MATH 6222 LECTURE NOTE 1: SMOOTH CONVEX FUNCTIONS

JINGRONG WEI

ABSTRACT. This lecture note mainly introduces the function class considered in smooth
convex optimization and is prepared based on [1, Chapter 2].
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1. CONVEX FUNCTIONS

Definition 1.1 (Convex sets). A set V' C R" is called convex if for any x,y € V and «
from [0,1] we have ax + (1 — )y € V.

Thus, a convex set contains the whole segment [z, y] provided that the end points = and
vy belong to the set.

Definition 1.2 (Convex function). A continuously differentiable function f(-) is called
convex on a convex set V (notation f € SY(V)) if for any x,y € V we have

(1) fy) = f(2) + (Vf(2),y — ).

If —f(+) is convex, we call f(-) concave.
For convex functions, the following properties hold.

Lemma 1.3 (Closed under linear combination). If fi and fs are convex and o, 3 > 0,
then the function f = af1 + B fs is convex.

Lemma 1.4 ( Closed under linear transformation). If f € S*(V), then for A : R™ — R"
and b € R™ such that Ax +b € V, ¢(z) = f(Az +b) is convex.

Theorem 1.5 (Definition of convex function without differentiability). A continuously dif-
ferentiable function f belongs to the class S'(V') if and only if for any x,y € V and
a € [0, 1] we have

flaz+ (1 —a)y) < af(z)+ (1 —a)f(y).

Proof. (=) This direction is straightforward using the definition of convex function at
To=ax+ (1 —a)y.
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(<) Choose some « € [0, 1). Then

f) 2 7= 1f (#a) — af (@)] = £(2) + T [ (za) — (&)
= @)+ [+ (L= o)y — ) - f(2)]
Let o tend to 1, we get the desired result. O

The epigraph of a function f : V' — [—00, 4-00] is defined as
epi f = {(z,w)|xz € Vw e R, f(z) < w}.
Proposition 1.6. A function f : V — R is convex if and only if epi f C R"*! is convex.

Theorem 1.7. A continuously differentiable function f belongs to the class S*(V') if and
only if for any x,y € V we have

2 (Vf(x) =V f(y),z—-y)>0.

Proof. (=) This direction is straightforward.
(<)Define v, =z + 7(y — x) € V. Then

) = (@) + / (VI +7(y — ),y — 2)dr
0
= f(@) + (Vf(2)y — ) + / (VS (27) — Vf(x),y — z) dr

"1
= f@)+ (V1@ y=a)+ [ (V@) = VH@).a, —a)dr
> 1) + (Vi () )

For any f € C*, the linear Taylor expansion at z is

fily; @) := f(2) +(Vf(2),y — ).
For f € 8*(V), the Bregman divergence is defined as

Dy(y,x) := f(y) = fily;z) = fy) = f2) = (Vf(2),y — )
For fixed € V, D¢(-, x) is also convex. Bregman divergence is in general asymmetric,
i.e.,
D¢(y,z) # Dy(z,y), ifz#y

We then introduce its symmetrization

My (x,y) := Dy(y,2) + Dy(z,y) = (Vf(z) = VI(y),z —y)

Theorem 1.8 (Definition using twice differentiablility). Let V' be an open set. A twice
continuously differentiable function f belongs to the class S*(V') if and only if for any
x € V we have

V2f(z) =0
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Proof. (=) Let a function f from C2(V) be convex and s € R”. Letz, =z + 75 € V
for 7 > 0 small enough Then, in view of (2), we have

0< 5 (Vf (2r) = V(@) ) = - (V] () = Vf(2), )
— 7/0 <V2f(a:+/\s)s,s>d)\

T

and we get the desired result by letting 7 tend to zero.
(<) Forall z,y € V we have

1) = F(@) + (Vf(2)y - o) // (V2f(z + My — 2))(y — 2),y — 2) ddr
> f(@) + (Vf(2).y

Let us look at some examples of differentiable convex functions on R”.

e Every linear function f(z) = a + {(a, z) is convex.
e Let matrix A be symmetric and positive semidefinite. Then the quadratic function

fl@)=a+ (a,x)+ %(Az,:w

is convex (since V2f(z) = A = 0).
e The following functions of one variable belong to S*(R) :

f(z) =e",

f(@) =zP, p>1,
22

flz)= 1_7|$|;

f(@) = || = In(1 + |z[)

e /,-norm approximation:

m

f@) =" lai, ) = bil”

i=1
2. SMOOTH FUNCTIONS
Denote by Ci’ ! the set of all C* functions, the gradient for which is Lipschitz continuous

with constant L > 0 :

Vf(z) =Vl <Lllz—yl| Vr,yeV
where, for g € V'*, the dual norm is

g,v
loll == sup (g.0) = sup {9, v)
” ” 1 veV\{0} HUH

Theorem 2.1 (Bounds using Lipschitz smoothness). All conditions below, holding for all
x,y € R™, are equivalent to the inclusion f € C}J’l NSt

(1) 0 < Dy(y,x) < 5z —yl%,
(2) 5plIV (@) = ViW): < Ds(y, ),
(3) (co-coercivity) %HVf(x) —ViW|? < Myg(x,y),
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(4) 0 < Myys(z,y) < L|jz — y|/

Proof. f € Ci’l NS! = (1). Indeed, the first inequality in (1) follows from the definition
of convex functions. To prove the second one, note that

Dy(y.z) = f() — F(&) — (V(),y — )
- / (VI +7(y — ) - V(),y — 2)dr

! 2 L 2
< [ Lrly—aldr = Sly - ol
0

(1) = (2). Let us fix 2y € R™. Consider the function ¢(y) = f(y) — (V[ (z0),y).
Note thats ¢(y) — ¢(z0) = D¢ (y, o) > 0 for any y. Therefore, we have

(o) = min 0(e) < min {0(0) + (Votw).2 — ) + 5o vl

rER® reR"

r>0 2

and we get (2) since Vo(y) = Vf(y) — Vf (zg).

(2) = (3) is trivial.

)= f¢€ Ci’lﬂSl. Applying the Cauchy-Schwarz inequality to (3), we get ||V f(z)—
Vil < Lilz —yl.

(1) = (4) is trivial. (4) = (1) is similar to Theorem 1.7 using integration. O

~ iy {60 — 11900 + 517 = ) — S IV0

Theorem 2.2. A twice continuously differentiable function f belongs to the class Ci’l if
and only if for any x, h € R™ we have

0 < (V*f(2)h,h) < L|h|®

Proof. Similar to Theorem 1.8. O

3. STRONGLY CONVEX FUNCTIONS

Definition 3.1. A continuously differentiable function f(-) is called strongly convex on R™
(notation f € SFIL(V) ) if there exists a constant |1 > 0 such that for any x,y € V we have

Fly) > (@) + (Vi @)y — )+ oy — o).

The constant g is called the convexity parameter of function f. Our notation for convex
function S1(V') = S (V) with pp = 0.
Let us describe the result of addition of two strongly convex functions.

Lemma 3.2. Iff1 S S‘lel (Vl), f2 S S,thg (Vg) and a,ﬁ > 0, then f = Olfl + ﬂfQ S

Séltl-‘rﬂlm (Vl n ‘/2) .

Theorem 3.3. Let [ be continuously differentiable. For all x,y € V,
My (z,y) = pllz -yl

is equivalent to inclusion f € S}L(V).

The properties in the next statement is useful.
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Theorem 3.4. If f € S, (R™), then for any x and y from R™ we have
1
Dy(y.) < 5 IVF (@) - Vi,
1
My s(z,y) < ;HVf(ﬂ?) - VIl

plle =yl < [IVf(z) = V)l

The proof of this theorem is very similar to the proof of Theorem 2.1 and we leave it as
an exercise for the reader.
Let us present a second-order characterization of the class S }L (V).

Theorem 3.5 (Definition using twice differentiability). Let a continuous function f be
twice continuously differentiable in int V. It belongs to the class Sﬁ (V') if and only if for
all x € int V and h € R™ we have

(V2 f(z)h, h) = p||h||>.

Notice that for f € S}, D (y, x) is positive, and furthermore if f is twice differentiable

1
Df(yax) = 5“3/ - 1'H2v2f(§(x))

by Taylor expansion. Therefore, Dy (y, x) induced a special metric associated to the Hes-
sian of a strongly convex function.
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