
MATH2040A Week 1 Tutorial Notes

1 Vector space

A vector space is a (nonempty) set that has a linear structure. Linear structure means that you can add two
elements together, and scale an element by some scalar multiplier, and they act in the same way you would expect.
More precisely, these two operations (addition and scalar multiplication) satisfy the following 8 conditions from
lecture:

1. Addition is commutative: x+ y = y + x

2. Addition is associative: (x+ y) + z = x+ (y + z)

3. Zero vector: there exists 0⃗ such that x+ 0⃗ = x

4. Additive inverse: for all x there exists y such that x+ y = 0⃗

5. Unit scalar multiplication: 1 · x = x

6. Scalar multiplication is associative: (αβ) · x = α · (β · x)

7. Distributive law 1: α · (x+ y) = α · x+ α · y

8. Distributive law 2: (α+ β) · x = α · x+ β · x

There is a hidden condition1 that is sometimes neglected: the two operations must be well-defined. This means
that, for example, for all elements x, y in the set, x + y is uniquely defined and is still in the set. Most of the
time “uniquely defined” is obvious, but the closure part may need some justification.

These properties are the same ones of real number addition and multiplication which you are familiar with.
In a sense, a real vector space is an extension of real numbers.

To check if a set (equipped with a scalar field and the two operations) is a vector space, you can do it from
the first principle: just verify all these 8 conditions one by one.

1.1 Exercises

1. Determine if the set S = (0,∞) is a real vector space when equipped with the following operations:

• addition: x⊕ y = 2xy for x, y ∈ S

• scalar multiplication: α⊙ x = 2α−1xα for x ∈ S, α ∈ R

If so, what is its zero vector?

Solution: It is easy to see that x⊕ y = 2xy ∈ S for all x, y ∈ S and α ⊙ x = 2α−1xα ∈ S for all x ∈ S
and α ∈ R. To show that S is a vector space, we verify all 8 conditions one by one:

1. For all x, y ∈ S, x⊕ y = 2xy = 2yx = y ⊕ x

2. For all x, y, z ∈ S, (x⊕ y)⊕ z = 2(x⊕ y)z = 2(2xy)z = 4xyz = 2x(2yz) = 2x(y ⊕ z) = x⊕ (y ⊕ z)

3. Take 0⃗ = 1
2 ∈ S. Then for all x, x⊕ 0⃗ = 2x 1

2 = x

1Technically two conditions.
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4. For all x ∈ S, on y = 1
4x ∈ S, x⊕ y = 2x 1

4x = 1
2 = 0⃗

5. For all x ∈ S, 1⊙ x = 21−1x1 = x

6. For all x ∈ S and α, β ∈ R, α⊙ (β ⊙ x) = α⊙ (2β−1xβ) = 2α−1(2β−1xβ)α = 2αβ−1xαβ = (αβ)⊙ x

7. For all α ∈ R and x, y ∈ S, α⊙ (x⊕ y) = 2α−1(2xy)α = 2(2α−1xα)(2α−1yα) = (α⊙ x)⊕ (α⊙ y)

8. For all α, β ∈ R and x ∈ S, (α+ β)⊙ x = 2α+β−1xα+β = 2(2α−1xα)(2β−1xβ) = (α⊙ x)⊕ (β ⊙ x)

As all conditions are satisfied, S is a real vector space with the given operations.

As seen in the proof, its zero vector is 1
2 .

2. Determine if the set S = R is a real vector space when equipped with the following operations:

• addition: x⊕ y = x+ y − 2 for x, y ∈ S

• scalar multiplication: α⊙ x = αx+ 2(1− α) for x ∈ S, α ∈ R

If so, what is its zero vector?

Solution: It is easy to see that x⊕ y = x+ y− 2 ∈ S for all x, y ∈ S and α⊙ x = αx+2(1−α) ∈ S for
all x ∈ S and α ∈ R. To show that S is a vector space, we verify all 8 conditions one by one:

1. For all x, y ∈ S, x⊕ y = x+ y − 2 = y + x− 2 = y ⊕ x

2. For all x, y, z ∈ S, (x⊕ y)⊕ z = (x+ y − 2)⊕ z = x+ y + z − 4 = x⊕ (y + z − 2) = x⊕ (y ⊕ z)

3. Take 0⃗ = 2 ∈ S. Then for all x, x⊕ 0⃗ = x+ 2− 2 = x

4. For all x ∈ S, on y = 4− x ∈ S, x⊕ y = x+ (4− x)− 2 = 2 = 0⃗

5. For all x ∈ S, 1⊙ x = 1x+ 2(1− 1) = x

6. For all x ∈ S and α, β ∈ R, α ⊙ (β ⊙ x) = α ⊙ (βx + 2(1 − β)) = α(βx + 2(1 − β)) + 2(1 − α) =
αβx+ 2(α(1− β) + (1− α)) = (αβ)x+ 2(1− αβ) = (αβ)⊙ x

7. For all α ∈ R and x, y ∈ S, α⊙(x⊕y) = α(x+y−2)+2(1−α) = (αx+2(1−α))+(αy+2(1−α))−2 =
(α⊙ x)⊕ (α⊙ y)

8. For all α, β ∈ R and x ∈ S, (α+β)⊙x = (α+β)x+2(1−α−β) = (αx+2(1−α))+(βx+2(1−β))−2 =
(α⊙ x)⊕ (β ⊙ x)

As all conditions are satisfied, S is a real vector space with the given operations.

As seen in the proof, its zero vector is 2.

2 Subspace

A subspace of a vector space is its subset which is also a vector space with the same linear structure. Particularly,
this means that the subspace has the same scalar field, addition, scalar multiplication, and zero vector.

In the lecture the following theorem is shown:

Theorem 2.1. If V is a vector space (over scalar field F ) and U ⊆ V (as a subset), then U is a subspace of V
if and only if all of the following hold:

• 0 ∈ U
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• for all x, y ∈ U , x+ y ∈ U

• for all x ∈ U and α ∈ F , αx ∈ U

It is sometimes tempting to show a set U to be a vector space by showing only the above 3 conditions.
However, the above theorem works only when there is already a vector space V that contains U as a subset and
has the same linear structure. For this purpose, typically

• either you choose V that is known to be a vector space (e.g. Rn), which heavily limits its linear structure;

• or you construct one such V with the desired linear structure, which requires a proof that such V is a vector
space, and is usually the same (if not harder) as working on U directly

2.1 Sum

See textbook Sec. 1.3 Q23–30.
You may already know from lecture that the intersection of two subspaces is still a subspace, but not necessarily

their union, as taking union (usually) does not respect the linear structure.2 So, is there an operation that plays
a similar role?

The sum of two subsets S1, S2 of a vector space V is the set S1+S2 = { x+y | x ∈ S1, y ∈ S2 }. Furthermore,
if S1, S2 are both subspaces of V and satisfy the two conditions

• S1 ∩ S2 = {0}

• S1 + S2 = V

Then we say the sum S1 + S2 is a direct sum and denote it as V = S1 ⊕ S2. This is related to the concept of
linear independence (which may have been covered in the lectures3).

2.2 Exercises

Sec 1.3 Q23 (a). Let W1 and W2 be subspaces of a vector space V . Prove that W1 +W2 is a subspace of V that
contains both W1 and W2.

Solution: We first show that W1 +W2 is a subspace of V .

To do so, we can use the theorem from the lecture. That is, we show that 0 ∈ W1+W2, x+y ∈ W1+W2

for all x, y ∈ W1 +W2, and αx ∈ W1 +W2 for all α ∈ F and x ∈ W1.

• Since W1,W2 are subspaces of V , by the property of subspace 0 ∈ W1 and 0 ∈ W2, so 0 = 0 + 0 ∈
W1 +W2

• Let x, y ∈ W1 +W2. By the definition of W1 +W2, there exists x1, y1 ∈ W1 and x2, y2 ∈ W2 such
that x = x1 + x2, y = y1 + y2.
Then x+ y = (x1 +x2)+ (y1 + y2) = (x1 + y1)+ (x2 + y2). As W1,W2 are subspaces, x1 + y1 ∈ W1

and x2 + y2 ∈ W2, so x+ y = (x1 + y2) + (x2 + y2) ∈ W1 +W2

• Let x ∈ W1 +W2, α ∈ F . By the definition of W1 +W2, there exists x1 ∈ W1 and x2 ∈ W2 such
that x = x1 + x2.
As W1 is a subspace, αx1 ∈ W1 and αx2 ∈ W2, so αx = α(x1 + x2) = (αx1) + (αx2) ∈ W1 +W2

Hence W1 +W2 is a subspace of V .

We now show that W1 +W2 contains both W1 and W2.

Let x ∈ W1. Since W2 is a subspace, 0 ∈ W2. So, x = x + 0 ∈ W1 + W2. As x ∈ W1 is arbitrary,
W1 ⊆ W1 +W2.

2See HW question Sec 1.3 Q19: union of two subspaces is a subspace iff one contains the other.
3The relevant lecture note is already on the course webpage.
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Similarly, let x ∈ W2. Since W1 is a subspace, 0 ∈ W1. So, x = 0+x ∈ W1+W2. As x ∈ W2 is arbitrary,
W2 ⊆ W1 +W2.

So, W1 +W2 contains both W1 and W2.

Therefore, W1 +W2 is a subspace of V that contains both W1 and W2.

2. Let V be a vector space. Determine if the following hold on all subspaces W,U1, U2 of V :

(a) W ∩ (U1 + U2) = (W ∩ U1) + (W ∩ U2)

(b) if U1 ⊆ U2, (U1 +W ) ∩ U2 = U1 + (W ∩ U2)

Solution:

(a) This does not hold in general.

A counter-example: V = R2 is the usual 2D plane (as a real vector space), U1 = { (x, 0) ∈ V |
x ∈ R }, U2 = { (0, y) ∈ V | y ∈ R }, W = { (x, x) ∈ V | x ∈ R }. It is easy to verify that

• U1, U2,W are all subspaces of V

• U1 + U2 = V , W ∩ (U1 + U2) = W

• W ∩ U1 = W ∩ U2 = {0}, (W ∩ U1) + (W ∩ U2) = {0}
• W ̸= {0}

Note

Here the detail is omitted for brevity, but in homeworks and tests you should give appropriate
justification on the above statements.

(b) Let v ∈ (U1 +W ) ∩ U2. Then there exists u1 ∈ U1, w ∈ W such that v = u1 + w and v ∈ U2.
As w = v − u1 with v ∈ U2 and u1 ∈ U1 ⊆ U2, w ∈ U2, so w ∈ W ∩ U2. This implies v = u1 + w ∈
U1 + (W ∩ U2).
As v is arbitrary, (U1 +W ) ∩ U2 ⊆ U1 + (W ∩ U2).

Let v ∈ U1 + (W ∩ U2). Then there exists u1 ∈ U1 and w ∈ W ∩ U2 such that v = u1 + w, and we
have both w ∈ W and w ∈ U2. So v = u1 + w ∈ U1 +W .
As u1 ∈ U1 ⊆ U2 and w ∈ U2, we have v = u1 + w ∈ U2. Hence v ∈ (U1 +W ) ∩ U2.
As v ∈ U1 + (W ∩ U2) is arbitrary, U1 + (W ∩ U2) ⊆ (U1 +W ) ∩ U2.

Therefore, (U1 +W ) ∩ U2 = U1 + (W ∩ U2).

Note

In the second part, you can also prove it with some comparison between sets.
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