MATH2040A Week 7 Tutorial Notes

1 Eigenvalues and Eigenvectors

Let V be a vector space, and T' € L(V). A nonzero vector v € V is an eigenvector / characteristic vector if
Tv = Av for some A € F. )\ is the associated eigenvalue.
Easy to see that

e )\ € F'is an eigenvalue if and only if T'— AId is not injective. If V' is finite dimensional, this is equivalent to
T — AId not being invertible.

e if v is an eigenvector, then v spans a one-dimensional invariant subspace S = Span( {v } ): T(S) C S

The spectrum o(T) C F of a linear map T € L(V) is the set of scalars A\ € F such that T'— AI is not invertible.
If V is finite dimensional, it is exactly the set of all eigenvalues of T'.
In lecture, the following theorem is proven:

Theorem 1.1. IfV is a finite dimensional vector space of dimension n, and A € F', T € L(V), then the following
are equivalent:

e )\ is an eigenvalue of T
e \ is an eigenvalue of the matriz [Tz in some/every ordered basis 5 of V
e )\ is a root of the characteristic polynomial fr(t) = det([T]g — tI,) for some/every ordered basis 5 of V

The characteristic polynomial fr(t) = det([T]g — tI,) is a polynomial of degree n and leading coefficient
(=1)™. Using fundamental theorem of algebra on it implies that a linear map on a finite dimensional vector space
over complex numbers has exactly n eigenvalues (counted with multiplicity).

To find all eigenvalues and eigenvectors of a linear map on a finite dimensional space, typically you need to

1. compute the characteristic polynomial fr(t) = det([T], — tI,,) in e.g. standard ordered basis, then solve for
all its roots, typically by factorizing it

2. for each eigenvalue A, find a basis for N ( T'— AId ), which can be done via working on the matrix represen-
tation [T], — Al in e.g. standard ordered basis

As you can see, finding all eigenvalues and eigenvectors involves only basic (yet cumbersome) operations of
e computing determinant

e factorizing a polynomial

e finding a basis of null space of a matrix (e.g. RREF)

It is quite common to make mistakes in these steps, so my suggestion is to check if your results are correct after
each step:

e does the characteristic polynomial have the right degree and leading coefficient?
e are the eigenvalues you found actually roots of the characteristic polynomial?
e is the null space nontrivial?

e is the basis you found consisting of eigenvectors of the original map, associated with the eigenvalue you
have chosen to solve for?

If not, there is a mistake somewhere in your computation.



2 Diagonalizability

If there is an (ordered) basis 8 of V' that every element is an eigenvector of T, then T is diagonalizable. If V is
finite dimensional, it is easy to see that [T is a diagonal matrix (with diagonal entries being the eigenvalues), a
canonical form that is easier to handle than a generic (dense) matrix.

The following theorem has been shown in lecture:

Theorem 2.1. If S C V is a (finite) set of eigenvectors each associated to a distinct eigenvalue, then S is linearly
independent.

So if a linear map has dim (V') distinct eigenvalues, it is diagonalizable.
We will discuss more about diagonalizability in the next tutorial sessions.

3 Algebra of Linear Maps, and Polynomials

We know that L(V) is a vector space with naturally defined addition and scalar multiplication:
o T+ U is defined pointwise as (T'+ U)(v) = T'(v) + U(v)
e aT is defined pointwise as (aT")(v) = a - T'(v)

We also know that we can define a (noncommutative but associative) multiplication on L(V') via composition:
TU is defined pointwise as (TU)(v) = T(U(v)). With product, we can define powers with nonnegative exponents:

e TO=1d
o Tl =TT

If a linear map T € L(V) is invertible, we can also define powers with negative exponents: T~ is the inverse of

T,and T~" = (T~1)".

It is easy to verify that all these operations combined satisfy most of the usual laws you would expect.

This means that given a polynomial p(X) = > a; X € P(F) = F[X], we can define a linear map p(T) =
5" a;T?. Informally, this is “evaluating the polynomial at the linear map”.

With simple computations, it is easy to see the following properties:

o if Tv = Av, then T"v = A" for n > 0. If T is invertible, this also holds for n < 0 if v # 0
e if p, ¢ are polynomials, then (p + ¢)(T) = p(T) + ¢(T') and (pg)(T) = p(T)q(T)
e if A is a matrix, then p(L4) = Lya) (with p(A) =3 a;A?)

Combining these properties, it is easy to see the following result: if v is an eigenvector of 1" with associated
eigenvalue A, then p(T)v = p(A)v, so p(A) is an eigenvalue of p(T"). (See also exercise Q4.)

4 Exercises

1. (Textbook Sec. 5.1 Q23)

Let V be a finite dimensional vector space and T € L(V) be diagonalizable with characteristic polynomial
p(t). Show that p(T) = 0.

Solution: Since T is diagonalizable, there exists an eigenbasis 5 of V.
Let v € 3, and the associated eigenvalue be .

Then A is a root of p, so p(A) = 0.

By property of eigenvalue, we also have p(T)v = p(A\)v = 0.

Since v € 8 is arbitrary, p(T') = 0 on a basis 8 of V, thus p(T") = 0.
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Note

You may already be aware of the Cayley—Hamilton theorem which is the focus of upcoming / current
lectures (the relevant lecture notes are posted online already). This question is a specialized version of
the theorem that does not need many setups, at the cost of a strong assumption (diagonalizability).

2. Let V be a finite dimensional vector space, and T,U € L(V). Show that o(TU) = o(UT).

Solution: By symmetry, it suffices to show that o(TU) C o(UT).

Let A € o(TU) be nonzero. Then there exists nonzero eigenvector v € V' such that TUv = Av.
Since v # 0 and A # 0, TUv = Av # 0. In particular, Uv # 0.
As UTUv =U (M) = AUv and Uv # 0, Uv is an eigenvector of UT with eigenvalue A, so A € o(UT).

Suppose now 0 € o(TU). Then TU is not invertible.

Take an ordered basis 5 of V. Then [TU]s is not an invertible matrix.

By the property of determinant (from MATH1030), 0 = det([TU]g) = det([T]3[U]g) = det([U]5[T]5) =
det ( [UT]B)

This implies that [UT]s is also not invertible, and so UT is not invertible, 0 € o(UT).

Thus o(TU) C o(UT).

3. Let A€ C"*". For each j define R; =37, .| Aji |, and Dy ={2€C: |z —A;; [<R; }.
Let A € C be an eigenvalue of A. Show that A € D; for some j.

Solution: Let = € C" be an eigenvector associated to the eigenvalue .

Then x # 0 and Az = Az, or Az = (Az); =Y, Ajper = Ajjx; + >, Ajeas for each j.

Rearranging and using triangle inequality, we have | A — A;; || z; | < ik ;| Aji || @y | for each j.

Let jo € { 1,...,n } be the index such that | z;, | is maximal. Then | =y T&S | z;, | for all k.

Since x # 0, | x;, | # 0, for otherwise x, = 0 for all k£ and so z = 0, a contradiction.

Then | A= Ajjo |1 @50 | < X sjo | Ajorke 130 | < ko | Adorke Do | = Rjo | 5y |50 | A=Ay o | <
Rj,.

This implies that A € Dj,.

Note

This is |Gershgorin circle theorem), which gives (computationally) quick estimates of locations of eigen-
values. There are a few generalizations, including Brauer oval theorem|in which the regions are (Cassini)
ovals. See N. Higham’s blog post| (and the references therein) for more detail.

4. Let V be a finite dimensional vector space over complex numbers, T € L(V), p(X) = Z?:o ¢; X7 € P(C) be

a nonzero complex polynomial of degree n > 1.
Let p(o(T)) = { p(A) | A € o(T) }. Show that p(a(T)) = o(p(T)).

(Hint: use the fundamental theorem of algebral)

Solution: Let A € o(T'). Then there exists a nonzero vector v € V such that Tv = Av.

So p(T)v = (Y. ¢;T9)(v) = > ¢;T(v) = 3" ¢jMv = p(A)v. This implies p(\) is an eigenvalue of p(T'), so
p(A) € o(p(T)). As ) is arbitrary, p(a(T)) C o(p(T)).

Let A € o(p(T')). Then there exists a nonzero vector v € V such that p(T)v = Av, so 0 = (p(T) — Ald)v =
a(T)o on g(X) = p(X) - A.
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https://mathworld.wolfram.com/GershgorinCircleTheorem.html
https://planetmath.org/brauersovalstheorem
https://web.archive.org/web/20240824182437/https://nhigham.com/2022/11/22/what-is-gershgorins-theorem/
https://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra#Equivalent_statements

By the fundamental theorem of algebra, there exist ¢ € C\ {0} and z,...,2, € C such that ¢(X) =
(X —2zp) . . (X —21),80q(T) = (T — 2,1d) .. . (T — z1d).

Since ¢(T)v = 0 with v #£ 0, ¢(T') is not injective.

As composition of injective linear maps is injective, this means that (at least) one of T — z;Id is not
injective. Let one such linear map be T' — z;Id. This implies that zj is an eigenvalue of T'.

By assumption, zj is also a root of ¢(X) = p(X) — X, so A = p(z) € p(a(T)).

As A is arbitrary, o(p(T")) C p(a(T)).

Therefore, p(o(T)) = o(p(T)).

Note

Instead of considering composition of injective linear maps, we can also consider the vectors vy = v,
vj = (T —2zjId)vj_y for j € { 1,...,n }. Since v, = ¢ '¢(T)v = 0 and vy # 0, there must be one minimal
ke{1,...,n} such that vy_; # 0 but (T — z;Id)vr_1 = 0, which also implies that z; is an eigenvalue
of T.

This is (a simple version of) spectral mapping theorem (for polynomials), an interesting theorem in
functional calculus. The use of fundamental theorem of algebra is critical: consider the real vector space

R2 and A = <(1) 01> €R?*2 p(X) = X2+ 1€ P(R). It is easy to see that

e L4 has no (real) eigenvalue, so the (real) spectrum is ()

® p(La) = Lpa)y = O2x2 and so has (real) spectrum {0}

which implies that p(o(L4)) =0 ; {0} = o(p(La))
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https://planetmath.org/spectralmappingtheorem
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