
MATH 6222 LECTURE NOTE 1: SMOOTH CONVEX FUNCTIONS

JINGRONG WEI

ABSTRACT. This lecture note mainly introduces the function class considered in smooth
convex optimization and is prepared based on [1, Chapter 2].
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1. CONVEX FUNCTIONS

Definition 1.1 (Convex sets). A set V ⊆ Rn is called convex if for any x, y ∈ V and α
from [0, 1] we have αx+ (1− α)y ∈ V .

Thus, a convex set contains the whole segment [x, y] provided that the end points x and
y belong to the set.

Definition 1.2 (Convex function). A continuously differentiable function f(·) is called
convex on a convex set V (notation f ∈ S1(V )) if for any x, y ∈ V we have

(1) f(y) ≥ f(x) + ⟨∇f(x), y − x⟩.

If −f(·) is convex, we call f(·) concave.
For convex functions, the following properties hold.

Lemma 1.3 (Closed under linear combination). If f1 and f2 are convex and α, β ≥ 0,
then the function f = αf1 + βf2 is convex.

Lemma 1.4 ( Closed under linear transformation). If f ∈ S1(V ), then for A : Rm → Rn

and b ∈ Rn such that Ax+ b ∈ V , ϕ(x) = f(Ax+ b) is convex.

Theorem 1.5 (Definition of convex function without differentiability). A continuously dif-
ferentiable function f belongs to the class S1(V ) if and only if for any x, y ∈ V and
α ∈ [0, 1] we have

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).

Proof. (⇒) This direction is straightforward using the definition of convex function at
xα = αx+ (1− α)y.
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(⇐) Choose some α ∈ [0, 1). Then

f(y) ≥ 1

1− α
[f (xα)− αf(x)] = f(x) +

1

1− α
[f (xα)− f(x)]

= f(x) +
1

1− α
[f(x+ (1− α)(y − x))− f(x)].

Let α tend to 1 , we get the desired result. □

The epigraph of a function f : V → [−∞,+∞] is defined as

epi f := {(x,w)|x ∈ V,w ∈ R, f(x) ≤ w}.

Proposition 1.6. A function f : V → R is convex if and only if epi f ⊂ Rn+1 is convex.

Theorem 1.7. A continuously differentiable function f belongs to the class S1(V ) if and
only if for any x, y ∈ V we have

(2) ⟨∇f(x)−∇f(y), x− y⟩ ≥ 0.

Proof. (⇒) This direction is straightforward.
(⇐)Define xτ = x+ τ(y − x) ∈ V . Then

f(y) = f(x) +

∫ 1

0

⟨∇f(x+ τ(y − x)), y − x⟩dτ

= f(x) + ⟨∇f(x), y − x⟩+
∫ 1

0

⟨∇f (xτ )−∇f(x), y − x⟩ dτ

= f(x) + ⟨∇f(x), y − x⟩+
∫ 1

0

1

τ
⟨∇f (xτ )−∇f(x), xτ − x⟩ dτ

≥ f(x) + ⟨∇f(x), y − x⟩.

□

For any f ∈ C1, the linear Taylor expansion at x is

fl(y;x) := f(x) + ⟨∇f(x), y − x⟩.

For f ∈ S1(V ), the Bregman divergence is defined as

Df (y, x) := f(y)− fl(y;x) = f(y)− f(x)− ⟨∇f(x), y − x⟩

For fixed x ∈ V,Df (·, x) is also convex. Bregman divergence is in general asymmetric,
i.e.,

Df (y, x) ̸= Df (x, y), if x ̸= y

We then introduce its symmetrization

M∇f (x, y) := Df (y, x) +Df (x, y) = ⟨∇f(x)−∇f(y), x− y⟩

Theorem 1.8 (Definition using twice differentiablility). Let V be an open set. A twice
continuously differentiable function f belongs to the class S2(V ) if and only if for any
x ∈ V we have

∇2f(x) ⪰ 0
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Proof. (⇒) Let a function f from C2(V ) be convex and s ∈ Rn. Let xτ = x + τs ∈ V
for τ > 0 small enough. Then, in view of (2), we have

0 ≤ 1

τ2
⟨∇f (xτ )−∇f(x), xτ − x⟩ = 1

τ
⟨∇f (xτ )−∇f(x), s⟩

=
1

τ

∫ τ

0

〈
∇2f(x+ λs)s, s

〉
dλ

and we get the desired result by letting τ tend to zero.
(⇐) For all x, y ∈ V we have

f(y) = f(x) + ⟨∇f(x), y − x⟩+
∫ 1

0

∫ τ

0

〈
∇2f(x+ λ(y − x))(y − x), y − x

〉
dλdτ

≥ f(x) + ⟨∇f(x), y − x⟩.
□

Let us look at some examples of differentiable convex functions on Rn.
• Every linear function f(x) = α+ ⟨a, x⟩ is convex.
• Let matrix A be symmetric and positive semidefinite. Then the quadratic function

f(x) = α+ ⟨a, x⟩+ 1

2
⟨Ax, x⟩

is convex (since ∇2f(x) = A ⪰ 0 ).
• The following functions of one variable belong to S1(R) :

f(x) = ex,

f(x) = |x|p, p > 1,

f(x) =
x2

1− |x|
,

f(x) = |x| − ln(1 + |x|)
• ℓp-norm approximation:

f(x) =

m∑
i=1

|⟨ai, x⟩ − bi|p

2. SMOOTH FUNCTIONS

Denote by C1,1
L the set of all C1 functions, the gradient for which is Lipschitz continuous

with constant L > 0 :

∥∇f(x)−∇f(y)∥∗ ⩽ L∥x− y∥ ∀x, y ∈ V

where, for g ∈ V ∗, the dual norm is

∥g∥∗ := sup
v∈V
∥v∥=1

⟨g, v⟩ = sup
v∈V \{0}

⟨g, v⟩
∥v∥

.

Theorem 2.1 (Bounds using Lipschitz smoothness). All conditions below, holding for all
x, y ∈ Rn, are equivalent to the inclusion f ∈ C1,1

L ∩ S1:

(1) 0 ≤ Df (y, x) ≤ L
2 ∥x− y∥2,

(2) 1
2L∥∇f(x)−∇f(y)∥2∗ ≤ Df (y, x),

(3) (co-coercivity) 1
L∥∇f(x)−∇f(y)∥2∗ ≤ M∇f (x, y),
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(4) 0 ≤ M∇f (x, y) ≤ L∥x− y∥2.

Proof. f ∈ C1,1
L ∩ S1 ⇒ (1). Indeed, the first inequality in (1) follows from the definition

of convex functions. To prove the second one, note that

Df (y, x) = f(y)− f(x)− ⟨∇f(x), y − x⟩

=

∫ 1

0

⟨∇f(x+ τ(y − x))−∇f(x), y − x⟩dτ

≤
∫ 1

0

Lτ∥y − x∥2dτ =
L

2
∥y − x∥2.

(1) ⇒ (2). Let us fix x0 ∈ Rn. Consider the function ϕ(y) = f(y) − ⟨∇f (x0) , y⟩.
Note thats ϕ(y)− ϕ(x0) = Df (y, x0) ≥ 0 for any y. Therefore, we have

ϕ (x0) = min
x∈Rn

ϕ(x)
(1)

≤ min
x∈Rn

{
ϕ(y) + ⟨∇ϕ(y), x− y⟩+ L

2
∥x− y∥2

}
= min

r≥0

{
ϕ(y)− r∥∇ϕ(y)∥∗ +

L

2
r2
}

= ϕ(y)− 1

2L
∥∇ϕ(y)∥2∗

and we get (2) since ∇ϕ(y) = ∇f(y)−∇f (x0).
(2) ⇒ (3) is trivial.
(3) ⇒ f ∈ C1,1

L ∩S1. Applying the Cauchy-Schwarz inequality to (3), we get ∥∇f(x)−
∇f(y)∥∗ ≤ L∥x− y∥.

(1) ⇒ (4) is trivial. (4) ⇒ (1) is similar to Theorem 1.7 using integration. □

Theorem 2.2. A twice continuously differentiable function f belongs to the class C2,1
L if

and only if for any x, h ∈ Rn we have

0 ≤
〈
∇2f(x)h, h

〉
≤ L∥h∥2

Proof. Similar to Theorem 1.8. □

3. STRONGLY CONVEX FUNCTIONS

Definition 3.1. A continuously differentiable function f(·) is called strongly convex on Rn

(notation f ∈ S1
µ(V ) ) if there exists a constant µ > 0 such that for any x, y ∈ V we have

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ 1

2
µ∥y − x∥2.

The constant µ is called the convexity parameter of function f . Our notation for convex
function S1(V ) = S1

0 (V ) with µ = 0.
Let us describe the result of addition of two strongly convex functions.

Lemma 3.2. If f1 ∈ S1
µ1

(V1), f2 ∈ S1
µ2

(V2) and α, β ≥ 0, then f = αf1 + βf2 ∈
S1
αµ1+βµ2

(V1 ∩ V2) .

Theorem 3.3. Let f be continuously differentiable. For all x, y ∈ V ,

M∇f (x, y) ≥ µ∥x− y∥2

is equivalent to inclusion f ∈ S1
µ(V ).

The properties in the next statement is useful.
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Theorem 3.4. If f ∈ S1
µ (Rn), then for any x and y from Rn we have

Df (y, x) ≤
1

2µ
∥∇f(x)−∇f(y)∥2∗,

M∇f (x, y) ≤
1

µ
∥∇f(x)−∇f(y)∥2∗,

µ∥x− y∥ ≤ ∥∇f(x)−∇f(y)∥∗.

The proof of this theorem is very similar to the proof of Theorem 2.1 and we leave it as
an exercise for the reader.

Let us present a second-order characterization of the class S1
µ(V ).

Theorem 3.5 (Definition using twice differentiability). Let a continuous function f be
twice continuously differentiable in int V . It belongs to the class S2

µ(V ) if and only if for
all x ∈ intV and h ∈ Rn we have〈

∇2f(x)h, h
〉
⪰ µ∥h∥2.

Notice that for f ∈ S1
µ, Df (y, x) is positive, and furthermore if f is twice differentiable

Df (y, x) =
1

2
∥y − x∥2∇2f(ξ(x))

by Taylor expansion. Therefore, Df (y, x) induced a special metric associated to the Hes-
sian of a strongly convex function.
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