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ABSTRACT. In this note, we discuss the existence and uniqueness of the solution to un-
constrained convex optimization problems. We present convergence analysis for gradient
flow and gradient descent methods. The main reference is [1].
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Consider the unconstrained convex minimization problem:

min
x∈Rn

f(x),

where f is a smooth convex function (f ∈ S1,1
µ,L).

1. EXISTENCE AND UNIQUENESS OF SOLUTION

A point x∗ is a global minimizer if f(x∗) ≤ f(x) for all x ∈ Rn. A point x∗ is a local
minimizer if there is a neighborhood N of x∗ such that f(x∗) ≤ f(x) for all x ∈ N . The
minimizer is a strict minimizer if the inequality is strict.

A function f is called lower semicontinuous at x ∈ V if

f(x) ≤ lim inf
k→∞

f (xk)

for every sequence {xk} ⊂ V with xk → x. f is lower semicontinuous if it is lower
semicontinuous at each x ∈ V .

A function f is called coercive if for all sequence {xk} with ∥xk∥ → ∞, we have
limk→∞ f(xk) = ∞.

Proposition 1.1. Suppose V is non-empty and closed and f : V → R is lower-semicontinuous
and coercive. Then f has a global minimum over V .
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Proof. We may assume that f(x) < ∞ for some x ∈ V . Then f∗ = infx∈V f(x) <
∞. Let {xk} ⊂ V be a sequence such that limk→∞ f (xk) = f∗ < ∞. Then since f is
coercive, {xk} is bounded. Then there exists a subsequence xkj converging to a point x∗.
Since V is closed, x∗ ∈ V . Then

f∗ = lim
k→∞

f (xk) = lim
j→∞

f
(
xkj

)
≥ f (x∗)

Therefore, x∗ is a global minimmum of f over V . □

Recall that we have first-order necessary conditions, second-order necessary/sufficient
conditions to characterize local minimizers.

Theorem 1.2 (First-Order Necessary Conditions). If x∗ is a local minimizer and f is
continuously differentiable in an open neighborhood of x∗, then ∇f(x∗) = 0.

Theorem 1.3 (Second-Order Necessary Conditions). If x∗ is a local minimizer of f and
∇2f exists and is continuous in an open neighborhood of x∗, then ∇f(x∗) = 0 and
∇2f(x∗) is positive semidefinite.

Theorem 1.4 (Second-Order Sufficient Conditions). Suppose that ∇2f is continuous in
an open neighborhood of x∗ and that ∇f(x∗) = 0 and ∇2f(x∗) is positive definite. Then
x∗ is a strict local minimizer of f .

The most important properties of convex functions is that we could find global mini-
mizers under this setting,

Theorem 1.5. If f ∈ S1 (Rn) and ∇f (x∗) = 0 then x∗ is the global minimizer of f(·) on
Rn.

Proof. In view of definition, for any x ∈ Rn we have

f(x) ≥ f (x∗) + ⟨∇f (x∗) , x− x∗⟩ = f (x∗)

□

Remark 1.6. The minimizer may not be unique. However, the solution forms a convex set.

Theorem 1.7. If f ∈ S1
µ (Rn) and ∇f (x∗) = 0, then

f(x) ≥ f (x∗) +
1

2
µ ∥x− x∗∥2

for all x ∈ Rn.

Remark 1.8. If the solution of minimizing a strongly convex function exists, then it is the
unique solution.

2. GRADIENT DESCENT METHODS

In this section, we present convergence analysis for gradient descent methods. We start
with introducing gradient flow.



MATH 6222 LECTURE NOTE 2:UNCONSTRAINED CONVEX OPTIMIZATION AND GRADIENT DESCENT METHODS3

2.1. Gradient Flow. The simplest dynamical system associated with the unconstrained
minimization problem is the gradient flow:

(1) x′(t) = −∇f(x(t)),

with the initial condition x(0) = x0. Assume f ∈ S1
µ with µ > 0 and let x∗ be the global

minimizer of f . Our primary interest lies in analyzing the convergence of x(t) to x∗ as
t → ∞.

In order to study the stability of an equilibrium x∗ of a autonomous dynamical system
defined by a vector field G : V → V :

(2) x′ = G(x(t)),

Lyapunov introduced the so-called Lyapunov function E(x) [3, 4], which is nonnegative
and the equilibrium point x∗ satisfies E (x∗) = 0 and the Lyapunov condition: −∇E(x) ·
G(x) is locally positive near the equilibrium point x∗. That is the flow G(x) may not be
the perfect −∇E(x) direction but contains positive component in that direction. Then the
(local) decay property of E(x) along the trajectory x(t) of the autonomous system (2) can
be derived immediately

d

dt
E(x(t)) = ∇E(x) · x′(t) = ∇E(x) · G(x) < 0.

To further establish the convergence rate of E(x(t)), Chen and Luo [1] introduced the
strong Lyapunov condition: suppose there exists a compact subset W ⊆ V , a positive
constant c > 0, a constant q ⩾ 1, and a function p(x) : V → R, such that E(x) ⩾ 0 and

(3) −∇E(x) · G(x) ⩾ c Eq(x) + p2(x) ∀x ∈ W.

Under these conditions, we call E a locally strong Lyapunov function (if W ⊂ V ) or a
globally strong Lyapunov function (if W = V ).

Theorem 2.1. Assume that E(x) satisfies the strong Lyapunov property (3). If the trajec-
tory x(t) of (2) satisfies {x(t) : t ⩾ 0} ⊂ W , then for all t ⩾ 0,

(4) E(x(t)) +
∫ t

0

ec(s−t)∥p(x(s))∥2 ds ⩽ E0 exp(−c t), for q = 1.

and

(5) E(x(t)) ⩽
(
(q − 1)c t+ E1−q

0

)1/(1−q)

, for q > 1,

where E0 = E(x(0)).

Proof. By assumption, for all t ⩾ 0,

d

dt
E(x(t)) = ∇E(x(t)) · x′(t) = ∇E(x(t)) · G(x(t))

⩽ −c Eq(x(t))− ∥p(x(t))∥2
(6)

For the case q = 1, integrating (6) immediately gives the desired result.
Now consider q > 1. From (6), we have

d

dt
E1−q(x(t)) = (1− q)

E ′(x(t))

Eq(x(t))
⩾ c(q − 1).

Integrating this inequality yields

E1−q(x(t))− E1−q(x(0)) ⩾ c(q − 1)t, t ⩾ 0.
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Rearranging gives

E(x(t)) ⩽
(
(q − 1)c t+ E1−q

0

)1/(1−q)

,

which completes the proof. □

Furthermore if ∥x − x∗∥2 ≤ CE(x), then we can derive the stability of x∗ from the
decay of Lyapunov function E(x).

A natural choice for the Lyapunov function is the optimality gap:

(7) E(x) = f(x)− f(x⋆).

Direct computation gives

−∇E(x) · G(x) = ∥∇f(x)∥2∗ ≥ µ E(x) + 1

2
∥∇f(x)∥2∗.

For the inequality, we use the bound for f ∈ S1
µ

∥∇f(x)∥2∗ = ∥∇f(x)−∇f(x∗)∥2∗ ≥ 2µDf (x, x
∗) = 2µE(x).

Notice we split the ∥∇f(x)∥2∗ to have an additional positive term p2 = ∥∇f(x)∥2∗/2.
We can consider alternative candidates for strong Lyapunov functions besides the opti-

mality gap in (7). Two notable examples are presented below. One is the squared distance
to the minimizer:

E(x) = 1

2
∥x− x⋆∥2.

Using inequality [5, Theorem 2.1.12]

M∇f (x, x
∗) ≥ µL

L+ µ
∥x− x∗∥2 + 1

L+ µ
∥∇f(x)∥2∗,

we obtain:

−∇E(x) · G(x) = ⟨x− x⋆,∇f(x)⟩ ≥ 2µL

L+ µ
E(x) + 1

L+ µ
∥∇f(x)∥2∗.

Another effective candidate is a combination of the optimality gap and squared distance:

E(x) = f(x)− f(x⋆) +
µ

2
∥x− x⋆∥2.

Direct computation gives

−∇E(x) · G(x) = ∥∇f(x)∥2∗ + µ⟨x− x⋆,∇f(x)⟩ ≥ µE(x) + ∥∇f(x)∥2∗.

We summarize the results in the following proposition.

Proposition 2.2. Assume f ∈ S1,1
µ,L with 0 < µ ≤ L ≤ ∞. For the gradient flow

x′(t) = −∇f(x(t)), we have the following strong Lyapunov functions:

E(x) = f(x)− f(x⋆), −∇E(x) · G(x) ≥ µE(x) + 1

2
∥∇f(x)∥2∗,(8)

E(x) = 1

2
∥x− x⋆∥2, −∇E(x) · G(x) ≥ 2µL

L+ µ
E(x) + 1

L+ µ
∥∇f(x)∥2∗,(9)

(10) E(x) = f(x)− f(x⋆) +
µ

2
∥x− x⋆∥2, −∇E(x) · G(x) ≥ µE(x) + ∥∇f(x)∥2∗.

Consequently Theorem 2.1 guarantees the exponential decay O(e−ct) for both E(x) and
∥∇f(x)∥∗ along the trajectory of the gradient flow (1).
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When verifying the strong Lyapunov property, we retain an extra positive term p2 =
C∥∇f(x)∥2∗. This additional term is useful for analyzing the gradient descent method.

When µ = 0, the strong Lyapunov properties mentioned earlier degenerate. Define the
sub-level set of f for a given constant value c as:

Sc(f) = {x : f(x) ≤ c}.
Since f is convex, the sub-level set Sc(f) is also convex. The set of minimizers of f , where
it attains its minimum value fmin, can be expressed as Sfmin(f).

Lemma 2.3. Let f be convex and coercive. For a given finite value f0, there exists a
constant R0 such that

(11) max
x⋆∈argmin f

max
x∈Sf0

∥x− x⋆∥ ≤ R0.

Proof. If Sf0 were unbounded, we could construct a sequence {xn} such that f(xn) ≤ f0
but ∥xn∥ > n for n = 1, 2, . . ., which would contradict the coercivity of f .

Additionally, argmin f ⊆ Sf0 , so argmin f is also bounded. Thus, (11) holds. □

Proposition 2.4. Let f be convex and coercive. For G(x) = −∇f(x), we have the fol-
lowing strong Lyapunov function E(x) = f(x)− f(x⋆), where x⋆ is an arbitrary but fixed
point in the minimum set argmin f ,

(12) −∇E(x) · G(x) ≥ 1

R2
0

E2(x) ∀x ∈ Sf0(f),

where R0 is defined by (11) and f0 = f(x0). Consequently the trajectory of the gradient
flow x(t) satisfies

(13) f(x(t))− f(x⋆) ≤ 1

R2
0 t+ C

, ∀t > 0.

Proof. For E(x) = f(x)− f(x⋆) assuming coercivity and convexity, we have

(14) f(x)− f(x⋆) ≤ ⟨∇f(x), x− x⋆⟩ ≤ R0∥∇f(x)∥∗ ∀x ∈ Sf0(f).

Thus, the strong Lyapunov property (12) follows by

−∇E(x) · G(x) = ∥∇f(x)∥2∗ ≥ 1

R2
0

E2(x) ∀x ∈ Sf0(f).

Since −∇E(x)·G(x) = ∥∇f(x)∥2∗ ≥ 0, the trajectory of the gradient flow x(t) satisfies
x(t) ∈ Sf0(f). By applying Theorem 2.1, we conclude that the optimality gap f(x(t)) −
f(x⋆) decays at the sublinear rate O(1/t) along the trajectory of the gradient flow. □

2.2. Gradient Descent Methods. With the strong Lyapunov property, the convergence of
the implicit Euler method is straightforward.

Theorem 2.5. Assume E(x) is a convex Lyapunov function satisfying the strong Lyapunov
property for some c > 0:

−∇E(x) · G(x) ⩾ c E(x), ∀x ∈ V.

Let {xk} be the sequence generated by the implicit Euler method, starting from a given x0,
for k = 0, 1, . . .

xk+1 − xk = αkG(xk+1).

Then, for k ≥ 0, the sequence satisfies the linear contraction:

E(xk+1) ⩽
1

1 + c αk
E(xk).
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Proof. For brevity, denote Ek = E(xk). Then

Ek+1 − Ek ⩽ (∇E(xk+1), xk+1 − xk) convexity of E
= αk(∇E(xk+1),G(xk+1)) implicit Euler method
≤ −c αkEk+1. strong Lyapunov property at xk+1

□

When G(x) = −∇f(x), the implicit Euler method applied to the gradient flow:

(15) xk+1 = xk − α∇f(xk+1)

can be reformulated as:

(16) xk+1 = proxαf (xk) := argmin
x

{
f(x) +

1

2α
∥x− xk∥2

}
,

which is known as the proximal point algorithm (PPA) [2, 6].
Next, we present the convergence analysis for the explicit Euler method applied to the

gradient flow, which corresponds to the gradient descent method.

Theorem 2.6. Assume f ∈ S1,1
µ,L with 0 < µ ≤ L < ∞. Let {xk} be the sequence

generated by

(17) xk+1 = xk − αk∇f(xk).

For αk ≤ 2/(L+ µ), we have

Ek+1 ≤ (1− µαk)Ek,

where E(x) = f(x)− f(x⋆) + µ
2 ∥x− x⋆∥2 and Ek = E(xk).

The optimal value αk = 2/(L+ µ) gives

Ek+1 ≤ L− µ

L+ µ
Ek,

and the quasi-optimal value αk = 1/L gives

Ek+1 ≤ (1− µ/L)Ek.

Proof. As f ∈ S1,1
µ,L ⊂ S1

µ, we have verified the strong Lyapunov property in (10) with
an additional term ∥∇f(x)∥2. Note that E ∈ S1,1

2µ,L+µ. Using the definition of Bregman
divergence, the upper bound of DE , and the strong Lyapunov condition at xk, we have

Ek+1 − Ek = ⟨∇E(xk), xk+1 − xk⟩+DE(xk+1, xk)

≤ −αk⟨∇E(xk),∇f(xk)⟩+
L+ µ

2
∥xk+1 − xk∥2

≤ −µαkEk − αk

(
1− L+ µ

2
αk

)
∥∇f(xk)∥2∗.

For αk ≤ 2/(L+µ), we have Ek+1 −Ek ≤ −µαkEk, and the linear convergence follows.
□

One can also choose

E(x) = f(x)− f(x⋆) or E(x) = 1

2
∥x− x⋆∥2,

and prove the linear convergence of the gradient descent method. Here, we present a
sufficient decay property of the function values.
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Proposition 2.7. Assume f ∈ S1,1
µ,L with 0 < µ ≤ L < ∞. For the gradient descent

method with α = 1/L:

xk+1 = xk − 1

L
∇f(xk),

we have the function decay estimate

(18) f(xk+1)− f(xk) ≤ − 1

2L

(
∥∇f(xk+1)∥2∗ + ∥∇f(xk)∥2∗

)
.

Consequently,

(19) f(xk+1)− f(x⋆) ≤ L− µ

L+ µ

(
f(xk)− f(x⋆)

)
.

Proof. Using the Bregman divergence and the identity of squares, we expand the differ-
ence:

f(xk+1)− f(xk) = ⟨∇f(xk+1), xk+1 − xk⟩ −Df (xk, xk+1)

= −α⟨∇f(xk+1),∇f(xk)⟩ −Df (xk, xk+1)

= −α

2

(
∥∇f(xk+1)∥2∗ + ∥∇f(xk)∥2∗

)
+

α

2
∥∇f(xk+1)−∇f(xk)∥2∗ −Df (xk, xk+1).

Then, using the bound Df (xk, xk+1) ≥ 1
2L∥∇f(xk+1)−∇f(xk)∥2 , we cancel the posi-

tive term, obtaining (18).
Finally, applying the inequality f(x)−f(x⋆) ⩽ 1

2µ∥∇f(x)∥2∗ to relate the terms on the
right-hand side to the optimality gap, we derive (19). □

Now consider the case µ = 0 and introduce a perturbed objective

fϵ(x) = f(x) +
ϵ

2
∥x∥2 ,

with some ϵ > 0. Then it is clear that

(20) fϵ(x
∗
ϵ ) ≤ fϵ(x

∗) =⇒ −f(x∗) ≤ −fϵ(x
∗
ϵ ) +

ϵ

2
∥x∗∥2 ,

where x∗
ϵ denotes the unique global minimizer of fϵ and x∗ ∈ argmin f is bounded, i.e.,

∥x∗∥ < ∞. Since fϵ ∈ S1,1
ϵ,L+ϵ , then applying gradient descent with α = 1/(L + ϵ), and

by Theorem 2.6 we have that

fϵ(xk)− fϵ(x
∗
ϵ ) +

ϵ

2
∥yk − x∗

ϵ∥
2 ≤ (1− ϵ/(L+ ϵ))

−k Eϵ(x0, y0),

where Eϵ(x, y) = fϵ(x)− fϵ(x
∗
ϵ ) +

ϵ
2 ∥y − x∗

ϵ∥
2.

Combining this with (20) yields

f(xk)− f(x∗) ≤ fϵ(xk)− fϵ(x
∗
ϵ ) +

ϵ

2

(
∥x∗∥2 − ∥xk∥2

)
≤ ϵ

2
∥x∗∥2 + (1− ϵ/(L+ ϵ))

−k Eϵ(x0, y0).

Note that both ∥x∗∥ and E(x0, y0) are bounded constants. To achieve the accuracy f(xk)−
f(x∗) ≤ O(ϵ), the number of iterations is bounded by

(1− ϵ/L)
−k

= ϵ =⇒ k =
| ln ϵ|

ln(1 + ϵ/L)
∼ L

ϵ
| ln ϵ|.
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Compared with the complexity O(ϵ−1), the log factor | ln ϵ| is negligible. This gives com-
plexity of gradient descent methods for convex problems. However, for practical perfor-
mance, using the fixed small constant ϵ may not be efficient than dynamically changing
sequence ϵk → 0.

Accelerated gradient methods achieve a linear convergence rate of O(1−
√
µ/L)k for

strongly convex problems and a sublinear rate of O(1/k2) for convex problems. These are
optimal rates for first-order (using gradients) iterative methods. For some specific optimal
methods, see [5, 1].
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