL, we have that

1

2Lmax
E
[
∥∇Ji(x)−∇Ji (x∗)∥2

]
≤ L(x)− L(x∗).

Lemma 4.3 (Variance transfer : gradient noise). Suppose Ji is convex and Li-smooth. Let
Lmax = maxi Li. Then for all x ∈ Rd we have that

E
[
∥∇Ji(x)∥2

]
≤ 4Lmax(L(x)− inf L) + 2σ∗

L

where σ∗
L = V [∇Ji (x∗)] for x∗ ∈ argminL.

Proof. Noted that

∥∇Ji(x)∥2 ≤ 2 ∥∇Ji(x)−∇Ji (x∗)∥2 + 2 ∥∇Ji (x∗)∥2

Taking the expectation over the above inequality, then applying Corollary 4.2 gives the
result. □

Theorem 4.4 (Convergence rate of SGD for strongly convex problems). Assume Ji is
convex andLi-smooth. SupposeL is µ-strongly convex and letLmax = maxi Li. Consider{
xk
}
k=0,1,2,...

the sequence generated by the SGD algorithm (4) with a constant stepsize
satisfying 0 < γ ≤ 1

2Lmax
. It follows that for k ≥ 0,

E
∥∥xk − x∗∥∥2 ≤ (1− γµ)k

∥∥x0 − x∗∥∥2 + 2γ

µ
σ∗
L

where σ∗
L = V [∇Ji (x∗)] for x∗ = argminL.

Proof. We will note Ek[·] instead of E
[
· | xk

]
, for simplicity. Using the definition of SGD

and expanding the squares we have∥∥xk+1 − x∗
∥∥2 =

∥∥xk − x∗ − γ∇Ji (xk)∥∥2
=
∥∥xk − x∗∥∥2 − 2γ

〈
xk − x∗,∇Ji

(
xk
)〉

+ γ2
∥∥∇Ji (xk)∥∥2

Taking expectation conditioned on xk we obtain

Ek

[∥∥xt+1 − x∗
∥∥2] = ∥∥xk − x∗∥∥2 − 2γ

〈
xk − x∗,∇L

(
xk
)〉

+ γ2Ek

[∥∥∇Ji (xk)∥∥2]
≤ (1− γµ)

∥∥xk − x∗∥∥2 − 2γ
[
L
(
xk
)
− L (x∗)

]
+ γ2Ek

[∥∥∇Ji (xk)∥∥2]
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Taking expectations again and using a variance transfer (see Lemma 4.3) gives

E
[∥∥xk+1 − x∗

∥∥2] ≤ (1− γµ)E
∥∥xk − x∗∥∥2 + 2γ2σ∗

f + 2γ (2γLmax − 1)E
[
L
(
xk
)
− L (x∗)

]
≤ (1− γµ)E

[∥∥xk − x∗∥∥2]+ 2γ2σfL∗,

where we used in the last inequality that 2γLmax ≤ 1 since γ ≤ 1
2Lmax

. Recursively
applying the above and summing up the resulting geometric series gives

E
∥∥xk − x∗∥∥2 ≤ (1− γµ)k

∥∥x0 − x∗∥∥2 + 2

k−1∑
j=0

(1− γµ)jγ2σ∗
f

≤ (1− γµ)k
∥∥x0 − x∗∥∥2 + 2γσ∗

f

µ
.

□

For every ε > 0, we can guarantee that E
∥∥xK − x∗∥∥2 ≤ ε provided that

γ = min

{
ε
µ

4σ∗
f

,
1

2Lmax

}
and K ≥ max

{
1

ε

4σ∗
f

µ2
,
2Lmax

µ

}
log

(
2
∥∥x0 − x∗∥∥2

ε

)
.

Compared with gradient decent, the step size is further restricted by the variance. To
reduce the variance and enlarge the step size, one approach is to use the minibatching SGD:
let Bk ⊆ {1, . . . n} be a set of size b sampled uniformly among {1, . . . n}, then

(5) xk+1 = xk − γk∇LBk

(
xk
)
.

where LBk
(·) = 1

|Bk|
∑

i∈Bk
Ji (·).

Theorem 4.5. Suppose Ji is convex and Li-smooth. Assume further that L is µ-strongly
convex and L-smooth. Consider

{
xk
}
k=0,1,2,...

the sequence generated by the minibatch-
ing SGD algorithm (5) with a constant stepsize satisfying 0 < γ ≤ 1

2Lb
. It follows that for

k ≥ 0,

E
[∥∥xk − x∗∥∥2] ≤ (1− γµ)t

∥∥x0 − x∗∥∥2 + 2γσ∗
b

µ
,

where

Lb =
n(b− 1)

b(n− 1)
L+

n− b
b(n− 1)

Lmax, σ∗
b =

n− b
b(n− 1)

σ∗
L.

Remark 4.6. For b = 1, minibatching SGD reduces to SGD and the results in 4.4. for
b = n minibatching SGD reduces to GD, we see that Lb = L and σ∗

b = 0. We recover
the fact that the behavior of (GD) is controlled by the Lipschitz constant L, and has no
variance.

Some online resources:

• A neural network playground using tensorflow: https://playground.tensorflow.
org/

• Simple Neural Network for MNIST numpy from scratch:
https://www.kaggle.com/code/scaomath

https://playground.tensorflow.org/
https://playground.tensorflow.org/
https://www.kaggle.com/code/scaomath/simple-neural-network-for-mnist-numpy-from-scratch?scriptVersionId=117957187
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