
MATH2040A Week 3 Tutorial Notes

1 Basis and dimension

• A spanning set S is a subset of a vector space that spans the whole space: Span( S ) = V

• A basis is a linearly independent spanning set

• If there is a finite spanning set, the space is called finite dimensional. Otherwise it is infinite dimensional

It is shown in lecture that a finite dimensional space has a basis, but note that we have not shown if an infinite
dimensional vector space also has a basis1, so you should not assume that a basis always exists.2

If β is a basis of V , its size | β | is the dimension of the vector space V . It is shown in lecture that every basis
of a finite dimensional vector space has the same size.

The major results about basis are

• Given a basis of a finite dimensional space, every vector has unique representation as a linear combination
of elements from the basis.3

• A finite spanning set can be reduced to a (finite) basis (by removing some of its elements)

• (Replacement theorem) If S is a finite spanning set and L is a finite linearly independent set (in the same
space), then

– | S | ≥ | L |
– you can take elements from S and add them to L to make L a spanning set and have the same number

of elements as S

• In a finite dimensional space, a (finite) linearly independent set can extend to a basis (by adding elements
to it). In particular, a basis of a subspace can be extended to one of the whole space.

A (direct) consequence of replacement theorem is that, in a finite dimensional space V ,

• if S is a spanning set, dim(V ) ≤ | S |

• if L is a linearly independent set, dim(V ) ≥ | L |

To show that a set β is a basis of some space V , typically you need show that β is both linearly independent
and spans V , which you can apply the approaches covered in the last tutorial. However, if you already know the
dimension of V (assuming it is finite dimensional), you can just show that β has the correct size, and show either
one of linear independence and span. The issue with this shortcut is that, in many cases, you may need prove
why the claimed dimension is correct, and this may require constructing a basis explicitly.

When handling the sum of two subspaces, one common technique is to use the following result4:

Span( S1 ∪ S2 ) = Span( S1 ) + Span( S2 )

If S1, S2 are basis of W1,W2 respectively, this implies that S1 ∪ S2 is a spanning set of the subspace W1 +W2.

1This requires axiom of choice, and I do not think we will be discussing it in this course.
2But also do not assume that a space is finite dimensional just because it has a basis (e.g. the space of all real polynomials),

unless you also know the basis is a finite set.
3This actually holds for infinite basis as well: if v ∈ V and β is a (possibly infinite) basis of V , then there exist n ∈ N, v1, . . . , vn ∈ β

and nonzero scalars c1, . . . , cn ∈ F (which are unique up to permutation of indices) such that v =
∑

civi.
4See also textbook Sec 1.4 Q14 in homework 2.
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1.1 A result in lecture note

Here is a result that is mentioned in a remark on the last page of lecture note 4; see also textbook Sec 1.6 Q34(a).
Let V be a finite dimensional vector space (over F ), and W be a subspace of V . Show that there exists a

subspace Q of V such that V = W ⊕Q.

Proof. Since V is finite dimensional, so is W . Then W has a basis β = { w1, . . . , wn } ⊆ W for some n ∈ N.
By (corollary of) replacement theorem we can extend β into a basis γ = { w1, . . . , wn, v1, . . . , vm } ⊆ V of V for
some m ∈ N and v1, . . . , vm ∈ V .

Let Q = Span( β′ ) with β′ = γ \ β = { v1, . . . , vm }. By property of span, Q is a subspace of V . We now
show that V = W ⊕Q. To do so, we need to check that W +Q = V and W ∩Q = {0}.

Since γ = β ∪ β′ is a basis of V , V = Span( γ ) = Span( β ∪ β′ ) = Span( β ) + Span( β′ ) = W +Q.
Trivially, {0} ⊆ W ∩ Q. Let v ∈ W ∩ Q. Then there exist scalars c1, . . . , cn, d1, . . . , dm ∈ F such that

v =
∑n

i=1 ciwi and v =
∑m

j=1 djvj . This implies 0 = v − v = c1w1 + . . . + cnwn − d1v1 − . . . − dmvm. As
γ = { w1, . . . , wn, v1, . . . , vm } is a basis, it is linear independent, and so c1 = . . . = cn = d1 = . . . = dm = 0.
Hence v =

∑n
i=1 ciwi = 0. As v ∈ W ∩Q is arbitrary, W ∩Q = {0}.

Therefore V = W ⊕Q.

Note

We call such Q a complement of W . Excluding the trivial case where W = {0} or W = V , as the way to extend
the basis β is not unique, the complement is also not unique.

While we consider only finite dimensional vector spaces, this proof can be extended to infinite dimensional
vector spaces if you have the corresponding theorems for infinite dimensional spaces.

2 Exercises

1. Let { v1, . . . , vn } be a linearly independent set of vectors in a vector space V , and u ∈ V . Show that
dimSpan( { v1 + u, . . . , vn + u } ) ≥ n− 1.

Solution: Let W = Span( { v1 + u, . . . , vn + u } ). Since { v1 + u, . . . , vn + u } is a finite spanning set of
W , W is finite dimensional.

If n = 1, we trivially have that dim(W ) ≥ 0 = n− 1. Hence, we may assume in the following that n ≥ 2.

For each i ∈ { 1, . . . , n − 1 }, vi − vn = (vi + u) − (vn + u) ∈ Span( { v1 + u, . . . , vn + u } ) = W , so
S = { v1 − vn, . . . , vn−1 − vn } ⊆ W .

Let c1, . . . , cn−1 ∈ F be scalars such that
∑n−1

i=1 ci(vi − vn) = 0. Then
∑n−1

i=1 civi + (
∑n−1

j=1 cj)vn = 0.
As { v1, . . . , vn } is linearly independent, we must have ci = 0 for all i ∈ { 1, . . . , n − 1 }. So, { v1 −
vn, . . . , vn−1 − vn } is linearly independent. In particular, all elements in this set are distinct, so by
construction S has n− 1 elements.
Since W contains a linearly independent set S of n− 1 elements, by (corollary of) replacement theorem
dim(W ) ≥ | S | = n− 1.

2. (See also textbook Sec 1.6 Q31(b))

Let U1, . . . , Un be finite dimensional subspaces of a vector space V . Show that W = U1 + . . . + Un is finite
dimensional and dim(W ) ≤ dim(U1) + . . .+ dim(Un).

(Here U1 + . . .+ Un = { x1 + . . .+ xn | x1 ∈ U1, . . . , xn ∈ Un }.)

Solution: Since U1, . . . , Un are finite dimensional, there exist bases β1, . . . , βn for U1, . . . , Un.
By definition, dim(U1) = | β1 | , . . . ,dim(Un) = | βn |.
By property of span, W = U1 + . . .+ Un = Span( β1 ) + . . .+ Span( βn ) = Span( β1 ∪ · · · ∪ βn ) where
β1 ∪ · · · ∪ βn is a finite union of finite set and so is finite.
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This implies thatW is spanned by a finite set and thus finite dimensional, and dim(W ) ≤ | β1∪· · ·∪βn | ≤
| β1 |+ . . .+ | βn | = dim(W1) + . . .+ dim(Wn).

Note

Since we have only defined “dimension” for spaces with a finite spanning set (i.e. “finite dimensional”
spaces), it is necessary to first check if W is finite dimensional, so that it makes sense to talk about
dim(W ).

3. (Textbook Sec 1.6 Q29)

Prove that if W1 and W2 are finite-dimensional subspaces of a vector space V , then dim(W1 + W2) =
dim(W1) + dim(W2)− dim(W1 ∩W2).

Furthermore, assuming V = W1+W2, show that this sum is a direct sum if and only if dim(V ) = dim(W1)+
dim(W2).

Solution: By the last question, W1 +W2 is finite dimensional.

Since W1 ∩W2 ⊆ W1 is a subspace of a finite dimensional vector space, it is also finite dimensional. Let
β = { u1, . . . , un } ⊆ W1 ∩W2 be a basis of W1 ∩W2 with n = dim(W1 ∩W2).
SinceW1∩W2 ⊆ W1 andW1 is finite dimensional, we can extend β to a basis β1 = { u1, . . . , un, v1, . . . , vm }
of W1, with m = dim(W1)− n ∈ N and v1, . . . , vm ∈ W1.
Similarly, extend β to a basis β2 = { u1, . . . , un, w1, . . . , wp } of W2, with p = dim(W2) − n ∈ N and
w1, . . . , wp ∈ W2.
Let γ = β1 ∪ β2 ⊆ W1 ∪ W2 ⊆ W1 + W2. We will show that | γ | = n + m + p and that γ is a basis
of W1 +W2, as these would imply that dim(W1 +W2) = | γ | = n +m + p = (n +m) + (n + p) − n =
dim(W1) + dim(W2)− dim(W1 ∩W2).

Let c1, . . . , cn, a1, . . . , am, b1, . . . , bp ∈ F be scalars such that
∑n

i=1 ciui +
∑m

j=1 ajvj +
∑p

k=1 bkwk = 0.

Then
∑n

i=1 ciui +
∑m

j=1 ajvj = −
∑p

k=1 bkwk.

By assumption
∑n

i=1 ciui +
∑m

j=1 ajvj ∈ Span( β1 ) = W1 and −
∑p

k=1 bkwk ∈ Span( β2 ) = W2, so∑n
i=1 ciui +

∑m
j=1 ajvj = −

∑p
k=1 bkwk ∈ W1 ∩W2.

As β is a basis of W1 ∩W2, there exists d1, . . . , dn ∈ F such that
∑n

i=1 ciui +
∑m

j=1 ajvj =
∑n

i=1 diui,

which implies
∑n

i=1(ci − di)ui +
∑m

j=1 ajvj = 0, with u1, . . . , un, v1, . . . , vm ∈ β1.
As β1 is a basis, it is linearly independent, so we must have c1− d1 = . . . = cn− dn = a1 = . . . = am = 0.
In particular, we have

∑m
j=1 ajvj = 0.

This implies that
∑n

i=1 ciui+
∑p

k=1 bkwk = 0. As β2 is a basis, it is linearly independent and so we must
have c1 = . . . = cn = b1 = . . . = bp = 0.
It then follows that γ = { u1, . . . , un, v1, . . . , vm, w1, . . . , wp } is linearly independent. In particular, all
elements are distinct, and so | γ | = n+m+ p.

To show that γ is a basis of W1 +W2, it remains to show Span( γ ) = W1 +W2.
Since γ = β1 ∪ β2, by property of span we have Span( γ ) = Span( β1 ∪ β2 ) = Span( β1 ) + Span( β2 ) =
W1 +W2.

Therefore, γ is a basis of W1 +W2.

We now show the second part. As we already have V = W1 + W2, V = W1 ⊕ W2 iff W1 ∩ W2 = {0},
which holds iff dim(W1 ∩ W2) = 0. By our conclusion in the first part, this holds iff dim(W1 + W2) =
dim(W1) + dim(W2).

Note

If we assume that every vector space has a basis, it is possible to extend the result to infinite dimensional
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spaces, although we can only have dim(W1 +W2)+ dim(W1 ∩W2) = dim(W1)+ dim(W2) (as cardinals),
as subtraction does not make sense in this context.

4. Determine if the following identity holds on every vector space V and its finite dimensional subspaces
W1,W2,W3:

dim(W1 +W2 +W3) = dim(W1) + dim(W2) + dim(W3)

− dim(W1 ∩W2)− dim(W1 ∩W3)− dim(W2 ∩W3)

+ dim(W1 ∩W2 ∩W3)

(Compare with inclusion-exclusion principle for sets.)

Solution: The identity does not hold in general. One counterexample is V = R2 being the usual real
plane, and W1 = { (x, 0) | x ∈ R }, W2 = { (0, y) | y ∈ R }, W3 = { (x, x) | x ∈ R }.
It is easy to check that

• W1,W2,W3 are finite dimensional subspaces of (finite dimensional) vector space V

• dim(W1) = dim(W2) = dim(W3) = 1

• W1 ∩W2 = W1 ∩W3 = W2 ∩W3 = W1 ∩W2 ∩W3 = {0} which has dimension dim({0}) = 0

• V = W1 +W2 +W3 which has dimension dim(V ) = 2

and so on these spaces, LHS evaluates to 2 while RHS evaluates to 1 + 1 + 1− 0− 0− 0 + 0 = 3 ̸= 2.

Note

This appears to be a (surprisingly) common misbelief.

The counterexample provided here is the same one as in tutorial 1. In fact, using the result of Q3 on
W1 +W2 and (W1 ∩W3)+ (W2 ∩W3) and noting that W1 ∩W2 ∩W3 = (W1 ∩W3)∩ (W2 ∩W3), we have

RHS = dim(W1 +W2) + dim(W3)− dim((W1 ∩W3) + (W2 ∩W3))

= dim(W1 +W2 +W3) + dim((W1 +W2) ∩W3)− dim((W1 ∩W3) + (W3 ∩W3))

so the identity holds iff

dim((W1 +W2) ∩W3) = dim((W1 ∩W3) + (W2 ∩W3))

and it is easy to see that (W1 +W2) ∩W3 ⊇ (W1 ∩W3) + (W2 ∩W3), so this holds iff

(W1 +W2) ∩W3 = (W1 ∩W3) + (W2 ∩W3)

which, as shown by the counterexample, does not hold in general.

Page 4

https://mathoverflow.net/a/23501

	Basis and dimension
	A result in lecture note

	Exercises

