
MATH2040A Week 5 Tutorial Notes

1 Invertibility and Isomorphism

A linear map T ∈ L(V,W ) is invertible if there exists another map U : W → V (between sets) such that TU = IdW
and UT = IdV . As shown in lecture, the inverse must also be linear. In another words, the following diagram
commutes1:

V W

T

IdV

U

IdW

In such case, we say that V,W are isomorphic.
Recall that a linear map preserves the linear structure. Two vector spaces being isomorphic means that the

two linear structure can be identified by the other, and they have “the same linear structure”.
To show that two finite dimensional vector spaces are isomorphic, instead of finding an isomorphism, you can

also use the following result proven in lecture:

Theorem 1.1. Two finite dimensional vectors spaces (over the same scalar field) are isomorphic if and only if
they have the same dimension

Recall the dimension theorem:

Theorem 1.2 (Dimension theorem). If V is finite dimensional, and T ∈ L(V,W ). Then dim(V ) = dim(N ( T ))+
dim(R ( T )).

Essentially, the proof of this theorem in lecture is done by showing that the following result:

Lemma 1.3. Under the same assumptions of dimension theorem, if { v1, . . . , vm } is a basis of N ( T ) and
{ v1, . . . , vm, vm+1, . . . , vn } is a basis of V , then { Tvm+1, . . . , T vn } is a basis of R ( T ).

I am not aware if this is specifically mentioned in lecture, but this turns out to be quite handy in constructing
linear maps. In fact, you can go a bit further with the same proof:

Theorem 1.4. Under the same assumptions of dimension theorem, every complement2 R to N ( T ) in V is
isomorphic with R ( T ), with T |R : R → R ( T ) being an isomorphism.

Using the lemma with the result that injective linear map preserves linear independence (textbook Sec. 2.1
Q14, homework 4), it is immediate to see the linear independence of certain vectors in R ( T ). The following easy
result from textbook Sec. 2.1 Q13 is also quite handy when working in the reverse direction:

Lemma 1.5. Let T ∈ L(V,W ) and w1, . . . , wn ∈ R ( T ) be linearly independent. If v1, . . . , vn ∈ V satisfy
Tvi = wi for each i, then v1, . . . , vn are also linearly independent.

1.1 Coordinate Maps

In lecture, given an ordered basis β = { v1, . . . , vn } of a finite dimensional vector space V (with n = dim(V )),
we know how to convert a vector v ∈ V to an element [v]β ∈ Fn in the coordinate space via the combination
v =

∑
([v]β)ivi. This in fact gives a linear map [·]β : V → Fn, which we know is linear.

When we are also given an ordered basis γ = { w1, . . . , wm } of another finite dimensional vector spaces W
(with m = dim(W )), we can convert a linear map T ∈ L(V,W ) to a matrix [T ]γβ ∈ Fm×n via the definition

Tvj =
∑

([T ]γβ)ijwi.
These maps have many properties:

1Every directed path that has the same start and same end gives the same result via composition.
2Subspace of V such that V = N ( T )⊕R.
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• [Tv]γ = [T ]γβ [v]β

• [TU ]γα = [T ]γβ [U ]βα

• T is invertible iff [T ]γβ is invertible, with inverse [T−1]βγ = ([T ]γβ)
−1

• [·]β : V → Fn and [·]γβ : L(V,W ) → Fm×n are isomorphisms on fixed bases β, γ

The coordinate map [·]β has a simple relation with linear combination: for an ordered list β = (v1, . . . , vn)
of vectors in V , you can show that the linear map T : Fn → V defined by T (c1, . . . , cn) =

∑n
i=1 civi is injective

(resp. surjective) if and only if β is linearly independent (resp. spans V ); and so T is an isomorphism if and only
if β is a basis, with T−1 = [·]β .

The invertibility property gives a simple way to check if a linear map T ∈ L(V,W ) between two finite
dimensional vector spaces is an isomorphism: just check if its matrix representation [T ]γβ is invertible under some
bases β, γ. One direct conclusion is the following: if β = { v1, . . . , vn } is a basis of a (finite dimensional) vector
space V , and T ∈ L(V ) is a linear map such that Tβ = { Tv1, . . . , T vn } is also a basis, then T is invertible.
While this can shown with more elementary argument, we can also observe that the matrix representation of T
(with respect to β and Tβ) is [T ]Tβ

β = In.

1.2 Dual Spaces

Let V be a vector space over scalar field F . Since F is also a vector space over F (with obvious structure), it
makes sense to talk about the (algebraic) dual space V ∗ = L(V, F ).

If we equip V ∗ with the (natural) linear structure

• (T + U)(v) = T (v) + U(v) for all v ∈ V

• (aT )(v) = a · Tv for all v ∈ V

It is easy to see that V ∗ is also a vector space (over F ).
We can also consider the double dual space V ∗∗ = (V ∗)∗ = L(L(V, F ), F ), which when equipped with a similar

linear structure is also a vector space. Concerning these spaces, we have the following properties:

Theorem 1.6. If V is finite dimensional, V ∼= V ∗∗ and V ∼= V ∗.

I will omit the detailed proof here, but the basic idea is to

• show that the map e : V → V ∗∗ such that, for each v ∈ V , e(v) ∈ V ∗∗ maps f ∈ V ∗ to f(v), is an
isomorphism

• consider a basis β = { v1, . . . , vn } and correspondingly a list of mappings β∗ = { f1, . . . , fn } ⊆ V ∗ which

satisfy fi(vj) = δij =

{
1 if i = j

0 otherwise
, and show that β∗ is also a basis

It should be a simple exercise to fill in the blanks.
For V ∼= V ∗, the basis β∗ constructed is commonly referred to as the dual basis. Effectively, the isomorphism

here is constructed as a mapping between the bases β and the dual basis β∗. Due to this dependency of choice
of basis β, this isomorphism is (generally) considered to be not “natural”, while the isomorphism e : v 7→ e(v) for
V ∼= V ∗∗ is considered “natural”.

As an example for this naturality, consider the case where dim(V ) = 2, and suppose on a basis {v1, v2} of
V the two isomorphisms give two bases {f1, f2} of V ∗ and {φ1 = e(v1), φ2 = e(v2)} of V ∗∗. On another choice
{v1, v1 + v2} of basis of V , the corresponding basis for V ∗∗ is {φ1, φ1 +φ2}, while the corresponding basis for V ∗

is {f1 − f2, f2} instead of {f1, f1 + f2}.
Unlike most results we have seen so far that continue to hold for infinite dimensional vector spaces (with

minor modifications), this does not hold if V is infinite dimensional. In such case (under appropriate definition of
dimension) we only have dim(V ) ≤ dim(V ∗) with strict inequality when V is infinite dimensional. In particular
we no longer have isomorphisms between these spaces in general.
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2 Exercises

1. Let V,W be finite dimensional vector spaces over F . Let t : L(V,W ) → L(W ∗, V ∗) be defined by (t(T ))(g) =
g ◦ T (composition) for g ∈ W ∗. Show that t is a linear isomorphism.

(If we denote t(T ) as T ∗, for each g ∈ W ∗ we have T ∗g ∈ V ∗ such that for each v ∈ V , (T ∗g)(v) = g(Tv).)

Solution: We first show that t is linear.

For the sake of notation, let us denote for the moment the application of t as t(T ) = T ∗ for all T ∈
L(V,W ).
Let T, S ∈ L(V,W ). Then for each g ∈ W ∗ and v ∈ V , ((T +S)∗g)(v) = g ( (T +S)v ) = g(Tv)+g(Sv) =
(T ∗g)(v)+(S∗g)(v) = (T ∗g+S∗g)(v) = ((T ∗+S∗)(g))(v), so t(T+S) = (T+S)∗ = T ∗+S∗ = t(T )+t(S).
Let T ∈ L(V,W ) and c ∈ F . Then for each g ∈ W ∗ and v ∈ V , ((cT )∗g)(v) = g(( cT ) v) = g(cTv) =
c ( g(Tv) ) = c ( (T ∗g)(v) ) = ( c(T ∗g) ) (v) = (( cT ∗ ) g)(v), so t(cT ) = (cT )∗ = cT ∗ = ct(T ).
So t is linear.

We now show that t is an isomorphism.
We already know that V ∼= V ∗ and W ∼= W ∗, so dim(V ) = dim(V ∗) and dim(W ) = dim(W ∗).
By the result from lecture, we have dimL(V,W ) = dim(V ) dim(W ) = dim(W ∗) dim(V ∗) = dimL(W ∗, V ∗).
So by dimension theorem, it suffices to show that t is injective.

Let T ∈ N ( t ). We want to show that T is the zero vector in L(V,W ), that is the zero map.
Let v ∈ V . Suppose Tv ̸= 0.
Then {Tv} ⊆ W is linearly independent, so there exists g ∈ L(W,F ) = W ∗ such that (t(T )g)(v) =
g(Tv) = 1 ̸= 0.
This implies that t(T )g ̸= 0L(V,F ), so t(T ) ̸= 0L(W∗,V ∗), contradicting to the assumption that T ∈ N ( t ).
So Tv = 0. As v ∈ V is arbitrary, T = 0L(V,W ).
Therefore t is injective.

Note

If we write the application of a map f ∈ V ∗ to v ∈ V as f(v) = fTv, then the mapping t is defined by
the relation (T ∗f)Tv = fT(Tv). When we treat elements in V,W, V ∗,W ∗ as column vectors and linear
maps in L(V,W ), L(W ∗, V ∗) as matrices, t just maps a matrix to its transpose. Perhaps for this reason,
t is commonly referred to as the transpose / adjoint map.

On the other hand, the transpose of a generic vector (not necessarily a linear map) would require some
additional structure that will be covered in later lectures.

2. Let V,W be vector spaces (over the same scalar field) such that V,W ̸= {0} are both nontrivial, and W is
finite dimensional. Suppose there exists T ∈ L(V,W ) such that for every U ∈ L(W,V ) that is not the zero
map, TUT is also not the zero map. Show that V ∼= W .

Solution: We will show that V ∼= W by showing that T is an isomorphism.

We first show that T is injective. Let v ∈ N ( T ).
Let β = { w1, . . . , wn } be a basis of W with n = dim(W ) ≥ 1, and let U ∈ L(W,V ) be a linear map
such that Uwi = v for each i.
Then for each x ∈ V , Tx ∈ W and so Tx =

∑n
i=1 ciwi for some c1, . . . , cn, which implies TUTx =

TU(
∑

ciwi) = T ((
∑

ci)v) = (
∑

ci)Tv = 0, so TUT is the zero map.
By assumption, this implies that U is also the zero map. As n ≥ 1, we must have v = Uw1 = 0.
Hence, T is injective.

Suppose that T is not surjective. Then R ( T ) ⫋ W , and so on m = dim(R ( T )) and n = dim(W ), we
must have m < n.
Let { w1, . . . , wm } be a basis of R ( T ). We can extend it to a basis { w1, . . . , wn } of W . As m < n,
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there is at least one vector wm+1 /∈ R ( T ) that is in this basis of W .
Let v ∈ V be nonzero, and let U ∈ L(W,V ) be a linear map that satisfies Uwi = 0 for all i ≤ m and
Uwi = v for all i > m. Since m < n and Uwm+1 = v ̸= 0, there is at least one vector wm+1 ∈ W on
which U does not map to the zero vector, so U is not the zero map.
Let x ∈ V . Then Tx ∈ R ( T ) and so Tx =

∑m
i=1 ciwi for some c1, . . . , cm, which implies that TUTx =

TU(
∑m

i=1 ciwi) = T (
∑m

i=1 ciUwi) = 0.
Thus TUT is the zero map. By assumption, this means that U must be the zero map, a contradiction.
So T is surjective.

Therefore, T is an isomorphism.

3. Let V be a finite dimensional vector space and T ∈ L(V ). Show that there exists an isomorphism U ∈ L(V )
such that TUT = T .

Solution: Let { v1, . . . , vm } be a basis of N ( T ) with m = nullity(T ), and extend it to a basis
{ v1, . . . , vn } with n = dim(V ) ≥ m.
For each i ≥ m+ 1 let wi = Tvi. Then with the same proof as dimension theorem, { wm+1, . . . , wn } is
a basis of R ( T ). We can extend it to a basis { w1, . . . , wn } of V .
Let U ∈ L(V ) be the linear map that satisfies Uwi = vi for each i. Since { v1, . . . , vn } and { w1, . . . , wn }
are bases, U is invertible.

We now show that U satisfies the requirement.
For each i ≤ m, vi ∈ N ( T ), so TUTvi = TU0 = 0 = Tvi.
For each i ≥ m+ 1, Tvi = wi, so TUTvi = TUwi = Tvi.
So TUT = T on a basis { v1, . . . , vn } of V , and thus TUT = T .

Note

Effectively, what we have constructed are the direct sum decompositions V = N ( T )⊕R = N ⊕ R ( T )
where R ∼= R ( T ) and N ∼= N ( T ), and U can be seen as a combination of two isomorphisms U |R(T ) :

R ( T ) → R (which is the inverse of T |R : R → R ( T )) and U |N : N → N ( T ) (which we define as a
mapping between bases).

4. (Textbook Sec 2.3 Q16)

Let V,W be finite dimensional vector spaces with dim(V ) = dim(W ), and T ∈ L(V,W ). Show that there
exist ordered bases β, γ for V,W respectively such that [T ]γβ is diagonal.

Solution: Let { v1, . . . , vm } be a basis of N ( T ) ⊆ V where m = nullity(T ) ≤ dim(V ), and extend it
to a basis β = { v1, . . . , vn } of V where n = dim(V ).

With the same proof as dimension theorem, { Tvm+1, . . . , T vn } is linearly independent.

Since dim(V ) = dim(W ), we can extend { Tvm+1, . . . , T vn } to a basis γ = { w1, . . . , wm, T vm+1, . . . , T vn }
of W .

We now show that [T ]γβ is diagonal.

For each i ≤ m, vi ∈ N ( T ), so Tvi = 0 =
∑m

j=1 0 · wj +
∑n

j=m+1 0 · Tvj with ([Tvi]γ)j = 0 for each j.

For each i ≥ m+ 1, Tvi =
∑m

j=1 0 · wj +
∑n

j=m+1 δij · Tvj , so ([Tvi]γ)j = δij .
These imply that

[T ]γβ =

(
0m×m 0m×(n−m)

0(n−m)×m I(n−m)×(n−m)

)
which is diagonal.
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